COLLOQUIUM MATHEMATICUM

VOL. 117 2009 NO. 1

ON A SUBCLASS OF THE FAMILY OF DARBOUX FUNCTIONS

BY

ZBIGNIEW GRANDE (Bydgoszcz)

Abstract. We investigate functions f : I — R (where I is an open interval) such that
for allu,v € I withu < vand f(u) # f(v) and each ¢ € (min(f(u), f(v)), max(f(u), f(v)))
there is a point w € (u,v) such that f(w) = c and f is approximately continuous at w.

Let p be the Lebesgue measure on R. For a (Lebesgue) measurable set
A C R and a point = we define the upper (resp. lower) density D, (A,x)
(resp. Di(A,z)) of A at x ([1, 6]) as

p(AN [z —h,z+ h))

lim su )
P 2
resp.
lim inf pAN[z —ho+ h])
h—0Tt 2h

A point z is said to be a density point of a set B if there is a Lebesgue
measurable set A C B such that D;j(A,z) =1 (|1, 6, 7]).
The family T, of all sets A C R for which the implication

x € A = xis a density point of A

holds is a topology called the density topology (|1, 6]). All sets in Ty are
Lebesgue measurable [1] and each measurable set E contains an F,-set F'€ Ty
with p(E'\ F) =0 ([1]).

Moreover, let T, denote the Euclidean topology in R. The continuity
of functions from (R,7y) to (R,T¢) is called the approzimate continuity
([1, 6, 7]). An equivalent definition is the following: f is approximately con-
tinuous at a point x if there is a measurable set A such that x € A,
Di(A,x) =1 and the restriction f|A is continuous at x ([1]).

The following property is analogous to the strong Swiatkowski property
introduced in [3, 5].

Let I be an open interval. We will say that a function f : I — R has the
Dgy-property (f € Dygp) if for all u,v € I with v < v and f(u) # f(v) and
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for each ¢ € (min(f(u), f(v)), max(f(u), f(v))) there is a point w € (u,v)
such that f(w) = c and f is approximately continuous at w.

The strong Swiagtkowski property has the same definition with approxi-
mate continuity replaced by continuity.

Obviously each function with the D,y,-property has the Darboux prop-
erty.

Let oc be the metric of uniform convergence in the space D of all Darboux
functions from I to R (i.e. oo (f, g) = min(1, sup,c;r |f(t) — g(t)])).

It is well known that there are nonzero Darboux functions f : R — R
which vanish almost everywhere ([1, p. 6 (Th. 4.3) or p. 12 (Ex. 2.2) or p.
13 (Th. 2.4)]). Evidently each such function f belongs to the interior (with
respect to pc) of the set D\ Dg.

THEOREM 1. The set Dy, is nowhere dense in the space (D, oc).

Proof. Let U be a nonempty open set in (D, o¢). Assume that there is
a function g € Dy, NU. There is an r > 0 such that each ¢ € D with
oc(g,v) < r belongs to U. If g is constant then for a Darboux function
f I — [0,1] vanishing almost everywhere and such that f(I) = [0, 1] the
sum h = g + rf/2 belongs to D \ Dg,, and so does each function ¢ € D
with oo (¢, h) < r/6. So we assume that ¢ is not constant. Then g(I) is
a nondegenerate interval. Let J C int(g(I)) be an open interval of length
d(J) < r/2, and let (Ey)a<2e be a transfinite sequence of all nonempty
Fy-sets E C g~'(J) belonging to T; with diam(g(FE)) < d(J)/2.

We can find disjoint sets G, C FE,, of cardinality continuum each. Indeed,
using a measure preserving Borel bijection @ between [0, 1] and [0, 1] one can
assume that each H, = ®(E,) C [0, 1]? is Borel of positive planar measure.
Now using the Fubini theorem one can find, inductively on «, distinct reals
Zq € [0, 1] such that (Hg)s, has positive measure (in [0,1]) and hence is of
cardinality continuum (being a Borel set). Let Go = @1 ((Ha )z, )-

For aw < 2¥ let hy be a function from G, to J with ho(Gyo) = J. Put

h(z) {ha(x) for x € Go, o < 2%,

g(x)  elsewhere on I.

