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Abstract. Let S be a commutative complete discrete valuation domain of positive
characteristic p, S∗ the unit group of S, Ω a subgroup of S∗ and G = Gp×B a finite group,
where Gp is a p-group and B is a p′-group. Denote by SλG the twisted group algebra of
G over S with a 2-cocycle λ ∈ Z2(G,S∗). For Ω satisfying a specific condition, we give
necessary and sufficient conditions for G to be of OTP projective (S,Ω)-representation
type, in the sense that there exists a cocycle λ ∈ Z2(G,Ω) such that every indecomposable
SλG-module is isomorphic to the outer tensor product V # W of an indecomposable
SλGp-module V and an irreducible SλB-module W .

1. Introduction. Let p ≥ 2 be a prime, S either a field of characteris-
tic p, or a commutative complete discrete valuation domain of characteris-
tic p, and G a finite group. Denote by Z2(G,S∗) the group of all S∗-valued
normalized 2-cocycles of the group G that acts trivially on S∗. The twisted
group algebra ofG over S with a 2-cocycle λ ∈ Z2(G,S∗) is the free S-algebra
SλG with an S-basis {ug : g ∈ G} satisfying uaub = λa,buab for all a, b ∈ G.
The S-basis {ug : g ∈ G} of SλG is called canonical (corresponding to λ).
Assume now that G = Gp × B, where Gp is a p-group, B is a p′-group
and |Gp| > 1, |B| > 1. Given µ ∈ Z2(Gp, S

∗) and ν ∈ Z2(B,S∗), the map
µ× ν : G×G→ S∗ defined by the formula

(1.1) (µ× ν)x1b1,x2b2 = µx1,x2 · νb1,b2 ,

for all x1, x2 ∈ Gp, b1, b2 ∈ B, is a 2-cocycle in Z2(G,S∗). Every cocycle
λ ∈ Z2(G,S∗) is cohomologous to µ × ν, where µ is the restriction of λ to
Gp ×Gp and ν is the restriction of λ to B ×B.
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From now on, we assume that every cocycle λ ∈ Z2(G,S∗) under consid-
eration satisfies the condition λ = µ× ν, and all SλG-modules are assumed
to be finitely generated left SλG-modules which are S-free. We recall that
the study of SλG-modules is essentially equivalent to the study of projective
S-representations of G with the 2-cocycle λ.

Let λ = µ × ν ∈ Z2(G,S∗) and {ug : g ∈ G} be a canonical S-basis of
SλG. Then {uh : h ∈ Gp} is a canonical S-basis of SµGp and {ub : b ∈ B}
is a canonical S-basis of SνB. Moreover, if g = hb, where g ∈ G, h ∈ Gp,
b ∈ B, then ug = uhub = ubuh. It follows that SλG ∼= SµGp ⊗S SνB.

Given an SµGp-module V and an SνB-module W , we denote by V #W
the SλG-module whose underlying S-module is V ⊗S W , the SλG-module
structure is given by

uhb(v ⊗ w) = uhv ⊗ ubw
for all h ∈ Gp, b ∈ B, v ∈ V , w ∈W , and it is extended to SλG and V ⊗SW
by S-linearity. Following [19, p. 122], we call the module V #W the outer
tensor product of V and W .

Throughout, Ω is a fixed subgroup of S∗. We recall from [5, p. 10] the
following definitions.

Definition 1.1. Assume that S, G, Ω are as fixed above and λ = µ×ν ∈
Z2(G,S∗) is a 2-cocycle as in (1.1).

(a) We set

(1.2) Z2(G,Ω) = {λ ∈ Z2(G,S∗) : Imλ ⊂ Ω}.
(b) The algebra SλG is defined to be of OTP representation type if ev-

ery indecomposable SλG-module is isomorphic to the outer tensor
product V #W , where V is an indecomposable SµGp-module and
W is an irreducible SνB-module.

(c) The group G = Gp × B is defined to be of OTP projective (S,Ω)-
representation type if there exists a cocycle λ ∈ Z2(G,Ω) such that
the algebra SλG is of OTP representation type.

(d) The group G = Gp×B is said to be of purely OTP projective (S,Ω)-
representation type if SλG is of OTP representation type for any
λ ∈ Z2(G,Ω).

If Ω=S∗, we write “S-representation type” instead of “(S,Ω)-representa-
tion type”.

In [8], Brauer and Feit proved that if S is an algebraically closed field of
characteristic p, then the group algebra SG is of OTP representation type.

