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Abstract. Let S be a commutative complete discrete valuation domain of positive
characteristic p, S* the unit group of S, £2 a subgroup of S* and G = G, X B a finite group,
where G, is a p-group and B is a p’-group. Denote by S G the twisted group algebra of
G over S with a 2-cocycle A € Z2(G, S*). For 2 satisfying a specific condition, we give
necessary and sufficient conditions for G to be of OTP projective (S, £2)-representation
type, in the sense that there exists a cocycle A € ZZ(G7 £2) such that every indecomposable
S*G-module is isomorphic to the outer tensor product V # W of an indecomposable
S*Gp-module V' and an irreducible S* B-module W.

1. Introduction. Let p > 2 be a prime, S either a field of characteris-
tic p, or a commutative complete discrete valuation domain of characteris-
tic p, and G a finite group. Denote by Z2(G, S*) the group of all S*-valued
normalized 2-cocycles of the group G that acts trivially on S*. The twisted
group algebra of G over S with a 2-cocycle A € Z2(G, S*) is the free S-algebra
SAG with an S-basis {ug: g € G} satisfying uqup = A puqp for all a,b € G.
The S-basis {uy: g € G} of S*G is called canonical (corresponding to \).
Assume now that G = Gp x B, where G, is a p-group, B is a p/-group
and |G| > 1, |B| > 1. Given u € Z*(Gp, S*) and v € Z%(B, S*), the map
uXxXv:GxG— S defined by the formula

(1'1) (M X V)x1b1,m2b2 = Hzyi,x2 " Vby,bas

for all z1,22 € Gy, b1,by € B, is a 2-cocycle in Z%(G, S*). Every cocycle
A € Z%(G, S*) is cohomologous to u x v, where p is the restriction of A to
Gp x Gp and v is the restriction of A to B x B.
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From now on, we assume that every cocycle A € Z2(G, S*) under consid-
eration satisfies the condition A = 1 x v, and all S*G-modules are assumed
to be finitely generated left S*G-modules which are S-free. We recall that
the study of S*G-modules is essentially equivalent to the study of projective
S-representations of G with the 2-cocycle .

Let A = pu x v € Z*(G,S*) and {uy: g € G} be a canonical S-basis of
SAG. Then {uy: h € G,} is a canonical S-basis of S*G,, and {uy: b € B}
is a canonical S-basis of S¥B. Moreover, if g = hb, where g € G, h € G,
b € B, then u, = upup = upuy. It follows that S*G = SFG, ®5 SYB.

Given an S*G)p-module V' and an S¥ B-module W, we denote by V # W
the S*G-module whose underlying S-module is V ®g W, the S*G-module
structure is given by

uhb(v ® w) = Uupv Q Upw

forallh € Gp,be B,veV,we W, and it is extended to SAG and VogW
by S-linearity. Following [I9, p. 122|, we call the module V' # W the outer
tensor product of V and W.

Throughout, {2 is a fixed subgroup of S*. We recall from [3, p. 10] the
following definitions.

DEFINITION 1.1. Assume that S, G, {2 are as fixed above and A = uxv €
Z%(G, S*) is a 2-cocycle as in ([1.1).

(a) We set
(1.2) Z3(G,0) ={\ € Z%G, S*): Im\ C 2}.

(b) The algebra S*G is defined to be of OTP representation type if ev-
ery indecomposable S*G-module is isomorphic to the outer tensor
product V # W, where V is an indecomposable S*Gp-module and
W is an irreducible S¥ B-module.

(c) The group G = Gp, x B is defined to be of OTP projective (S, £2)-
representation type if there exists a cocycle A € Z%(G, £2) such that
the algebra S*G is of OTP representation type.

(d) The group G = G), x B is said to be of purely OTP projective (S, {2)-
representation type if S*G is of OTP representation type for any
A€ Z3(G, 0N).

If 2=5%, we write “S-representation type” instead of (.S, £2)-representa-

tion type”.

In [8], Brauer and Feit proved that if S is an algebraically closed field of

characteristic p, then the group algebra SG is of OTP representation type.

