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NON-ABELIAN EXTENSIONS OF MINIMAL ROTATIONS

BY

ULRICH HABÖCK (Wien) and VYACHESLAV KULAGIN (Kharkov)

Abstract. We consider continuous extensions of minimal rotations on a locally con-
nected compact group X by cocycles taking values in locally compact Lie groups and prove
regularity (i.e. the existence of orbit closures which project onto the whole basis X) in
certain special situations beyond the nilpotent case. We further discuss an open question
on cocycles acting on homogeneous spaces which seems to be the missing key for a general
regularity theorem.

1. Introduction. Let T be a minimal homeomorphism of a compact
metric space X, and G be a locally compact metrisable group. Any contin-
uous function f : X → G defines an extension Tf of T via the equation

Tnf (x, g) = (Tnx, f(n, x) · g),

for every x ∈ X, g ∈ G and n ∈ Z, where f(n, x) is the cocycle generated
by f , i.e.

f(n, x) =


f(Tn−1x) · · · f(Tx) · f(x) if n ≥ 1,
e if n = 0,
f(−n, Tnx)−1 if n < 0,

with e being the identity in G. In this paper we investigate the problem of
regularity of such an extension, i.e. whether there exist orbit closures which
project onto the whole basis X (such orbit closures are called surjective). It
is known that for arbitrary base transformations T such orbit closures may
not exist (see [LM02]; this corresponds to the situation of type III0 cocycles
in the classical abelian case). However, if T is a minimal rotation on a locally
connected group X then every topologically recurrent cocycle with values
in a nilpotent locally compact group G does admit surjective orbit closures,
and furthermore the entire product space X ×G (or in geometric terminol-
ogy the trivial G-bundle) decomposes into such orbit closures (which are
closed subbundles of X × G), see [GH05]. The essential idea involved goes
back to G. Atkinson [At78] who proved regularity for the case G = Rd, and
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was later generalised by M. Lemańczyk and M. Mentzen [LM02, Me03] to
general locally compact abelian groups. Before the present paper no regu-
larity results beyond the nilpotent case have been known, and our aim here
is to develop methods which work in more general situations.

The difficulty in treating non-abelian (non-compact) extensions is that
the local essential ranges {Ex}x∈X introduced in [GH05] alter along the
orbits by conjugation:

ETnx(f) = f(n, x) · Ex(f) · f(n, x)−1,

for all x ∈ X and n ∈ Z. Furthermore, unlike the abelian case, these essential
ranges might not be subgroups of G for points outside a dense Gδ-set in
X. In this paper we show that understanding the behaviour of the identity
component E0

x of Ex under conjugation of the cocycle is crucial to regularity:
if x is any point in X and if the mapping

HTnx = f(n, x) · E0
x(f) · f(n, x)−1,

which is only defined along the orbit of x, extends continuously to the en-
tire space X, then the transformation Tf admits such a decomposition into
surjective orbit closures. On the one hand, this improves the key tool used
in [GH05], and secondly it directs our attention to the behaviour of these
identity components under conjugation. This approach recalls the conjugacy
problem of stabilizers for general Borel actions in S. G. Dani’s paper [Da02],
and in line with [Da02] we show that the identity components of Ex are
conjugate on a dense Gδ-set in X. In some special situations we are able
to prove that the identity components E0

x depend continuously on x, which
implies regularity of the cocycle. However, in general this issue is still open
and is closely related with the following open question:

Let Tf be a continuous G-extension of a minimal group rotation T , and
H be any closed subgroup of G. Suppose C ⊆ X × G/H is a compact Tf -
orbit closure which projects injectively onto a dense Gδ-subset of X (which
means, in particular, that (C, Tf ) is an almost one-to-one extension of the
rotation (1)). Is it true that the projection π : C → X is then one-to-one on
the whole set C?

This question was pointed out before in [GH05], but as its answer is
positive for nilpotent groups G we did not realise its importance at that
time.

The paper is organised as follows: first of all, we review basic facts on
cocycles taken from [GH05]. In Section 3 we prove the generalised Atkinson
Lemma for general locally compact groups G and draw some simple conclu-
sions. In Section 4 we restrict our considerations to Lie groups, and adapt

(1) For the definition see [Gl].
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the results from [Da02] to our setting in order to investigate the behaviour
of the identity components E0

x under conjugation by the cocycle; we fur-
ther discuss the importance of the above mentioned open question. Finally,
in the last section we show the existence of surjective orbit closures in the
situation of semidirect products G = Rd o R where the action of R on Rd

has no eigenvalue equal to one. The proof presented there is alternative to
the approach in Section 4. However, it does not give a clearer picture of the
general case; it is rather the simple group structure that allows us to reduce
to situations that are easily understood.

It is worth noting that very likely all these results can be extended to a
larger class of base transformations as is done in [Gr07] and [Gr08], but we
will not focus on that issue in this paper.

