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CIRCULAR CONE AND ITS GAUSS MAP
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Abstract. The family of cones is one of typical models of non-cylindrical ruled sur-
faces. Among them, the circular cones are unique in the sense that their Gauss map
satisfies a partial differential equation similar, though not identical, to one characterizing
the so-called 1-type submanifolds. Specifically, for the Gauss map G of a circular cone,
one has ∆G = f(G+C), where ∆ is the Laplacian operator, f is a non-zero function and
C is a constant vector. We prove that circular cones are characterized by being the only
non-cylindrical ruled surfaces with ∆G = f(G+ C) for a nonzero constant vector C.

1. Introduction. Since the late 1970s, much work has been done on
finite type immersions in Euclidean and pseudo-Euclidean spaces. An im-
mersion x of a manifold M into a Euclidean space Em is said to be of finite
type if it can be expressed as

x = x0 + x1 + · · ·+ xk

for some positive integer k, where ∆xi = λixi for some λi ∈ R, i = 1, . . . , k.
Here ∆ is the Laplacian operator defined on M . If each xi is non-zero some-
where, and λi are all different, x is said to be of k-type. Minimal submanifolds
of Euclidean spaces or minimal submanifolds of spheres are of the simplest
finite type, i.e., 1-type. The references [c1, c2] list many papers dealing with
finite type immersions from various points of view.

The notion of finite type immersion naturally extends to smooth func-
tions on submanifolds of Euclidean spaces or pseudo-Euclidean spaces. The
most natural among them is the Gauss map of a hypersurface.

B.-Y. Chen and P. Piccini ([cp]) initiated the study of Gauss maps of
finite type, classifying compact surfaces with 1-type Gauss map, that is,
∆G = λ(G+C), where C is a constant vector and λ ∈ R. Several geometers
also studied submanifolds of Euclidean spaces or pseudo-Euclidean spaces
with finite type Gauss map ([bb, cck, ck, cky, ky1, ky2, ky3]).

However, some submanifolds such as helicoids in E3 satisfy ∆G =
f(G + C) for some smooth function f and a constant vector C, i.e., its
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parametrization x = x(u, v) defined by

x(u, v) = (u cos v, u sin v, hv), h 6= 0,

has the Gauss map

G =
1√

h2 + u2
(h sin v,−h cos v, u).

Its Laplacian ∆G is given by

∆G =
2h2

(h2 + u2)2
G.

On the other hand, the circular cone Ca with parametrization

x(u, v) = (v cosu, v sinu, av), a ≥ 0,

has the Gauss map

G =
1√

1 + a2
(a cosu, a sinu,−1).

Consequently, its Laplacian ∆G satisfies

∆G =
1

v2

(
G+

(
0, 0,

1√
1 + a2

))
.

Based on these examples, we define

Definition 1.1. An oriented (m − 1)-dimensional submanifold of the
Euclidean space Em is said to have pointwise 1-type Gauss map if it satisfies
the condition

∆G = f(G+ C),

where f is a non-zero smooth function on M and C is some constant vector.
In particular, if C is zero, the Gauss map G is said to be of the first kind.
Otherwise, it is said to be of the second kind ([cck, ck, cky, ky2]).

In the present paper, we completely classify non-cylindrical ruled surfaces
in E3 with pointwise 1-type Gauss map of the second kind. If f is not
constant, the surface is said to be proper. So, a non-proper pointwise 1-type
Gauss map is just of the ordinary 1-type.

Throughout this paper, we assume that all the geometric objects are
smooth and all surfaces are connected unless otherwise mentioned.

2. Preliminaries. Let M be an oriented surface in E3. The map G :
M → S2 ⊂ E3 which sends each point of M to the unit vector normal to M
at the point is called the Gauss map of the surface M. Here S2 is the unit
sphere in E3 centered at the origin. For the matrix g̃ = (g̃ij) consisting of
the components of the metric on M , we denote by g̃−1 = (g̃ij) (resp. G) the
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inverse matrix (resp. the determinant) of the matrix (g̃ij). The Laplacian ∆
on M is, in turn, given by

∆ = − 1√
G

∑
i,j

∂

∂xi

(√
G g̃ij ∂

∂xj

)
.

In view of the results of [cck, ck, ky2] concerning the mean curvature,
we have

Lemma 2.1. Let M be a surface in E3. Then the mean curvature H is
constant if and only if the Gauss map G is of pointwise 1-type of the first
kind.

In particular, if M is a ruled surface, the first and the third named
authors ([ck]) proved the following theorem:

Theorem 2.2 ([ck]). A ruled surface in E3 with pointwise 1-type Gauss
map of the first kind is an open portion of either a circular cylinder or a
helicoid.

Thus, we immediately have

Corollary 2.3 ([cky]). The helicoid is the only ruled surface in E3 with
proper pointwise 1-type Gauss map of the first kind.