Blau [7] and Gudyvok [15, 16] independently showed that if S is an
arbitrary field of characteristic p, then SG is of OTP representation type if
and only if Gp is cyclic or S is a splitting field for B. In [17, 18], Gudyvok
also investigated a similar problem for the group algebra SG, where S is a
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commutative complete discrete valuation domain. In particular, he proved
that if S is of characteristic p and T is the quotient field of S, then SG is
of OTP representation type if and only if |Gp| = 2 or T is a splitting field
for B.

In [2]–[6], the results of Blau and Gudyvok were generalized to twisted
group algebras SλG, where G = Gp×B, S is either a field of characteristic p,
or a commutative complete discrete valuation domain of characteristic p, and
λ ∈ Z2(G,S∗) satisfies a specific condition. The main theorem in [3] asserts
that if S is a field of characteristic p, then, under suitable assumptions, an
algebra SλG is of OTP representation type if and only if SλGp is a uniserial
algebra or S is a splitting field for SλB.

In [4], necessary and sufficient conditions on G and a field S were given
for G to be of OTP projective S-representation type and of purely OTP
projective S-representation type. Let K be a field of characteristic p and
S := K[[X]] the ring of formal power series in the indeterminate X with
coefficients in K.

The groups G = Gp × B of OTP projective (S,K∗)-representation type
and of purely OTP projective S-representation type were described in [5].

Denote by T the quotient field of S and by Ω the subgroup of S∗ gener-
ated by K∗ and f(X), where f(X) ≡ 1 (mod X) and f(X) 6≡ 1 (mod X2).
Let G = Gp × B, |G′p| 6= 2, µ ∈ Z2(Gp, Ω), ν ∈ Z2(B,K∗) and λ = µ × ν.
We recall from [6] that SλG is of OTP representation type if and only if one
of the following three conditions is satisfied:

(i) Gp is abelian and TµGp is a field;
(ii) p = 2, G2 is abelian and dimT (T

µG2/radT
µG2) = |G2|/2;

(iii) K is a splitting field for KνB.

In the present article we describe the groups G = Gp×B of OTP projec-
tive (S,Ω)-representation type, where S is a commutative complete discrete
valuation domain of positive characteristic p and Ω ⊂ S∗ satisfies specific
conditions (see Theorem 3.1, (1.4) and (1.5)).

In view of the Cohen Theorem [25, p. 304], S is isomorphic to the algebra
K[[X]], where K is a field of characteristic p.

Throughout this paper, S = K[[X]] denotes the power series algebra and
T = K((X)) the quotient field of S. For simplicity of presentation, we set

(1.3) i(K) =

{
t if [K : Kp] = pt,
∞ if [K : Kp] =∞.

Assume that Gp is an abelian p-group, m is the number of invariants of
Gp and G = Gp×B. Let Ω be the subgroup of S∗ generated byK∗ and (S∗)p.
We prove in Theorem 3.1 that G is of OTP projective (S,Ω)-representation
type if and only if one of the following conditions is satisfied:
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(i) m ≤ i(K);
(ii) p = 2 and m = i(K) + 1;
(iii) K is a splitting field for some K-algebra KνB.

Let p ≥ 3 be a prime and let

(1.4) Ω = 〈K∗, (S∗)p, f(X)〉 ⊂ S∗

be the subgroup of S∗ generated by K∗, (S∗)p and f(X), where f(X) ≡ 1
(mod X) and f(X) 6≡ 1 (mod X2). We prove in Theorem 3.2 that G is of
OTP projective (S,Ω)-representation type if and only if m ≤ i(K)+ 1 or K
is a splitting field for some K-algebra KνB.

Suppose now that p = 2 and

(1.5) Ω = 〈K∗, (S∗)4, f(X)〉 ⊂ S∗

is a subgroup of S∗ generated by K∗, (S∗)4 and f(X), where f(X) ≡ 1
(mod X) and f(X) 6≡ 1 (mod X2). We show in Theorem 3.4 that G is of
OTP projective (S,Ω)-representation type if and only if one of the following
conditions is satisfied:

(i) m ≤ i(K) + 1;
(ii) m = i(K) + 2 and G2 has at least one invariant equal to 2;
(iii) K is a splitting field for some K-algebra KνB.

Moreover we establish in Theorem 4.2 that the finite group G = Gp×B,
where Gp is an arbitrary p-group and B is a p′-group, is of purely OTP
projective S-representation type if and only if one of the following conditions
is satisfied:

(i) p = 2 and |G2| = 2.
(ii) There exists a finite central group extension 1 → A → B̂ → B → 1

such that any projective K-representation of B lifts projectively to
an ordinary K-representation of B̂ and K is a splitting field for B̂.

Throughout the paper, we use the standard group representation the-
ory notation and terminology introduced in the monographs by Curtis and
Reiner [9, 10, 11], and Karpilovsky [19]. The monograph by Karpilovsky gives
a systematic account of the projective representation theory. For problems
of the representation theory of orders in finite-dimensional algebras, we refer
to the books by Curtis and Reiner.

