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Abstract. The motion of a viscous incompressible fluid flow in bounded domains with a smooth

boundary can be described by the nonlinear Navier-Stokes equations. This description corre-

sponds to the so-called Eulerian approach. We develop a new approximation method for the

Navier-Stokes equations in both the stationary and the non-stationary case by a suitable cou-

pling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined

by the trajectories of the particles of the fluid. The method leads to a sequence of uniquely

determined approximate solutions with a high degree of regularity containing a convergent sub-

sequence with limit function v such that v is a weak solution of the Navier-Stokes equations.

0. Introduction, notation and main results. We consider the non-stationary non-

linear Navier-Stokes equations

∂tv − ν∆v + v · ∇v + ∇p = F in GT ,

∇ · v = 0 in GT ,

v = 0 on ∂G, (1)

v = v0 for t = 0.

Here GT := (0, T ) × G is a bounded cylindrical domain, where T > 0 and G ⊂ R
3

has a smooth boundary ∂G. These equations describe the motion of a viscous incom-

pressible time dependent fluid confined to G for 0 < t < T . Here v = v(t, x) =

(v1(t, x), v2(t, x), v3(t, x)) represents the velocity and p = p(t, x) the kinematic pressure

at time t at position x ∈ G. The constant ν > 0 (kinematic viscosity), the external force

density F , and the initial velocity v0 are given data.

Besides the description of a flow by its velocity v and pressure p there is another

approach using the Lagrangian coordinates X(t, s, xs) ∈ G, [2]. Here the function
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t → x(t) = X(t, s, xs)

denotes the trajectory of a fluid particle, which at initial time t = s is located at xs ∈ G.

This approach has been used for the treatment of the Navier-Stokes and the transport

equations ([4], [7], [12], [14]) and is of great importance for the numerical computation

of a flow involving different media with interfaces. In general, both representations are

related by the equations

ẋ(t) = v(t, x(t)), x(s) = xs ∈ G, (2)

which is an initial value problem for ordinary differential equations if the velocity v is

known.

Besides the non-stationary Navier-Stokes equations mentioned above we also consider

the stationary system

−ν∆v + v · ∇v + ∇p = F in G,

∇ · v = 0 in G, (3)

v = 0 on ∂G.

In this case all functions do not depend on time: The functions

v = v(x) = (v1(x), v2(x), v3(x)), p = p(x)

denote the unknown velocity and pressure, respectively. Because for steady flow the

streamlines and the trajectories of the fluid particles coincide, both approaches men-

tioned above are related by the autonomous system of ordinary differential equations

ẋ(t) = v(x(t)), x(0) = x0 ∈ G, (4)

which is an initial value problem for

t → x(t) = X(t, 0, x0) = X(t, x0)

if the velocity field v is known.

In the present paper we construct an energy conserving Lagrangian difference quo-

tient, which approximates the nonlinear convective term v · ∇v in (1) and (3). By a

suitable time delay in the non-stationary case it is possible to determine the trajectories

of the fluid particles from the velocity field and vice versa successively, such that the

resulting equations can be solved for all time. A special initial construction of compati-

ble data ensures, that the corresponding solution is uniquely determined and has a high

degree of regularity uniformly in time. Passing to the limit for the Lagrangian difference

quotient the following convergence result is shown: There always exists a subsequence of

the solutions, which for all time converges to a weak solution of (1) and (3), respectively.

Let us outline our notation: We set N0 := N ∪ {0}. The set I ⊂ R always denotes a

compact interval and G ⊂ R
3 a bounded domain with smooth boundary ∂G and closure

G := G∪∂G. Throughout the paper we use the same symbols for scalar and vector valued

functions as well as for the corresponding function spaces and norms.

We need the spaces Lp(G) (1 ≤ p ≤ ∞) of integrable functions and the spaces Cm(G),

Cm(G), Cm
0 (G) of continuous functions. Here the subscript 0 denotes a compact support
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in G. Moreover, we need the usual Sobolev (Hilbert) spaces Hm(G), Hm
0 (G) (m ∈ N0),

where in particular H0
0 (G) = H0(G) = L2(G).

We also use the Banach-valued spaces Cm(I, B) (m ∈ N0) and Lp(a, b, B), where

a, b ∈ R (a < b) and B is any of the spaces above. Instead of C0( · ) we write C( · ). The

norm in Lp(G) and in Hm(G) is denoted by ‖ · ‖0,p and ‖ · ‖m, respectively, where in

particular we set

‖ · ‖ := ‖ · ‖0,2 = ‖ · ‖0, ‖ · ‖∞ := ‖ · ‖0,∞ := ess sup
x∈G

| · (x)|

with the Euclidian norm | · |. For v = (v1, v2, v3) and u = (u1, u2, u3) we use

(v, u) :=

∫

G

3
∑

i=1

vi(x)ui(x)dx

as scalar product in L2(G). By H(G) and V (G) we denote the closure of

D(G) := {u ∈ C∞
0 (G) | ∇ · u = 0}

in L2(G) and H1(G), respectively, i.e. we use the notation

H(G) := D(G)
‖·‖

, (5)

V (G) := D(G)
‖·‖1

. (6)

Here, as usual, C∞
0 (G) denotes the space of all C∞(G)-functions with compact support

confined to G.

The operator

P : L2(G) → H(G)

denotes the orthogonal projector associated with the orthogonal decomposition

L2(G) = H(G) ⊕ {u ∈ L2(G) | u = ∇p, p ∈ H1(G)}.

With ∂i (i = 1, 2, 3) as the partial derivative with respect to xi we set ∇ := (∂1, ∂2, ∂3) =

grad and define

∇ · v :=
3

∑

i=1

∂ivi, v · ∇u :=
(

3
∑

i=1

vi∂iuj

)

j
, ∇v := (∂jvk)kj .