It is obvious that |h(z) — g(z)| < r/2 for all z € I. So for ¢ € D with
QC(wa h) < d(‘])/ﬁ we have QC(wvg) < QC(wvh) + QC(h7g) < T/6 + T/2 <r
and ¢ € U.

We will prove that for each ¢ € D with oc(¢,h) < d(J)/6 we have
Y € D\ Dgp. Indeed, if ¢ € D), then there is a point u € I at which 1 is
approximately continuous and ¢ (u) € J. Then there is a nonempty F,-set
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E, € Ty such that diam(¢(FE,)) < d(J)/6, which contradicts the inequality
diam (¢ (Eq)) > diam(y(Ga))

> diam(h(Ga)) — ——= =d(J) - —— = —/ .

So 1 is not in Dgp,.
For the proof that h € D fix x,y € I such that x < y and h(z) # h(y) and
a z € (min(h(z), h(y)), max(h(x), h(y))). The following cases are possible:

(1) ze Jand (z,9) NUpecow Ea =0;
(2) ze Jand (2,y) NUpcow Ea #0 ;
(3) = € (D) \J = h()\ 7.

In case (1), since g € Dy, it follows that there is a point v € (x,y) with
g(u) = z which is an approximate continuity point of g. Since g(u) = h(u)
= z, the proof is complete.

In case (2) there is an ordinal o < 2* with E, C (z,y). Since h(G,) = J,
there is a point w € (x,y) N Ey with h(w) = 2.

In case (3) either z € [max.J, max(g(I))) or z € (ming(I), min J]. As-
sume that z € [max J, max(g([))) and max(h(z), h(y)) = h(y). Then h(z) =
g(z) and h(y) = g(y). If h(x) = g(x) then by the D,y-property of g there
is a point v € (x,y) with h(v) = g(v) = 2. If h(x) # g(x) then g(z) <
maxJ < z < h(y) = g(y) and as above there is a point ¢t € (x,y) with
h(t) = g(t) = z. In the other subcases of case (3) similar reasonings show
that A has the Darboux property. This finishes the proof. =

THEOREM 2. Let DB; be the family of all Darboux Baire 1 functions
from I to R considered as the metric space (DB1, oc). The set Dyp By of all
Baire 1 functions with the Dgp-property is nowhere dense in DB .

Proof. Fix f € DBy and r € (0,1). There is an open interval J C I with
diam(f(J)) < r/16. Let g € DB; be such that g(J) = [0, 1] and the closure
A=cl(B) of B={x €1:g(x)> 0} is nowhere dense, of measure zero and
contained in C(f)NJ (see [1, p. 13 (Th. 2.4)]). Moreover, let h = f +rg/2.
Evidently oc(h, f) = r/2 < r. Being the sum of two Baire 1 functions, A is
also Baire 1. Since I \ A C C(g) and A C C(f), it follows that h € DB;.

To complete the proof, we will show that if ¢ € DBy and ¢ (¢, h) < r/8,
then ¢ & Dgp. Indeed, there are u,v € J with g(u) = 0 and g(v) = 1. We
have

3
6(u) < hlu)+ 2 = f(u)+5 and 6(v) > hv) £ = f(0) 45— = f0) + 5
Since u,v € J and diam(f(J)) < r/16, we obtain
B(0) > F(0)+ o > flu) — = + 25 = flu)+ L+ 2 > pu) + o

8 16 8 8 ' 16 16
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Fix ¢ € (¢p(v) — r/16,¢(v)) C (é(u), ¢(v)). Since for x € J \ A we have

T r 3r

Blw) < h(z) + £ = () + = < f(o) + 1o+ L = hv) = L+
5r T 3r T
R AR R TR Tt ikt S

and p(A) = 0, there is no approximate continuity point w € (u,v) of ¢ at
which ¢(w) =c. m

LEMMA 1. If A € Ty is a nonempty F,-set contained in I then for each

positive integer n there is a bounded approximately continuous function f :
I — R such that f(A) D [—n,n].

Proof. By Zahorski’s Lemma 11 from [7] there is an approximately con-
tinuous function g : I — R such that g(4) = (0,1] and g(I \ A) = {0}.
Let h(x) = g(x) —1/2 and f(z) = 3nh(x) for x € I. Then the function
f is bounded and approximately continuous and f(A4) = (—3n/2,3n/2] D
[-n,n]. =

THEOREM 3. FEwvery function f : I — R is the sum of two functions
from Dgp.