A background of the representation theory of finite-dimensional algebras
can be found in the monographs by Assem, Simson and Skowroński [1],
Drozd and Kirichenko [14], Simson [21], and Simson and Skowroński [24],
where among other things the representation types (finite, tame, wild) of
finite groups and algebras are discussed. Various aspects of the representation
types are considered also by Dowbor and Simson [12, 13], Simson [22], and
Simson and Skowroński [23].
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2. On twisted group algebras of OTP representation type.
Throughout this paper, we use the following notations: p ≥ 2 is a prime; K
is a field of characteristic p; K∗ is the multiplicative group of K; S = K[[X]]
is the ring of formal power series in the indeterminate X with coefficients
in K, Sl = {al : a ∈ S}; S∗ is the unit group of S, (S∗)l = {al : a ∈ S∗};
T is the quotient field of S; G = Gp × B is a finite group, where Gp is a
Sylow p-subgroup; H ′ is the commutator subgroup of a group H, e is the
identity element of H, |h| is the order of h ∈ H. We assume that |Gp| > 1
and |B| > 1.

Unless stated otherwise, we suppose that if Gp is non-abelian; then
[K(ξ) : K] is not divisible by p, where ξ is a primitive (expB)th root of 1.
Given a subgroup Ω of S∗, we denote by Z2(H,Ω) the group of all Ω-valued
normalized 2-cocycles of the group H, where we assume that H acts trivially
on Ω (see (1.2)).

A basis {uh : h ∈ H} of SλH satisfying uaub = λa,buab for all a, b ∈ H
is called canonical (corresponding to λ ∈ Z2(H,S∗)). We often identify γue
with γ ∈ S. If D is a subgroup of H, then the restriction of λ ∈ Z2(H,S∗)
to D × D will also be denoted by λ. We assume that in this case SλD is
the S-subalgebra of SλH consisting of all S-linear combinations of elements
{ud : d ∈ D}, where {uh : h ∈ H} is a canonical S-basis of SλH correspond-
ing to λ. Given an SλH-module V , we write EndSλH(V ) for the ring of
all SλH-endomorphisms of V , radEndSλH(V ) for the Jacobson radical of
EndSλH(V ), and we set

EndSλH(V ) = EndSλH(V )/radEndSλH(V ).

Given λ ∈ Z2(H,K∗), KλH denotes the twisted group algebra of H over K
and KλH the quotient algebra of KλH by the radical radKλH.

By a principal unit in S we understand an element f(X) ∈ S such that
f(X) ≡ 1 (mod X). Denote by S∗0 the group of principal units of S. Then
S∗ = K∗ × S∗0 . Let q be a prime and q 6= p. Then (S∗0)

q = S∗0 . Moreover
S∗0 contains no primitive qth root of 1. By Theorem 1.7 in [19, p. 11], every
2-cocycle σ ∈ Z2(B,S∗0) is a coboundary. Hence each 2-cocycle τ ∈ Z2(B,S∗)
is cohomologous to a 2-cocycle ν ∈ Z2(B,K∗).

Let Gp = 〈a1〉 × · · · × 〈am〉 be an abelian p-group of type (pn1 , . . . , pnm).
For any cocycle µ ∈ Z2(Gp, S

∗), the algebra SµGp is commutative. The
algebra SµGp has a canonical S-basis {vg : g ∈ Gp} satisfying the following
conditions:

1) if g = aj11 . . . ajmm and 0 ≤ ji < pni for each i ∈ {1, . . . ,m}, then

vg = vj1a1 . . . v
jm
am ;

2) vp
ni

ai = γive, where γi = µai,aiµai,a2i
. . . µai,a

ri
i
, ri = pni − 1.
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We denote the algebra SµGp also by [Gp, S, γ1, . . . , γm]. Similarly if µ ∈
Z2(Gp,K

∗), then we denote the algebra KµGp by [Gp,K, γ1, . . . , γm] as well.
Now we collect several facts we apply later.

Lemma 2.1. Let R be either a field of characteristic p, or a commuta-
tive complete discrete valuation domain of characteristic p, G = Gp × B,
µ ∈ Z2(Gp, R

∗), ν ∈ Z2(B,R∗) and λ = µ × ν be as in (1.1). The algebra
RλG is of OTP representation type if and only if the outer tensor product
of any indecomposable RµGp-module and any irreducible RνB-module is an
indecomposable RλG-module.

The proof is similar to that of the corresponding fact for a group algebra
(see [7, p. 41], [18, p. 68]).