In V (G) and H1
0 (G) we mostly use

(∇v,∇u) :=

3
∑

j=1

(∂jv, ∂ju) =

3
∑

i,j=1

(∂jvi, ∂jui)

and ‖∇v‖ := (∇v,∇v)
1
2 as scalar product and norm, respectively, since G is bounded.

1. The stationary Navier-Stokes equations. Let us start by recalling some facts,

which concern existence and uniqueness for the solution of the initial value problem (4):

If the velocity field v belongs to the space C1,0(G), defined by

C1,0(G) := {u ∈ C1(G) | u = 0 on ∂G},

then for all x0 ∈ G the solution

t → x(t) = X(t, x0)
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of (4) is uniquely determined and exists for all t ∈ R. Here the global existence follows

from the fact that v = 0 on the boundary ∂G implies that the trajectories remain in G

for all times. Due to the uniqueness, the set of mappings

ℜ = {X(t, ·) : G → G | t ∈ R}

defines a commutative group of C1-diffeomorphisms in G. In particular, for t ∈ R the

inverse mapping X(t, ·)−1 of X(t, ·) is given by X(−t, ·), i.e.

X(t, ·) ◦ X(−t, ·) := X(t, X(−t, ·)) = X(t − t, ·) = X(0, ·) = id,

or, equivalently,

X(t, X(−t, x)) = x

for all t ∈ R and x ∈ G. Moreover, we obtain det∇X(t, x) = 1 if additionally

v ∈ C1,0
σ (G) = {u ∈ C1,0(G) | ∇ · u = 0}.

This important measure preserving property implies

(f, g) = (f ◦ X(t, ·), g ◦ X(t, ·))

for all functions f, g ∈ L2(G) as well as

‖f‖0,p = ‖f ◦ X(t, ·)‖0,p, f ∈ Lp(G), 1 ≤ p ≤ ∞.

Next let us consider the Navier-Stokes boundary value problem (3). It is well known that,

given F ∈ L2(G), there is at least one function v satisfying (3) in a weak sense. Let us

recall:

Definition 1.1. Let F ∈ L2(G) be given. A function v ∈ V (G) satisfying for all

Φ ∈ D(G) the identity

ν(∇v, ∇Φ) − (v · ∇Φ, v) = (F, Φ) (7)

is called a weak solution of the Navier-Stokes equations (3), and (7) is called the weak

form of (3).

For a suitable approximation of the nonlinear term v · ∇v let us keep in mind its

physical deduction. It is a convective term arising from the total or substantial derivative

of the velocity vector v. Thus it seems to be reasonable to use a total difference quotient

for its approximation.

To do so, let v ∈ C1,0
σ (G) be given. Then for any ε ∈ R the mapping X(ε, ·) : G → G

and its inverse X(−ε, ·) are well defined. Consider for some u ∈ C1(G) and x ∈ G the

one-sided Lagrangian difference quotients

Lε
+ u(x) =

1

ε
[u(X(ε, ·)) − u(x)] , Lε

− u(x) =
1

ε
[u(x) − u(X(−ε, ·))] ,

and the central Lagrangian difference quotient

Lε u(x) =
1

2
(Lε

+u(x) + Lε
− u(x)). (8)

Since for sufficiently regular functions we find

Lε
− u(x) → v(x) · ∇u(x) and Lε

+ u(x) → v(x) · ∇u(x)
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as ε → 0, all the above quotients can be used for the approximation of the term v · ∇u.

There is, however, an important advantage of the central quotient (8) with respect to the

conservation of the energy:

Lemma 1.2. Let v ∈ C1,0
σ (G) and u, w ∈ L2(G). Let X(ε, ·) and X(−ε, ·) denote the

mappings constructed from the solution of (4). Then for the central quotient Lεu defined

by (8) we have

(Lεu, w) = −(u, Lεw), (9)

hence

(Lε u, u) = 0. (10)

Proof. Due to v ∈ C1,0
σ (G) the mappings X(t, ·) and X(−ε, ·) are measure preserving.

Setting X := X(ε, ·), this implies

(Lεu, w) =
1

2ε
(u ◦ X − u ◦ X−1, w) =

1

2ε
[(u ◦ X, w) − (u ◦ X−1, w)]

=
1

2ε
[(u, w ◦ X−1) − (u, w ◦ X)] = −

1

2ε
[(u, w ◦ X − w ◦ X−1)] = −(u, Lεw).

The second assertion follows by setting u = w.

Let us point out that (9) is a Lagrangian analogy to the (Eulerian) relation

(v · ∇u, w) = −(v · ∇w, u), (11)

valid for all functions v ∈ V (G) and u, w ∈ H1
0 (G), which analogously implies

(v · ∇u, u) = 0 (12)

for all v ∈ V (G), u ∈ H1
0 (G).

To establish an approximation procedure we assume that some approximate velocity

field vn has already been found. To construct vn+1 we proceed as follows:

1) Construct Xn := X( 1
n , ·) and its inverse X−n := X(− 1

n , ·) from the initial value

problem

ẋ(t) = vn(x(t)), x(0) = x0 ∈ G. (13)

2) Construct vn+1 and pn+1 from the boundary value problem

−ν∆vn+1 +
n

2
[vn+1 ◦ Xn − vn+1 ◦ X−n] + ∇pn+1 = F in G,

∇ · vn+1 = 0 in G, (14)

vn+1 = 0 on ∂G.

The main result is now stated in the following

Theorem 1.3. a) Assume vn ∈ H3(G) ∩ V (G) and F ∈ H1(G). Then for all x0 ∈ G

the initial value problem (13) is uniquely solvable, and the mappings

Xn : G → G, X−n : G → G

are measure preserving C1-diffeomorphisms in G.

b) Moreover, there is a uniquely determined solution

vn+1 ∈ H3(G) ∩ V (G), ∇pn+1 ∈ H1(G)
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of the equations (14). The velocity field vn+1 satisfies the energy equation

ν‖∇vn+1‖2 = (F, vn+1). (15)

c) Assume v0 ∈ H3(G) ∩ V (G) and F ∈ H1(G). Let (vn)n denote the sequence of

unique solutions constructed in view of Part b). Then (vn)n is bounded in V (G), i.e.