2. Basic facts and notions. Let T be a minimal homeomorphism of a
compact metric space X, and G a locally compact second countable (l.c.s.c.)
group. A cocycle f(n, x) is said to be (topologically) recurrent if for every
open neighbourhood U of the identity in G and every open set U ⊆ X there
is an integer n 6= 0 so that

T−nU ∩ U ∩ {x : f(n, x) ∈ U} 6= ∅.
This property is equivalent to Tf being topologically conservative (or re-
gionally recurrent in the terminology of [GoHe]), i.e. for every open set
O ⊆ X ×G there is an integer n 6= 0 so that Tnf (O) ∩ O 6= ∅.

The local essential range Ex(f) of the cocycle f , as defined in [GH05], is
the set of g ∈ G such that for every open neighbourhood U of g and every
open neighbourhood U of x there exists an integer n 6= 0 with

T−nU ∩ U ∩ {x : f(n, x) ∈ U} 6= ∅.
Recall that Ex(f) is a closed subset of G and it is symmetric, i.e. E−1

x (f) =
Ex(f). For every x in X the set

(1) Px(f) = {g ∈ G : (x, g) ∈ TZ
f (x, e)}

is a closed subsemigroup of G. We will simply write Ex and Px whenever
it is clear to which cocycle we refer. It is shown in [GH05, Proposition 1.7]
that the set

(2) D(f) = {x ∈ X : Ex = Px}
contains a dense Gδ-set, thus it is non-meagre in X. Thus for every x in
D(f) the set Ex is a closed symmetric subsemigroup and hence a subgroup
of G.

Recall that the essential ranges as well as the subsemigroups Px satisfy
the equation

(3) ETnx = f(n, x) · Ex · f(n, x)−1
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for all x ∈ X and n ∈ Z, thus they are conjugate along orbits of T [GH05,
Lemma 1.3]. The map x 7→ Ex is semicontinuous in the sense that if xn → x
and gn are elements of Exn which converge to g, then g ∈ Ex.

If H is a closed subgroup of G, then the action of Tf (or its corresponding
cocycle) on X ×G/H is defined by setting

Tnf (x, gH) = (Tnx, f(n, x) · gH).

Any Tf -orbit closure in X×G/H is called surjective if it projects onto X. We
shall make frequent use of the following lemma which is similar to [GH05,
Lemma 2.3].

Lemma 2.1. Let C ⊆ X × G/H be a closed Tf -invariant set which
projects onto a non-meagre set in X. Then there exists a compact set K ⊆
G/H such that (X ×K) ∩ C projects onto the whole set X.

Proof. Choose a sequence {Kn}n≥1 of compact subsets of G/H such that
G/H =

⋃
nKn. Then the sets K ′n = πX((X × Kn) ∩ C), where πX is the

projection onto X, are compact subsets of X and their union
⋃
n≥1K

′
n is a

non-meagre set. By Baire’s category theorem there is an m ≥ 1 such that
K ′m contains a non-empty open set U of X. Since T is minimal and X is
compact, X =

⋃N
n=1 T

−n(U) for some N ≥ 1, and
N⋃
n=1

T−nf ((X ×Km) ∩ C) =
N⋃
n=1

T−nf (X ×Km) ∩ C

is a compact subset of C that projects onto X.

A cocycle f is called regular if its skew product transformation Tf admits
surjective orbit closures in X × G. By [GH05, Theorem 2.1] any surjective
orbit closure C is of the following form: If we set

H = {g ∈ G : C · g−1 = C},
then C/H is compact regarded as a Tf -invariant subset of X × G/H, and
the restriction of Tf to C/H is minimal. Moreover, for every x in D(f) the
vertical section of C consists of a single coset of H only: there exists gx ∈ G
such that

Cx = {g ∈ G : (x, g) ∈ C} = gx ·H.
Thus the system (C/H, Tf ) is an almost one-to-one extension of (X,T ). It
is further shown that the map

γ : D(f)→ G/H, x 7→ Cx = gx ·H.
is continuous and Ex = gx·H ·g−1

x for all x ∈ D(f) (see [GH05, Theorem 2.2]).

Definition 2.2. We call an orbit closure C strongly regular if it is sur-
jective and every vertical section Cx as above consists of a single left coset
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of H. A strongly regular cocycle is a cocycle f whose extension Tf admits
strongly regular orbit closures.

Remark 2.3. It is shown in [GH05, Theorem 3.1] that every regular
cocycle with values in a nilpotent group is strongly regular, but for general
groups this issue is still open even for a rotation as a base transformation T
(cf. the open question mentioned in the introduction).