Lemma 2.2. Let R be either a field of characteristic p, or a commuta-
tive complete discrete valuation domain of characteristic p, G = Gp × B,
µ ∈ Z2(Gp, R

∗), ν ∈ Z2(B,R∗) and λ = µ × ν be as in (1.1). If V is an
indecomposable RµGp-module and W is an irreducible RνB-module, then

EndRλG(V #W ) ∼= EndRµGp(V )⊗R EndRνB(W ),

where R is the residue class field of R.

Proof. See [5, p. 15].

Lemma 2.3. Let K be an arbitrary field of characteristic p, S = K[[X]],
G = Gp × B, µ ∈ Z2(Gp, S

∗), ν ∈ Z2(B,K∗) and λ = µ × ν be as in
(1.1). If K is a splitting field for the K-algebra KνB, then SλB is of OTP
representation type.

Proof. See [5, p. 15].

Lemma 2.4. Let K be an arbitrary field of characteristic p, S = K[[X]],
G = Gp × B, µ ∈ Z2(Gp, S

∗), ν ∈ Z2(B,K∗) and λ = µ × ν be as in
(1.1). Assume that V is an indecomposable SµGp-module and EndSµGp(V )
is isomorphic to a field that is a finite purely inseparable field extension
of K. Then the SλG-module V #W is indecomposable for any irreducible
SνB-module W .

Proof. Suppose that L is a finite purely inseparable field extension of
K and L is K-isomorphic to EndSµGp(V ). Denote by ∆ the K-algebra
EndSνB(W ). Then ∆ ∼= EndKνB(W̃ ), where W̃ is the quotient module
W/XW . Since KνB is a separable algebra, the center of the division K-
algebra ∆ is a finite separable field extension of K (see [9, p. 485]). The
index of ∆ is not divisible by p [20]. It follows that L⊗K ∆ is a skew field.
By Proposition 6.10 in [10, p. 125] and Lemma 2.2, V #W is an indecom-
posable SλG-module.
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Proposition 2.5. Assume that Gp is an abelian group, G = Gp × B,
µ ∈ Z2(Gp,K

∗), ν ∈ Z2(B,K∗) and λ = µ×ν be as in (1.1). If the K-algebra
KµGp is a field then the algebra SλG is of OTP representation type.

Proof. Let L := KµGp. Then SµGp = L[[X]] is a principal ideal ring.
Every indecomposable SµGp-module is isomorphic to SµGp. We have

EndSµGp(S
µGp) ∼= SµGp/XS

µGp ∼= L.

The field L is a finite purely inseparable field extension of K (see [19, p. 74]).
Applying Lemmas 2.1 and 2.4, we conclude that SλG is of OTP representa-
tion type.

Proposition 2.6. Let Gp = 〈a1〉 × · · · × 〈am〉, m ≥ 2, G = Gp × B,
µ ∈ Z2(Gp, S

∗), ν ∈ Z2(B,K∗) and λ = µ × ν be as in (1.1). Assume that
SµGp = [Gp, S, γ1, . . . , γm−1, 1 + X], where γ1, . . . , γm−1 ∈ K∗. If[
K
(
p
√
γ1, . . . , p

√
γm−1

)
: K
]
= pm−1, then SλG is of OTP representation type.

Proof. The T -algebra TµGp is a field and SµGp is the valuation domain
in TµGp. Any indecomposable SµGp-module is isomorphic to the regular
SµGp-module. Let σ ∈ Z2(Gp,K

∗) and σa,b ≡ µa,b (mod X) for all a, b ∈ Gp.
Then SµGp/XSµGp ∼= KσGp. Since EndSµGp(S

µGp) ∼= SµGp, we conclude,
by Proposition 5.22 in [10, p. 112], that

EndSµGp(S
µGp) ∼= (SµGp/XS

µGp)/rad(S
µGp/XS

µGp) ∼= KσGp.

The K-algebra KσGp is isomorphic to a field that is a finite purely in-
separable field extension of K. By Lemmas 2.1 and 2.4, SλG is of OTP
representation type.

Assume that S = K[[X]], H is a subgroup of Gp, µ ∈ Z2(Gp, S
∗) and

τ ∈ Z2(H,S∗). Suppose also that SτH is an S-subalgebra of the algebra
SµGp. We say that SτH is a µ-extended algebra if there exists a subgroup
D of Gp and a cocycle σ ∈ Z2(D,S∗) such that H ⊂ D, SµD = SσD as
S-algebras and the restriction of σ to H ×H is equal to τ .

Lemma 2.7 (see [6]). Let Gp be an abelian p-group, G = Gp × B, µ ∈
Z2(Gp, S

∗), ν ∈ Z2(B,K∗) and λ = µ × ν be as in (1.1). Assume that
SµGp contains a µ-extended group algebra of a group of order greater than
two over S. Then SλG is of OTP representation type if and only if K is a
splitting field for KνB.