‖∇vn‖2 ≤ CG,F,ν

for all n ∈ N, where the constant CG,F,ν does not depend on n.

d) The sequence (vn)n has an accumulation point v ∈ V (G) satisfying (7), i.e. v is

a weak solution of the Navier-Stokes equations (3).

Proof. 1.3a) Because H3(G) is continuously imbedded in C1(G) [1] and thus we have

H3(G)∩ V (G) ⊂ C1,0
σ (G), the initial value problem (13) is uniquely solvable, and Xn as

well as X−n have the asserted properties.

1.3b) Consider now the boundary value problem (14). By means of a Galerkin method

(compare [10, 16]) we can prove the existence of some function vn+1 ∈ V (G) ⊂ H1(G)

satisfying the weak version of (14), i.e.

ν (∇vn+1,∇Φ) +
n

2
(vn+1 ◦ Xn − vn+1 ◦ X−n, Φ) = (F, Φ) (16)

for all Φ ∈ D(G). Moreover, there is exactly one such function, because for the difference

wn+1 of two solutions we have

ν (∇wn+1,∇wn+1) = −
n

2
(wn+1 ◦ Xn − wn+1 ◦ X−n, wn+1) = 0,

hence ‖∇wn+1‖ = 0 and thus wn+1 = 0 in G due to wn+1 = 0 on ∂G. It remains to

prove the regularity property vn+1 ∈ H3(G) if F ∈ H1(G). To do so we write (14) in the

form of a linear Stokes system:

−ν∆vn+1 + ∇pn+1 = K in G,

∇ · vn+1 = 0 in G,

vn+1 = 0 on ∂G,

where

K = F −
n

2
[vn+1 ◦ Xn − vn+1 ◦ X−n].

Then, using Cattabriga’s estimate [3], we obtain vn+1 ∈ H3(G) if only K ∈ H1(G). Thus

it suffices to show vn+1 ◦ Xn ∈ H1(G) (vn+1 ◦ X−n analogously). Because

‖vn+1 ◦ Xn‖ = ‖vn+1‖ < ∞

since vn+1 ∈ L2(G), it remains to estimate the norm ‖∇(vn+1 ◦ Xn)‖.

To do so, setting ε := 1
n , we first observe

‖∇(vn+1 ◦ Xn)‖ ≤ ‖∇xv
n+1(X(ε, ·))‖‖∇X(ε, ·)‖∞ = ‖∇vn+1‖ ‖∇Xn‖∞,

and then
d

dt
‖∇Xn‖∞ =

d

dt
‖∇X(t, ·)|t=ε‖∞ ≤ ‖∂t∇X(t, ·)|t=ε‖∞

= ‖∇(vn(X(t, ·)))|t=ε‖∞ ≤ ‖∇xv
n ◦ X(ε, ·)‖∞‖∇X(ε, ·)‖∞

= ‖∇vn‖∞‖∇Xn‖∞, (17)
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where ‖∇vn‖∞ ≤ c‖vn‖3 due to Sobolev’s imbedding theorem [1]. The estimate (17) is a

differential inequality for ‖∇X(t, ·)‖∞ with initial value ‖∇X(0, ·)‖∞ = ‖I‖∞ = 1. Thus,

using Gronwall’s Lemma, we find

‖∇Xn‖∞ ≤ exp(c ε ‖vn‖3) < ∞,

and the first assertion is proved. The second assertion, i.e. the energy equation (15),

follows from (16) with Φ = vn+1 using a density argument due to the orthogonality

relation (10). This proves Part b) of Theorem 1.3.

1.3c) The boundedness of the above constructed sequence (vn)n in V (G) obviously

follows from the energy equation (15) using

ν‖∇vn+1‖2 ≤ ‖F‖ ‖vn+1‖ ≤ cG ‖F‖ ‖∇vn+1‖

with the Poincaré constant cG.

1.3d) Because (vn)n is bounded in V (G), there is a convergent subsequence, in the

following again denoted by (vn)n, with limit v ∈ V (G) such that vn → v weakly as

n → ∞ with respect to the Dirichlet norm ‖∇ · ‖. Because the imbedding

V (G) ⊂ L2(G)

is compact [1] we can again extract a subsequence such that, in addition, vn → v strongly

in L2(G) as n → ∞, hence we have for all Φ ∈ D(G)

(∇(vn − v),∇Φ) → 0 as n → ∞, (18)

and

‖vn − v‖ → 0 as n → ∞. (19)

Thus v is a weak solution of (3), if (18) and (19) are sufficient to proceed to the limit

n → ∞ also in the convective term. Hence using the orthogonality relations (9), (11) it

remains to prove

n

2
(Ψi ◦ Xn − Ψi ◦ X−n, vn+1)

n→∞
−→ (v · ∇Ψi, v), (20)

where

{Ψi | i ∈ N} ⊂ D(G)

is a complete orthonormal system in V (G). To prove (20), in the following we suppress

the subscript i and consider the difference

Θn =
n

2
(Ψ ◦ Xn − Ψ ◦ X−n, vn+1) − (v · ∇Ψ, v).

