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Abstract. Most of the paper deals with the application of the moving plane method to different
questions concerning stationary accumulations of isentropic gases. The first part compares the
concepts of stationarity arising from the points of view of dynamics and the calculus of variations.
Then certain stationary solutions are shown to be unstable. Finally, using the moving plane
method, a short proof of the existence of energy-minimizing gas balls is given.

1. Introduction. In an ideal gas with constant specific heat and constant entropy den-

sity, a so-called isentropic gas, the pressure p of the gas is a function of the mass density

ρ alone, which is given by the formula

p = Kρκ

with a number κ > 1 and a positive constant K depending on the entropy density. As

pointed out in [2], the kineti theory of gases implies that κ is determined by the structure

of the molecules, e.g. for monatomic gases κ = 5/3, for diatomic gases κ = 7/5, and κ
converges to one as the size of the molecules goes to infinity.

There is a number of different systems of equations one can use to model the motion

of a quantity of such a gas occupying all or part of the space R3 and subject to the gravity

field it generates. One of them is that for inviscid flow considered in [2]. If one confines

oneself to equilibrium states without motion, then the differences between most of these

models disappear, and one is left with only the equations

∇p = −ρ∇Φ (1)

and
∆Φ = 4πkρ (2)
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together with the condition Φ(x) → 0 as |x| → ∞ for the gravity potential Φ and the

gravity constant k. Both equations may need to be interpreted in the sense of distri-

butions. This provides one possibility for the definition of a stationary state for such a

system.

Another poses the problem in the framework of the calculus of variations, as a critical,

or stationary, point of the energy, subject to all relevant conservation laws, as defined

more precisely in Definition 1. The energy of the mass distribution ρ in in the absence of

motion is given by

E(ρ) =
K

κ − 1

∫

R3

ρκ(x)dx −
k

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x − y|
dxdy. (3)

The first integral is the thermodynamic energy, the second one the gravitational energy.

The only conservation law we have to keep in mind here is that of the total mass of the

distribution ρ, given by

M(ρ) =

∫

R3

ρ(x)dx. (4)

From the point of view of physics one would expect these two concepts of stationarity to

be equivalent, as indeed they are. This is, however, not immediately obvious, owing, as

we shall see, to the fact that for such solutions the density ρ typically equals zero over

much of space.

Such problems have been studied extensively. In most cases it is not only the mo-

tionless equilibrium that is being considered, but also the equilibria in which the mass

distribution rotates like a rigid body around an axis, a significantly harder problem. Cel-

ebrated classical studies of this subject, in part also for incompressible fluids, include

those of Poincaré [10] and Lichtenstein [7]. Among the more recent papers are [1], [6],

[12], [8], [11], [2] and [9]. The reader is referred to these for additional references. In most

of these papers the point of view is that of the calculus of variations.

Stationarity in the sense that equations (1) and (2) are fulfilled leads to the equations

Kκρκ−1∇ρ = −ρ∇Φ,

and where ρ > 0 this implies

−∇Φ = Kκρκ−2∇ρ = ∇

(

Kκ
κ − 1

ρκ−1

)

and

∇

(

Φ +
Kκ

κ − 1
ρκ−1

)

= 0.

Thus in every connected component of the set

Ω = {x ∈ R3 | ρ(x) > 0} (5)

we have

Φ +
Kκ

κ − 1
ρκ−1 = C. (6)

The constant C may assume different values in different subdomains of Ω. If, on the

other hand, we look for stationary points of the energy functional, then the constant

enters the calculation as a Lagrange parameter originating from the conservation of mass

as a constraint, and therefore is the same throughout Ω, as stated in Theorem 7. If there
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is only one constant, we can solve this equation (6) for ρ inside Ω, substitute ρ in (2)

to obtain a kind of Lane-Emden equation, and then it is not particularly hard to prove

by applying the result of [3] to Φ that ρ is spherically symmetric and Ω is a sphere. In

Theorem 4, which is probably the most interesting result of the paper, we prove that

is the case, and that Ω is therefore connected, even if we permit these constants to be

different in different components of Ω. For this purpose we have to modify the moving

plane argument from [3],[4] somewhat. Among other considerations we also give a proof

of the existence of a minimizing element for E with a method using the moving plane

argument as well. Although we will be forced to enlarge that space somewhat for some of

our analyses, we will largely consider density functions ρ belonging to C0
0 (R3), the space

of continuous functions with compact support. By equation (2) then Φ must immediately

be a continuously differentiable function, whose Laplacian in the sense of distributions is

continuous. Let Ck(R3) be the space of k times continuously differentiable functions. We

summarize the results of this paper in points 1 and 2 below.