Assume now that F is a field of characteristic 2 complete with respect
to a discrete valuation, R is the valuation domain in F , G2 = 〈a〉 is a cyclic
group of order 2n (n ≥ 1) and RµG2 = [G2, R, γ

2l ], where l ∈ {0, 1}, γ ∈ R∗
and γ 6∈ R2 if n ≥ 2. Denote by ξ a root of the polynomial

Y 2n − γ2l .
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Let G = G2 × B, ν ∈ Z2(B,R∗) and λ = µ × ν. The following fact is also
proved in [6].

Proposition 2.8. If R[ξ] is the valuation domain in F (ξ), then RλG is
of OTP representation type.

3. On groups of OTP projective representation type. We recall
that G = Gp × B, S = K[[X]], T is the quotient field of S, and i(K) is
as in (1.3). Let |G′p| > 2, µ ∈ Z2(Gp, S

∗), ν ∈ Z2(B,K∗) and λ = µ × ν.
By the corollary to Theorem 1 in [5, p. 16], the algebra SλG is of OTP
representation type if and only if K is a splitting field for KνB. Therefore,
unless stated otherwise, we assume that Gp is an abelian p-group. Denote
by m the number of invariants of Gp. In view of Theorem 2 in [5, p. 19], the
group G is of OTP projective (S,K∗)-representation type if and only if one
of the following conditions is satisfied:

1) m ≤ i(K);
2) p = 2, m = i(K) + 1 and G2 has at least one invariant equal to 2;
3) K is a splitting field for KσB for some σ ∈ Z2(B,K∗).

In this section, we describe the groups G = Gp × B of OTP projective
(S,Ω)-representation type, where Gp is abelian and Ω 6= K∗.

Theorem 3.1. Let Ω be the subgroup of S∗ generated by K∗ and (S∗)p.
The group G = Gp × B is of OTP projective (S,Ω)-representation type if
and only if one of the following conditions is satisfied:

(i) m ≤ i(K);
(ii) p = 2 and m = i(K) + 1;
(iii) K is a splitting field for some K-algebra KνB.

Proof. Let µ ∈ Z2(Gp, Ω), ν ∈ Z2(B,K∗) and λ = µ× ν. Suppose that

SµGp = [Gp, S, γ1f1(X)p, . . . , γmfm(X)p],

where γ1, . . . , γm ∈ K∗ and f1(X), . . . , fm(X) are principal units in S. If
p 6= 2 and m > i(K) then SµGp contains a µ-extended group algebra of a
group of order p ≥ 3 over S. If p = 2 and m > i(K)+1 then SµG2 contains a
µ-extended group algebra of an abelian group of type (2, 2) over S. In these
cases, by Lemma 2.7, SλG is of OTP representation type if and only if K is
a splitting field for KνB. The necessity is proved.

To prove the sufficiency, assume that m ≤ i(K). Then there exists σ ∈
Z2(Gp,K

∗) such that KσGp is a field. By Proposition 2.5, the algebra SλG
with λ = σ×ν is of OTP representation type for each ν ∈ Z2(B,K∗). Assume
now that p = 2, i(K) 6= 0 and m = i(K)+ 1. There exist γ1, . . . , γm−1 ∈ K∗
such that

[
K
(√
γ1, . . . ,

√
γm−1

)
: K
]
= 2m−1. Let G2 = 〈a1〉 × · · · × 〈am〉,
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A = 〈a1〉 × · · · × 〈am−1〉 and H = 〈am〉. We put

SµG2 = [G2, S, γ1, . . . , γm−1, (1 +X)2] and SλG = SµG2 ⊗S SνB,
where ν ∈ Z2(B,K∗) is an arbitrary cocycle. Denote by τ the restriction
of µ to A × A. Then τ ∈ Z2(A,K∗) and L := KτA is a field. It follows
that F := T τA is also a field and R := SτA is the valuation domain in F .
Moreover R ∼= L[[X]]. Let D = H ×B. The algebra SλG is a twisted group
algebra ofD over R. If we denote it by RσD, we have an algebra isomorphism
RσD ∼= RµH ⊗R RνB.

Let M be an SλG-module. Then M is a finitely generated R-module.
Denote by 2n the exponent of A. We have r2n ∈ S for any r ∈ R. Suppose
that r ∈ R, v ∈ M , v 6= 0 and rv = 0. Then r2

n · v = 0. Since M is a
free S-module, r2n = 0, and consequently r = 0. This means that M is a
torsion-free R-module. Since R is a principal ideal ring,M is a free R-module,
i.e. M is an RσD-module. Conversely, if M is an RσD-module then M is
an SλG-module. Note also that M is an indecomposable SλG-module if and
only if M is an indecomposable RσD-module.