In other words, a strongly regular orbit closure is a subbundle of X ×G.
Note that the entire product space (the trivial bundle) X ×G then decom-
poses into such Tf -invariant subbundles, which are permuted via the right
action of G on X ×G defined by Rh(x, g) = (x, g · h−1). For such orbit clo-
sures the above statements on γ and Ex remain true with D(f) replaced by
X: for every x in X the vertical section Cx = {g ∈ G : (x, g) ∈ C} consists
of a single left coset of H = {g : Rg(C) = C}, and the mapping

γ : X → G/H, x 7→ Cx = gx ·H,

is continuous on the whole set X. It is easy to see that then Ex = gx ·H ·g−1
x

for every x in X (cf. the proof of [GH05, Theorem 3.2]). Thus all essential
ranges are subgroups conjugate to H, and if we identify HG, the conjugacy
class of H, with G/N(H), where N(H) is the normaliser of H, then

ϕ : X → HG, x 7→ Ex = gx ·H · g−1
x ,

is continuous.
Finally, it should be noted that if f is continuously cohomologous to a

topological transitive cocycle taking values in a closed subgroupH ofG, then
f is strongly regular, but not vice versa (if one does not allow discontinuities
for the boundary function). More generally, if b : X → G is continuous and
the cocycle

f̃(n, x) = b(Tnx) · f(n, x) · b(x)−1

is strongly regular, then f is also strongly regular.

3. The generalised Atkinson Lemma. Let S(G) be the set of all
closed subsets of G equipped with the Fell topology (= projective limit of the
Hausdorff topology on every compactum). A basis for this topology is given
by sets of the form {S ∈ S(G) : S∩K 6= ∅, S∩Oi 6= ∅ for i = 1, . . . , k}, where
K is any compact subset of G and every Oi is open. It is well known that
S(G) is compact and metrisable, and the space C(G) of all closed subgroups
of G is a closed subspace (see [Fe62]). A consistent selection of subgroups
{Hx}x∈X is a continuous mapping from X into C(G) such that Hx ⊆ Ex for
every x in X, and which satisfies the consistency condition

(4) HTnx = f(n, x) ·Hx · f(n, x)−1
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for every x and n ∈ Z. In contrast to [GH05] we do not assume that all Hx

belong to the same conjugacy class and assume continuity only with respect
to the Fell topology.

We will need the following auxiliary lemma on consistent selections:

Lemma 3.1. Let {Hx} be a consistent selection as defined above, and let
U be any relatively compact open set in G. Then the set MU = {x ∈ X :
Ex ∩ UHx \ UHx = ∅} is open.

Proof. We show that the complement of MU is closed. Indeed, suppose
xk is a sequence of points converging to x such that Exk

∩UHxk
\UHxk

6= ∅.
For any choice of relatively compact neighbourhoods V and W such that
V ⊆ U and U ⊆ W one can find points zk and Tnkzk both converging to x
such that

gk = f(nk, zk) ∈WHzk
\ V Hzk

.

Since Hx depends continuously (with respect to the Fell topology) on x we
may assume without loss of generality that the points zk and Tnkzk are from
our dense non-meagre set D(f), and therefore—after modifying the cocycle
values along the essential ranges—the gk stay in some fixed compactum.
Thus the gk converge along some subsequence to some element g which
must be contained in the set Ex∩WHx \V Hx. As V and W were arbitrary,
this implies that Ex ∩ UHx \ UHx 6= ∅.

We omit the proof of the following lemma which is verbatim the one of
Lemma 4.3 in [GH05]. That proof is in the same manner as the proof of the
previous lemma.

Lemma 3.2. Let U ⊆ G be an open subset and C ⊆ G a compact subset.
Then for any fixed integer n the sets {y ∈ X : f(n, y) ·Hy ∩ UHy 6= ∅} and
{y ∈ X : f(n, y) ·Hy ∩ CHy = ∅} are both open.

The following proposition which generalises a lemma of G. Atkinson
[At78] will be the key to proving regularity of cocycles. It is an improvement
of [GH05, Proposition 4.4], as we only need “cutting neighbourhoods” at a
single point in X; moreover, we make no special assumptions on the group G.

Proposition 3.3. Suppose that G is a l.c.s.c. group and f : X → G is
a recurrent cocycle over a minimal rotation T on a locally connected compact
group X, and let {Hx}x∈X be a consistent selection of subgroups. If there
exists a point x0 for which the group Hx0 has a cutting neighbourhood in Ex0 ,
i.e. a relatively compact open neighbourhood U of the identity such that

Ex0 ∩ UHx0 \ UHx0 = ∅,
then the Tf -orbit closure of any point (x,Hx) is a compact subset of
X ×G/Hx.
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Proof. First of all, note that it is sufficient to prove the existence of a
single point x such that the Tf -orbit closure of (x,Hx) is compact, since
this implies compactness of all other Tf -orbit closures. Indeed, if C is such
a compact orbit closure then it projects onto the whole basis X. Thus for
every y in X there exists a g ∈ G such that (y, gHx) ∈ C and therefore
we can find a sequence {nk} and elements hk ∈ Hx and g ∈ G such that
Tnkx → y and f(nk, x) · hk → g. By continuity of the consistent selection
we see that

Hy = lim
k→∞

f(nk, x) ·Hx · f(nk, x)−1 = g ·Hx · g−1.