Blau [7] and Gudyvok [I5, 16] independently showed that if S is an

arbitrary field of characteristic p, then SG is of OTP representation type if
and only if G}, is cyclic or S is a splitting field for B. In [I7, 18], Gudyvok
also investigated a similar problem for the group algebra SG, where S is a
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commutative complete discrete valuation domain. In particular, he proved
that if .S is of characteristic p and T is the quotient field of S, then SG is
of OTP representation type if and only if |G,| = 2 or T is a splitting field
for B.

In [2]-]6], the results of Blau and Gudyvok were generalized to twisted
group algebras S*G, where G = G, x B, S is either a field of characteristic p,
or a commutative complete discrete valuation domain of characteristic p, and
A € Z%(G, S*) satisfies a specific condition. The main theorem in [3] asserts
that if S is a field of characteristic p, then, under suitable assumptions, an
algebra SAG is of OTP representation type if and only if S’\Gp is a uniserial
algebra or S is a splitting field for S*B.

In [4], necessary and sufficient conditions on G and a field S were given
for G to be of OTP projective S-representation type and of purely OTP
projective S-representation type. Let K be a field of characteristic p and
S = K|[[X]] the ring of formal power series in the indeterminate X with
coeflicients in K.

The groups G = G, x B of OTP projective (S, K*)-representation type
and of purely OTP projective S-representation type were described in [5].

Denote by T the quotient field of S and by {2 the subgroup of S* gener-
ated by K* and f(X), where f(X) =1 (mod X) and f(X) # 1 (mod X?).
Let G =Gy x B, |G)| # 2, p € Z*(Gp,2), v € Z*(B,K*) and A = pu X v.
We recall from [6] that S*G is of OTP representation type if and only if one
of the following three conditions is satisfied:

(i) G, is abelian and TG, is a field;
(ii) p =2, G2 is abelian and dim7p(T*Ga/rad THG2) = |Ga|/2;
(iii) K is a splitting field for K B.

In the present article we describe the groups G = G}, x B of OTP projec-
tive (.5, £2)-representation type, where S is a commutative complete discrete
valuation domain of positive characteristic p and {2 C S* satisfies specific
conditions (see Theorem and (L.5)).

In view of the Cohen Theorem [25], p. 304], S is isomorphic to the algebra
K[[X]], where K is a field of characteristic p.

Throughout this paper, S = K[[X]] denotes the power series algebra and
T = K((X)) the quotient field of S. For simplicity of presentation, we set

t if [K: KP]=pt
oo if [K: KP] = 0.
Assume that G, is an abelian p-group, m is the number of invariants of
G)p and G = G, x B. Let £2 be the subgroup of S* generated by K* and (S*)P.

We prove in Theorem that G is of OTP projective (.S, £2)-representation
type if and only if one of the following conditions is satisfied:

(1.3)
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) m < i(K);
( i) p=2and m=i(K)+1;
ii) K is a splitting field for some K-algebra K" B.

Let p > 3 be a prime and let
(1.4) 2 =(K", (S, f(X)) cS*
be the subgroup of S* generated by K*, (S*) and f(X), where f(X) =1
(mod X) and f(X) # 1 (mod X2). We prove in Theorem that G is of
OTP projective (S, §2)-representation type if and only if m < ¢(K)+1or K
is a splitting field for some K-algebra K" B.

Suppose now that p = 2 and

(1.5) 2= (K* (5" f(X)) c 5
is a subgroup of S* generated by K*, (S*)* and f(X), where f(X) = 1
(mod X) and f(X) # 1 (mod X?). We show in Theorem that G is of

OTP projective (5, 2)-representation type if and only if one of the following
conditions is satisfied:

(i) m <i(K)+1;
(ii) m = i(K) + 2 and G2 has at least one invariant equal to 2;
(iii) K is a splitting field for some K-algebra K" B.

Moreover we establish in Theorem @ that the finite group G = G, X B,
where G, is an arbitrary p-group and B is a p/-group, is of purely OTP
projective S-representation type if and only if one of the following conditions
is satisfied:

(i) p=2 and |G| = 2.

(ii) There exists a finite central group extension 1 - A — B — B — 1
such that any projective K-representation of B lifts projectively to
an ordinary K-representation of Band K is a splitting field for B.

