
PARABOLIC AND NAVIER–STOKES EQUATIONS

BANACH CENTER PUBLICATIONS, VOLUME 81

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2008

RADIALLY SYMMETRIC SOLUTIONS

OF A CHEMOTAXIS MODEL IN THE PLANE

—THE SUPERCRITICAL CASE

PIOTR BILER

Instytut Matematyczny, Uniwersytet Wroc lawski

pl. Grunwaldzki 2/4, 50-384 Wroc law, Poland

E-mail: Piotr.Biler@math.uni.wroc.pl

Abstract. The existence, uniqueness and large time behaviour of radially symmetric solutions

to a chemotaxis system in the plane R
2 are studied for the (supercritical) value of mass greater

than 8π.

1. Introduction. This paper, a sequel of [5, 6], deals with the nonlinear, nonuniformly

parabolic problem on (0,∞) × (0,∞)

Mt = 4 s Mss +
1

π
M Ms,(1.1)

together with the boundary (at 0 and ∞) and initial conditions

M(0, t) = 0, M(∞, t) ≡ lim
s→∞

M(s, t) = M̂,(1.2)

M(s, 0) = M0(s), s ∈ (0,∞),(1.3)

with a nondecreasing continuous function M0 on (0,∞). The motivations to study that

problem stem from a simplified chemotaxis model of Keller–Segel considered in the whole

plane R
2, cf. e.g. [9, 6], and a model of self-attracting particles considered in [8, 4, 7],

consisting of equations

ut = ∇ · (∇u + u∇ϕ), (x, t) ∈ R
2 × (0,∞),(1.4)

ϕ = E2 ∗ u, (x, t) ∈ R
2 × (0,∞).(1.5)

Here, u = u(x, t) ≥ 0 denotes the density of microorganisms (e.g. amoebae), ϕ = ϕ(x, t)

the concentration of a chemoattractant secreted by themselves, and E2(z) = 1
2π

log |z|
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the fundamental solution of the Laplacian in R
2, so that ϕ is actually a solution to

the Poisson equation ∆ϕ = u. For radially symmetric solutions, introducing the mass

distribution function

M(s, t) ≡

∫

B(0,
√

s)

u(x, t) dx, s ∈ [0,∞),

the previous parabolic-elliptic system for (u, ϕ) reduces to the single parabolic equation

(1.1) for the transformed ‘cumulated mass’ variable M with M̂ = ‖u0‖L1 . The conserva-

tion of total mass is interpreted as the preservation of the boundary condition (1.2) at

infinity. The simplified, radially symmetric problem gives a deeper insight into the asymp-

totic behavior of solutions for large time, cf. [9] for the self-similar asymptotics of general

solutions of (1.4)–(1.5) in the subcritical case, and [6] for the radially symmetric case.

The equation (1.1) features a nonuniform diffusion described by the term 4 s Mss and

a simple nonlinear convection term M Ms/π, and the dynamics of M is governed by the

competition between these two terms. There is actually a threshold value of M̂ (M̂ = 8π)

such that, roughly speaking, the diffusion term prevails for M̂ below 8π (and leads to

mass spreading to infinity), while the nonlinearity (pushing to aggregation of mass in the

original chemotaxis problem) is more important for M̂ > 8π. In fact, it is well-known by

now that solutions to (1.4), (1.5) blow up in finite time if M̂ = ‖u0‖L1 > 8π (see, e.g.,

[10, 3, 4, 12]) and that the condition M̂ = ‖u0‖L1 < 8π is a sufficient condition for the

existence of global in time solutions: see [12, 4] for radially symmetric solutions and [9]

for the general case which was recently solved with the help of the optimal logarithmic

Hardy–Littlewood–Sobolev inequality. The subcritical and critical cases M̂ ≤ 8π have

been recently studied in [6]. First of all, we proved in [6, Th. 2.1] the well-posedness of

the problem (1.1)–(1.3). That is: solutions of that problem exist, are unique and enjoy

local stability property as a consequence of the L1-contractivity property for the diffusion-

convection equations, [6, Lemma 2.2].

Second, the boundary condition at s = 0 is either satisfied classically whenever M̂ <

8π ([6, Prop. 4.2]) or is satisfied a.e. in t ∈ (0,∞) if M̂ = 8π.