Using the decomposition

Θn =
n

2
(Ψ ◦ Xn − Ψ ◦ X−n, vn+1 − v) +

(

n

2
[Ψ ◦ Xn − Ψ ◦ X−n] − v · ∇Ψ, v

)

=: αn + βn,

we find by Hölder’s inequality

αn ≤
n

2
‖Ψ ◦ Xn − Ψ ◦ X−n‖ ‖vn+1 − v‖,
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hence, using (19), αn → 0 as n → ∞ if and only if

δn :=
n

2
‖Ψ ◦ Xn − Ψ ◦ X−n‖ ≤ const. (21)

with some constant independent of n. To prove (21) we observe, setting ε := 1
n ,

n

2
[Ψ ◦ Xn − Ψ ◦ X−n] =

n

2
[Ψ ◦ Xn − Ψ + Ψ − Ψ ◦ X−n]

=
n

2

∫ ε

0

[∂tX(t, ·) · ∇xΨ(X(t, ·)) + ∂t(X(t − ε, ·) · ∇xΨ(X(t − ε, ·))] dt

=
n

2

∫ ε

0

[(vn · ∇xΨ) ◦ X(t, ·) + (vn · ∇xΨ) ◦ X(t − ε, ·)] dt,

hence
n

2
‖Ψ ◦ Xn − Ψ ◦ X−n‖ ≤ max

t∈ [−ε,ε]
‖(vn · ∇xΨ) ◦ X(t, ·)‖ = ‖vn · ∇Ψ‖

≤ ‖vn‖ ‖∇Ψ‖∞ ≤ CG,Ψ ‖∇vn‖ ≤ CG,F,ν,Ψ

independent of n due to the boundedness of (vn)n in V (G). This proves (21) and the

estimate for αn. To estimate βn we decompose

βn =

(

n

2
[Ψ ◦ Xn − Ψ] −

1

2
v · ∇Ψ, v

)

+

(

n

2
[Ψ − Ψ ◦ X−n] −

1

2
v · ∇Ψ, v

)

.

Thus it suffices to consider the first term (the second analogously) in the form

θn := (n [Ψ ◦ Xn − Ψ] − v · ∇Ψ, v).

Setting again ε := 1
n we obtain

θn =

(

n

∫ ε

0

(vn · ∇xΨ) ◦ X(t, ·) dt − v · ∇Ψ, v

)

= n

∫ ε

0

((vn · ∇xΨ) ◦ X(t, ·) − v · ∇Ψ, v) dt

= n

∫ ε

0

(([vn − v] · ∇xΨ) ◦ X(t, ·) + (v · ∇xΨ) ◦ X(t, ·) − v · ∇Ψ, v) dt

= n

∫ ε

0

(([vn − v] · ∇xΨ) ◦ X(t, ·), v) dt − n

∫ ε

0

(v · ∇Ψ, v − v ◦ X(−t, ·)) dt

=: ϕn − ξn.

Because of (19) and the measure preserving property of the mapping X(t, ·) we find

ϕn ≤ ‖vn − v‖ ‖∇Ψ‖∞ ‖v‖ → 0 as n → ∞.

Finally, using

v(x) − v(X(−t, x))

= v(X(0, x)) − v(X(−t, x)) =

∫ 0

−t

∂sX(s, x) · ∇xv(X(s, x)) ds

=

∫ 0

−t

vn(X(s, x) · ∇xv(X(s, x)) ds =

∫ 0

−t

(vn · ∇xv) ◦ (X(s, x)) ds,
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we conclude by Sobolev’s inequality (ε := 1
n )

ξn ≤ max
t∈ [−ε,ε]

|(v · ∇Ψ, v − v ◦ X(−t, ·))|

≤ max
t∈ [−ε,ε]

‖v‖0,6‖∇Ψ‖∞‖

∫ 0

−t

(vn · ∇xv) ◦ (X(s, ·)) ds‖0,6/5

≤ ‖v‖0,6‖∇Ψ‖∞

∫ 0

−ε

‖(vn · ∇xv) ◦ (X(s, ·)) ‖0,6/5 ds

≤ ε‖v‖0,6‖∇Ψ‖∞‖vn · ∇v‖0,6/5

≤ ε‖v‖0,6‖∇Ψ‖∞‖vn‖0,3‖∇v‖ (5/6 = 1/3 + 1/2)

≤ εCG‖∇Ψ‖∞‖∇vn‖ ‖∇v‖2

≤ ε CG,F,ν,Ψ → 0 as n → ∞.

Here for the last estimate we use ‖u‖s ≤ CG‖∇u‖, valid for all u ∈ H1(G) in bounded

domains G ⊂ R3 if 1 ≤ s ≤ 6, [1]. This proves the theorem.

2. The non-stationary Lagrangian approximation. Let v ∈ C(I, H3(G) ∩ V (G))

be given and consider for (s, xs) ∈ I × G the non-autonomous system

ẋ(t) = v(t, x(t)), x(s) = xs. (22)

Because v vanishes on I × ∂G and, as H3(G)-continuous function, certainly satisfies a

uniqueness condition for (22), the solution t → x(t) =: X(t, s, xs) exists in the whole

interval I and is uniquely determined there. Due to the uniqueness, the mappings

X(t, s) := X(t, s, ·) :

{

G → G

x → X(t, s, x)
(23)

satisfy X(t, s) ◦X(s, r) := X(t, s, X(s, r, ·)) = X(t, r) for all t, s, r ∈ I, and, in particular,

X(t, s) is a C1-diffeomorphism in G with inverse mapping (X(t, s))−1 = X(s, t). Since

v = 0 on I × ∂G implies X(t, s, G) = G, and since ∇ · v = 0 in I × G, we obtain from

Liouville’s differential equation

∂t det ∇X(t, s, x) = ∇X · v(t, X(t, s, x)) · det∇X(t, s, x) = 0,

hence the Jacobian does not depend on t:

det∇X(t, s, x) = det∇X(s, s, x) = det∇x = 1.

As in the steady case, this volume conserving property leads to

‖v(t, X(s, r, ·))‖o,p = ‖v(t, ·)‖o,p (1 ≤ p ≤ ∞), (24)

which holds for all t, s, r ∈ I.

In order to approximate the nonlinear convective term v · ∇v of (1) we use total

differences as in the stationary case:

Definition 2.1. Let t, s, s + h ∈ I (h > 0), x ∈ G and assume v ∈ C(I, H3(G)∩ V (G)).

Let X(·, ·) denote the mapping constructed from (22) and (23). Then we call the expres-

sions
1

h
{v(t, X(s + h, s, x)) − v(t, x)},

1

h
{v(t, x) − v(t, X(s, s + h, x))} (25)
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one-sided Lagrangian difference quotients and

1

2h
{v(t, X(s + h, s, x)) − v(t, X(s, s + h, x))} (26)

a central Lagrangian difference quotient, respectively.