Throughout the paper, we use the standard group representation the-
ory notation and terminology introduced in the monographs by Curtis and
Reiner [9, 10, 11], and Karpilovsky [19]. The monograph by Karpilovsky gives
a systematic account of the projective representation theory. For problems
of the representation theory of orders in finite-dimensional algebras, we refer
to the books by Curtis and Reiner.

A background of the representation theory of finite-dimensional algebras
can be found in the monographs by Assem, Simson and Skowronski [I],
Drozd and Kirichenko [I4], Simson [2I], and Simson and Skowronski [24],
where among other things the representation types (finite, tame, wild) of
finite groups and algebras are discussed. Various aspects of the representation
types are considered also by Dowbor and Simson [12, [13], Simson [22], and
Simson and Skowronski [23].
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2. On twisted group algebras of OTP representation type.
Throughout this paper, we use the following notations: p > 2 is a prime; K
is a field of characteristic p; K* is the multiplicative group of K; S = K[[X]]
is the ring of formal power series in the indeterminate X with coefficients
in K, S' = {a': a € S}; S* is the unit group of S, (S*)! = {a': a € S*};
T is the quotient field of S; G = G, x B is a finite group, where G, is a
Sylow p-subgroup; H' is the commutator subgroup of a group H, e is the
identity element of H, |h| is the order of h € H. We assume that |G,| > 1
and |B| > 1.

Unless stated otherwise, we suppose that if G, is non-abelian; then
[K(£): K] is not divisible by p, where ¢ is a primitive (exp B)th root of 1.
Given a subgroup {2 of S*, we denote by Z2(H, {2) the group of all £2-valued
normalized 2-cocycles of the group H, where we assume that H acts trivially
on 2 (see ((1.2))).

A basis {uh: h € H} of SH satisfying ugup = AapUap for all a,b € H
is called canonical (corresponding to A € Z2(H, S*)). We often identify yu,
with v € S. If D is a subgroup of H, then the restriction of A € Z2(H, S*)
to D x D will also be denoted by A\. We assume that in this case S*D is
the S-subalgebra of S*H consisting of all S-linear combinations of elements
{ug: d € D}, where {uy: h € H} is a canonical S-basis of S*H correspond-
ing to \. Given an S*H-module V, we write Endgaz (V) for the ring of
all S* H-endomorphisms of V', rad Endga (V) for the Jacobson radical of
Endgg(V), and we set

Endgr (V) = Endgry (V) /rad Endgs (V).

Given \ € Z%(H, K*), K*H denotes the twisted group algebra of H over K
and K*H the quotient algebra of K*H by the radical rad K*H.

By a principal unit in S we understand an element f(X) € S such that
f(X) =1 (mod X). Denote by S§ the group of principal units of S. Then
S* = K* x S§. Let ¢ be a prime and ¢ # p. Then (S§)? = S§. Moreover
S§ contains no primitive gth root of 1. By Theorem 1.7 in [I9] p. 11], every
2-cocycle o € Z%(B, S3) is a coboundary. Hence each 2-cocycle 7 € Z2(B, S*)
is cohomologous to a 2-cocycle v € Z2(B, K*).

Let Gp = (a1) X - -+ X (am) be an abelian p-group of type (p™,...,p"").
For any cocycle u € Z?(G,,S*), the algebra SHG, is commutative. The
algebra S*G), has a canonical S-basis {vy: g € G,} satisfying the following
conditions:

l)ifg:aji. alr and 0 < j; < p™ for each ¢ € {1,...,m}, then

J1 Jm .
’Ug—v ...’Uam,

pri . L — ) N
2) vg, = 7iVe, Where y; = Haiaiblag a2 - - P, a7t Ti = P — 1.
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We denote the algebra S*G) also by [G,S,71,...,%m]. Similarly if p© €
Z2(G,, K*), then we denote the algebra K*G), by [Gp, K, V1, ..., Vm] as well.

Now we collect several facts we apply later.

LEMMA 2.1. Let R be either a field of characteristic p, or a commuta-
tive complete discrete valuation domain of characteristic p, G = Gp, x B,
p € ZHGp, R*), v € Z*B,R*) and A = i x v be as in . The algebra
R G is of OTP representation type if and only if the outer tensor product
of any indecomposable R*Gp-module and any irreducible R” B-module is an
indecomposable R G-module.