Proof. Let (I,,) be an enumeration of all open intervals with rational end-
points contained in I. For each n we find two disjoint Cantor sets A,, 1, Ay 2 C
I, \ Uk<n, <o Ak, of positive measure, and for n > 1 and i < 2 we find
nonempty F,-sets B, ; C A, belonging to T;;. By Lemma 1 we select approx-
imately continuous bounded functions g, ; : I — R such that g, ;(Bp;) D
[-n,n]. Put

Gn,1(x) forx € By1,n > 1,
g(x) =< f(x) —gna(x) forxz e Bpa, n>1,
f(z) elsewhere on I,
and
Gn,2(z) forx € Bpo,n>1,
h(z) =< f(z) - gna(z) forx e B,i,n>1,
0 elsewhere on 1.

Evidently f = g+ h.

If u<wv, g(u) # g(v) and ¢ € (min(g(u), g(v)), max(g(u), g(v))) then
there is k& > 1 with & > |c| and Ay1 C (u,v). From the construction of g
it follows that there exists a point w € By 1 such that f(w) = gp1(w) = c.
Evidently g is approximately continuous at w. So g € D,,,. Similarly we can
prove that h € Dgy,. =

REMARK 1. Observe that in Theorem 3, if f is of Baire class a > 2 (resp.
Lebesgue measurable, with the Baire property) then so are the functions g, h
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constructed in the proof. It is known (|4]) that each Baire 1 function is the
sum of two strong Swiatkowski Baire 1 functions.

THEOREM 4. Fvery function f : I — R is the limit of a pointwise con-
vergent sequence of functions from Dgy.

Proof. Let (I,) be an enumeration of all open intervals with rational
endpoints contained in I. For each n we find a Cantor set A, C I, \U,.,, Ak
of positive measure and a nonempty F,-set B, C A, belonging to Ty. By
Lemma 1 we choose an approximately continuous function g, : I — R such
that ¢, (By) D [-n,n]. For k > 1 put

gn(z) for x € By, n >k,

f(z) elsewhere on I.

Ji(@) :{

Evidently f = limg_, fn. Fix £ > 1. If u < v and if fx(u) # fr(v), and if
¢ € (min(fx(u), fr(v)), max(fr(u), fr(v))), then there is n > k with n > |¢|
and A,, C (u,v). From the construction of fj it follows that there exists a
point w € A, such that g,(w) = fr(w) = c. Evidently f} is approximately
continuous at w. So fi, € Dgp. =

REMARK 2. Observe that in Theorem 4, if f is of Baire class av > 2 (resp.
Lebesgue measurable, with the Baire property) then so are the functions f,
constructed in the proof.

The set Cop(f) of all approximate continuity points of an arbitrary func-
tion f : I — R is a Gs-set with respect to the density topology T}, so it is
measurable. Moreover, there are functions in Dy, which are not measurable.

THEOREM 5. There is a function f : I — R having the Dgp,-property
which is not measurable (resp. does not have the Baire property).

Proof. Let f: I — R be nonmeasurable (resp. without the Baire prop-
erty). By Theorem 3 there are g,h € Dg, with f = g+ h. Evidently g or h
is not measurable (resp. does not have the Baire property). m

THEOREM 6. There is a sequence of functions f, : R — R belonging
to Dgp which uniformly converges to a function f which does not have the
Darbouz property.

Proof. Let (I,) be an enumeration of all open intervals with rational
endpoints. For each n > 1 we find a Cantor set A,, C I,,\U,.,, A of positive
measure and a nonempty F,-set B, C A, belonging to T;. By the Zahorski
theorem ([1, 5]) there are approximately continuous functions g, : R — [0, 1],
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n > 1, such that g,(By) = (0,1] and ¢,(R\ B,,) = {0}. For n > 1 let

gr(x) for x € By, k > n,
) ar(z) if kK <n and gx(x) # 1/2,
fal@) = 1/2—1/4% if k <n and gg(z) = 1/2,
0 elsewhere on R,
and
gk (x) if x € By and gg(x) #1/2, k > 1,
flx)=<1/2-1/4% ifz € By and gp(v) =1/2, k> 1,
0 elsewhere on R.