Finally, compared to relatively simple time asymptotics for the equation (1.1) consid-

ered on the finite interval s ∈ (0, 1) in [5], the picture for solutions of (1.1) for s ∈ (0,∞)

is much more delicate. The balance between diffusion and convection leads to the ex-

istence of steady states Mb(s) = 8πs/(s + b), b > 0. These steady states are locally

asymptotically stable in L1
loc(0,∞) but ‖8π−Mb‖L1 = ∞ for each b > 0. Moreover, if M

is a solution to (1.1)–(1.3), then ‖8π −M(t)‖L1 = ‖8π −M0‖L1 for t ≥ 0. Consequently,

the set {Mb : b > 0} cannot attract the solutions starting from an initial datum in

8π + L1(0,∞).

The degeneracy of the diffusion term 4 s Mss does not guarantee a priori that the

required boundary condition at s = 0 is satisfied. In fact, for M̂ > 8π there occurs

a phenomenon of lost of the boundary condition at s = 0. To the best of our knowledge,

the proofs of blow up of solutions for the original chemotaxis system showed only that

‖u(t)‖L∞ → ∞ as t ր T for some T < ∞, so that ‖Ms(., t)‖L∞ → ∞ as t ր T , cf. [2].

Note that the formulations (1.1)–(1.2) and (1.4)–(1.5) for the radially symmetric solutions

are not equivalent because of the different regularity of M and u required in order to have
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(weak, mild, classical) solutions of those problems. In particular, M that does not satisfy

the boundary condition at s = 0 corresponds to a measure valued solution u = u(t). The

theory of such measure valued solutions is not completely satisfactory up to now, cf. [9],

[15], [1]. Concentration phenomena for (1.4)–(1.5) are thoroughly studied in [16].

Here, we will show that not only the derivative Ms blows up but also M∗(t) ≡

lims→0 M(s, t) jumps from M∗(t) = 0 for (a.e.) 0 ≤ t ≤ T to M∗(T ) = 8π, and then

M∗(t) is strictly increasing with limt→∞ M∗(t) = M̂ . To prove this we will use suitable

exploding subsolutions for the problem (1.1)–(1.3). Some formal results in this direction

have been announced in the preprint [14] but even the local in time existence of solutions

of (1.1)–(1.3) has not been described in detail in [14]. Here, we combine the approximation

techniques from [5, 6] with a construction of suitable local in time classical supersolu-

tions for the problem (1.1)–(1.3). Then, the asymptotics of solutions is described using

essentially the ideas in [14] and [7].

The results obtained here are explicit examples of the lost of a boundary condition for

solutions of an initial-boundary value problem for a nonlinear, nonuniformly parabolic

equation. This phenomenon is a bit different from the related analysis of linear nonuni-

formly parabolic boundary value problems as studied in the framework of the famous

Feller test analysis, cf. [13, Ch. II, Th. 2.6] and [8, the proof of Th. 1, (iv)]. The main

difference is that for the nonlinear problem the boundary condition is lost after some

time while for the linear problems solutions either exist and satisfy the Dirichlet bound-

ary condition or they cannot satisfy such a boundary condition, and they simply do not

exist, even locally in time.

Finally, note that a more general problem (the so-called ‘star problem’ in [8]) consist-

ing of (1.1) and (1.3) with the conditions M(0, t) = m∗, M(∞, t) = M̂ , for m∗ ∈ [0, 4π),

can be treated by similar methods. Its solutions behave for M̂ < 8π − m∗ subcritically,

and for M̂ > 8π − m∗ supercritically.

2. The auxiliary problem. In this section the equation (1.1) is considered on the

bounded space interval. The results on the existence, uniqueness and comparison of solu-

tions will be used in the next section to obtain related properties of solutions of (1.1)–(1.3)

on the whole half-line (0,∞) ∋ s.

Since the equation (1.1) is invariant under the scaling s 7→ Rs, t 7→ Rt for each

R > 0, it suffices to solve the problem on the finite space interval for R = 1 only. Thus,

we consider the problem

Mt = 4 s Mss +
1

π
M Ms,(2.1)

M(0, t) = 0, M(1, t) = M̂,(2.2)

M(s, 0) = M0(s), s ∈ (0, 1),(2.3)

and prove the following

Proposition 2.1. Let M̂ > 0 and M0,s(0) < ∞. There exists time T > 0 and a unique

function M ∈ C([0, T ); L2(0, 1)) ∩ C2,1
s,t ((0, 1) × (0, T )) such that

0 ≤ M(s, t) ≤ M̂, Ms(s, t) ≥ 0 for (s, t) ∈ (0, 1) × (0, T ),(2.4)
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M∗(t) ≡ inf
s∈(0,1)

M(s, t) = 0 for each t ∈ (0, T ),(2.5)

M(1, t) = M̂ for each t ∈ (0, T ),(2.6)

and M satisfies the equation (2.1) for (s, t) ∈ (0, 1) × (0, T ), together with the initial

condition (2.3). The solutions of the problem (2.1)–(2.3) satisfy the comparison principle.

