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Abstrat.We prove that the Musielak-Orliz sequene spae with the Orliz norm has property
(β) i� it is re�exive. It is a generalization and essential extension of the respetive results from[3℄ and [5℄. Moreover, taking an arbitrary Musielak-Orliz funtion instead of an N -funtion wedevelop new methods and tehniques of proof and we onsider a wider lass of spaes than in[3℄ and [5℄.1. Introdution. Throughout this paper (X, ‖ · ‖X) is a real Banah spae. As usual,
S(X) and B(X) stand for the unit sphere and the unit ball of X, respetively. For anysubset A of X, we denote by conv(A) the onvex hull of A.The Banah spae X is said to be uniformly onvex (X ∈ (UC) for short), if for eah
ε > 0 there is δ > 0 suh that for any x, y ∈ S(X) the inequality ‖x − y‖X ≥ ε implies
‖x+ y‖X ≤ 2(1 − δ) (see [2℄).De�ne for any x /∈ B(X) the drop D(x,B(X)) determined by x by D(x,B(X)) =

conv({x} ∪B(X)).Reall that for any subset C of X, the Kuratowski measure of non-ompatness of Cis the in�mum α(C) of ε > 0 for whih there is a overing of C by a �nite number of setsof diameter less than ε.Rolewiz has proved that X ∈ (UC) i� for any ε > 0 there exists δ > 0 suh that
1 < ‖x‖X < 1 + δ implies diam(D(x,B(X)) \ B(X)) < ε (see [20℄). In onnetion withthis he has introdued in [21℄ the following property.A Banah spae X has the property (β) (X ∈ (β)) if for any ε > 0 there exists δ > 0suh that α(D(x,B(X)) \B(X)) < ε whenever 1 < ‖x‖X < 1 + δ.2000 Mathematis Subjet Classi�ation: 46B20, 46A45, 46B45.Key words and phrases: Köthe spae, Musielak-Orliz spae, property (β), order ontinuity.Supported by Foundation for Polish Siene, sholarship 2002.The paper is in �nal form and no version of it will be published elsewhere.
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80 P. KOLWICZA Banah spae is nearly uniformly onvex (X ∈ (NUC)) if for every ε > 0 thereexists δ ∈ (0, 1) suh that for every sequene {xn} in B(X) with sep{xn} > ε, we have
conv({xn}) ∩ (1 − δ)B(X) 6= ∅. Rolewiz proved the following impliations: (UC) ⇒
(β) ⇒ (NUC) (see [21℄). Moreover, the lass of Banah spaes with an equivalent normwith property (β) oinides neither with that of superre�exive spaes nor with the lassof nearly uniformly onvexi�able spaes (see [5℄ for referenes). Although property (β)was introdued during studies on well-posed problems in optimization theory (see [19℄,[21℄), it has been widely and intensively developed from the geometri point of view (see[5℄, [13℄ and [14℄ for referenes). One of the reasons that property (β) is important is thefat that if a Banah spae X has property (β), then both X and X∗ have the �xedpoint property (FPP ). The �rst fat follows from the impliations (β) ⇒ (NUC) and
(NUC) ⇒ (FPP ) (see [6℄ and [21℄). Moreover, if X ∈ (β), then X∗ has normal struture(see [17℄). On the other hand, Kirk proved that normal struture implies the weak �xedpoint property (WFPP ) (see [6℄). Sine (WFPP ) and (FPP ) oinide in re�exive spaesand property (β) implies re�exivity, property (β) implies also the �xed point propertyfor the dual spae.A sequene {xn} ⊂ X is ε-separated for some ε > 0 if sep{xn} = inf{‖xn − xm‖X :

n 6= m} > ε.Although the primary de�nition of property (β) uses the Kuratowski measure of non-ompatness, more onvenient in our onsiderations is the following equivalent onditionproved by Kutzarova in [16℄.Theorem 1. A Banah spae X has property (β) if and only if for every ε > 0 thereexists δ > 0 suh that for eah element x ∈ B(X) and eah sequene (xn) in B(X) with
sep{xn} ≥ ε there is an index k for whih ‖x+ xk‖X ≤ 2(1 − δ).Denote by N, R and R+ the sets of natural, real and non-negative real numbers,respetively. Let (N, 2N,m) be the ounting measure spae and l0 = l0(m) the linearspae of all real sequenes.Let E = (E,≤, ‖·‖E) be a Banah sequene lattie over the measure spae (N, 2N,m),that is, E is a Banah spae whih is a subspae of l0 endowed with the natural oordi-natewise semi-order relation, and E satis�es the onditions:

(i) if x ∈ E, y ∈ l0, |y| ≤ |x|, i.e. |y(i)| ≤ |x(i)| for every i ∈ N, then y ∈ E and
‖y‖E ≤ ‖x‖E ,

(ii) there exists a sequene x in E that is positive on the whole N (see [11℄ and [18℄).Banah sequene latties are often alled Köthe sequene spaes.A Köthe spae E is alled order ontinuous (E ∈ (OC)) if for every x ∈ E and eahsequene (xm) ∈ E suh that 0 ≤ xm ≤ |x| and xm → 0 we have ‖xm‖E → 0 (see [11℄and [18℄).A funtion ϕ is alled an Orliz funtion if ϕ: R → [0,∞] is onvex, even, ϕ(0) = 0and ϕ is not identially equal to zero and in�nity. A sequene ϕ = (ϕi) of Orliz funtions
ϕi is alled aMusielak-Orliz funtion. We will write ϕ > 0 if ϕi(u) = 0 i� u = 0 for every
i ∈ N. Given a Musielak-Orliz funtion ϕ we will denote by ϕ∗ the sequene (ϕ∗

i )
∞
i=1of funtions ϕ∗

i : R → [0,∞] that are omplementary to ϕi in the sense of Young, i.e.
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ϕ∗
i (v) = supu≥0{u|v| − ϕi(u)} for every v ∈ R and i ∈ N. De�ne on l0 a onvex modular

Iϕ by Iϕ(x) =
∑∞
i=1 ϕi(x(i)) for any x ∈ l0. By the Musielak-Orliz spae lϕ we mean

lϕ = {x ∈ l0 : Iϕ(cx) <∞ for some c > 0}.This spae is usually onsidered with the Luxemburg norm ‖x‖ϕ = inf{ε > 0 :

Iϕ(x/ε) ≤ 1} (we write lϕ = (lϕ, ‖ · ‖ϕ)) or with the equivalent Orliz norm ‖x‖Oϕ =

sup{|∑∞
i=1 x(i)y(i)| : Iϕ∗(y) ≤ 1} (we write lOϕ = (lϕ, ‖ · ‖Oϕ )). We onsider this spaewith the Amemiya norm ‖x‖Aϕ = infk>0{ 1

k
(1+Iϕ(kx))} (we write lAϕ = (lϕ, ‖ ·‖Aϕ )) whihseems to be equal to the Orliz norm (but there is no proof of this fat in general). Inthe ase of Orliz spaes we have ‖x‖Aϕ = ‖x‖Oϕ for an arbitrary Orliz funtion (see [9℄).However, the analogous argument as in the proof Theorem 1 in [9℄ givesLemma 1. Let ϕ be a �nitely valued Musielak-Orliz funtion suh that ϕi(u)/u→ ∞ as

u→ ∞ for eah i ∈ N. Then ‖x‖Aϕ = ‖x‖Oϕ for any x ∈ lϕ.We say that a Musielak-Orliz funtion ϕ satis�es the δ2-ondition (ϕ ∈ δ2) if thereare onstants k0, a0 > 0 and a sequene (c0i )
∞
i=1 of positive reals with ∑∞

i=1 c
0
i < ∞ suhthat ϕi(2u) ≤ k0ϕi(u) + c0i for eah i ∈ N and u ∈ R satisfying ϕi(u) ≤ a0.The symbol pi stands for the right derivative of ϕi. For eah i ∈ N denote

si = sup{u ≥ 0 : ϕ∗
i (pi(u)) ≤ 1} and ai = sup{u ≥ 0 : ϕ∗

i (u) <∞}.Remark 1. If ϕ∗
i (ai) > 1 for any i ∈ N, then, without loss of generality, we may assumethat all funtions ϕi, for u ≥ si, are square funtions. Indeed, given a Musielak-Orlizfuntion ϕ with ϕ∗
i (ai) > 1, i ∈ N, take numbers wi with ϕ∗