The proof is similar to that of the corresponding fact for a group algebra
(see [T, p. 41], [18, p. 68]).

LEMMA 2.2. Let R be either a field of characteristic p, or a commuta-
tive complete discrete valuation domain of characteristic p, G = Gp, x B,
p e Z*(Gy,RY), v € Z*(B,R*) and A = p x v be as in (L.1). If V is an

indecomposable RFGp-module and W is an irreducible R¥ B-module, then
Endpag(V # W) = Endgeg, (V) @ Endgyg(W),
where R is the residue class field of R.
Proof. See [5, p. 15]. =

LEMMA 2.3. Let K be an arbitrary field of characteristic p, S = K[[X]],
G =G, x B, u € Z(G,,S*), v € Z*(B,K*) and \ = p x v be as in
(1.1). If K is a splitting field for the K-algebra KV B, then S*B is of OTP

representation type.
Proof. See [, p. 15]. =

LEMMA 2.4. Let K be an arbitrary field of characteristic p, S = K[[X]],
G =G, x B, u € Z(Gp,S*), v € Z*(B,K*) and A = p x v be as in
. Assume that V' is an indecomposable S*Gp-module and Endsug, (V')
18 isomorphic to a field that is a finite purely inseparable field extension
of K. Then the S*G-module V # W is indecomposable for any irreducible
SY B-module W .

Proof. Suppose that L is a finite purely inseparable field extension of
K and L is K-isomorphic to Endgsg, (V). Denote by A the K-algebra

Endgrp(W). Then A = Endgvp(W), where W is the quotient module
W/XW. Since K”B is a separable algebra, the center of the division K-
algebra A is a finite separable field extension of K (see [9, p. 485]). The
index of A is not divisible by p [20]. It follows that L ®x A is a skew field.
By Proposition 6.10 in |10, p. 125] and Lemma V # W is an indecom-
posable S*G-module. w
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PROPOSITION 2.5. Assume that G\, is an abelian group, G = G, x B,
w€ Z*(Gy, K*), v € Z*(B,K*) and A = uxv be as in (1.1). If the K -algebra
KH!G), is a field then the algebra SAG is of OTP representation type.

Proof. Let L := K*G). Then S*G, = L[[X]] is a principal ideal ring.
Every indecomposable S*G,-module is isomorphic to S#G,,. We have

Endsug, (S'Gp) = SHG,/XSHGy = L.

The field L is a finite purely inseparable field extension of K (see [19, p. 74]).

Applying Lemmas and , we conclude that S*G is of OTP representa-
tion type. m

PROPOSITION 2.6. Let G, = (a1) X -+ X (am), m > 2, G = G, x B,
p € Z%(Gp,S*), v e Z*(B,K*) and A = p x v be as in . Assume that
StG, = [Gp,S,71,. s Ym—1,1 + X]|, where yi,...,Ym—1 € K*. If
[K(W, ey M) : K] = p™~ L, then S*G is of OTP representation type.

Proof. The T-algebra THG), is a field and S*G), is the valuation domain
in T'G,. Any indecomposable S*Gp-module is isomorphic to the regular
SHGp-module. Let o € Z2(Gp, K*) and 0, = phap (mod X) for all a,b € G,,.
Then S*G,/XSHG)y, = K°G). Since Endgug, (S*Gp) = SHG),, we conclude,
by Proposition 5.22 in [10, p. 112], that

Endgnc, (SHG,) & (5"Gp/ X S*G,) rad(SFG,/ X S G,) = KOG,

The K-algebra K°G), is isomorphic to a field that is a finite purely in-
separable field extension of K. By Lemmas and S G is of OTP

representation type. =

Assume that S = K|[[X]], H is a subgroup of G, p € Z*(Gp, S*) and
T € Z%(H,S*). Suppose also that STH is an S-subalgebra of the algebra
SEG,. We say that STH is a p-extended algebra if there exists a subgroup
D of G, and a cocycle o € Z%(D,S*) such that H C D, S*D = S°D as
S-algebras and the restriction of ¢ to H x H is equal to 7.