Proof. Observe first that for M̂ ≤ 8π we have the global in time existence of classical

solutions: T = ∞. If M̂ < 8π, then the assumption M0,s(0) < ∞ is even superfluous.

However, without that assumption if M̂ = 8π we may conclude that M∗(t) = 0 only a.e.

in (0,∞). The proofs in the subcritical case can be found in [5, Th. 2.1, Prop. 2.5] and

in [6, Prop. 4.2]. So, in the sequel, we assume that M̂ > 8π and show the local in time

existence of solutions to (2.1)–(1.3).

Existence. The scheme of the proof is similar to that in [6, Th. 2.1] for the subcritical

case. However, we need another tool to control the behavior of M near s = 0 since the

lost of the boundary condition at s = 0 is expected for t sufficiently large. This will be

done using a suitable local in time supersolution of the regularized problem (2.1)–(2.3).

Consider for ε ∈ (0, 1) and any T0 ∈ (0,∞) the uniformly parabolic initial-boundary

value problem

Mε,t = 4 (s + ε) Mε,ss +
1

π
Mε Mε,s, (s, t) ∈ (0, 1) × (0, T0),(2.7)

Mε(0, t) = M̂ − Mε(1, t) = 0, t ∈ (0, T0),(2.8)

Mε(s, 0) = M0,ε(s), s ∈ (0, 1),(2.9)

with M0,ε ∈ H1(0, 1) approximating M0 so that 0 ≤ M0(s) − M0,ε(s) ≤ ε. This problem

has (global in time) solutions Mε ∈ C([0, 1]×[0, T0))∩C
2,1
s,t ((0, 1)×(0, T0)) for each T0 > 0.

By a standard application of the parabolic regularity theory in [11, Th. III.10.1, IV.10.1]

‖Mε‖C2+α,1+α
s,t ([δ,1]×[τ,T0]) ≤ C(α, δ, τ, T0)(2.10)

for each τ ∈ (0, T0) and α ∈ (0, 1), with a positive constant C(α, δ, τ, T0) depending on

α, δ, τ and T0 but independent of ε ∈ (0, 1).

If M̂ > 8π, M0,s(0) < ∞, the behavior of Mε can be controlled uniformly in ε ∈ (0, 1)

locally in time only. Indeed, for any A > M̂ > 8π there exists a sufficiently small T0 > 0

so that

M0(s) ≤
As

s +
(

A
π
− 8
)
T0

.(2.11)

Next, for ε ∈ (0, 1) the function

Mε(s, t) =
A(s + ε)

(s + ε) +
(

A
π
− 8
)
(T0 − t)

(2.12)

is a supersolution of the problem (2.7)–(2.9) on (0, 1)×(0, T0). Indeed, since that problem

is uniformly parabolic, so if we define Lεw = wt − 4(s + ε)wss −
1
π
w ws, then

LεMε =
A

(s + ε + b(t))3

(
−ḃ(t)(s + ε)(s + ε + b(t))

+8(s + ε)b(t) −
A

π
(s + ε)b(t)

)
≥ 0,
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where b(t) =
(

A
π
− 8
)
(T0− t) so that ḃ(t) = −

(
A
π
− 8
)

and Mε(s, 0) ≥ M0(s), Mε(1, t) ≥

M0(1). Using M(s, t) = limε→0 Mε(s, t) = infε→0 Mε(s, t) = As

s+(A
π
−8)(T0−t)

and (2.10)

we can pass to the limit ε → 0 in (2.7)–(2.9) on the whole interval (0, 1) = (0, δ] ∪ [δ, 1)

and t ∈ (0, T0). Indeed, M controls all the approximations Mε on [0, δ]×[0, T0), and (2.10)

permits us to pass to the limit ε → 0 using the Ascoli–Arzelà compactness argument as

was in [5, Th. 2.1]. Thus, there exists a function M satisfying (2.4), (2.5), (2.6) at least

for 0 < t < T = T0. Using again (2.10) we conclude that the derivatives of M exist and

(2.1) is satisfied.