For h → 0, every quotient in the above definition converges to v(s, x) · ∇v(t, x). For

instance, using (22), we obtain

v(t, X(s + h, s, x)) − v(t, x) = v(t, X(s + h, s, x)) − v(t, X(s, s, x))

=

∫ s+h

s

∂rX(r, s, x) · ∇v(t, X(r, s, x)) dr

=

∫ s+h

s

(v(r) · ∇v(t)) ◦ X(r, s, x) dr,

and a mean value theorem yields the assertion. But in contrast to (25), for the central

quotient (26) again an L2-orthogonality relation holds:

Lemma 2.2. Let v ∈ C(I, H3(G) ∩ V (G)) be given. Then for the central Lagrangian

quotient (26) we have
(

1

2h

[

v(t, X(s + h, s, ·)) − v(t, X(s, s + h, ·))
]

, v(t, ·)

)

= 0. (27)

Proof. Due to (X(q, r))−1 = X(r, q) for q, r ∈ I and the measure preserving property of

the mappings X(q, r) this follows from

(v(t, X) − v(t, X−1), v(t)) = (v(t, X), v(t)) − v(t, X−1 ◦ X), v(t, X))

= (v(t, X), v(t)) − (v(t), v(t, X)) = 0.

The relation (27) is an analogy for the relation (v(s)·∇v(t), v(t)) = 0, valid if v(s) ∈ V (G),

v(t) ∈ H1
0 (G), which can be used to show the global existence of weak Navier-Stokes

solutions. Thus it follows from the proof above that the central quotient leads to an

energy conserving approximation.

In order to avoid fixed point considerations (both the velocity and the corresponding

trajectories are not known), we additionally use a time delay and substitute the nonlinear

convective term v(t, x) · ∇v(t, x) by central differences

1

2h
{v(t, X(s + h, s, x)) − v(t, X(s, s + h, x))}

assuming s+h < t. This leads to an approximation, where the velocity and the trajectories

have to be determined from each other successively. Specifically we choose the following

scheme:

Assume T > 0 and 2 ≤ N ∈ N. Define h := T
N > 0 and let ti := ih (i = −2,−1, . . . , N)

be a grid on [−2h, T ]. Now for (t, x) ∈ [tk, tk+1] × G (k = 0, 1, . . . , N − 1) we replace

v(t, x) · ∇v(t, x) by

Zhv(t, x) := Zk
hv(t, x)

:=
t − tk
2h2

[v(t, X(tk, tk−1,x)) − v(t, X(tk−1, tk, x))]

+
tk+1 − t

2h2
[v(t, X(tk−1, tk−2, x)) − v(t, X(tk−2, tk−1, x))]. (28)
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Remark 2.3. (a) The determination of v(t) for t ∈ [t0, t1] requires a special initial

construction, which is carried out in the next section.

(b) In (28) the mappings X : G → G do not depend on t ∈ [tk, tk+1], which means a

simplification from the numerical point of view, since we only have to compute four map-

pings X(·, ·) in [tk, tk+1]. Nevertheless, the continuity on [0, T ] of the functions Zhv(·, x)

does still hold and ensures the global existence of a unique solution in the next section.

3. Global existence, uniqueness, compatibility. It is known ([9], [13], [17]) that the

compatibility condition, which has to be satisfied by any solution of the non-stationary

Navier-Stokes equations (1) in case of strong H3-continuity at t = 0, cannot be proved

in general, if the corresponding initial velocity v0 is given. But still, following a hint of

Solonnikov [25], we can construct an initial velocity v0 in such a way, that this condition

is fulfilled, and in the present case of scheme (28), moreover, this construction is unique.

To do so, for simplicity we assume conservative external forces (F = 0) and a kinematic

viscosity normalized to one (ν = 1) in the Navier-Stokes equations (1). Now replacing

the convective term by (28) and the initial condition v(0) = v0 by ∂tv(0) = a0, we obtain

at time t = 0 in G the stationary (projected) equations

P

(

a0 − ∆v0 +
1

2h

[

v0 ◦ X(−h,−2h) − v0 ◦ X(−2h,−h)

])

= 0 (29)

with the prescribed initial acceleration a0. The construction of the initial velocity is now

stated in

Lemma 3.1. Assume T > 0, u ∈ C([−T, 0], H3(G)∩V (G)) and a0 ∈ V (G). Let 2 ≤ N ∈

N and define h := T
N > 0. Then:

(a) Replacing v by u in (22), the mappings X(−h,−2h) and X(−2h,−h) in (29) are

uniquely defined by (23).

(b) There exists a uniquely determined solution v0 ∈ H3(G) ∩ V (G) of (29). The

function v0 satisfies the estimate

‖∇v0‖ ≤ c‖a0‖ (30)

with the Poincaré constant c.

(c) The function v given by

v(t) :=

{

u(t) for t ∈ [−T,−h],
1
h{(t + h)v0 − tu(−h)} for t ∈ [−h, 0],

(31)

belongs to C([−T, 0], H3(G)∩V (G)), and hence the mappings X(0,−h) and X(−h, 0) in

(28) are uniquely defined by (22), (23).

Proof. Because (a) and (c) are obvious, we only have to show (b). To prove uniqueness

let w0 := v1
0 − v2

0 be the difference of two solutions v1
0 , v2

0 . With X := X(−h,−2h) we

thus obtain

P

(

−∆w0 +
1

2h
[w0 ◦ X − w0 ◦ X−1]

)

= 0.