Since |f, — f| < 1/4™ for n > 1, the sequence ( f,,) uniformly converges to f.
Fix n > 1. For each £ > n and each y € (0,1) there are points =) € By
such that f,, is approximately continuous at zj and f,(xg) = y. So every f,
n > 1, has the Dyp-property. Since f(R) = [0,1]\ {1/2}, the function f does
not have the Darboux property. m

REMARK 3. Theorem 6 may also be obtained from Maliszewski’s theo-
rem [3], stating that every quasicontinuous functions from Bruckner—Ceder—
Weiss’ class U is the uniform limit of some sequence of strong Swiatkowski
functions. However, observe that the functions f and f, constructed in the
proof of Theorem 6 are not quasicontinuous.

It is well known that a uniform limit of DB; functions is DBy ([1]).

THEOREM 7. There is a sequence of Baire 1 functions f, : R — R
belonging to Dgp, which uniformly converges to a function f without the Dgyp-

property.

Proof. Choose I, = [an,by], n > 1, such that 0 < apt1 < bpy1 <
ap, < b, < 1forn >1and Dy,(J, In,0) > 0. For each n > 1 find J,, =
[en,dn] C (bpt1,a,) and a continuous function gy, : [by+1, an] — [cn, 1] such
that gn(an) = gn(bp+1) = 1 and g,(x) = = for = € J,,. Let e, be the centre
of J,,n>1.Forn>1let

( for € [b1, 00),

for x € [an, by], n > 1,
for z € (—o0, 0],

S 8 = =

for x = e, k> n,
gr(z) for x € [bry1,ak], kK <n,
gr(z) for x € [bry1,cx) Uldg,ar], k> n,

| linear on the intervals [ck, ex] and [ex, d], k > n,
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and
1 for x € [b1, ),
1 for x € |ag, br], k> 1,
o) = 0
x for z € (—o0, 0],

gk(a:) for z € [ka,ak], k>1.

Evidently f and f,, n > 1, are continuous at all z # 0 (so they are Baire 1)
and have the Darboux property. Moreover, they are not approximately con-
tinuous at £ = 0. Since in each open interval J containing 0 there is a point
x # 0 at which f, is continuous and f,(xz) = 0, we see that f, € Dgp.
As f71(0) = {0}, it follows that f does not have the D,,-property. Since
|fn — f] < ap for n > 1 and lim,,_,o a, = 0, the sequence (f,,) uniformly
converges to f. m

The Darboux property may be defined locally ([2]).
A function f : I — R has the Darboux property at the point x € I
(f € D(x)) if for each real r > 0 and for all

c1 € (min(f(w), lim inf £ (1)), masx(f(z), limsup £ (1))

t—at
and
¢ € (min(f(z),liminf f(¢)), max(f(x),limsup f(¢)))
t—z~ t—z—
there are points u € (z,z+7)NI and v € (x —r,x) NI such that f(u) = ¢;
and f(v) = co.

Observe that a function f : I — R has the Darboux property if and only
if f € D(x) for each x € T (|2]).
Similarly we can introduce the following local D,,-property.
We will say that a function f : I — R has the D,y,-property at the point
xz €1 (f € Dgp(x)) if for each real > 0 and for all
¢1 € (min(f(z),lim iilff(t)),max(f(a:),lim sup f(t)))
t—x t—xt
and
¢ € (min(f(z),liminf f(¢)), max(f(x),limsup f(¢)))

t—z~ t—ax~

there are points u € (z,z +r)N I and v € (x — r,z) N I at which f is
approximately continuous and such that f(u) = ¢; and f(v) = co.