LEMMA 2.7 (see [6]). Let Gy be an abelian p-group, G = G, X B, p €
Z%(Gp,S*), v € Z*(B,K*) and A = p x v be as in (L.1). Assume that
SEG, contains a p-extended group algebra of a group of order greater than
two over S. Then S*G is of OTP representation type if and only if K is a
splitting field for K¥B.

Assume now that F' is a field of characteristic 2 complete with respect
to a discrete valuation, R is the valuation domain in F', Go = (a) is a cyclic
group of order 2" (n > 1) and R*Gy = [G2, R, 721], where [ € {0,1}, v € R*
and v ¢ R? if n > 2. Denote by ¢ a root of the polynomial

l

Y2 — 2.
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Let G = Gy x B, v € Z*(B,R*) and A\ = p x v. The following fact is also
proved in [6].

PROPOSITION 2.8. If R[{] is the valuation domain in F(€), then R G is
of OTP representation type.

3. On groups of OTP projective representation type. We recall
that G = Gp x B, S = K[[X]], T is the quotient field of S, and i(K) is
as in . Let |G| > 2, p € Z*(Gp,S*), v € Z*(B,K*) and X\ = p X v.
By the corollary to Theorem 1 in [5, p. 16], the algebra S*G is of OTP
representation type if and only if K is a splitting field for K” B. Therefore,
unless stated otherwise, we assume that G is an abelian p-group. Denote
by m the number of invariants of G. In view of Theorem 2 in |5 p. 19|, the
group G is of OTP projective (S, K*)-representation type if and only if one
of the following conditions is satisfied:

1) m < i(K);
2) p=2,m=1i(K)+ 1 and G2 has at least one invariant equal to 2;
3) K is a splitting field for K°B for some o € Z%(B, K*).

In this section, we describe the groups G = G, x B of OTP projective
(S, £2)-representation type, where G), is abelian and 2 # K*.

THEOREM 3.1. Let 2 be the subgroup of S* generated by K* and (S*)P.
The group G = G, x B is of OTP projective (S, {2)-representation type if
and only if one of the following conditions is satisfied:

(i) m < i(K);
(i) p=2 and m = i(K) + 1;
(iii) K is a splitting field for some K-algebra K" B.

Proof. Let u € Z*(Gp, 2), v € Z*(B,K*) and A = p x v. Suppose that
SMGP = [Gpv 5771f1(X)pa s 77mfm(X)p]y

where v1,...,vm € K* and f1(X),..., fim(X) are principal units in S. If
p # 2 and m > i(K) then S*G, contains a p-extended group algebra of a
group of order p > 3 over S. If p = 2 and m > i(K)+1 then S#G; contains a
p-extended group algebra of an abelian group of type (2,2) over S. In these
cases, by Lemma SAG is of OTP representation type if and only if K is
a splitting field for K¥ B. The necessity is proved.

To prove the sufficiency, assume that m < i(K). Then there exists o €
Z?(Gp, K*) such that K°G,, is a field. By Proposition the algebra S*G
with A\ = o xv is of OTP representation type for each v € Z%(B, K*). Assume
now that p =2, i(K) # 0 and m = i(K) + 1. There exist 71, ..., ym-1 € K*
such that [K (\A1,...,Am-1): K] =271 Let G = (a1) x -+ X {(am),
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A= (a1) X+ X {(am-1) and H = (a,,). We put
SHGa =[G, 8,71, -, ¥m1, (1+ X)?] and G = Gy @5 S”B,

where v € Z?(B, K*) is an arbitrary cocycle. Denote by 7 the restriction
of  to A x A. Then 7 € Z?(A,K*) and L := K" A is a field. It follows
that F' := T" A is also a field and R := S™ A is the valuation domain in F'.
Moreover R 2 L[[X]]. Let D = H x B. The algebra S*G is a twisted group
algebra of D over R. If we denote it by R° D, we have an algebra isomorphism
R°D = RF'H ®p RV B.

Let M be an S*G-module. Then M is a finitely generated R-module.
Denote by 2" the exponent of A. We have r?" € S for any r € R. Suppose
that r € R, v € M, v # 0 and 7v = 0. Then 72" - v = 0. Since M is a
free S-module, r?" = 0, and consequently » = 0. This means that M is a
torsion-free R-module. Since R is a principal ideal ring, M is a free R-module,
i.e. M is an R? D-module. Conversely, if M is an R°D-module then M is
an S*G-module. Note also that M is an indecomposable S*G-module if and
only if M is an indecomposable R’ D-module.