By Proposition 2.8, RσD is of OTP R-representation type. Assume that
V is an indecomposable SµGp-module and W is an irreducible SνB-module.
In view of Proposition 2.5, U := R ⊗S W is an irreducible RνB-module.
Because V is an indecomposableRµH-module then, by Lemma 2.1, theRσD-
module V ⊗R U is indecomposable. Since V ⊗R U is also an indecomposable
SλG-module and

V ⊗R U ∼= (V ⊗R R)⊗S W ∼= V ⊗S W,
we conclude that V ⊗SW is an indecomposable SλG-module. Consequently,
in view of Lemma 2.1, SλG is of OTP S-representation type and therefore
the group G is of OTP projective (S,Ω)-representation type.

In the case when p = 2, i(K) = 0 and m = 1, we set SµG2 = [G2, S,
(1 +X)2]. By Proposition 2.8, the algebra SλG := SµG2 ⊗S SνB is of OTP
representation type for any ν ∈ Z2(B,K∗). Hence G is of OTP projective
(S,Ω)-representation type.

Theorem 3.2. Let p 6= 2 and Ω be the subgroup of S∗ generated by K∗,
(S∗)p and f(X), where f(X) ≡ 1 (mod X) and f(X) 6≡ 1 (mod X2). The
group G = Gp × B is of OTP projective (S,Ω)-representation type if and
only if m ≤ i(K) + 1 or K is a splitting field for some K-algebra KνB.

Proof. Since (f(X)−1)S = XS, we may assume that f(X) = 1+X. Let
µ ∈ Z2(Gp, Ω), ν ∈ Z2(B,K∗) and λ = µ × ν. Choose a canonical S-basis
of SµGp such that

SµGp = [Gp, S, γ1(1 +X)if1(X)p, γ2f2(X)p, . . . , γmfm(X)p],

where γ1, . . . , γm ∈ K∗ and f1(X), . . . , fm(X) are principal units of S. If
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m− 1 > i(K) then SµGp contains a µ-extended group algebra of a group of
order p over S. By Lemma 2.7, SλG is of OTP representation type if and
only if K is a splitting field for KνB. The necessity of the theorem is proved.

To prove the sufficiency, assume that m ≤ i(K). Then there exists σ ∈
Z2(Gp,K

∗) such that KσGp is a field. By Proposition 2.5, SλG := SσGp⊗S
SνB is of OTP representation type for each ν ∈ Z2(B,K∗). If m = i(K)+1,
i(K) 6= 0, then there exist elements γ1, . . . , γm−1 ∈ K∗ such that SµGp :=
[Gp, S, γ1, . . . , γm−1, 1 + X] is the valuation domain in the field TµGp. By
Proposition 2.6, the algebra SλG := SµGp⊗S SνB is of OTP representation
type, for any ν ∈ Z2(B,K∗). If K is a splitting field for some K-algebra
KνB then, by Lemma 2.3, the algebra SλG := SµGp ⊗S SνB is of OTP
representation type for every µ ∈ Z2(Gp, Ω).

Proposition 3.3. Let p = 2 and Ω be a subgroup of S∗ generated by K∗,
(S∗)2 and f(X), where f(X) ≡ 1 (mod X) and f(X) 6≡ 1 (mod X2). If G =
G2 × B is of OTP projective (S,Ω)-representation type then m ≤ i(K) + 2
or K is a splitting field for some K-algebra KνB.

Proof. Apply the arguments used in the proof of Theorem 3.2.

Theorem 3.4. Let p = 2, G = G2 × B and Ω be the subgroup of S∗
generated by K∗, (S∗)4 and f(X), where f(X) ≡ 1 (mod X) and f(X) 6≡ 1
(mod X2). The group G is of OTP projective (S,Ω)-representation type if
and only if one of the following conditions is satisfied:

(i) m ≤ i(K) + 1;
(ii) m = i(K) + 2 and G2 has at least one invariant equal to 2;
(iii) K is a splitting field for some K-algebra KνB.