1. All solutions ρ ∈ C0
0 (R3) and Φ ∈ C1(R3) of (1) and (2) with ρ(x) ≥ 0 for x ∈ R3

are spherically symmetric with respect to some point x0 ∈ R3.

2. For κ ∈ (1, 6/5) there are no solutions of positive finite mass, while for κ ∈ (6/5,∞)

such solutions exist, and for given mass they are unique up to translation. For

κ < 4/3 they are unstable as critical points of the energy functional defined in (3),

for κ > 4/3 they are global minima of this energy.

For more precise statements of the results see Theorems 4, 6, 7, 8 and 12.

Most of these results are not new. For κ > 4/3 the existence of a function minimizing

E with respect to all functions with a certain axisymmetry is a by-product of [1], it is

proved without such restrictions, using spherically symmetric rearrangements, in [6], and

by means of concentration-compactness arguments, in [8]. Here we give a different proof

using the moving plane method. The existence and nonexistence of solutions claimed

above is derived from the results in [2] for κ < 4/3 and can, owing to the spherical

symmetry of the solutions, also be obtained from numerous studies of the spherically

symmetric Lane-Emden equation. (See references in [11].) In contrast to this, to the

author’s knowledge, the characterizations of stationary solutions in Theorem 4 and the

instability result in Theorem 8 are new. In most results in this paper the moving plane

method plays an important role, and typically some twist of the original argument in [3]

and [4] is necessary. Theorem 4 may seem to contradict Theorem 1.3 in [2], but this is

not the case as for the solutions obtained there the gravity potential is confined to the

bounded domain being considered, and, as shown here, can in most cases not be extended

to the entire space, as one might be inclined to require for a stationary solution in the

physical sense.

2. Stationary solutions. We begin with solutions stationary in the sense that they

fulfill equations (1) and (2). In the argument to prove the main result of this section,

Theorem 4, the reflections Tλ across the planes x1 = λ given by the formula

Tλ(x1, x2, x3) = (2λ − x1, x2, x3) (7)
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play an important part. In preparation for the main argument we prove three lemmas

relating to some of the asymptotic expansions of the Newton potential, which are collec-

tively known in physics as multipole expansions. The results of these lemmas are by no

means new. We initially consider arbitrary mass distributions with compact support with

their center of gravity at zero. This means that for Lemmas 1, 2 and 3 we assume that

ρ ∈ L1(R3), ρ(x) ≥ 0 in R3 while ρ(x) = 0 for |x| ≥ r > 0, ρ is not almost everywhere

zero, and
∫

R3

xkρ(x)dx = 0 (k = 1, 2, 3). (8)

We also define

V (x) =

∫

R3

ρ(y)

|x − y|
dy. (9)

Lemma 1. We assume Γ : R3\{0} → R, Γ ∈ C2(R3\{0}) is homogeneous of degree

k ∈ (−∞, 2). Then there is a constant C such that for |x| ≥ 2r we have
∣

∣

∣

∣

∫

R3

Γ(x − y)ρ(y)dy − Γ(x)

∫

R3

ρ(y)dy

∣

∣

∣

∣

≤ Cr2|x|k−2

∫

R3

ρ(y)dy.

Proof. For |x| ≤ 2r and |y| ≤ r by Taylor’s theorem

Γ(x − y) − Γ(x) = −∇Γ(x) · y +
1

2

3
∑

i,j=1

Γxixj
(x − σy)yiyj

for some σ ∈ [0, 1]. Multiplying by ρ, integrating the resulting equation over R3 and

keeping assumption (8) in mind, we obtain
∣

∣

∣

∣

∫

R3

(Γ(x − y) − Γ(x))ρ(y)dy

∣

∣

∣

∣

≤
1

2

∫

R3

∣

∣

∣

3
∑

i,j=1

Γxixj
(x − σy)yiyj

∣

∣

∣
ρ(y)dy.

Now, as Γxixj
is homogeneous of degree k − 2, we have for |y| ≤ r < 2r ≤ |x| that

∣

∣

∣

3
∑

i,j=1

Γxixj
(x − σy)yiyj

∣

∣

∣
≤

(

3
∑

i,j=1

(Γxixj
(x − σy))2

)1/2( 3
∑

i,j=1

(yiyj)
2
)1/2

= |x − σy|k−2

( 3
∑

i,j=1

(

Γxixj

(

x − σy

|x − σy|

))2)1/2

|y|2

≤ (|x| − |y|)k−2r2 max
|ξ|=1

√

√

√

√

3
∑

i,j=1

(Γxixj
(ξ))2 ≤ C

(

|x| −
|x|

2

)k−2

r2 ≤ C|x|k−2r2.

This proves our claim.