Because of (w0◦X−w0◦X
−1, w0) = 0 the uniqueness then follows by Poincaré’s inequality

‖w0‖ ≤ cG ‖∇w0‖ = 0.
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The existence of a solution v0 ∈ V (G) can be shown in the same way as for the nonlinear

stationary Navier-Stokes equations [16], and concerning the regularity statement v0 ∈

H3(G), due to

‖v0‖3 ≤ c (‖a0‖1 + ‖v0 ◦ X‖1 + ‖v0 ◦ X−1‖1) (32)

by Cattabriga’s estimate [3], it remains to prove ‖v0 ◦ Y ‖1 < ∞ for Y ∈ {X, X−1}. To

do so, we first observe, that ‖∇Y ‖∞ < ∞ because of the strong H3(G)-continuity of u.

Hence everything is shown due to

‖v0 ◦ Y ‖ = ‖v0‖, ‖∇(v0 ◦ Y )‖ ≤ ‖(∇Y v0) ◦ Y ‖ ‖∇Y ‖∞ = ‖∇v0‖ ‖∇Y ‖∞.

Theorem 3.2. Let T > 0, u ∈ C([−T, 0], H3(G) ∩ V (G)) and a0 ∈ V (G) be given. Let

2 ≤ N ∈ N and define h := T
N > 0. Assume that the initial construction is carried out as

in Lemma 3.1, and that, in particular, v0 ∈ H3(G) ∩ V (G) denotes the unique solution

of (29). Then there exist unique functions v ∈ Cl([0, T ], H3−2l(G) ∩ V (G)), l ∈ {0, 1},

and ∇p ∈ C([0, T ], H1(G)) satisfying

∂tv − ∆v + Zhv + ∇p = 0 in GT ,

∇ · v = 0 in GT , (33)

v = 0 on ∂G,

v = v0 for t = 0,

where Zhv is defined by (28). For t ∈ [0, T ] the function v satisfies the energy equation

‖v(t)‖2 + 2

∫ t

0

‖∇v(s)‖2 ds = ‖v0‖
2. (34)

Proof. Let us assume t ∈ [0, h]. Here the system (33) is linear, and as in [8] a Galerkin

method shows the existence of uniquely determined functions v0 ∈ C([0, h], H2(G) ∩

V (G)) with ∂tv
0 ∈ C([0, h], H(G)) and ∇p0 ∈ C([0, h], L2(G)) satisfying (33) and (34)

on [0, h]. Now applying a result of Temam [17] it follows that on [0, h] the functions v0,∇p0

possess all the continuity properties, which in Theorem 3.2 are asserted to hold on [0, T ].

This is due to v0 ∈ H3(G)∩ V (G) and the fact that, because of ∂tv(0) = a0 ∈ V (G), the

compatibility condition

P

(

−∆v0 +
1

2h

[

v0 ◦ X(−h,−2h) − v0 ◦ X(−2h,−h)
]

)

= 0 on ∂G

is forced to be satisfied. Hence using v := v0 in (22), the mappings X(h, 0) and X(0, h)

are uniquely defined by (23), and we are ready to continue the procedure on the next

subinterval.

To do so, set v1 := v0(h) ∈ H3(G)∩V (G), replace v(0) = v0 by v(h) = v1 in (33), and

consider the resulting equations for t ∈ [h, 2h], only. Here again, these equations are linear,

and the unique solution v1,∇p1 on [h, 2h] has the same degree of regularity as v0,∇p0

on [0, h]. To see this, we observe that P∆v1 = P∆v0(h) and Z1
hv1 = Z0

hv0(h) by (28),

hence ∂tv
1(h) = ∂tv

0(h) ∈ V (G), and therefore again the corresponding compatibility

condition

P

(

−∆v1 +
1

2h
{v1 ◦ X(0,−h) − v1 ◦ X(−h, 0)}

)

= 0 on ∂G

is satisfied. Thus, repeating this procedure on all subintervals, the theorem is proved.
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Remark 3.3. The global construction in the proof above works without any smallness

assumptions for the prescribed initial acceleration a0 and the function u in Lemma 3.1.

Due to appearing nonlinearities, a similar construction to satisfy higher order compati-

bility conditions (cf. Temam [17]) without any smallness assumptions does not seem to

be possible up to now.

4. Construction of weak solutions. In the general three dimensional case the only

solutions of the Navier-Stokes equations (1), whose existence for all time has been proved,

are solutions in a weak sense (Hopf [10]; compare also Temam [16]). Let us recall:

Definition 4.1. Assume T > 0 and v0 ∈ H(G). Then a function v ∈ L2(0, T, V (G)) ∩

L∞(0, T, H(G)) is called a weak solution of the Navier-Stokes equations (1) with F = 0,

ν = 1 and initial value v0, if v : [0, T ] → H(G) is weakly continuous, if ‖v(t) − v0‖ → 0

for t → 0, and if for all Φ ∈ C∞
0 ((0, T ) × G) with Φ(t) ∈ D (0 < t < T ) the identity

∫ T

0

[−(v(t), ∂tΦ(t)) + (∇v(t),∇Φ(t)) − (v(t) · ∇Φ(t), v(t))] dt = 0 (35)

is satisfied.

We show that such a solution can be constructed from the solution of the system (33),

if in Theorem 3.2 for N → ∞ (T remains fixed) the step size h := T
N > 0 goes to zero.

To express the dependence on N , in the following we write hN , vN , vN
0 instead of h, v, v0.