It is important to observe that Ms(0, t) = sups>0 Ms(s, t) < ∞ for each t < T0, i.e.

as long as the behavior of limε→0 Mε(s, t) is controlled by M(s, t) together with (2.10).

Note that Lemma 2.3 in [5] is valid for the problem (2.1)–(2.3) with sufficiently

small T > 0, and this identifies the initial condition for M , and conclude that M ∈

C([0, T ), L2(0, 1)) exactly as was in [5].

Uniqueness. This property follows from the L1-contraction property typical for convec-

tion-diffusion equations. We consider, similar to [5, Th. 3.1], the difference N = M − M̄

of two solutions M and M̄ which satisfies the equation

Nt =
∂

∂s

(
4sNs +

1

2π
N(M + M̄ − 8π)

)
(2.13)

with N(0, t) = N(1, t) = 0 for all t ∈ (0, T ). For δ ∈ (0, 1) and r ∈ R, we use a convex

approximation of r 7→ |r|, e.g.,

Φδ(r) ≡






1

δ

(
|r| −

δ

2

)2

+

if |r| ∈ [0, δ],

|r| −
3

4
δ if |r| ∈ (δ,∞).

We multiply (2.13) by Φ′
δ(N) and integrate over (0, 1) to obtain

d

dt

∫ 1

0

Φδ(N) ds = 4sNsΦ
′
δ(N) |

1
0 +

1

2π
Φ′

δ(N)N(M + M̄ − 8π) |
1
0

−

∫ 1

0

4sΦ′′
δ (N)N2

s ds −
1

2π

∫ 1

0

Φ′′
δ (N)NsN(M + M̄ − 8π) ds

≤ −
1

2π

∫ 1

0

Φ′′
δ (N)NsN(M + M̄ − 8π) ds.

Observe that Ns belongs to L∞((0,∞); L1(0, 1)), M , M̄ and N are bounded, and r 7→

r Φ′′
δ (r) is bounded and converges a.e. towards zero as δ → 0. Thus, the Lebesgue dom-

inated convergence theorem ensures that the right-hand side of the above inequality

converges to zero as δ → 0, from which we conclude that t 7→ ‖M(t) − M̄(t)‖L1(0,1) is a

nonincreasing function of time t ∈ (0, T ).

It is important to recall here that the structure of (1.1) and the uniqueness of solu-

tions of the initial-boundary value problem (2.1)–(2.3) imply the comparison principle

for solutions, as was in [5, Sections 3, 4].

Now we study the blow up of solutions of the problem (2.1)–(2.3) if M̂ > 8π. This

will be done constructing a suitable blowing up subsolution of that problem in the disc
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reminiscent of the function considered in the famous paper by W. Jäger and S. Luckhaus

[10], see also [7, p. 358]. Then a continuation of the solution M will be constructed for

arbitrarily large times.

Proposition 2.2. The solution constructed in Proposition 2.1 can be continued to

a unique function M on (0, 1) × (0,∞) satisfying (2.1) pointwise in (0, 1) × (0,∞) and

M(0, t) ≥ 0, M(1, t) = M̂ , (2.3). Moreover, if M0,s(0) > 0 then there exists T > 0 such

that M∗(T ) > 0.

Proof. Since the continuation of solutions is done in both cases s ∈ (0, 1) and s ∈ (0,∞)

in a similar way, we postpone the proof to the next section where the original problem

(1.1)–(1.3) will be studied.

For each a ∈ (8π, M̂) and γ > 0 (small enough) there exists b > 0 such that
as

s + b2
+ γs ≤ M0(s) for each s ∈ (0, 1).

However, there is a constant c > 0, e.g. c < min
(

a
π
− 8, γ

π

)
, such that

M(s, t) =
as

s + (b − ct)2
+ γs(2.14)

is a subsolution of the problem (2.1), (2.3). Formally, if Lw = wt − 4 s wss −
1
π
w ws, then

we have

LM ≤
as

(s + b(t))3

(
−ḃ(t)(s + b(t)) −

(
a

π
− 8

)
b(t) −

γ

π
(s + b(t))2

)
≤ 0

for b(t) = (b − ct)2, (s, t) ∈ (0, 1) × (0, T ) with T = b
c
. Therefore M(s, t) ≥ M(s, t) loses

its boundary condition at s = 0 at a moment t = T not later than T : T ≤ T .