For the following two lemmas note that if λ < 0, x1 > λ and |x| ≥ 8|λ| then

|Tλ(x)| − |x| =
|Tλ(x)|2 − |x|2

|Tλ(x)| + |x|
=

4λ(λ − x1)

|Tλ(x)| + |x|
> 0, (10)

thus

|x| ≤ |Tλ(x)| ≤ |Tλ(x) − x| + |x| ≤ 2|λ| + |x| ≤
5

4
|x|. (11)
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In Lemmas 2 and 3 and their proofs the constant C denotes the maximum of the two

constants C from Lemma 1 for Γ(x) = |x|−1 and Γ(x) = x1|x|
−3.

Lemma 2. If λ < 0, r > 0 and x1 ≥ D1 = max(8|λ|, 3Cr2|λ|−1, 2r), then V (Tλ(x)) <

V (x).

Proof. As D1 ≥ 8|λ| we have |x| ≥ 8|λ| and (11) is valid and can be applied below. To

be able to use Lemma 1 we consider

|Tλ(x)|−1 − |x|−1 =
|x| − |Tλ(x)|

|Tλ(x)||x|
=

4λ(x1 − λ)

|Tλ(x)||x|(|x| + |Tλ(x)|)

≤ −2

(

4

5

)2
|λ|(x1 − λ)

|x|3
≤ −|λ|

x1

|x|3
.

Thus, using Γ(x) = |x|−1 in Lemma 1, we have

V (Tλ(x)) − V (x) ≤

[

(|Tλ(x)|−1 − |x|−1) +
2Cr2

|x|3

]
∫

R3

ρ(y)dy

≤
2

|x|3

[

−
1

2
|λ|x1 + Cr2

]
∫

R3

ρ(y)dy,

giving us our claim.

Lemma 3. Given λ < 0, r > 0, the constant D = max(D1, 2Cr2|λ|−1 + 6D1|λ|) has the

property that if |x| ≥ D, x1 > λ, then V (Tλ(x)) < V (x).

Proof. By Lemma 2 the conclusion is true if x1 ≥ D1. As we chose D ≥ D1, we therefore

may now assume x1 ∈ (λ, D1) and |x| ≥ 2r. Let f(x) = V (Tλ(x))−V (x). Then fx1
(x) =

−Vx1
(Tλ(x)) − Vx1

(x), and

Vx1
(x) = −

∫

R3

x1 − y1

|x − y|3
ρ(y)dy

therefore, as x1/|x|
3 is homogeneous of degree −2 we have, using Lemma 1,

fx1
(x) ≤

[

(Tλ(x))1
|Tλ(x)|3

+
x1

|x|3
+

Cr2

|Tλ(x)|4
+

Cr2

|x|4

]
∫

R3

ρ(y)dy.

Now, remembering (10) and (11), we have

(Tλ(x))1
|Tλ(x)|3

+
x1

|x|3
=

x1 + (Tλ(x))1
|Tλ(x)|3

+
x1

|x|3
−

x1

|Tλ(x)|3

=
−2|λ|

|Tλ(x)|3
+ x1

[

1

|x|3
−

1

|Tλ(x)|3

]

< −
|λ|

|x|3
+ 3|x1|

|Tλ(x)| − |x|

|x|4

≤ −
|λ|

|x|3
+ 6|x1|

|λ|

|x|4
≤

1

|x|3

(

− |λ| +
6D1|λ|

|x|

)

and

fx1
(x) <

1

|x|3

[

− |λ| +
2Cr2 + 6D1|λ|

|x|

]
∫

R3

ρ(y)dy.

Thus fx1
(x) < 0 if |x| ≥ 2Cr2|λ|−1 + 6D1|λ| and x1 ∈ (λ, D1). For x1 = λ we have

Tλ(x) = x and therefore f(x) = V (Tλ(x)) − V (x) = 0 for such x. This immediately

implies the missing part of our claim.
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Now we can prove the main theorem of this section.

Theorem 4. Assume ρ ∈ C0
0 (R3) is a non-negative function, Φ ∈ C1(R3) and that

Φ(x) → 0 as x → ∞. Assume they also solve equations (1) and (2) in the sense of

distributions. Then Φ ∈ C2(R3) and p = Kρκ ∈ C1(R3), equations (1) and (2) are

fulfilled in the classical sense, Ω = BR(x0) with some R > 0, x0 ∈ R3, and ρ, Φ are

spherically symmetric with respect to x0.