i (wi) = 1. Obviously wi ≤
pi(si). Take

pi(t) =

{
pi(t) for 0 ≤ t < si
wi

si
t for t ≥ si

and ψi(u) =

∫ u

0

pi(t)dt. (1)The spaes lOϕ and lOψ are isometri, beause Iψ∗(y) ≤ 1 if and only if Iϕ∗(y) ≤ 1. Notiethat the right derivative pi of ψi is nondereasing, hene ψi is onvex on the whole R+(the situation of the respetive isometry for the Luxemburg norm is di�erent, see [10℄).In the whole paper we shall always assume that the Musielak-Orliz funtion
ϕ satis�es the ondition ϕ∗

i (ai) > 1, i ∈ N, and we shall onsider the funtion
(ψi) instead of (ϕi) aording to the formula (1). Note that for the funtion
(ψi) we have pi(si) = wi.Then, learly, for eah i ∈ N a funtion ϕi is �nitely valued and ϕi(u)/u → ∞ as
u → ∞. Hene ‖x‖Aϕ = ‖x‖Oϕ for any x ∈ lϕ, by Lemma 1. Moreover, for any x ∈ lϕ\{0}the set {kx > 0 : ‖x‖Aϕ = 1

kx
(1 + Iϕ(kxx))} is nonempty and bounded (see [1℄ and [7℄).2. ResultsLemma 2. Assume that ϕ∗ ∈ δ2 and M = supi pi(si)si < ∞. Then for every η ∈

(0, 1) there are γ = γ(η) ∈ (0, 1) and a sequene h = (hi) of positive numbers with∑
i∈N

ϕi(hi) < ∞ suh that for any α ∈ (0, η] the inequality ϕi(αu) ≤ (1 − γ)αϕi(u)holds for all i ∈ N and u ≥ hi.



82 P. KOLWICZProof. Although we argue analogously as in the proof of Lemma 3 in [4℄ we present theproof for the sake of onveniene. Sine ϕ∗ ∈ δ2, there are onstants a, k > 0 and sequenes
b = (bi), d = (di) with ∑

i∈N
ϕ∗
i (bi) < ∞ and ϕ∗

i (di) = a suh that ϕ∗
i (2u) ≤ kϕ∗

i (u) foreah i and bi ≤ u ≤ di (see [4℄).We laim that there is k1 > 0 suh that ϕ∗
i (2u) ≤ k1ϕ

∗
i (u)for eah i and u ≥ pi(si). We have wi = pi(si) and ϕ∗

i (u) = 1 + si

2wi
(u2 − w2

i ) for
u ≥ wi (see Remark 1). Set fi(u) = ϕ∗

i (2u)/ϕ
∗
i (u) for u ≥ wi. It is easy to hekthat fi is inreasing if siwi < 2 and fi is non-inreasing if siwi ≥ 2. Moreover, foreah i ∈ N, limu→∞ fi(u) = 4, ϕ∗

i (2wi) = 1 + 3
2siwi ≤ 1 + 3

2M and ϕ∗
i (wi) = 1. Thisproves the laim with k1 = max{4, 1 + 3

2M}. Let i ∈ N and u > di. Consequently, if
di ≥ pi(si) and u > di, then ϕ∗

i (2u) ≤ k1ϕ
∗
i (u). If di < pi(si) and di < u < pi(si), then

ϕ∗
i (2u) ≤ ϕ∗

i (2pi(si)) ≤ k1ϕ
∗
i (pi(si)) ≤ k1ϕ

∗
i (u)/a. Hene

ϕ∗
i (2u) ≤ k0ϕ

∗
i (u)for eah i and u ≥ bi, where k0 = max{k1, k1/a, k}. Analogously as in Lemma 3 in [4℄ weprove that there exists ξ > 1 suh that

ϕi

(
u

2

)
≤ 1

2ξ
ϕi(u) + ϕ∗

i (bi), i ∈ N, u ∈ R.Taking numbers b̃i ≥ 0 suh that ϕ∗
i (

2ξ√
ξ−1

bi) = ϕi(b̃i) we get ∑
i∈N

ϕi(b̃i) < ∞ beause
ϕ∗ ∈ δ2 and ∑

i∈N
ϕ∗
i (bi) <∞. Consequently, for eah i ∈ N and u ≥ b̃i, we get

ϕi

(
u

2

)
≤ 1

2ξ
ϕi(u) +

√
ξ − 1

2ξ
ϕ∗
i

(
2ξ√
ξ − 1

bi

)
=

1

2ξ
ϕi(u) +

√
ξ − 1

2ξ
ϕi(b̃i) ≤

1

2
√
ξ
ϕi(u).Modifying slightly the previous proof one an show that for eah η ∈ (0, 1) there are