This shows that the compact Tf -orbit of (y, gHx) in X × G/Hx translates
under the right translation by g−1 to the Tf -orbit of (y,Hy) in X ×G/Hy.
As a right translation is a homeomorphism, the orbit closure of (y,Hy) is
also compact.

According to Lemma 3.1 the setMU = {x ∈ X : Ex∩UHx\UHx = ∅} is
open for every relatively compact open neighbourhood U , and therefore the
T -invariant non-empty set Mcut =

⋃
UMU , where the union is taken over

all relatively compact open neighbourhoods of the identity, is also open. This
yields Mcut = X and thus for every point y in X we can find a relatively
compact cutting neighbourhood.

Let Z+ and Z− denote the set of all integers > 0 and < 0, respectively.
By recurrence both sets

R± = {x ∈ X : (x, e) ∈ TZ±
f (x, e)}

are comeagre subsets of X, and so is the intersection R+ ∩ R− ∩ D(f).
Choose any point x from this non-empty intersection and set

C = TZ
f (x,Hx).

Let (y, gHx) be any point belonging to the orbit closure C. By our choice
of x there exists an increasing sequence of integers nk > 0 such that (y, g) =
limk→∞ T

nk
f (x, e). As above, we conclude that Hy = g ·Hx · g−1. Let U be a

relatively compact cutting neighbourhood for Hy in Ey. Since MU is open
we can choose a connected open neighbourhood U of y such that

f(n, z) ∈ UHz ∪ (G \ UHz) whenever z, Tnz ∈ U .

By convergence of Tnk
f (x, e) to (y, g) we can find an integer k0 such that

z = T k0x ∈ U and
f(nk0 − nk, z) ∈ UHz

for all k ≥ k0. As the neighbourhood U is connected it follows from Lem-
ma 3.2 that the same is true with y replaced by z. Therefore all the cocycle
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values satisfy

f(−nk, y) · g = f(−nk0 , T−(nk−nk0
)y) · f(nk0 − nk, y) · g

∈ f(−nk0 , T−(nk−nk0
)y) · U ·Hy · g︸ ︷︷ ︸

=g·Hx

,

and therefore stay within some compact subset of G/Hx as k → ∞. To-
gether with the fact that T−nky converges back to x this implies that the
T−nk
f (y, gHx) converge along some subsequence to (x, g′Hx) with g′ in Px. In

other words, (x, g′Hx) is in the negative orbit closure of (y, gHx). In the same
manner one sees that also (x,Hx) is in the negative orbit closure of (x, g′Hx)
and therefore it is contained in the negative orbit closure of (y, gHx).

By the same argument one shows that (x,Hx) is also contained in the
positive orbit closure of (y, gHx). Together with recurrence, we conclude
from [GoHe, Theorem 7.05] that Tf restricted to C is almost periodic and
therefore C is compact.

Proposition 3.4. Under the assumptions of Proposition 3.3, the Tf -
orbit closure C of any point (x, e), with x from the set D(f), is strongly
regular. Moreover , Hx is co-compact and normal in Ex.

Proof. Let x be from the set D(f). Recall that Ex = Px is then a closed
subgroup of G which contains Hx. According to Proposition 3.3 the Tf -
orbit closure of (x,Hx) is compact. In particular, Ex/Hx is compact. The
projection of the Tf -orbit is also compact and T -invariant, thus it equals X.
As Hx ⊆ Px, the same holds for the Tf -orbit closure C of (x, e).

Let (y, g0) and (y, g1) belong to C. As in the proof of Proposition 3.3 we
deduce that

Hy = gi ·Hx · g−1
i ⊆ gi · Ex · g

−1
i ⊆ Ey

for both i = 0, 1. On the other hand, by compactness we can find a sequence
{nk}k≥1 and g in G such that Tnky → x and f(nk, y)·Hy → g ·Hy. Again, by
the same reasoning as before (the f(nk, y) converge to g modulo gi ·Ex ·g−1

i ),

g · gi · Ex · g−1
i · g

−1 ⊆ Ex
for both i = 0, 1. Since Ex is a group, g−1

1 · g0 belongs to the normaliser
N(Ex) of Ex. The only thing left to prove is that every slice Cy consists
of a single left coset of Ex, i.e. g−1

1 · g0 ∈ Ex. This is done by a simple
“cohomology” argument. Since Cx = Ex both the sequences f(nk, y) · gi ·Ex
above converge to Ex. Let us define a “boundary function” on our countable
set {y} ∪ {Tnky}k by setting b0 = g0 and choosing

bk ∈ f(nk, y) · g0 ·N(Ex)

such that bk → e. Then

ck = b−1
k · f(nk, y) · b0 ∈ N(Ex)



EXTENSIONS OF MINIMAL ROTATIONS 9

and both the sequences ck · (b−1
0 · g0) · Ex and ck · (g−1

0 · g1) · Ex are con-
tained in N(Ex) and converge to Ex. As Ex is normal in N(Ex) there exists
a left-invariant metric for the topology in N(Ex)/Ex and it follows that
(b−1

0 · g0) · Ex = (b−1
0 · g1) · Ex. Thus g0 · Ex = g1 · Ex.