Proof. We may assume that f(X) = 1 +X. Let G2 = 〈a1〉 × · · · × 〈am〉,
H = {g ∈ G : g4 = e}, H = 〈h1〉 × · · · × 〈hm〉, where hi ∈ 〈ai〉 for every
i ∈ {1, . . . ,m}; µ ∈ Z2(G2, Ω), ν ∈ Z2(B,K∗) and λ = µ × ν. Let SλG be
of OTP representation type and assume that K is not a splitting field for
the K-algebra KνB. By Theorem 3.1, we may suppose that

SµG2 = [G2, S, γ1(1 +X)f1(X)4, γ2(1 +X)if2(X)4, . . . , γmfm(X)4],

where γ1, . . . , γm ∈ K∗, i ∈ {0, 2} and f1(X), . . . , fm(X) are principal units
in S. Therefore

SµH = [H,S, γ1(1 +X), γ2(1 +X)i, γ3, . . . , γm],

where i = 0 if |h1| ≥ |h2|, and i ∈ {0, 2} if |h1| = 2, |h2| = 4. Denote by
{vh : h ∈ H} a canonical S-basis of SµH. If

v2h1 = γ1(1 +X)ve, v4h2 = γ2(1 +X)2ve,

then (v−1h1 vh2)
4 = (γ−21 γ2)ve. Since 〈h1〉 × 〈h2〉 = 〈h1〉 × 〈h1h2〉, we shall

assume that i = 0. By Lemma 2.7, m− 1 ≤ i(K) + 1, hence m ≤ i(K) + 2.
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Let m = i(K) + 2, i(K) 6= 0 and H be a direct product of m cyclic
subgroups of order 4 each. Suppose that L := K[vh2 , . . . , vhm−1 ] is a field.
Let F := K[v2h2 , . . . , v

2
hm−1

]. For each α ∈ K there exists β ∈ F such that
α = β2. The element β is uniquely expressible as

β =
∑

i2,...,im−1

δi2,...,im−1v
2i2
h2
. . . v

2im−1

hm−1
,

where ij = 0, 1 and δi2,...,im−1 ∈ K. However, δi2,...,im−1 = η2i2,...,im−1
for some

ηi2,...,im−1 ∈ F . This implies β = ρ2 for ρ ∈ L, and hence α = ρ4. It follows
that SµH contains the µ-extended group algebra of a group of order 4 over S.
By Lemma 2.7, K is a splitting field for KνB, a contradiction. Consequently,
G2 has at least one invariant equal to 2. The necessity is proved.

To prove the sufficiency, we assume that m ≤ i(K) + 1 and we set

SµG2 = [G2, S, γ1, . . . , γm−1, 1 +X],

where γ1, . . . , γm−1 ∈ K∗ and
[
K
(√
γ1, . . . ,

√
γm−1

)
: K
]
= 2m−1. If m =

i(K) + 2 and |am| = 2, we put SµG2 = [G2, S, γ1, . . . , γm−2, 1+X, 1], where
γ1, . . . , γm−2 ∈ K∗ and

[
K
(√
γ1, . . . ,

√
γm−2

)
: K
]
= 2m−2. Arguing as in

the proof of Theorem 3.1, we conclude that the algebra

SλG := SµG2 ⊗S SνB
is of OTP representation type for any ν ∈ Z2(B,K∗).

Proposition 3.5. Let K be an arbitrary field of characteristic p, S =
K[[X]], Gp a finite p-group and G = Gp × B. The group G is of OTP
projective (S, (S∗)p)-representation type if and only if one of the following
conditions is satisfied:

(i) p = 2 and G2 is cyclic;
(ii) K is a splitting field for some K-algebra KνB, where ν ∈

Z2(B, (K∗)p).

Proof. Let µ ∈ Z2(Gp, (S
∗)p), ν ∈ Z2(B, (K∗)p) and λ = µ× ν. Assume

that p = 2 and G2 is non-cyclic. Then Ĝ2 := G2/G
′
2 is non-cyclic. The

restriction of µ to G′2×G′2 is a coboundary [19, p. 42]. We may assume that
µh1,h2 = 1 for all h1, h2 ∈ G′2. Denote Ĝ = Ĝ2 × B, let {uh : h ∈ G2} be a
canonical S-basis of SµG2 corresponding to µ, and set

U =
⊕

h∈G′2\{e}

SµG2(uh − ue)

and Sµ̂Ĝ2 = SµG2/U . By Lemma 2.7, the algebra Sλ̂Ĝ := Sµ̂Ĝ2 ⊗S SνB
is of OTP representation type if and only if K is a splitting field for KνB.
If p 6= 2, we argue as in the case p = 2. This completes the proof of the
necessity.
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To prove the sufficiency, assume that p = 2, G2 is cyclic, and put SµG2 =
[G2, S, (1 + X)2], SλG = SµG2 ⊗S SνB, where ν ∈ Z2(B, (K∗)2) is an
arbitrary cocycle. By Proposition 2.8, SλG is of OTP representation type.
If the condition (ii) holds, apply Lemma 2.3.

Proposition 3.6. Let p = 2, K be an arbitrary field of characteristic 2,
S = K[[X]], G2 a finite 2-group, and G = G2 ×B. The group G is of OTP
projective (S, (S∗)4)-representation type if and only if |G2| = 2 or K is a
splitting field for some K-algebra KνB, where ν ∈ Z2(B, (K∗)4).