γ = γ(η) ∈ (0, 1) and a sequene h = (hi) of positive numbers with ∑
i∈N

ϕi(hi) < ∞suh that ϕi(ηu) ≤ (1 − γ)ηϕi(u) for all i ∈ N and u ≥ hi. Applying the fat that forevery i ∈ N the funtion ϕi(u)/u is nondereasing it is easy to �nish the proof.We want to thank Professor Henryk Hudzik for valuable remarks and suggestionsleading to Remark 1 and Lemma 2.It is known that the equivalene ‖xn‖ϕ → 0 i� Iϕ(xn) → 0 holds if and only if ϕ ∈ δ2and ϕ > 0 (Theorem 0.1 in [10℄). Dropping the assumption that ϕ > 0 we getLemma 3 (Lemma 7 in [14℄). The following statements are equivalent:
(i) ‖xn‖ϕ → 0 if and only if Iϕ(xn) → 0 for every sequene (xn) in lϕ with elements

xn having pairwise disjoint supports.
(ii) ϕ ∈ δ2.Sine the Orliz and Luxemburg norms are equivalent, from Lemma 3 we onludeimmediatelyCorollary 1. If ϕ ∈ δ2, then for every ε > 0 there exists σ = σ(ε) > 0 suh thatfor every sequene (xn) in lϕ with elements xn having pairwise disjoint supports andsatisfying ‖xn‖Oϕ ≥ ε for every n ∈ N the inequality Iϕ(xn) ≥ σ holds for almost every

n ∈ N.



PROPERTY (β) OF ROLEWICZ 83For eah p ∈ [0, 1) de�ne
k(p) = sup

1−p≤‖x‖A
ϕ≤1

{
kx : ‖x‖Aϕ =

1

kx
(1 + Iϕ(kxx))

}
. (2)It appears that the ondition k(0) < ∞ plays a ruial role in many proofs onerninggeometri properties of Musielak-Orliz spaes with the Orliz-Amemiya norm. However,the proof of this ondition uses essentially additional assumptions on the funtion ϕ, thatis: ϕ is an N -funtion, i.e. ϕ > 0 and ϕ(u)/u → 0 as u → 0 (see [1℄). Although someof these assumptions have been weakened by several authors in di�erent partiular ases(see [8℄ and [15℄), the assumption ϕ > 0 has not been dropped yet (as far as we know).Furthermore, the ase k(0) < ∞ for the Musielak-Orliz sequene spaes has not beensolved even for N -funtions. It an be seen that the assumption ϕ > 0 is ruial in allproofs of the fat k(0) <∞. On the other hand, it seems that lϕ may have property (β)even when funtions ϕ vanish outside zero (it has already been proved for the Luxemburgnorm�see [14℄). Thus it seems to be natural to try proving Theorem 2 below withoutthe assumption that ϕ > 0. In order to do it we prove that Theorem 1.35 from [1℄ is truenot only for N -funtions but for arbitrary Musielak-Orliz funtions.Lemma 4. If ϕ∗ ∈ δ2 and supi pi(si)si <∞, then k(p) <∞ for eah p ∈ [0, 1).Proof. First we shall show that k(0) < ∞. Take a sequene h = (hi) and a number

γ ∈ (0, 1) from Lemma 2 for η = 1/2. Given a number σ > 0 de�ne
k1(σ) = sup

x∈B(σ)

{
k : ‖x‖Aϕ =

1

k
(1 + Iϕ(kx))

}
,where

B(σ) = {x ∈ lAϕ : ‖x‖Aϕ = 1 and Iϕ(2xχBx
) ≥ σ}, Bx = {i ∈ N : 2|x(i)| ≤ hi}.First we prove that

k1(σ) <∞ for eah σ > 0. (3)Suppose that this is not true. Then there is σ > 0, a sequene (xn) in B(σ) and asequene kn → ∞ with ‖xn‖Aϕ = 1
kn

(1 + Iϕ(knxn)). Then Iϕ(2xnχBxn
) ≥ σ, n ∈ N.We laim that there is i0 ∈ N and δ > 0 suh that |xn(i0)| > δ for in�nitely many n.Otherwise xn → 0 pointwise. Then yn = 2xnχBxn