Corollary 3.5. Suppose that T is a minimal rotation on a locally con-
nected compact group X, and f is a recurrent cocycle with values in a l.c.s.c.
group G. If there exists a point x0 ∈ X for which the identity component
of Ex0 is a normal subgroup of G, then f is strongly regular and Ex/E

0
x is

compact.

Proof. We apply Proposition 3.4 to the consistent selection defined by
setting Hy = E0

x for all y in X.

Corollary 3.6. Under the same assumption of Corollary 3.5, if there
exists a point x0 for which Ex0 = {e} then f is a coboundary.

Proof. By the previous corollary, the Tf -orbit closure C of any point
(x, e) with x ∈ D(f) is regular and compact. Let us set H = Ex. By reg-
ularity every vertical section Cy equals gy ·H for some gy in G, and more-
over all essential ranges are conjugate to H (see Section 2). Since Ex0 is
trivial so must be H, and therefore the set C projects injectively onto X.
This implies that C is the graph of a continuous function b : X → G and
b(Ty) = f(y)·b(y) for every y in X. Thus f(y) = b(Ty)·b(y)−1 is a cobound-
ary.

4. Regularity in general Lie groups. Throughout this section we will
assume that G is a connected Lie group, and G is its Lie algebra. As usual,
the group Aut(G) of all bicontinuous automorphisms of G is considered as
a (closed) subgroup of GL(G). We denote by Ad(G) the image of G under
the adjoint representation. Since G is connected, Ad(G) is contained in
Aut(G)0, the identity component of the automorphism group, which is an
almost algebraic subgroup of GL(G) (i.e. of finite index in some algebraic
subgroup of GL(G); this is a theorem of D. Wigner, cf. [Da92]).

For any cocycle f with values in G we define its adjoint cocycle by setting

Ad(f)(n, x) = Ad(f(n, x)),

which is a cocycle taking values in Ad(G) ⊆ GL(G). It is clear that if f is
continuous and recurrent so is Ad(f).

The following proposition describes the behaviour of the identity com-
ponent of an essential range under conjugation by the cocycle f . Its proof
essentially uses the local closedness of the orbit of a connected subgroup H
under the action of an almost algebraic group of automorphisms. From this
point of view it does not contain much new compared to [Da02].
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Proposition 4.1. Suppose T is a minimal homeomorphism of a com-
pact metric space X and f is a continuous cocycle with values in a connected
Lie group G. Choose any almost algebraic and closed subgroup A in Aut(G)0

which contains Ad(G). If x is any point from D(f) and IA(H) = {α ∈ A :
α(H) = H} is the stabiliser of the identity component H = E0

x in A, then
the orbit closure

C∗ = TZ
Ad(f)(x, IA(H))

taken in X ×A/IA(H) has the following properties:

(i) it is compact and the action of TAd(f) restricted to C∗ is minimal ,
(ii) it projects onto X, and injectively onto the set D(f).

In other words, the system (C∗, TAd(f)) is an almost one-to-one extension
of (X,T ).

Proof. Let H(G) be the Grassmannian manifold of all subalgebras of our
Lie algebra G. Let x be as above, and Hx be the subalgebra that corresponds
to the identity component Hx = E0

x. We choose open neighbourhoods U of 0
in G and U of e in G such that the exponential mapping is a diffeomorphism
between U and U . If {nk}k≥1 is any sequence of integers such that Tnkx→
y ∈ D(f) then by compactness of H(G) we have convergence (along some
subsequence) of the conjugate subalgebras

Hk = Ad(f(nk, x))Hx → H′,

where H′ is some subalgebra of the same dimension as H. As exp(Hk ∩ U)
⊆ E0

Tnkx ∩ U we conclude from semicontinuity of the essential ranges that
exp(H′ ∩ U) ⊆ Ey ∩ U , and as Ey is a closed group, E0

y contains the closed
subgroup generated by exp(H′). Thus if we denote by Hy the algebra cor-
responding to Hy = E0

y , then H′ ⊆ Hy. By the same reasoning, if {mk}k≥1

is such that Tmky → x we may again assume convergence (along some
subsequence) of

Ad(f(mk, y))Hy → H′′,

where H′′ is a subalgebra of the same dimension as Hy, and that E0
x contains

the closed subgroup generated by exp(H′′). Therefore H′′ ⊆ Hx and since H′′

has at least the dimension of Hx we conclude that H′′ = Hx and also H′ = Hy.
In other words, Hy is in the closure of the A-orbit of Hx and vice versa. As A
is almost algebraic its orbits onH(G) are locally closed [Zi, Corollary 3.2.12],
which is the same as saying that the factor map