3. The main result. We prove in this section a theorem on the solvability and loss of a

boundary condition for solutions of the problem (1.1)–(1.3) using the auxiliary construc-

tion in the preceding section.

Theorem 3.1. Consider M̂ > 8π and a continuous nondecreasing function M0 such that

M0(0) = 0, 0 < M0,s(0) < ∞ and M0(∞) = M̂ . There exists time T > 0 and a unique

function M ∈ C([0, T ); L2
loc(0,∞)) ∩ C2,1

s,t ((0,∞) × (0, T )) such that

0 ≤ M(s, t) ≤ M̂, Ms(s, t) ≥ 0 for (s, t) ∈ (0,∞) × (0, T ),(3.1)

M∗(t) ≡ inf
s∈(0,∞)

M(s, t) = 0 for t ∈ (0, T ),(3.2)

and M satisfies the equation (1.1) for (s, t) ∈ (0,∞) × (0, T ) with the initial condition

(1.3) and M(∞, t) = M̂ , t ∈ (0, T ). Moreover, there exists a continuation of the solution

M past t = T , still denoted by M , M ∈ C2,1
s,t ((0,∞)× (0,∞)) which satisfies the equation

(1.1) for (s, t) ∈ (0,∞)× (0,∞). This continuation is such that M∗(T ) ≥ 8π and M∗(t)

is a strictly increasing function of t ∈ (T,∞) with limt→∞ M∗(t) = M̂ .

Proof. Existence. The local in time solution M is obtained in a way similar to that in

[6, Th. 2.1] by approximating this with solutions M = MR of the initial-boundary value

problems on (0, R) × (0, T ), R → ∞,

Mt = 4 s Mss +
1

π
M Ms,(3.3)
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M(0, t) = 0, M(R, t) = M0(R),(3.4)

M(s, 0) = M0(s), s ∈ (0, R).(3.5)

The existence of solutions to the above problem is guaranteed by Proposition 2.1. Taking,

for instance, R = n, n ∈ N, n → ∞, we are able to extract a subsequence of {Mn}

convergent to a function M on each rectangle of the form [δ, ∆] × [τ, T − τ ], 0 < δ < ∆,

∆ < n, 0 < τ < T/2. Here T > 0 can be chosen similarly to T = T0 in (2.11), in order to

satisfy M0(s) ≤
As

s+(A
π
−8)T0

with a given A > M̂ > 8π. That convergence is a consequence

of the locally uniform Schauder estimates for Mn

‖Mn‖C2+α,1+α
s,t ([δ,∆]×[τ,T−τ ]) ≤ C(α, δ, ∆, τ )

for each α ∈ (0, 1). Moreover, the behavior near s = 0 for t ∈ (0, T ) is controlled:

Mn(s, t) ≤ M(s, t), where

M(s, t) =
As

s +
(

A
π
− 8
)
(T0 − t)

(3.6)

is defined by the same formula as was in the proof of Proposition 2.1 but for all s ∈ (0,∞).

Of course, M is a supersolution for each of the problems (3.3)–(3.5) involving Mn.

The uniqueness of solutions M ∈ C((0, T ); L2
loc(0,∞))∩C2,1

s,t ((0,∞)× (0, T )) is proved

along the lines of the uniqueness proof in Proposition 2.1, the unboundedness of the space

domain (0,∞) ∋ s making no essential changes.

Blow up. Here we will use a stationary subsolution to compactify the domain, and then

recall the construction of a blowing up subsolution in Section 2.

Observe that if M0(0) = 0, M0(∞) = M̂ > 8π and M0,s(0) > 0 (in fact, it suffices to

have a bound M0(s) ≥ δs for some δ > 0 and each s in a neighborhood of 0), then for

each A ∈ (8π, M̂) there exists B > 0 such that

M1(s) =
As

s + B
≤ M0(s) for each s ∈ (0,∞)(3.7)

is a (time independent) subsolution of the problem (1.1)–(1.3). Indeed, if Lw = wt −

4 s wss −
1
π
w ws, then

LM1 =
ABs

(s + B)3

(
8 −

A

π

)
≤ 0,

and therefore M1(s) ≤ M(s, t) by the comparison principle.