By Proposition [2.8] R D is of OTP R-representation type. Assume that
V' is an indecomposable S*G)-module and W is an irreducible S B-module.
In view of Proposition U := R®g W is an irreducible R” B-module.
Because V is an indecomposable R* H-module then, by Lemma[2.1] the R D-
module V ®p U is indecomposable. Since V ®pr U is also an indecomposable
S*G-module and

V®RU§(V®RR)®SW§V®SVV,

we conclude that V ®g W is an indecomposable S*G-module. Consequently,
in view of Lemma SAG is of OTP S-representation type and therefore
the group G is of OTP projective (S, §2)-representation type.

In the case when p = 2, i(K) = 0 and m = 1, we set S*Gy = [G2, S,
(1+ X)?]. By Proposition the algebra S*G := SHGy ®g S¥B is of OTP
representation type for any v € Z2(B, K*). Hence G is of OTP projective
(S, §2)-representation type. =

THEOREM 3.2. Let p # 2 and §2 be the subgroup of S* generated by K*,
(S*)P and f(X), where f(X) =1 (mod X) and f(X) # 1 (mod X?). The
group G = G, x B is of OTP projective (S, £2)-representation type if and
only if m < i(K)+ 1 or K is a splitting field for some K -algebra K" B.

Proof. Since (f(X)—1)S = XS, we may assume that f(X) = 1+ X. Let
w € Z%(Gy, 2), v € Z*(B,K*) and A = p x v. Choose a canonical S-basis
of S#G), such that

Squ = [Gp7 S? '71(1 + X)ifl(X)p772f2(X)p7 s 77mfm(X)p]7
where v1,...,7m € K* and fi1(X),..., fim(X) are principal units of S. If
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—1 > i(K) then S*G) contains a p-extended group algebra of a group of
order p over S. By Lemma -, 2.7, S*G is of OTP representation type if and
only if K is a splitting field for K¥ B. The necessity of the theorem is proved.

To prove the sufficiency, assume that m < i(K). Then there exists o €
Z?(Gp, K*) such that K9G, is a field. By Proposition SAG = 57°G,®s
S¥ B is of OTP representation type for each v € Z?(B, K*). It m = i(K) +1,
i(K) # 0, then there exist elements 71,...,vm—1 € K* such that S*G, :=
(Gp, S, 715+ -, Ym—1,1 + X] is the valuation domain in the field T#G,. By
Proposition the algebra S*G := S*G), ®g SYB is of OTP representation
type, for any v € Z%(B, K*). If K is a splitting field for some K-algebra
K"B then, by Lemma the algebra S*G := SG, ®s SVB is of OTP
representation type for every p € Z2(Gp, 2). =

PROPOSITION 3.3. Letp = 2 and {2 be a subgroup of S* generated by K*,
(8*)? and f(X), where f(X) =1 (mod X) and f(X) # 1 (mod X?). IfG =
G2 x B is of OTP projective (S, £2)-representation type then m < i(K) + 2
or K is a splitting field for some K-algebra KV B.

Proof. Apply the arguments used in the proof of Theorem .

THEOREM 3.4. Let p = 2, G = Go x B and 2 be the subgroup of S*
generated by K*, (S*)* and f(X), where f(X) =1 (mod X) and f(X) # 1
(mod X?2). The group G is of OTP projective (S, §2)-representation type if
and only if one of the following conditions is satisfied:

(i) m <i(K)+1;

(ii) m =i(K) + 2 and G2 has at least one invariant equal to 2;

(iii) K s a splitting field for some K-algebra KV B.