It is evident that if f : I — R has the Dg,-property then f € Dgp(x) for
each « € I. Moreover, the function f from Theorem 7 is in Dgp(z) for each
x € I, but not in Dy,

Recall that a Baire 1 function f : I — R has the Darboux property if and
only if for each real « each of the sets {x : f(z) < a} and {z : f(z) > a} is
bilaterally dense in itself (see [1]).
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Let Z,, denote the family of all functions f : R — R such that for each
real « the following implications are true:

(i) if f(z) < a then for each r > 0 there are points v € (z — r,x)
and v € (x,z + r) at which f is approximately continuous and

max(f(u), f(v)) < o,

(ii) if f(z) > « then for each r > 0 there are points u € (x — r,x)
and v € (x,z + r) at which f is approximately continuous and

win(f(u), (1)) > .
REMARK 4. There is a function f € Z,, \ D.
Proof. Let (I,) be an enumeration of all open intervals with rational
endpoints. For each n > 1 find two disjoint Cantor sets Ay 1, An2 C In\Up<p

of positive measure, and choose nonempty sets By, 1 C A, 1 and B, 2 C Ay
belonging to Ty. Let

1 forz € B, 1, n > 1,
flx)=¢ -1 forx € Bya,n>1,
0  elsewhere on R.
Then f € Zy\D. =
By a standard proof we obtain the following remark.
REMARK 5. If f : R — R belongs to Dy then f € Zgy,.

REMARK 6. If a sequence of measurable functions f, : R — R belonging
to Zp uniformly converges to a function f then f € Zyp.

Proof. Fix reals r > 0 and a. Let x € R with f(z) < a. Since (f)
uniformly converges to f, there is k such that | f,,(t)— f(¢)| < (o — f(x))/3 =
s>0forn>kandteR. So fiy(x) < f(z)+s and from the Z,-property of
fr it follows that there is ¢ € (z — r,z) which is an approximate continuity
point of fi such that fi(¢) < f(z)+ s. There is a set E € T, containing ¢
and such that F C (z — r,z) and fi(E) C (—o0, fx(t) + s). Being the
limit of a sequence of measurable functions, f is measurable and there is an
approximate continuity point u of f belonging to E. Observe that f(u) <
fe(uw) +s < fr(t)+s+s < f(z)+2s+ s < a. In other cases the proofs are
similar. m

REMARK 7. Zg,B1 \ DopB1 # 0.

Proof. It suffices to observe that the function f constructed in the proof
of Theorem 7 belongs to Z,,. =

In Remark 6 the assumption of measurability of f,, n > 1, is essential.

EXAMPLE. Let (I,) be a one-to-one enumeration of all open intervals
with rational endpoints. For each n > 1, we find disjoint nowhere dense
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nonempty sets An1,...,An, € Ty contained in I, \ Upop, Ui<p Ak,i- For
each pair (n, k), k <n > 1, we find a decomposition A, = B, , UCy, ; such
that the sets B, ; and C,, ; are nonmeasurable and p*(B,, ) = pu*(Cp i) =
p(An k) (1* denotes the outer Lebesgue measure). For n > 1 let

1 for x € Aoy, k > n,
-1 for x € Agp_1, k > n,
1—-1/(2k)  for x € By, k <n,

falx) =<1 for x € Aoy, \ Bog, k < n,
—1+1/(2k) for x € Bop_1, k <mn,
-1 for x € Agg—1 \ Bog—1, k <mn,
0 elsewhere on R.

Moreover, put

1-1/(2n)  for x € Bay, n > 1,

1 for z € Agy, \ Bap, n > 1,
flx)=4¢ —-1+1/(2n) forxz € By,_1,n >1,

-1 for z € Agy—1 \ Bop—1, n > 1,

0 elsewhere on R.

Evidently the sequence (f,,) uniformly converges to f. Each f,, is approxi-
mately continuous at all points of the sets Ay for kK > 2n— 1. Since each open
interval contains infinitely many of the sets Ay, the function f,, is in Z,).
On the other hand, if x € A for some k > 1 then f is not approximately
continuous at x. So all approximate continuity points of f belong to f~1(0)
and consequently f is not in Z,.

Similarly to the proof of Theorem 2 we can show that the set Z,,B; of
all Baire 1 functions with the Z,)-property is nowhere dense in DB;.

Since every derivative belongs to DBj and has the Denjoy—Clarkson
property (i.e. for any open intervals J and K we have f~'(J) N K = ()
or u(f~*(J)N K) > 0), each derivative has the Z,,-property.

PROBLEM. Is there a derivative f : I — R which is not in D,),?

Acknowledgments. I thank the referee for his idea of the proof of The-
orem 1 without the Continuum Hypothesis.
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