Next, let us note that for each a ∈ (8π, A) there exist s0 > 0 and γ > 0 such that

a+ γs0 ≤ As0

s0+B
. Moreover, there exists b > 0 (we may diminish, if necessary, γ > 0) such

that as
s+b2

+ γs ≤ M0(s) for each s ∈ (0, s0). Thus, there is c > 0, e.g. c < min
(

a
π
− 8, γ

π

)
,

such that
M(s, t) =

as

s + (b − ct)2
+ γs(3.8)

is a subsolution of the problem (1.1) on (0, s0), M(s, 0) = M0(s) for s ∈ (0, s0) and

M(s0, t) = M0(s0). We have as in the proof of Proposition 2.2

LM ≤
as

(s + b(t))3

(
−ḃ(t)(s + b(t)) −

(
a

π
− 8

)
b(t) −

γ

π
(s + b(t))2

)
≤ 0

for b(t) = (b − ct)2, (s, t) ∈ (0, s0) × (0, T ), T = b
c
. Since
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M(s0, t) ≤ a + γs0 ≤ M1(s0) ≤ M(s0, t)

for each t whenever M(s, t) and M(s, t) make sense, the function M is a subsolution of

an auxiliary problem on (0, s0) × (0, T )

M̃t = 4 s M̃ss +
1

π
M̃ M̃s

M̃(s, 0) = M0(s), M̃(s0, t) = M1(s0) ≤ M(s0, t).

By the uniqueness property for the problem on finite intervals, M(s, t) = M̃(s, t) for each

(s, t) ∈ (0, s0) × (0, T ). Therefore

lim
s→0, tրT

M(s, t) ≥ lim
s→0, tրT

M(s, t) = a > 8π.

Since a > 8π can be arbitrarily close to 8π, we conclude that the jump of M∗(t) at t = T

is equal to 8π.

Continuation. A continuation of the solution M past blow up time t = T , T ≤ T is

obtained in [14, Th. 3.11] by using a regularization of (1.1) which cuts the nonlinearity

for small s > 0, see (3.9)–(3.11) below. Then, the approximating solutions are shown to

tend monotonically to a unique smooth function extending M to (0,∞)× (0,∞), cf. [14,

Th. 3.5].

That is, we consider for ν ∈ (0, 1) and (s, t) ∈ (0,∞) × (0,∞) the problem

Mν,t = 4 s Mν,ss +
1

π
H(s − ν)Mν Mν,s,(3.9)

Mν(0, t) = M̂ − Mν(∞, t) = 0,(3.10)

Mν(s, 0) = M0(s), s ∈ (0,∞),(3.11)

where H denotes the Heaviside function H(σ) = 0 for σ < 0, H(σ) = 1 for σ ≥ 0. It

is rather standard to obtain a unique global in time solution Mν of (3.9)–(3.11) since

this problem is linear for s ∈ (0, ν), and for s ∈ (ν,∞) is nonlinear but with a uniform

diffusion. The solution Mν satisfies Mν ∈ C1((0,∞) × (0,∞)). Since the nonlinearity is

discontinuous, this solution may have a jump of the second derivative Mν,ss at s = ν,

but Mν is continuous up to the boundary.

Since the problems for Mν are uniformly parabolic in each rectangle (δ, ∆) × (τ, T ),

0 < δ < ∆ < ∞, 0 < τ < T < ∞, and have smooth coefficients when 0 < ν < δ, the

Schauder estimate

‖Mν‖C2+α,1+α
s,t ([δ,∆]×[τ,T ]) ≤ C(α, δ, ∆, τ, T )

is verified for all 0 < ν < δ. Moreover, the solutions Mν enjoy the following monotonicity

property

for each 0 < ν < ν̄ < 1 Mν(s, t) ≥ Mν̄(s, t).(3.12)

Indeed, if Lνw = wt−4swss−
1
π
H(s−ν)wws, then LνMν̄ ≤ 0 and Lν̄Mν ≥ 0 are satisfied,

and since the comparison principle is valid for the approximating problems (3.9)–(3.11),

the property (3.12) holds.

Thus, the family of functions tends to a limit M monotonically as ν ց 0, and by an

argument of Ascoli–Arzelà type, M ∈ C2,1
s,t ((0,∞) × (0,∞)). It is standard to check that



A CHEMOTAXIS MODEL—THE SUPERCRITICAL CASE 39

M satisfies the equation (1.1), the initial condition (1.3) and M(∞, t) = M̂ . However,

M∗(t) ≥ 0 is not necessarily 0, and in fact M∗(t) strictly increases from 8π to M̂ as

T < t ր ∞.