Proof. We may assume that f(X) =14 X. Let Ga = (a1) X -+ X (am),
H={g€G:g*=c¢€}, H= (h1) x --- x (hy,), where h; € (a;) for every
i€ {l,....,m}; u€ Z%(Ga,N2), v € Z*(B,K*) and A\ = u x v. Let S*G be
of OTP representation type and assume that K is not a splitting field for
the K-algebra K¥B. By Theorem we may suppose that

S“GQ = {G27 S) 71(1 + X)fl(X)4a 72(1 + X)zfQ(X)47 s 7lymfm(X)4]7
where v1,...,vm € K*, 1 € {0,2} and fi1(X),..., fm(X) are principal units
in S. Therefore

S'H = [H,S,m(1+ X),v2(1+ X)', 9, -, Y,
where i = 0 if |hy| > |ha|, and i € {0,2} if |hy| = 2, |ha| = 4. Denote by
{vp: h € H} a canonical S-basis of S¥H. If
v,%l =71(1 + X)ve, vf{Q :72(1+X)2’Ue,

(h1) x (h1h2), we shall
1, hence m < i(K) + 2.

then (v;lvhz) (71_272)% Since (h1) x (ha) =
assume that i = 0. By Lemma 2.7, m — 1 <i(K) +
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Let m = i(K) + 2, i(K) # 0 and H be a direct product of m cyclic
subgroups of order 4 each. Suppose that L := Klvp,,...,vp,, ,] is a field.
Let F := K[v?m, . ,v,%mil]. For each o € K there exists 8 € I such that

a = 2. The element S is uniquely expressible as

_ i . 212 2im—1
B = E Oigyevsim—1Vpy -+ Up " s

12yensbm—1

S . . . — n2
where i; = 0,1 and 4, € K. However, 0;,... i, = Migoo i1 for some

clm—1
Nig,...im—1 € F'. This implies 8 = p2 for p € L, and hence a = p4. It follows
that S*H contains the u-extended group algebra of a group of order 4 over S.
By Lemma[2.7] K is a splitting field for K B, a contradiction. Consequently,
G2 has at least one invariant equal to 2. The necessity is proved.

To prove the sufficiency, we assume that m < i(K) + 1 and we set

SMGQ - [G27 57'717 sy Ym—1, 1 + X]7
where v1,...,Ym-1 € K* and [K(\/fﬁ,...,,/'ym_l): K] =21 Ifm =
i(K)+2 and |an,| = 2, we put S*Gy = [G2, 5,71, ..., Ym—2, 1 + X, 1], where
Yy oy Ym—2 € K* and [K(\/*W, .. .,‘/’)/m_Q): K] = 2™~2_ Arguing as in
the proof of Theorem (3.1} we conclude that the algebra

S*G == S'Gy ®5 S”B

is of OTP representation type for any v € Z?(B, K*). »

PROPOSITION 3.5. Let K be an arbitrary field of characteristic p, S =
K[[X]], Gp a finite p-group and G = G, x B. The group G is of OTP
projective (S, (S*)P)-representation type if and only if one of the following
conditions is satisfied:

(i) p=2 and G is cyclic;
(i) K is a splitting field for some K-algebra KYB, where v €
Z*(B, (K*)P).

Proof. Let u € Z*(Gyp, (S*)P), v € Z*(B, (K*)P) and A = p x v. Assume
that p = 2 and G3 is non-cyclic. Then G = G3/GY is non-cyclic. The
restriction of p to G x GY is a coboundary [19, p. 42]. We may assume that
Lhy hy = 1 for all hy, he € GY. Denote G = G x B, let {u,: h € G2} be a
canonical S-basis of S#G5 corresponding to u, and set

U= @ 5"Galup —ue)
heGH\{e}
and Sﬂég = StGy/U. By Lemma the algebra SS‘G' = Sﬂéz ®s S¥B
is of OTP representation type if and only if K is a splitting field for K B.

If p # 2, we argue as in the case p = 2. This completes the proof of the
necessity.
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To prove the sufficiency, assume that p = 2, G5 is cyclic, and put S*Ga =
[Go, S, (1 + X)?], SAG = StGy ®5 SYB, where v € Z2(B,(K*)?) is an
arbitrary cocycle. By Proposition SAG is of OTP representation type.
If the condition (ii) holds, apply Lemma "

PROPOSITION 3.6. Let p =2, K be an arbitrary field of characteristic 2,
S = K[[X]], G2 a finite 2-group, and G = Gy x B. The group G is of OTP
projective (S, (S*)*)-representation type if and only if |G| = 2 or K is a
splitting field for some K -algebra KYB, where v € Z2(B, (K*)*).