A/IA(Hx)→ H(G), α · IA(Hx) 7→ α(Hx),

with IA(Hx) = {α ∈ A : α(Hx) = Hx}, is a homeomorphism between
A/IA(Hx) and the orbit HA

x = {α(Hx) : α ∈ A} (cf. [Zi, Lemma 2.1.15]).
We therefore deduce that Hy must belong to HA

x , as otherwise we obtain
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a contradiction to local closedness of the A-orbits. Hence Hy = αy(Hx) for
some αy which is uniquely determined modulo IA(Hx), and

Ad(f(nk, x)) · IA(Hx)→ αy · IA(Hx)

along this subsequence of {nk}k≥1. This means that y is contained in the πX -
projection of the orbit closure C∗ = TZ

Ad(f)(x, IA(Hx)). Since y in D(f) was
chosen arbitrarily, the orbit closure C∗ projects onto D(f). By Lemma 2.1
we can find a compact subset K in G such that

(X ×K · IA(Hx)) ∩ C∗

projects onto the whole set X. Since for every y ∈ D(f) the vertical section
C∗y = {αy · IA(Hx)} is contained in the compact set K · IA(Hx) we conclude
that the whole closure C∗ is contained in the compact set X ×K · IA(Hx).

Minimality of C∗ is clear since T is minimal and the vertical section C∗x
consists of a single point only.

Remark 4.2. It follows immediately from the above proof that on the
comeagre set D(f) all identity components E0

y are A-conjugate, i.e. for every
x, y ∈ D(f), E0

y is the A-image of E0
x.

The connection of Proposition 4.1 with a general regularity theorem
as mentioned in the introduction is as follows: If we could prove that the
almost one-to-one extension C∗ in Proposition 4.1 projects injectively onto
the whole set X, then the mapping

y 7→ C∗y = αy · IA(H)

is continuous and therefore

Hy = αy(H)

defines a consistent selection {Hy}y∈X . Thus if T is a minimal rotation on
a locally connected compact group X, we would be able to conclude with
the help of the generalised Atkinson’s Proposition 3.4 that every f admits
strongly regular orbit closures. This makes the following open question so
important for us:

Open question 4.3. Let Tf be a continuous G-extension of a minimal
group rotation T (or more generally any minimal homeomorphism), and H
be a closed subgroup of G. Suppose C ⊆ X×G/H is a Tf -invariant compact
set such that for every x belonging to a dense Gδ-set in X the vertical section
Cx = {gH ∈ G/H : (x, gH) ∈ C} consists of a single coset gxH. Is it true
that then the same holds for every x in X?

This question can be answered positively for certain cases, as shown
in [GH05]; for example, if for every g /∈ H we know that

e /∈ HgH = {h1 · g · h2 : h1, h2 ∈ H},
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which is always satisfied in any nilpotent (or virtually nilpotent) group G
[GH05, Theorem 3.1], or if H is a normal subgroup of a (not necessarily
nilpotent) group G. However, it is not clear to us whether the answer is
affirmative for such a general formulation.

Now, let us provide a special version of Proposition 4.1, in which we
replace the almost algebraic group A by Ad(G) itself. This version parallels
the result on the identity components of the stabilisers of general Borel
actions [Da02, Corollary 5.3].

Proposition 4.4. Suppose T is a minimal homeomorphism of a com-
pact metric space X and f is a continuous cocycle with values in a connected
Lie group G. Let H be the identity component of Ex at some point x ∈ D(f),
and N(H) its normaliser in G. Further , assume that one of the following
properties from [Da02, Theorem 3.2] holds;

(i) Ad(G) is almost algebraic;
(ii) for all g from the radical of G, the eigenvalues of Ad(g) are real ;

(iii) H is compact.

Then the Tf -orbit closure C∗ = TZ
f (x,N(H)) in X × G/N(H) is minimal

and compact and projects almost one-to-one onto X. Moreover , for all y in
D(f), the identity component E0

y is conjugate to H.

Remark 4.5. There are several criteria given in [Da02, Proposition 3.4]
which guarantee that the group Ad(G) itself is almost algebraic, for example
this is the case when G is an almost algebraic subgroup of GL(n,R) for n ≥ 2
or G is semisimple.

Proof of Proposition 4.4. By [Da02, Theorem 3.2], if one of the three
conditions is satisfied the conjugacy class HG = {g · H · g−1 : g ∈ G} is
locally closed in the space C(G) of closed subgroups and therefore the map

G/N(H)→ HG, g ·N(H) 7→ g ·H · g−1,

is a homeomorphism. Using this fact—considering the adjoint action of
f on C(G) rather than on the Grassmannian H(G)—we conclude in the
same manner (2) as in the proof of Proposition 4.1 that the orbit closure
of C∗ = TZ

f (x,N(H)) in X × G/N(H) is minimal, compact and projects
injectively onto the comeagre set D(f). Furthermore, these properties of C∗

immediately imply the assertion on the identity components E0
y (cf. also

Remark 4.2).

Proposition 4.4 together with Proposition 3.4 also yields an alternative
proof of the regularity result [GH05, Theorem 4.9].