Proof. By equation (2) obviously Φ can be obtained from the convolution of 4πkρ ∈

C0
0 (R3) with the Newton potential and therefore both the function and its gradient are

uniformly bounded, and it is strictly negative on R3. Now let us define

G(x) = Φ(x) +
Kκ

κ − 1
ρκ−1(x). (12)

The function G is uniformly continuous on R3, it is continuously differentiable in Ω and

∇G(x) = 0 for x ∈ Ω. Thus ρ is differentiable where it is positive. As ρ is continuous we

have ρ(x) = 0 on ∂Ω and therefore G(x) < 0 for x ∈ ∂Ω and even for x ∈ Ω as ∇G(x) = 0

in Ω. Solving equation (12) for ρκ−1 we obtain

ρκ−1(x) =
κ − 1

Kκ
(G(x) − Φ(x)) =

κ − 1

Kκ
(G(x) − Φ(x))+

for x ∈ R3. From this it is easy to see that ρκ−1 is Lipschitz continuous, as Φ has this

property and ρ equals zero where G is not constant. Therefore ρ is Hölder continuous

and Φ ∈ C2(R3) by Lemma 4.2 in [5]. As ρκ−1 is Lipschitz continuous we obtain that

ρκ = (ρκ−1)
κ

κ−1 is differentiable, with gradient zero where ρ(x) = 0, and then it is easy

to see that p ∈ C1(R3). Also we have

ρ(x) =

(

κ − 1

Kκ
(G(x) − Φ(x))+

)1/(κ−1)

.

As Ω is an open set, it consists of a countable number of connected components Ωm, m ∈

P = {q ∈ N |q ≤ N}, where N could be finite or infinite. In each Ωm the function G(x)

is constant. Let Cm = G(x) for x ∈ Ωm. Now let u = −Φ and

g(s) = 4πk

(

κ − 1

Kκ
s+

)1/(κ−1)

.

Then g is an increasing and non-negative continuous function, g(s) = 0 for s ≤ 0, and

we have

−∆u = g(G(x) + u(x)).

After a translation we may assume that the center of gravity of the entire mass distribu-

tion is located at x = 0, i.e.
∫

R3

xnρ(x)dx = 0

for n = 1, 2, 3. We follow the same strategy as Gidas, Ni, Nirenberg in [3],[4]. Remem-

bering the reflection Tλ defined in equation (7) we introduce uλ(x) = u(Tλ(x)). Now

let

Sλ
+ = {x ∈ R3 | x1 > λ}, Sλ

− = {x ∈ R3 | x1 < λ}



STATIONARY STATES AND MOVING PLANES 507

and

A = {λ ≤ 0 | If µ ≤ λ, then (u − uµ) | S
µ

+ ≥ 0 and Tµ(Ω ∩ Sµ
−) ⊂ Ω},

and define q0 = minx∈Ω(x1). Then for µ < q0 the set Ω ∩ Sµ
− is empty. Therefore also

∆uµ = 0 and ∆u ≤ 0 in Sµ
+. As uµ(x) = u(x) for x ∈ ∂Sµ

+ and both functions go to

zero as |x| → ∞, the maximum principle implies (u− uµ) | S
µ

+ ≥ 0 for such µ. Therefore

(−∞, q0) ⊂ A.

Letting λ1 = sup(A), we have by the definition of A that (−∞, λ1) ⊂ A ⊂ (−∞, λ1].

We will show that λ1 ∈ A.

If λ0 < λ1 and x ∈ S
λ0

+ then for all λ ∈ [λ0, λ1), x ∈ S
λ

+ we have uλ(x) ≤ u(x), and

therefore this is true also for λ = λ1, as uλ(x) depends continuously on λ and S
λ

+ is a

decreasing set-valued function of λ.

If x ∈ Ω ∩ Sλ0
− for some λ0 < λ1, then x ∈ Ω ∩ Sλ

− for λ ≥ λ0 and by assumption also

Tλ(x) ∈ Ω for λ ∈ [λ0, λ1). As Ω is closed, this is also true for λ = λ1. If x ∈ Ω ∩ Sλ1
− and

x /∈ Ω ∩ Sλ
− for all λ < λ1, then x1 = λ1 and therefore Tλ1(x) = x ∈ Ω. Thus we have

shown that λ1 ∈ A and that A = (−∞, λ1].

If λ ∈ A, then we have Tλ(Ω ∩ Sλ
−) ⊂ Ω, and as Tλ is a homeomorphism, it takes

interior points to interior points, and therefore Tλ(Ω ∩ Sλ
−) ⊂ Ω. Now we want to prove

that for λ ≤ λ1 we have Tλ(Ωm ∩ Sλ
−) ⊂ Ωm for all m ∈ P. To see this let x ∈ Ωm

and λ0 = x1. Then Tλ0(x) = x and x ∈ Sλ
− for λ ∈ (λ0,∞), and for λ ∈ [λ0, λ1] we

have Tλ(x) ∈ Ω as x ∈ Ω. As Tλ0(x) = x ∈ Ωm and Tλ(x) for λ ∈ [λ0, λ1] is a line

segment wholly inside Ω, it must also lie in the same connected component of Ω as x,

thus Tλ(x) ∈ Ωm.