Proof. Apply Proposition [3.5] and Lemma "

PROPOSITION 3.7. Let K be an arbitrary field of characteristic p, S =
K[[X]], Gp a finite p-group, and G = Gy x B. The group G is of OTP
projective (S, (K*)P)-representation type if and only if one of the following
conditions is satisfied:

(i) p=2, K is a perfect field and |Ga| = 2;
(ii) p=2, K is a non-perfect field and G is a cyclic group;
(iii) K is a splitting field for some K-algebra KYB, where v €
Z%(B, (K*)P).

Proof. Apply Propositions and Lemma .

4. On groups of purely OTP projective representation type. In
this section, K is an arbitrary field of characteristic p, t(K*) is the torsion
subgroup of K*, S = K[[X]] and G = G}, X B is a finite group, where G), is
a p-group, B is a p/-group and |G,| > 1, |B| > 1.

A short exact sequence of groups

E:1-D3%B->B->1

is called an extension of D by B. If (D) is contained in the center of B,
then E is called a central extension. If B is a finite group, then F is a finite
extension.

Let V' be a finite-dimensional vector space over K, GL(V') the group of
all automorphisms of V', 1y the identity automorphism of V', and let

15DsBYB1

be a finite central group extension. Denote by m: GL(V) — GL(V)/K*1y
the canonical group epimorphism. Let I" be an ordinary K-representation
of B in V such that f(d) € K*1y for any d € D. There is a projective
K-representation I" of B in V such that the diagram
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B-LoQL(v) T~ GL(V)/K*1y

v iid
B -1+ GL(V) —== GL(V)/K*1y

is commutative. We say that I" lifts projectively to the ordinary K-represent-
ation I" of B. If |D| = |[H?(B, K*)| and any projective K-representation of
B lifts projectively to an ordinary K-representation of B, then B is called a
covering group of B over K (see [19, p. 138]).

Here H?(B, K*)=Z%*(B, K*)/B?(B, K*) is the second cohomology group
of B over K* (see [19] p. 6]).

LEMMA 4.1. The group G = G, x B is of purely OTP projective S-re-
presentation type if and only if |Gp| = 2 or K is a splitting field for K¥B
for any v € Z*(B, K*).

Proof. See [5, p. 22|. u

Now we prove the main results of this section.

THEOREM 4.2. The group G = Gp, x B is of purely OTP projective
S-representation type if and only if one of the following two conditions is
satisfied:

(i) p=2 and |G2| = 2.

(ii) There exists a finite central group extension 1 — A — B—>B—1
such that any projective K -representation of B lifts projectively to
an ordinary K -representation of B and K is a splitting field for B.

Proof. By Proposition 2.9 in [4, p. 45|, K is a splitting field for all twisted
group algebras of B over K if and only if the condition (ii) holds. Hence the
theorem follows by applying Lemma .

PROPOSITION 4.3. Let Sj be the group of principal units in S. A group
G = G, x B is of purely OTP projective (S, S§)-representation type if and
only if |Gp| =2 or K is a splitting field for B.

Proof. By Theorem 3 in [1§], the group algebra SG is of OTP repre-
sentation type if and only if |Gp| = 2 or K is a splitting field for B. If
|Gp| = 2 then, by Lemma SAG is of OTP representation type for any
A\ € Z%(G, SE). Every cocycle v € Z?(B, S) is a coboundary, hence S”B
is isomorphic to SB. If K is a splitting field for B, then, by Lemma [2.3]
an algebra S*B = StG, ®g SB is of OTP representation type for any
w€ Z*(Gp, S). m

THEOREM 4.4. Let S = K[[X]] and G = Gp x B. Assume that either
t(K*) = t(K*)? for any prime q that divides |B'|, or every prime divisor
of |B'| is also a divisor of |B: B'|. Then G is of purely OTP projective
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S-representation type if and only if |G,| = 2 or there exists a covering group
B of B over K such that K is a splitting field for B.

Proof. By Proposition 2.10 in [4, p. 45|, K is a splitting field for any

twisted group algebra of B over K if and only if there exists a covering
group B of B over K such that K is a splitting field for B. Hence the
theorem follows by applying Lemma [£.1] =
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