A main result is now stated in

Theorem 4.2. Let T > 0 be fixed, and let hN := T
N > 0 for 2 ≤ N ∈ N. As constructed in

Lemma 3.1 and Theorem 3.2, respectively, let vN
0 and vN denote the initial value and the

solution of the corresponding equations (33). Then there exists a convergent subsequence

(vNk

0 )k of (vN
0 )N with limit v0 and a convergent subsequence (vNk)k of (vN )N with limit

v such that v is a weak solution of the Navier-Stokes equations (1) with F = 0, ν = 1

and initial value v0. The function v satisfies for t ∈ [0, T ] the energy inequality

‖v(t)‖2 + 2

∫ t

0

‖∇v(s)‖2 ds ≤ ‖v0‖
2. (36)

Proof. (a) First let us derive some estimates independent of N . To do so, in the following

we denote by c, c1, c2, ... generic constants, which do not depend on n. By (34), Poincaré’s

inequality and (30) it follows for all t ∈ [0, T ]

‖vN (t)‖2 + 2

∫ t

0

‖∇vN (s)‖2 ds = ‖vN
0 ‖2 ≤ c ‖∇vN

0 ‖2 ≤ c1, (37)

and thus for all t ∈ [−T, 0] by (31)

‖vN (t)‖2 ≤ c ‖∇vN (t)‖2 ≤ c2. (38)

Both constants do not depend on N and t. Now let B := {ei | i ∈ N} ⊂ D denote a

complete orthonormal system in H(G). Next we show that

|(∂tv
N (t), ei)| ≤ ci (39)
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for every i ∈ N. Here the constant depends on the basis function ei, but not on N and

t ∈ [0, T ]. To do so, let e := ei and h := hN for brevity of notation. Because of

(∆vN (t), e) = (vN (t), ∆e), (ZhvN (t), e) = −((Zhe)(t), vN (t))

using (24) for p = 2, it follows by (37) that (39) is proved if

‖(Zhe)(t)‖ ≤ c (40)

with a constant independent of N and t ∈ [0, T ]. Here for t ∈ [tk, tk+1] (k = 0, 1, . . . , N−1)

the term (Zhe)(t) is defined by

(Zhe)(t) :=
t − tk
2h2

{e ◦ Xk − e ◦ X−1
k } +

tk+1 − t

2h2
{e ◦ Xk−1 − e ◦ X−1

k−1}

with

Xl := X(tl, tl−l), X−1
l := X(tl−1, tl) (41)

for l = −1, 0, . . . , N − 1. Now using (22), (23) to obtain

e ◦ Xk − e ◦ X−1
k = e ◦ Xk − e + e − e ◦ X−1

k

=

∫ tk

tk−1

{∂sX(s, tk−1) · ∇Xe ◦ X(s, tk−1)

+ ∂sX(s, tk) · ∇Xe ◦ X(s, tk)} ds

=

∫ tk

tk−1

{(vN (s) · ∇e) ◦ X(s, tk−1) + (vN (s) · ∇e) ◦ X(s, tk)} ds,

which by (24), (37) and (38) implies

‖e ◦ Xk − e ◦ X−1
k ‖ ≤ 2h max

s1,s2

‖(vN (s1) · ∇e) ◦ X(s1, s2)‖ ≤ hc,

and the estimate (40) is proved.

(b) Due to (37) and (39) it follows as in [10] that there exists (after possibly redefinition

on a set of measure zero) a weakly continuous function v : [0, T ] → H(G) with v ∈

L2(0, T, V (G))∩L∞(0, T, H(G)) and a subsequence (vNk)k of (vN )N such that for k → ∞

vNk(t) → v(t) weakly in H(G) (t ∈ [0, T ]), (42)

vNk → v weakly in L2(0, T, V (G)), (43)

vNk → v strongly in L2(0, T, H(G)). (44)

Moreover, by (37) and the compactness of the imbedding V (G) → H(G) there exists a

function v0 ∈ V (G) ⊂ H(G) with

vNk

0 → v0 strongly in H(G) (45)

as k → ∞. Hence by

‖v(t)‖2 + 2

∫ t

0

‖∇v(s)‖2 ds ≤ lim inf
k→∞

(

‖vNk(t)‖2 + 2

∫ t

0

‖∇vNk(s)‖2 ds

)

≤ lim
k→∞

‖vNk

0 − v0 + v0‖
2 = ‖v0‖

2

the function v satisfies (36) for t ∈ [0, T ], and thus v(t) → v0 strongly in H(G) as t → 0.

It remains to show (35), where we may restrict us to functions Φi = ϕei with a scalar
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function ϕ ∈ C∞
0 ((0, T )) and ei ∈ B. Now using (43) and (44) the theorem is proved if

lim
k→∞

∫ T

0

((ZhNk
ei)(t), vNk(t)) dt =

∫ T

0

(v(t) · ∇ei, v(t)) dt (46)

holds for every i ∈ N.

(c) Without loss of generality let us assume the convergence of the whole sequence in

the corresponding norms above and write

lim
N→∞

∫ T

0

{((Zhe)(t), vN (t)) − (v(t) · ∇e, v(t))} dt = 0 (47)

instead of (46), for simplicity. For the integrand IN (t) in (47) we have

IN (t) = ((Zhe)(t), vN (t) − v(t)) + ((Zhe)(t) − v(t) · ∇e, v(t)) =: PN
1 (t) + PN

2 (t),

where
∫ T

0

PN
1 (t) dt → 0 as N → ∞

because of (40) and (44). Due to (41) for the second term we obtain

PN
2 (t) =

t − tk
2h

(

1

h
{e ◦ Xk − e} − v(t) · ∇e, v(t)

)

+
t − tk

2h

(

1

h
{e − e ◦ X−1

k } − v(t) · ∇e, v(t)

)

+
tk+1 − t

2h

(

1

h
{e ◦ Xk−1 − e} − v(t) · ∇e, v(t)

)

+
tk+1 − t

2h

(

1

h
{e − e ◦ X−1

k−1} − v(t) · ∇e, v(t)

)

=:

4
∑

j=1

QN
j (t).

Because all terms QN
j can be treated in the same way, we only consider QN

1 . By (22)

and (23), using X := X(s, tk−1) for abbreviation, we find

QN
1 (t) =

t − tk
2h

(

1

h

∫ tk

tk−1

∂sX · ∇Xe ◦ X ds − v(t) · ∇e, v(t)

)

=
t − tk
2h2

∫ tk

tk−1

((vN (s) · ∇Xe) ◦ X − v(t) · ∇e, v(t)) ds

=
t − tk
2h2

∫ tk

tk−1

((vN (s) − vN (t)) · ∇e, v(t) ◦ X−1) ds

+
t − tk
2h2

∫ tk

tk−1

((vN (t) − v(t)) · ∇e, v(t) ◦ X−1) ds

−
t − tk
2h2

∫ tk

tk−1

(v(t) · ∇e, v(t) − v(t) ◦ X−1) ds

=:

3
∑

j=1

RN
j (t).
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Thus (47) holds if

lim
N→∞

∣

∣

∣

∣

∫ T

0

RN
j (t) dt

∣

∣

∣

∣

= 0 (j = 1, 2, 3) (48)

is proved.