Therefore G(Tλ(x)) = G(x) = Cm for all x ∈ Ωm ∩ Sλ
− and as Ω ∩ Sλ

− is the union of

these sets we have G(Tλ(x)) = G(x) for x ∈ Ω ∩ Sλ
−. By continuity we have

G(Tλ(x)) = G(x) (13)

even for x ∈ Ω ∩ Sλ
− for all λ ≤ λ1.

Now we prove, by contradiction, that λ1 = 0, and therefore assume λ1 < 0 from now

on. Let us consider the function u − uλ1 restricted to the set Sλ1
+ . There we have

−∆(u(x) − uλ1(x)) = −∆u(x) + ∆(u ◦ Tλ1)(x)

= g(G(x) + u(x)) − g(G(Tλ1(x)) + u(Tλ1(x))) ≥ 0.

To prove the inequality note that as x ∈ Sλ1
+ , we have Tλ1(x) ∈ Sλ1

− . If Tλ1(x) /∈ Ω,

then g(G(Tλ1(x)) + u(Tλ1(x))) = 0, and then the inequality is clear. On the other

hand, if Tλ1(x) ∈ Ω, then also x = Tλ1(Tλ1(x)) ∈ Ω, and therefore G(Tλ1(x)) =

G(Tλ1(Tλ1(x))) = G(x), and then

g(G(x) + u(x)) − g(G(Tλ1(x)) + uλ1(x))

= g(G(x) + u(x)) − g(G(x) + uλ1(x)) ≥ 0,

as uλ1(x) ≤ u(x) and g is increasing. As also u(x) = uλ1(x) for x ∈ ∂Sλ1
+ , by the

strong maximum principle (Theorem 3.5 in [5]) now either u(x) < uλ1(x) for x ∈ Sλ1
+ or

u(x) = uλ1(x) for x ∈ Sλ1
+ . As the center of gravity is at zero, the second is an impossi-

bility. The strong maximum principle (Lemma 3.4 in [5]) also implies ux1
((λ1, x2, x3)) >
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uλ1
x1

((λ1, x2, x3)) for all x2, x3 ∈ R. Also obviously ux1
((λ1, x2, x3)) = −uλ1

x1
((λ1, x2, x3))

and therefore ux1
((λ1, x2, x3)) > 0. It is easy to see that then for R > 0 there is a δ > 0

such that for λ′ with |λ1 − λ′| < δ and x ∈ BR(0) ∩ Sλ′

+ we have uλ′

(x) ≤ u(x) and even

uλ′

(x) < u(x) unless x ∈ Sλ′

+ . As we assumed λ1 < 0 the same inequality follows for large

x by Lemma 3. Now assume that for every δ > 0 there exists a λ′ with |λ1 −λ′| < δ such

that Tλ′

(Ω ∩ Sλ′

− ) " Ω. Then there would have to be a sequence µk > λ1 converging to λ1

and a sequence of points yk ∈ Ω ∩ Sµk
− with Tµk(yk) = xk /∈ Ω for all k. These sequences

can be selected in such a way that xk → x and yk → y, and even so that yk ∈ Ω ∩ Sµk
− .

Then x = Tλ1(y) and x /∈ Ω, while y ∈ Ω ∩ Sλ1
− . As λ1 ∈ A then also x ∈ Ω and therefore

x ∈ ∂Ω and ρ(x) = 0 and, using (13),

u(x) = −G(x) = −G(Tλ1(y)) = −G(y)

= u(y) −
Kκ

κ − 1
ρκ−1(y) ≤ u(y) = uλ1(x) ≤ u(x).

Therefore u(x) = uλ1(x) and as a consequence x ∈ ∂Sλ1 , which implies ux1
(x) > 0 as

shown above. Also Tλ1(x) = x, therefore x = y. Therefore also ux1
(yk) > 0 for sufficiently

large k. Dropping all k for which this is not true and as yk ∈ Ω there exists a τ > 0 such

that yk + σe1 ∈ Ω for all σ ∈ [0, τ ] with e1 = (1, 0, 0). Now

Tµk(yk) = 2(µk − yk1)e1 + yk,

and as yk1 → λ1 as well as µk → λ1 this implies Tµk(yk) ∈ Ω for large k contrary to

our assumption. Thus A = (−∞, 0], and we have u0(x) ≥ u(x) for x1 ≥ 0, which is only

possible if they are equal in view of the assumption we made about the location of the

center of gravity. As we can rotate our coordinate system in any way we wish, this means

that u is symmetric with respect to any plane through the center of gravity, thus it is

spherically symmetric. Then it is easy to see the remainder of our claim.