(2) The only detail which has to be considered additionally is the semicontinuity of
dimension: if gk ·H · g−1

k → H ′ with respect to the Fell topology, then dimH ′ ≥ dimH.
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Corollary 4.6 ([GH05, Theorem 4.9]). Let T be a minimal rotation
on a locally connected compact group X, and G a connected nilpotent Lie
group. If f is a continuous and recurrent cocycle with values in G then f is
strongly regular. Furthermore, all Ex are conjugate and Ex/E

0
x is compact.

Proof. Every Ad(g) has real eigenvalues only (actually, all eigenvalues
are equal to one) and satisfies condition (ii) from [Da02, Theorem 3.2] listed
in 4.4. Thus the orbit closure C∗ of (x,N(H)) is compact and projects
onto X, whereas it projects injectively onto the set D(f). Since Question 4.3
is answered positively for nilpotent groups, the set C∗ must be a one-to-one
extension of X and so HTnx = f(n, x) ·H · f(n, x)−1 extends to a consistent
selection of conjugate subgroups. Now Proposition 3.4 yields the assertion
of the corollary.

Another consequence of Proposition 4.4 is the following partial result on
regularity, which holds even for an arbitrary minimal compact system (X,T ).

Corollary 4.7. Suppose that G is a connected Lie group with one of
the properties listed in Proposition 4.4. If for some point x ∈ D(f), the
identity component H = E0

x equals its own normaliser in G, then the Tf -
orbit closure of (x, e) is surjective and hence f is regular.

Proof. The assertion of the corollary is evident from Proposition 4.4,
since for every x ∈ D(f) we have N(H) = H ⊆ Px.

5. Regularity results for Rd o R. Let R act continuously by linear
automorphisms Au (u ∈ R) on Rd, and G be the semidirect product G =
Rd o R defined by the group operation

(v1, u1) · (v2, u2) = (v1 +Au1(v2), u1 + u2).

With this definition the sets

U = {e} × R and N = Rd × {e}
are subgroups of G, with N normal in G, and conjugation by u in U equals
the automorphism Au on N . Let

π : G = Rd o R→ R

denote the projection of G onto its second coordinate, and denote by

π(f)(n, x) = π(f(n, x))

the factor cocycle with values in R.
Although Question 4.3 remains open even for this special group, we

are able to prove the existence of surjective orbit closures, as the following
theorem shows. Its proof involves a direct proof of compactness of the cocycle
modulo the normaliser N(H) of the identity component H = E0

x, and uses
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the simple group structure to reduce to the case where H equals its own
stabiliser.

Theorem 5.1. Let f be a continuous and recurrent cocycle over a min-
imal rotation on a locally connected compact group X with values in the
semidirect product G = Rd o R. If the action of R on Rd has no eigenvalue
equal to one (3), then f is regular.

Remark 5.2. Assuming the action of R has no eigenvalue equal to one
implies (but is not equivalent to) the following local property: Let G be the
Lie algebra of G and N be the subalgebra which corresponds to the normal
abelian kernel N . Then for every vector h which is not contained in the
ideal N,

[h, n] = ad(h, n) 6= 0

for all n in N.

Proof. Step 1. Let x be any point from our non-meagre set D =
D(f) ∩ D(π(f)), and let S be the essential range of the projected cocycle
π(f) at the point x. Then the inverse image

A = π−1(TZ
π(f)(x, e))

of the regular orbit closure of (x, e) with respect to the projected cocycle is
regular in the sense that every slice Ay = {g ∈ G : (x, g) ∈ A} of A consists
of a single coset gy · π−1(S), and further the map

X → G/π−1(S), y 7→ Ay = gy · π−1(S),

is continuous. For every g in π−1(S) we can find a sequence {nk}k≥1 and
vk ∈ N such that Tnkx→ x and f(nk, x) · vk → g. Thus

ETnkx ∩N = f(nk, x) · (Ex ∩N) · f(nk, x)−1

= f(nk, x) · vk · (Ex ∩N) · v−1
k · f(nk, x)−1

since N is abelian; by letting k →∞ it follows that

Ex ∩N ⊇ g · (Ex ∩N) · g−1.

Thus π−1(S) is contained in the normaliser N(Ex ∩ N) and the map y 7→
gy ·N(Ex ∩N) is continuous. Use this map to define a consistent selection
{Ny}y∈X of subgroups conjugate to Nx = Ex ∩N by setting

Ny = gy · (Ex ∩N) · g−1
y .

It is important to note that by symmetry (4) Ny = Ey ∩ N for all y from
our comeagre set D.

(3) By which we mean that for every u ∈ R the transformation Au has no eigenvalue
equal to one.

(4) We could have started with any other y in D.
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Step 2. We let H = E0
x be the identity component of Ex and Ĥ = N(H)0

the identity component of the normaliser N(H) and claim that

C = TZ
f (x, Ĥ ∩N)

projects onto the whole space X. Let y be any point in D and choose Tnkx
converging to y so that f(nk, x) = gk · vk, with gk → g and vk in the kernel
N = ker(π). We denote by H and Ĥ the subalgebras that correspond to H
and Ĥ. The conjugate subgroups

ETnkx = f(nk, x) ·H · f(nk, x)−1 = gk · vk ·H · v−1
k · g

−1
k

correspond to the subalgebras

Ad(f(nk, x))H = Ad(gk) Ad(vk)H.