Proof. Apply Proposition 3.5 and Lemma 2.7.

Proposition 3.7. Let K be an arbitrary field of characteristic p, S =
K[[X]], Gp a finite p-group, and G = Gp × B. The group G is of OTP
projective (S, (K∗)p)-representation type if and only if one of the following
conditions is satisfied:

(i) p = 2, K is a perfect field and |G2| = 2;
(ii) p = 2, K is a non-perfect field and G2 is a cyclic group;
(iii) K is a splitting field for some K-algebra KνB, where ν ∈

Z2(B, (K∗)p).

Proof. Apply Propositions 3.5, 2.8 and Lemma 2.7.

4. On groups of purely OTP projective representation type. In
this section, K is an arbitrary field of characteristic p, t(K∗) is the torsion
subgroup of K∗, S = K[[X]] and G = Gp ×B is a finite group, where Gp is
a p-group, B is a p′-group and |Gp| > 1, |B| > 1.

A short exact sequence of groups

E : 1→ D
ϕ→ B̂ → B → 1

is called an extension of D by B. If ϕ(D) is contained in the center of B̂,
then E is called a central extension. If B̂ is a finite group, then E is a finite
extension.

Let V be a finite-dimensional vector space over K, GL(V ) the group of
all automorphisms of V , 1V the identity automorphism of V , and let

1→ D → B̂
ψ→ B → 1

be a finite central group extension. Denote by π : GL(V ) → GL(V )/K∗1V
the canonical group epimorphism. Let Γ̂ be an ordinary K-representation
of B̂ in V such that Γ̂ (d) ∈ K∗1V for any d ∈ D. There is a projective
K-representation Γ of B in V such that the diagram
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B̂

ψ

��

Γ̂ // GL(V )
π // GL(V )/K∗1V

id
��

B
Γ // GL(V )

π // GL(V )/K∗1V

is commutative. We say that Γ lifts projectively to the ordinary K-represent-
ation Γ̂ of B̂. If |D| = |H2(B,K∗)| and any projective K-representation of
B lifts projectively to an ordinary K-representation of B̂, then B̂ is called a
covering group of B over K (see [19, p. 138]).

HereH2(B,K∗)=Z2(B,K∗)/B2(B,K∗) is the second cohomology group
of B over K∗ (see [19, p. 6]).

Lemma 4.1. The group G = Gp × B is of purely OTP projective S-re-
presentation type if and only if |Gp| = 2 or K is a splitting field for KνB
for any ν ∈ Z2(B,K∗).

Proof. See [5, p. 22].

Now we prove the main results of this section.

Theorem 4.2. The group G = Gp × B is of purely OTP projective
S-representation type if and only if one of the following two conditions is
satisfied:

(i) p = 2 and |G2| = 2.
(ii) There exists a finite central group extension 1 → A → B̂ → B → 1

such that any projective K-representation of B lifts projectively to
an ordinary K-representation of B̂ and K is a splitting field for B̂.

Proof. By Proposition 2.9 in [4, p. 45],K is a splitting field for all twisted
group algebras of B over K if and only if the condition (ii) holds. Hence the
theorem follows by applying Lemma 4.1.

Proposition 4.3. Let S∗0 be the group of principal units in S. A group
G = Gp × B is of purely OTP projective (S, S∗0)-representation type if and
only if |Gp| = 2 or K is a splitting field for B.

Proof. By Theorem 3 in [18], the group algebra SG is of OTP repre-
sentation type if and only if |Gp| = 2 or K is a splitting field for B. If
|Gp| = 2 then, by Lemma 4.1, SλG is of OTP representation type for any
λ ∈ Z2(G,S∗0). Every cocycle ν ∈ Z2(B,S∗0) is a coboundary, hence SνB
is isomorphic to SB. If K is a splitting field for B, then, by Lemma 2.3,
an algebra SλB := SµGp ⊗S SB is of OTP representation type for any
µ ∈ Z2(Gp, S

∗
0).

Theorem 4.4. Let S = K[[X]] and G = Gp × B. Assume that either
t(K∗) = t(K∗)q for any prime q that divides |B′|, or every prime divisor
of |B′| is also a divisor of |B : B′|. Then G is of purely OTP projective
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S-representation type if and only if |Gp| = 2 or there exists a covering group
B̂ of B over K such that K is a splitting field for B̂.

Proof. By Proposition 2.10 in [4, p. 45], K is a splitting field for any
twisted group algebra of B over K if and only if there exists a covering
group B̂ of B over K such that K is a splitting field for B̂. Hence the
theorem follows by applying Lemma 4.1.
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