3. Critical points of the energy functional. Now we complement the energy func-

tional E defined in equation (3) by a set

A(M) = {ρ ∈ C0
0 (R3) | ρ(x) ≥ 0,M(ρ) = M}

of admissible density distributions of a given mass M with M as defined in (4). First we

consider for which κ the functional E is bounded from below on A(M). Then we show

that all elements ρ of A(M) with the gravity potentials Φ they generate are stationary

solution of equations (1) and (2) exactly if they are stationary points of the functional

in the sense defined in Definition 1, and we investigate their stability in the sense of the

calculus of variations.

First we prove a lemma about rescaled density distributions.

Lemma 5. Let κ ∈ (1, 4/3] and for ρ ∈ A(M), t > 0 let

ρ1(x, t) = t3ρ(tx)

and

eρ(t) = E(ρ1(., t)).



STATIONARY STATES AND MOVING PLANES 509

Then ρ1(., t) ∈ A(M) as well and eρ ∈ C∞((0,∞)), e′′ρ(t) ≤ 0 and if κ < 4/3 then

e′′ρ(t) < 0 and eρ(t) → −∞ as t → ∞.

Proof. It is easy to see that M(ρ1(., t)) = M , therefore ρ1(., t) ∈ A(M) and

eρ(t) = E(ρ1)(t) = t3(κ−1) K

κ − 1

∫

R3

ρκ(x)dx − t
k

2

∫

R3

∫

R3

ρ(x)ρ(y)

|x − y|
dxdy

for t ∈ (0,∞). From this equation it is easy to see the remainder of our claims.

Theorem 6. Let

E(M) = inf
ρ∈A(M)

E(ρ).

If κ ∈ (1, 4/3) then E(M) = −∞, for κ > 4/3 we have E(M) > −∞, for κ = 4/3 there

exists a constant M0 > 0 such that for M > M0 we have E(M) = −∞, while for M < M0

this quantity is finite.

Proof. By Proposition 6 in [1] we have

E(ρ) ≥ ‖ρ‖κ

Lκ − C‖ρ‖
4/3

L4/3M
2/3, (14)

which is bounded from below for κ > 4/3 and for κ = 4/3 if M is small enough. For

κ = 4/3 it is easy to see that E(M) = −∞ implies the same for all larger masses. For

κ < 4/3 the fact E(M) = −∞ follows directly from Lemma 5.

Now we define what we mean by a stationary point of the functional E.

Definition 1. We call ρ0 ∈ A(M) a stationary point of E if the following is true.

Assume v ∈ C0
0 (Rn) and there is a number τ0 > 0 such that for t ∈ [0, τ0] we also have

ρ0 + tv ∈ A(M). Then there exists a continuous function γ : [0, τ0] → R with γ(0) = 0

such that for t ∈ [0, τ0] we have

E(ρ0 + tv) ≥ E(ρ0) + tγ(t).

Then we have the following theorem.

Theorem 7. The function ρ0 ∈ A(M) is a stationary point of E exactly if

Kκ
κ − 1

ρκ−1
0 (x) =

(

k

∫

R3

ρ0(y)

|x − y|
dy + C

)+

(15)

with a constant C. Then

Φ0(x) = −k

∫

R3

ρ0(y)

|x − y|
dy (16)

and ρ0 solve equations (1) and (2). If functions Φ0 ∈ C1(R3) and ρ0 ∈ C0
0 (R3) fulfill the

equations (1) and (2) and Φ0(x) goes to zero at infinity, then ρ0 fulfills equation (15).

Proof. The considerations leading up to Theorem A in [1] are independent of the axial

symmetry ordinarily assumed there. The fact that we are only considering continuous

functions with compact support, and that our functional is less complicated, makes the

arguments much easier. They lead to a proof that if ρ0 is a stationary point of E, then

it solves equation (15) and vice versa. Equation (2) then immediately follows from (16)

and equation (6) from (15). Equation (15) can also be proved along the same lines as

Lemma 10 in this paper. For the implication in the other direction note that if ρ0, Φ0
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solve equations (1) and (2) then by Theorem 4 the set Ω is a ball, therefore (6) is true

with a single constant, and from that it is easy to derive (15).

Theorem 8. Let κ < 4/3. Then if ρ0 is a stationary point for the energy functional E

in A(M), it is unstable in the sense that there are functions ρ in A(M) arbitrarily close

to ρ0 in C0(Rn) while E(ρ) < E(ρ0).

Proof. From Theorem 7 we have

ρ0(x) =

((

k(κ − 1)

Kκ

∫

R3

ρ0(y)

|x − y|
dy + C

)+)1/(κ−1)

.