→ 0 pointwise. Moreover, |yn(i)| ≤ hifor eah i, n ∈ N and ∑
i∈N

ϕi(hi) <∞, so (ϕi(hi))
∞
i=1 ∈ l1. Sine l1 ∈ (OC), so Iϕ(yn) =

‖(ϕi(yn(i)))∞i=1‖l1 → 0 as n→ ∞. This ontradition proves the laim. By Remark 1 wehave ϕi(u)
u

→ ∞ as u→ ∞ for any i. Consequently
1 = ‖xn‖Aϕ =

1

kn
(1 + Iϕ(knxn)) ≥

Iϕ(knxn)

kn
≥ ϕi0(knxn(i0))

kn
≥ ϕi0(knδ)

knδ
δ → ∞.This ontradition proves (3).Take x ∈ lAϕ with ‖x‖Aϕ = 1 and k suh that ‖x‖Aϕ = 1

k
(1 + Iϕ(kx)). Then Iϕ(2x) ≥ 1.We onsider two ases.I. If Iϕ(2xχBx

) ≥ 1/2, then k ≤ k1(1/2), by (3).II. Suppose that Iϕ(2xχN\Bx
) ≥ 1/2. Applying Lemma 2 it is easy to onlude that

ϕi(2u) ≥ 2ξϕi(u) for every u ≥ hi/2, where ξ = 1/(1 − γ). Let m ∈ N be suh that
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2m ≤ k ≤ 2m+1. Consequently
1 =

1

k
(1 + Iϕ(kx)) >

1

k
Iϕ(kxχN\Bx

) ≥ 1

2m+1
Iϕ(2m−12xχN\Bx

)

≥ 1

2m+1
(2ξ)m−1Iϕ(2xχN\Bx

). (4)Thus 1 ≥ ξm−1

8 , whene k ≤ 2m+1 ≤ 2logξ(8)+2. This proves k(0) < ∞. Note that if
x ∈ lAϕ and k is suh that ‖x‖Aϕ = 1

k
(1 + Iϕ(kx)), then taking y = λx for λ > 0 we have

‖y‖Aϕ = 1
kλ

(1 + Iϕ(kλy)), where kλ = k/λ. Thus k(p) <∞ for eah p ∈ [0, 1).Remark 2. The assumption supi pi(si)si <∞ in Lemma 4 annot be dropped. Let
pi(t) =





t for 0 ≤ t < 1,

1 for 1 ≤ t < 2i,
2i+1+1
22i+1 t for t ≥ 2i.Then si = 2i and pi(si) = 1 + 1

2i+1 , whene supi pi(si)si = ∞. Put ai = 1 + 1
2i+1 and

xi = 1
ai
ei. Then for ki = 2i + 1

2 we have Iϕ∗(p(kixi)) = 1 and onsequently ‖xi‖Oϕ =
1
ki
{1 + Iϕ(kixi)} = 1. Hene k(0) = ∞. Note also that ϕ,ϕ∗ ∈ δ2.Theorem 3 in [3℄ states that lOϕ is nearly uniformly onvex i� ϕ ∈ δ2 and ϕ∗ ∈ δ2,where ϕ = (ϕi) is a Musielak-Orliz funtion with all ϕi being �nitely valued N -funtions,i.e. eah funtion ϕi vanishes only at zero and satis�es two onditions: ϕi(u)/u → ∞ as

u → ∞ and ϕi(u)/u → 0 as u → 0. The next theorem is an extension of this result.It also generalizes Theorem 2 from [5℄, whih has been proved only for N -funtions.Moreover, it is proved for essentially wider lass of Musielak-Orliz funtions, sine inour onsideration funtions ϕi not satisfying the onditions: ϕi(u)/u → 0 as u → 0,

ϕi(u)/u → ∞ as u → ∞ , ϕ > 0, are not exluded. As a onsequene, in many parts ofthe proof new methods and tehniques are developed.Theorem 2. Suppose that supi pi(si)si <∞. Then lOϕ ∈ (β) if and only if lOϕ is re�exive,i.e. ϕ ∈ δ2 and ϕ∗ ∈ δ2 .Proof. Neessity. If lOϕ ∈ (β), then lOϕ is re�exive and onsequently ϕ ∈ δ2 and ϕ∗ ∈ δ2.Su�ieny. Let ε > 0. Basing on Theorem 1 in [12℄, we onlude that property (β)an be equivalently onsidered on the unit sphere in plae of the unit ball. Take x, xn ∈
S(loϕ), n = 1, 2, ... suh that sep{xn}lOϕ ≥ ε. Let σ = σ(ε/8) be from Corollary 1. ApplyingLemma 2 take the sequene (hi)