For any v from the subalgebra N corresponding to N we know that
ad(v)(·) ∈ N, since N is normal. Moreover, ad(v)(·) = 0 on N, as N is
abelian. Thus ad(v)j = 0 for all j ≥ 2 and one can calculate

Ad(v) = exp(ad(v))(h) =
∞∑
k=0

1
k!

ad(v)k = 1 + ad(v),

where v = exp(v). This implies that

Ad(f(nk, x))H = Ad(gk)(1 + [vk, · ]︸ ︷︷ ︸
∈N

)H,

with any choice of vk ∈ N such that vk = exp(vk). Note that since H ∩ N
= Nx, where Nx is the subalgebra that corresponds to Nx, we have

Ĥ ∩N = {v ∈ N : [v,H] ⊆ Nx}.
Assume for the moment that the vk + (Ĥ∩N) are unbounded in N/(Ĥ∩N).
Then we can find (5) a vector h in H such that along some subsequence

[vk, h] + Nx →∞
in the quotient space N/Nx. This implies that the one-dimensional spaces

(1 + [vk, · ])(〈h〉)
converge to some one-dimensional space 〈h′〉 contained in N but not in Nx.
As the {Ny}y∈X form a consistent selection,

Ad(g)(Nx) = lim
k

Ad(gk)(Nx) = lim
k

Ad(f(nk, x))(Nx) = Ny,

and the subspaces
Ad(gk)(1 + [vk, · ])(〈h〉)

(5) Choose any linear functional Λ : N→ R such that kerΛ = Nx. Then every v in N

defines a linear functional Λv on H by putting Λv(h) = Λ([v, h]). Then Ĥ∩N is the kernel
of the linear map v 7→ Λv. As H is finite-dimensional, boundedness of the vk modulo Ĥ∩N

is equivalent to boundedness of the Λvk (h) for every h in H.
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converge to the one-dimensional subspace Ad(g)(〈h′〉) which is contained in
N but not in Ny. By semicontinuity of the essential ranges, the immersed
subgroup corresponding to this one-dimensional subspace is contained in
Ey but not in Ny (as in the proof of Proposition 4.1, this follows easily
from the fact that the exponential mapping is a local diffeomorphism). This
contradicts the fact that Ny = Ey ∩N . Thus the vk + (Ĥ∩N) stay in some
compactum and the same is true for the vk · (Ĥ ∩N). This proves that the
Tf -orbit closure modulo Ĥ ∩N projects onto D and Lemma 2.1 shows that
it projects onto the whole space X.

Step 3. Now, we distinguish two cases: If H is contained in the normal
subgroup N , then Nx = H = E0

x and there exists a cutting neighbourhood
for Nx in Ex. Proposition 3.3 yields the existence of surjective closures.

If H is not contained in N , then there exists h ∈ H outside N. By
Remark 5.2 the linear transformation [h, ·] maps N bijectively onto itself; and
the same is true for the invariant subspace Nx. Thus for any v ∈ N outside
Nx we must also have [h, v] /∈ Nx and so v /∈ Ĥ. Therefore Ĥ ∩N = H ∩N
and Step 2 together with the fact that H ⊆ Px shows that the Tf -orbit
closure of (x, e) is surjective.

Acknowledgements. The authors would like to thank Manfred Ein-
siedler and Klaus Schmidt, whose remarks have been very helpful.

The first author was partially supported by the FWF research project
S9612-N13. The second author was supported by grant INTAS YSF-05-109-
5200.

REFERENCES

[At78] G. Atkinson, A class of transitive cylinder transformations, J. London Math.
Soc. (2) 17 (1978), 263–270.

[Da92] S. G. Dani, On automorphisms of connected Lie groups, Manuscripta Math. 74
(1992), 445–452.

[Da02] —, On conjugacy classes of closed subgroups and stabilizers of Borel actions of
Lie groups, Ergodic Theory Dynam. Systems 22 (2002), 1697–1714.

[Fe62] J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact
non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472–476.

[Gl] E. Glasner, Ergodic Theory via Joinings, Math. Surveys Monogr. 101, Amer.
Math. Soc., 2003.

[GoHe] W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc.
Colloq. Publ. 36, Amer. Math. Soc., 1955.

[Gr07] G. Greschonig, Regularity of topological cocycles of a class of nonisometric mini-
mal homeomorphisms, 16 pp., submitted, http://www.mat.univie.ac.at/˜greschg
/preprints/

[Gr08] —, Nilpotent extensions of Furstenberg transformations, 10 pp., preprint, http:
//www.mat.univie.ac.at/ g̃reschg/preprints/



EXTENSIONS OF MINIMAL ROTATIONS 17
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