As we assume κ < 4/3, the function f(x) = (x+)1/(κ−1) belongs to C3(R), therefore

ρ0 ∈ C3(R3). As a consequence ρ1(., t) is three time differentiable as a function of t. (For

the definition of ρ1 and eρ see Lemma 5.) Also

∂ρ1

∂t
(x, 1) = 3ρ0(x) + x · ∇ρ0 = div(xρ0(x)),

and therefore

e′ρ(1) =
κK

κ − 1

∫

R3

ρκ−1
0 (x) div

x
(xρ0(x))dx − k

∫

R3

∫

R3

divx(xρ0(x))ρ0(y)

|x − y|
dxdy

=

∫

R3

[

κK

κ − 1
ρκ−1
0 (x) − k

∫

R3

ρ0(y)

|x − y|
dy

]

div(xρ0(x))dx = C

∫

R3

div(xρ0(x))dx = 0.

As e′′ρ(t) < 0 by Lemma 5, eρ has a global strict maximum at t = 1, proving our claim.

4. The existence of an energy-minimizing density for κ > 4/3. The space C0
0 (R3)

for mass-distributions is not very suitable for the purpose of proving the existence of

energy-minimizing distributions. For this reason we consider the larger space Lκ(R3) ∩

L1(R3) and define as the set of admissible mass distributions

W (M) =

{

ρ ∈ Lκ(R3) ∩ L1(R3) | ρ(x) ≥ 0 a.e. and

∫

R3

ρ(x)dx = M

}

,

which is the closure of A(M) in Lκ(R3)∩L1(R3). Here Lκ(R3) is the space of all measur-

able functions whose κ-th power is integrable over R3. As the spaces on R3 lack desirable

compactness properties we also define

W (M, R) = {ρ ∈ W (M) | ρ(x) = 0 for |x| ≥ R}

for R ∈ (0,∞]. Again, from Proposition 6 in [1] we have that inequality (14) is true for

ρ ∈ W (M), therefore E is bounded from below for κ > 4/3 even for this enlarged set of

admissible mass distributions. Also any subset of W (M) on which E is bounded is also

bounded in Lκ.

For R ∈ (0,∞) we define

E(M, R) = inf
ρ∈W (M,R)

E(ρ).

Then obviously E(M, R) ≥ E(M) for all R ∈ (0,∞), and E(M, R) → E(M) as R → ∞.

Using the same arguments as in [1] we obtain the following two lemmas.
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Lemma 9. For R ∈ (0,∞) there exists a function ρR ∈ W (M, R) such that

E(ρR) = E(M, R).

Lemma 10. Let R ≤ ∞. If ρ0 ∈ W (M, R) is stationary in W (M, R), then ρ0 ∈ L∞(R3)

and there exists a constant C such that ρ0 fulfills equation (15) for x ∈ BR.

Proof. We can again follow the arguments in [1] to prove this, but it is also easy to just

give a shorter proof as our problem is less complicated. It is not difficult to see that if

2|ϕ| ≤ ρ0 and
∫

R3

ϕdx = 0

then

h(t) = E(ρ0 + tϕ)

is a continuously differentiable function in [−1, 1] and h′(0) = 0 as ρ0 + tϕ ∈ W (M, R).

Now for |φ| ≤ 1/2 equaling zero outside BR let

ϕ =
1

2

(

φ −
1

M

∫

R3

φρ0dx

)

ρ0.

Then this ϕ fulfills the conditions above, and computing h′(0) one obtains with

V (x) =
Kκ

κ − 1
ρκ−1
0 (x) − k

∫

R3

ρ0(y)

|x − y|
dy

that

h′(0) =

∫

R3

V (x)

(

φ(x) −
1

M

∫

R3

φρ0dy

)

ρ0(x)dx = 0

and therefore
∫

R3

V (x)φ(x)ρ0(x)dx =

∫

R3

φρ0dy
1

M

∫

R3

V (x)ρ0(x)dx,

or, with

C =
1

M

∫

R3

V (x)ρ0(x)dx

we have
∫

R3

(V (x) − C)φ(x)ρ0(x)dx = 0,

implying our claim for all x for which ρ0(x) > 0. A bootstrap argument using the

Calderón-Zygmund estimates (see, e.g., [5], Theorem 9.9) and the Sobolev embedding

theorem then implies ρ0 is bounded. To obtain the remainder of the claim let φ ∈ L∞(R3)

with φ(x) ∈ [0, 1] and φ(x) = 0 for |x| ≥ R. Then for sufficiently small t ≥ 0 the function

ϕ given by

ϕ = φ − M−1ρ0

∫

R3

φ(x)dx ≥ −M−1ρ0

∫

R3

φ(x)dx

has the property that ρ0 + tϕ ∈ W (M, R) and therefore h′(0) ≥ 0. From this it is easy

to obtain
Kκ

κ − 1
ρκ−1
0 (x) ≥ k

∫

R3

ρ0(y)

|x − y|
dy + C
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for all x ∈ BR. Where one of the two sides is bigger than zero they are equal. This proves

the remainder of our claim.