Uniqueness of continuation. The uniqueness is proved in a similar way as was before

in Proposition 2.1, cf. also [14, Th. 3.5]. If M and M̄ are two functions M, M̄ ∈

C([0,∞), L2
loc(0,∞)) ∩ C2,1

s,t ((0,∞) × (0,∞)) satisfying the equation (1.1) pointwise in

(0,∞) × (0,∞), M(∞, t) = M̄(∞, t) = M̂ , and M(s, 0) = M̄(s, 0), M(s, t) ≥ 8π,

M̄(s, t) ≥ 8π for s ∈ (0,∞), t ∈ (T,∞), then N = M − M̄ solves the problem

Nt =
∂

∂s

(
4sNs +

1

2π
N(M + M̄ − 8π)

)
,(3.13)

N(∞, t) = 0.

Moreover, by the uniqueness of solutions M , M̄ before blow up time T and the continuity

of M , M̄ N(s, t) = 0 for all s ∈ (0,∞) and t ≤ T. Multiplying (3.13) by s Φ′
δ(N)

analogously as in the proof of Proposition 2.1 we obtain

d

dt

∫ ∞

0

sΦδ(N) ds = 4s2NsΦ
′
δ(N) |∞0 +

1

2π
sΦ′

δ(N)N(M + M̄ − 8π) |∞0

−

∫ ∞

0

4sNs(sΦ
′
δ(N))s ds −

1

2π

∫ ∞

0

N(M + M̄ − 8π)(sΦ′
δ(N))s ds

= −

∫ 1

0

4s2Φ′′
δ (N)N2

s ds −

∫ ∞

0

4s(Φδ(N))s ds

−
1

2π

∫ ∞

0

sΦ′′
δ (N)NsN(M + M̄ − 8π) ds

−
1

2π

∫ ∞

0

N(M + M̄ − 8π)Φ′
δ(N) ds

since N is bounded. Proceeding as in the proof of Proposition 2.1 we arrive in the limit

δ → 0 at
d

dt

∫ ∞

0

s|N(s, t)| ds ≤ −
1

2π

∫ ∞

0

|N |(M + M̄ − 16π) ds ≤ 0

because M(s, t), M̄(s, t) ≥ 8π for each s > t, t ≥ T , as it has been obtained in the proof

of blow up. Thus, the continuation of the solution is unique.

Asymptotic behavior for t → ∞. We prove that for M̂ > 8π the concentration of whole

mass at the origin takes place in the infinite time: limt→∞ M∗(t) = M̂ . Here we recall

the argument in [14, Th. 4.4] involving the regularizations (3.9)–(3.11) of the problem

(1.1)–(1.3) used also to construct a continuation of M past blow up time T .

It was proved in [14, Prop. 4.2] that any solution of (3.9)–(3.11) tends to the stationary

solution mν as t → ∞. These stationary solutions satisfy the relations

mν(s) = d
s

ν
for s ∈ (0, ν),

M̂ − mν(s)

M̂ + mν(s) − 8π
= c

(
s

ν

)1− cM
4π

for s ∈ (ν,∞),

where c =
cM−d

cM+d−8π
, d2 = M̂(M̂ − 8π). Indeed, after the integration of (3.9) for time
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independent mν we get

4 s mν,s +
mν(mν − 8π)

2π
=

M̂(M̂ − 8π)

2π
for s ∈ (ν,∞).

Integrating once again and using the condition for the continuity of the derivative mν,s

at s = ν we obtain
d

ν
=

1

ν

(
M̂

4π
− 1

)
1

1
cM−d

+ 1
cM+d−8π

.

Evidently, mν ∈ C1(0,∞) and the second derivative m′′
ν has a jump.

The idea of the proof in [14, Section 4] consists in the comparison of Mν with the

solutions M+
ν , M−

ν of the problems

M±
ν,t = 4 s M±

ν,ss +
1

π
H(s − ν)M±

ν M±
ν,s,(3.14)

M±
ν (0, t) = (M̂ ± µ) − M±

ν (∞, t) = 0,(3.15)

M±
ν (s, 0) = m±

ν (s).(3.16)

The functions m+
ν , m−

ν are defined by

m±
ν =

√
M̂±(M̂± − 8π)

s

s±
, s ∈ (0, s±),(3.17)

M̂± − m±
ν (s)

M̂± + m±
ν (s) − 8π

=
M̂± −

√
M̂±(M̂± − 8π)

M̂± +

√
M̂±(M̂± − 8π)

(
s

s±

)1−
cM±

4π

, s ∈ (s±,∞),

with any fixed 0 < s+ < ν < s− < ∞. Thus, m+
ν , m−

ν are a supersolution, a subsolution,

resp. of the stationary problem (3.9)–(3.10) with M̂+ = M̂ + µ, M̂− = M̂ − µ, µ ∈

(0, M̂−8π), resp. The crucial observation from the comparison principle for the problems

of the type (3.9)–(3.10) is that

M−
ν,t ≥ 0, M+

ν,t ≤ 0.