∞
i=1 and the number γ ∈ (0, 1) for η = k(1/4)/(1+k(1/4)),where k(1/4) is de�ned in (2). Next, to dedue inequalities (5) and (6) we apply the samemethods as in the proof of Theorem 4 in [14℄. Notie that lOϕ ∈ (OC), by ϕ ∈ δ2. Thenthere exists a set A ⊂ N with cardA <∞ suh that

‖xχN\A‖Oϕ < min{γσ/4, 1/4}. (5)Passing to a subsequene of (xn) if neessary, we an �nd a sequene (An) of subsets of
N suh that Ak ∩ Al = ∅ for any k 6= l, Ak ∩ A = ∅ for any k and ‖xnχAn

‖Oϕ ≥ ε/8 foreah n ∈ N. By Corollary 1 we get
Iϕ(xnχAn

) ≥ σ (6)
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A1
n = {i ∈ An : |xn(i)| ≥ hi} and A2

n = {i ∈ An : |xn(i)| < hi}.We laim that Iϕ(xn0
χA1

n0

) ≥ σ/2 for some n0 ∈ N. Suppose that
Iϕ(xnχA1

n
) < σ/2 for every n ∈ N. (7)We have Iϕ(xnχA2

n
) ≤ ∑

i∈A2
n
ϕi(hi) → 0 as n → ∞, beause ∑∞

i=1 ϕi(hi) < ∞ and
Ak ∩Al = ∅ for any k 6= l. Then Iϕ(xnχA2

n
) < σ/2 for su�iently large n. Then, in viewof (6) and (7), we get a ontradition, whih proves the laim. Denote x0 = xχA. Letnumbers k0 and kn0

be suh that
‖x0‖Oϕ =

1

k0
{1 + Iϕ(k0x0)} and ‖xn0

‖Oϕ =
1

kn0

{1 + Iϕ(kn0
xn0

)}.Sine ‖x0‖Oϕ ≥ 3/4, by (5), so kn0
, k0 ∈ (1, k(1/4)), in view of Lemma 4. We have
k0

k0 + kn0

<
k(1/4)

1 + k(1/4)
.It follows by Lemma 2 that

k0 + kn0

k0kn0

ϕi

(
k0kn0

k0 + kn0

|xn0
(i)|

)
≤ (1 − γ)

(
ϕi(kn0

|xn0
(i)|)

kn0

) (8)for every i ∈ A1
n0
. Notie that the funtion f(u) = ϕ(u)/u is nondereasing. Hene, bythe onvexity of ϕi for every i ∈ N and inequality (8), we get

‖x0 + xn0
‖Oϕ ≤ k0 + kn0

k0kn0

{
1 + Iϕ

(
k0kn0

k0 + kn0

(x0 + xn0
)

)}

=
k0 + kn0

k0kn0

[
1 + Iϕ

(
k0kn0

k0 + kn0

(x0 + xn0
)χA1

n0

)
+ Iϕ

(
k0kn0

k0 + kn0

(x0 + xn0
)χN\A1

n0

)]

≤ k0 + kn0

k0kn0

+
Iϕ(k0x0)

k0
+
Iϕ(kn0

xn0
)

kn0

− γ
Iϕ(kn0

xn0
χA1

n0

)

kn0

≤ 1

k0
{1 + Iϕ(k0x0)} +

1

kn0

{1 + Iϕ(kn0
xn0

)} − γIϕ(xn0
χA1

n0

) ≤ 2 − γσ/2.Finally, by (5), ‖x+xn0
‖Oϕ ≤ 2−γσ/2+γσ/4 = 2−γσ/4. Hene lOϕ ∈ (β), by Theorem 1.Aknowledgments. This paper was partially prepared in November 2002 while theauthor visited the Institute of Mathematis of the Polish Aademy of Siene as a fellowof a sholarship of Foundation of Polish Siene. He wants to express his gratitude toProfessor S. Rolewiz for the very kind hospitality, valuable, numerous onsultations andto Foundation for Polish Siene for the generous �nanial support. He also wants tothank Professor A. Peªzy«ski and Professor P. Mankiewiz for giving inspiration to newstudies.
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