Lemma 11. If R > 0 and ρ0 ∈ W (M, R) is a bounded function with the property that

E(ρ0) = E(M, R), then it is spherically symmetric, and the center of the spheres of

symmetry is located in BR.

Proof. By Lemma 10 the function ρ0 fulfills equation (15) and is bounded. We can rotate

and translate the ball BR in such a way that the center of gravity of the mass distribution

is located at 0 and the center of the ball at y = (y1, 0, 0) with y1 ≥ 0. Again for λ ∈ R
let Tλ be defined as in (7), with

u(x) = k

∫

R3

ρ0(y)

|x − y|
dy

let uλ(x) = u(Tλ(x)) and

A = {λ ≤ 0 | For all µ ≤ λ and x ∈ Sµ
+ we have uµ(x) ≤ u(x)},

remembering the definitions of Sλ
+ and Sλ

− from the proof of Theorem 4. Owing to the

fact that u is a bounded function fulfilling the integral equation

u(x) =
1

4π

∫

R3

χBR(y)(z)g(u(z))

|x − z|
dz,

with

g(u) = 4πk

(

κ − 1

Kκ
(C + u)+

)1/(κ−1)

,

we see that the distributional Laplacian of u belongs to L∞. As before, A is easily

seen to be closed and non-empty. If λ ∈ A and λ < 0 we have for x ∈ Sλ
+ that, as

Tλ(BR(y) ∩ Sλ
−) ⊂ BR(y) for λ ≤ y1,

−∆(u(x) − uλ(x)) = χ
BR(y)

g(u) − χT λ(BR(y))g(uλ) ≥ [χ
BR(y)

− χT λ(BR(y))]g(u)(x) ≥ 0,

thus

∆(u(x) − uλ(x)) ≤ 0.

By the strong maximum principle now either u(x) < uλ(x) for x ∈ Sλ
+ or u(x) = uλ(x)

in the same set. The strong maximum principle can be applied as the Laplacian is in the

weak sense and u, uλ both are continuously differentiable, which easily allows to verify

the mean value inequality for u − uλ. As the center of gravity is at zero, the assumption

λ < 0 excludes the possibility u(x) = uλ(x) for x ∈ Sλ
+. The strong maximum principle

also implies ux1
((λ, x2, x3)) > uλ

x1
((λ, x2, x3)) for all x2, x3 ∈ R. It is then easy to see

that for R1 > 0 there is a δ > 0 such that for λ′ with |λ − λ′| < δ and x ∈ BR1
(0) ∩ Sλ

+

we have uλ(x) ≤ u(x). As λ < 0 the same inequality follows for large x by Lemma 3.

Thus we have u0(x) ≥ u(x) for x1 ≥ 0, which is only possible if they are equal in view

of the assumption we made about the location of the center of gravity. If y1 > 0 we

can translate the function so that the plane of symmetry is located at y1. Then ρ0 is

still a minimizing function and is zero near the boundary of BR(y) and the arguments

presented so far apply to it as well. Therefore C must be non-positive, as otherwise ρ0

could not be zero there, and as u(x) ≤ −C on ∂BR(y) this inequality is also true outside
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this ball by the maximum principle, and thus u solves −∆u = g(u) in the entire space

and is therefore symmetric by [3]. Otherwise y1 = 0, which means the center of gravity

coincides with the center of the circle, in which case we can carry out the same argument

for planes with arbitrary normals and obtain spherical symmetry.

Theorem 12. Let M > 0, κ > 4/3. Then there exists a function ρ0 ∈ A(M) which

is spherically symmetric with respect to zero such that E(ρ0) = E(M). It is Hölder

continuous and, together with the function Φ0 defined by the conditions Φ0(x) → 0 as

|x| → ∞ and ∆Φ0 = 4πkρ0, fulfills equations (1) and (2). Up to translation it is the only

stationary point of the energy functional and ρ0 and Φ0 are the only stationary solution

of these equations amongst functions for which ρ0 has compact support.

Proof. For R > 0 let ρR be the function minimizing E on W (M, R), which exists by

Lemma 9. By Lemma 11 it is spherically symmetric and can be chosen so that the center

of the symmetry is at 0. By Lemma 14 in [11] it then follows that for R sufficiently large ρR

is independent of R and therefore is a minimizer in A(M). Our construction immediately

assures it has all the properties claimed. Its uniqueness follows from Theorem 4 combined

with Lemma 14 in [11].
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