Indeed, this is a consequence of the properties

4 s M−
ν,ss +

1

π
H(s − ν)M−

ν M−
ν,s ≥ 0,

4 s M+
ν,ss +

1

π
H(s − ν)M+

ν M+
ν,s ≤ 0,

resp. These properties imply

lim inf
t→∞

M−
ν (s, t) ≥ m(s),(3.18)

lim sup
t→∞

M+
ν (s, t) ≤ m(s),(3.19)

resp., where the functions m, m satisfy the relations

m(s) =

√
M̂−(M̂− − 8π)

s

ν
, s ∈ (0, ν),

M̂− − m(s)

M̂− + m(s) − 8π
=

M̂− −

√
M̂−(M̂− − 8π)

M̂− +

√
M̂−(M̂− − 8π)

( s

ν

)1−
cM−

4π

, s ∈ (ν,∞),
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and

m(s) =

√
M̂+(M̂+ − 8π)

s

ν
, s ∈ (0, ν),

M̂+ − m(s)

M̂+ + m(s) − 8π
=

M̂+ −

√
M̂+(M̂+ − 8π)

M̂+ +

√
M̂+(M̂+ − 8π)

( s

ν

)1−
cM+

4π

, s ∈ (ν,∞),

Finally, we take the limit µ → 0 in (3.18)–(3.19), and we get lim inft→∞ M(s, t) ≥ M̂

because M(s, t) ≥ Mν(s, t). Now, for a fixed s > 0 taking the limit as ν → 0 leads to

M̂ − M

M̂ + M − 8π
→ 0.

Therefore Mν(s) → M̂ and, of course, 0 ≤ Mν(s) ≤ M̂ . As it concerns Mν(s, t), it is

important that this quantity is monotone with respect to t.

To conclude the proof, we will show that (after [14, Th. 4.4])

lim
t→∞

M∗(t) = M̂.(3.20)

The maximum principle gives Ms(s, t) > 0 for all s > 0, t > 0, hence M∗(t) < M̂ for

each t ≥ 0.

Let M(s, t) be the global in time solution of the problem (1.1) with smaller mass than

M̂ : M(0, t) ≥ 0, M(∞, t) = M̂ − µ (µ ∈ (0, M̂ − 8π)), and M(s, 0) = (M̂ − µ) s
s+b

, b > 0.

This initial condition is a stationary subsolution:

4 s Mss(s, 0) +
1

π
M(s, 0)Ms(s, 0) ≥ 0.

Therefore, M t ≥ 0 for all s > 0, t > 0, and as a consequence

∂

∂s

(
4 s Ms +

1

2π

(
M2 − 8πM

))
≥ 0

for all s > 0, t > 0.

Now, A = lims→0 s Ms(s, t) exists, and since

1

ε

∫ ε

0

s M(s, t) ds = M(ε, t) −
1

ε

∫ ε

0

M(s, t) ds → 0

as ε → 0, the equality A = 0 follows. Thus,

d

dt

∫ 1

0

M(s, t) ds ≥
1

2π
(M2 − 8πM),

and, again by the monotonicity in t ≥ 0,

lim inf
t→∞

d

dt

∫ 1

0

M(s, t) ds ≥
M̂ − µ − 8π

2π
(M̂ − µ − lim

t→∞
M∗(t)) ≥ 0.

Then limt→∞ M∗(t) ≥ M̂ − µ follows.

Given µ > 0, there exists b > 0 large enough so that M(s, 1) ≥ M(s, 0) = (M̂ −µ) s
s+b

and M(s, t + 1) ≥ M(s, t) for s > 0, t > 0. The relation lim inft→∞ M∗(t) ≥ M̂ − µ is

a consequence of the above. Passing to the limit µ → 0, the proof is finished: whole mass

concentrates at the origin in infinite time.
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