(d) In the following estimates, all constants c, c1, c2, ... are independent of N . Due to

(36) we have
∣

∣

∣

∣

∫ T

0

RN
1 (t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

N−1
∑

k=0

∫ tk+1

tk

RN
1 (t) dt

∣

∣

∣

∣

≤
1

2h

N−1
∑

k=0

∫ tk+1

tk

∫ tk

tk−1

‖vN (s) − vN (t)‖ ‖∇e‖∞ ‖v(t)‖ ds dt

≤
c1

h

N−1
∑

k=0

∫ tk+1

tk

∫ tk

tk−1

‖vN (s) − vN (t)‖ ds dt.

Since s ≤ 0 for k = 0, the first summand will be treated separately, to obtain

c1

h

∫ h

0

∫ 0

−h

‖vN (s) − vN (t)‖ ds dt ≤
c1

h

∫ h

0

∫ 0

−h

{‖vN (s)‖ + ‖vN (t)‖} ds dt ≤
c

N

due to (37) and (38). Using the Friedrichs inequality it follows that for every δ > 0 there

exists a number Mδ ∈ N with

‖vN (s) − vN (t)‖ ≤

Mδ
∑

j=1

|(vN (s) − vN (t), ej)| + δ{‖∇vN (s)‖ + ‖∇vN (t)‖}

=: gN
1 (s, t) + δ gN

2 (s, t).

Since s, t ≥ 0 we have by (39) |(vN (s) − vN (t), ej)| ≤ cj |s − t| ≤ 2 cj h, and thus

c1

h

N−1
∑

k=1

∫ tk+1

tk

∫ tk

tk−1

gN
1 (s, t) ds dt ≤

c1

h
Nh2

(

Mδ
∑

j=1

cj

)

2h ≤
cδ

N
.

On the other hand we obtain

c1

h

N−1
∑

k=1

∫ tk+1

tk

∫ tk

tk−1

gN
2 (s, t) ds dt ≤ c1

N−1
∑

k=1

{
∫ tk+1

tk

‖∇vN (t)‖ dt +

∫ tk

tk−1

‖∇vN (s)‖ ds

}

≤ 2 c1

∫ T

0

‖∇vN (t)‖ dt ≤ c2

(
∫ T

0

‖∇vN (t)‖2 dt

)
1
2

≤ c3

by (37), and, choosing δ sufficiently small, (48) for j = 1 is proved. The case j = 2 follows

by (36) and (44):
∣

∣

∣

∣

∫ T

0

RN
2 (t) dt

∣

∣

∣

∣

≤
1

2

∫ T

0

‖vN (t) − v(t)‖ ‖∇e‖∞‖v(t)‖d ≤ c

(
∫ T

0

‖vN (t) − v(t)‖2 dt

)
1
2

.

To prove (48) for j = 3 let s ∈ [tk−1, tk]. Due to

v(t)−v(t)◦X(tk−1, s) = v(t)◦X(s, s)−v(t)◦X(tk−1, s) =

∫ s

tk−1

(vN (r)·∇v(t))◦X(r, s) dr
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we obtain by Hölder’s inequality and well known [1] Sobolev imbeddings

|RN
3 (t)| ≤

1

2h

∫ tk

tk−1

∫ s

tk−1

|((v(t) · ∇e, (vN (r) · ∇v(t)) ◦ X(r, s))| dr ds

≤
1

2h

∫ s

tk−1

‖v(t)‖0,6 ‖∇e‖∞‖vN (r)‖0,3‖∇v(t)‖ dr ds

≤ c1 ‖∇v(t)‖2

∫ tk

tk−1

‖∇vN (r)‖ dr ≤ c1 ‖∇v(t)‖2 h
1
2

(
∫ tk

tk−1

‖∇vN (r)‖2 dr

)
1
2

≤ c1 ‖∇v(t)‖2 h
1
2

(
∫ +T

−T

‖∇vN (r)‖2 dr

)
1
2

≤ c2 N− 1
2 ‖∇v(t)‖2

for almost all t ∈ [0, T ]. Here the last estimate follows from (37) and (38). Hence
∣

∣

∣

∣

∫ T

0

RN
3 (t) dt

∣

∣

∣

∣

≤ c2 N− 1
2

∫ T

0

‖∇v(t)‖2 dt ≤ c3N
− 1

2

by (36), and the theorem is proved.

Choosing u = 0 in Lemma 3.1, the system (29) reduces to the Stokes equations.

Because its unique solution v0 does not depend on N , in Theorem 4.2 we have vN
0 = v0

for all N ∈ N (N ≥ 2). Let us conclude with a final consideration concerning strong

solutions of (1):

Remark 4.3. In Theorem 4.2 for all 2 ≤ N ∈ N the same function u is used for the

initial construction in Lemma 3.1. The statement of Theorem 4.2 remains valid if the

function u depends on N as follows: Let u := uN be given for some N ≥ 2. Then define

vN by (31) and choose uN+1 := vN in the next step. Now, under this modification, let

v0 be any accumulation point of the sequence (vN
0 )N mentioned in Theorem 4.2, and let

v be the corresponding unique strong solution of (1), existing on a (possibly small) time

interval [0, T ∗], 0 < T ∗ ≤ T ([6], [8], [15]). Then it can be shown by the same methods

as in the proof above that v belongs to C1([0, T ∗], Hm−2l(G) ∩ V (G)), l ∈ {0, 1}.
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