3. Main results. Let M be a non-cylindrical ruled surface in E3 para-
metrized by x(s, t) = α(s) + tβ(s), where α is a base curve and β a director
vector field satisfying 〈α′, β〉 = 0, 〈β, β〉 = 1 and 〈β′, β′〉 = 1.

Remark. A non-cylindrical ruled surface M defined above with α′ = 0
is a (generalized) cone.

Suppose that M has a pointwise 1-type Gauss map of the second kind,
that is, the Gauss map G of M in E3 satisfies the condition

∆G = f(G+ C)

for a non-zero smooth function f : M → R and some non-zero constant
vector C.

We now define the smooth functions q, u, v, Q and R as follows:

q = 〈xs, xs〉, u = 〈α′, β′〉, v = 〈α′, α′〉,
Q = 〈α′, β × β′〉, R = 〈β′′, β × β′〉.

Then {β, β′, β×β′} forms an orthonormal frame along α. In this orthonormal
frame, we have

(3.1) α′ = uβ′ +Qβ × β′ and β′′ = −β +Rβ × β′.
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Next, the Gauss map G and the mean curvature H are expressed by

G =
xs × xt
‖xs × xt‖

= q−1/2{Qβ′ − (u+ t)β × β′},

H =
1

2
q−3/2(−Rt2 − (2uR+Q′)t− u2R− uQ′ + u′Q−Q2R).

Since G is of pointwise 1-type of the second kind, we have

(3.2)
1

2
q−7/2{2qB1β + (u+ t)A1β

′ +QA1β × β′}

+ q−7/2D1{Qβ′ − (u+ t)β × β′}
= q−1/2f{Qβ′ − (u+ t)β × β′}+ fC,

where we have put

A1 = − 2R′t4 + 2(−Q′′ + u′R− 4uR′)t3

+ 2

(
3u′Q′ + u′′Q−Q2R′ +

3

2
v′R− 2QQ′R− 3uQ′′ − 5u2R′ − vR′

)
t2

+ 2

(
3

2
v′Q′ − 3u′2Q+ 3u′Q2R+ 3uu′Q′ + 2uu′′Q− 2uQ2R′ + 3uv′R

− 4uQQ′R− 2u2Q′′ − u2u′R− 2u3R′ − vQ′′ − 2u′vR− 2uvR′
)
t

− 3u′v′Q+ 3v′Q2R+ 3uv′Q′ + 3u2v′R+ 2u′′vQ− 2vQ2R′

− 4vQQ′R− 2uvQ′′ − 4uu′vR− 2u2vR′,

B1 = Rt3 + (2Q′ + 3uR)t2 + (−3u′Q+ 3Q2R+ 4uQ′ + 5u2R− 2vR)t

− 3uu′Q+ 3uQ2R+ 3u2Q′ + 3u3R− vQ′ − 2uvR

and

D1 = R2t4 + (4uR2 + 2Q′R)t3

+ (−2u′QR+ 2Q2R2 + 6uQ′R+ 6u2R2 +Q′2 + 2Q2)t2

+ (−4uu′QR+ 4uQ2R2 + 6u2Q′R+ 4u3R2

− 2u′QQ′ + 2Q2Q′R+ 2uQ′2 + 4uQ2)t

+ (u′Q−Q2R− uQ′ − u2R)2 + 2vQ2.

If we take the inner product of equation (3.2) with β, β′ and β × β′ succes-
sively, we get

f〈C, β〉 = q−5/2B1,(3.3)

f(〈C, β′〉+ q−1/2Q) =
1

2
q−7/2(u+ t)A1 + q−7/2QD1
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and

f(〈C, β × β′〉 − q−1/2(u+ t)) =
1

2
q−7/2QA1 − q−7/2(u+ t)D1,

respectively. Combining the above equations, we have

4qQ2B2
1 − {(u+ t)λA1 + 2λQD1 − 2qB1µ}2 = 0,(3.4)

4q(u+ t)2B2
1 − {λQA1 − 2λ(u+ t)D1 − 2qB1ν}2 = 0,(3.5)

qA2
1 − {(u+ t)A1ν + 2D1Qν −QA1µ+ 2(u+ t)D1µ}2 = 0,(3.6)

where we have put λ = 〈C, β〉, µ = 〈C, β′〉 and ν = 〈C, β × β′〉.
Differentiating the constant vector C = λβ + µβ′ + νβ × β′ with respect

to the parameter s yields

(3.7) λ′ = µ, ν ′ + µR = 0 and λ+ µ′ − νR = 0.

On the other hand, (3.4) is a polynomial in t with functions of s as co-
efficients. Thus, the leading coefficient must be zero, i.e., µR + λR′ = 0.
Making use of (3.7), we see that λR is a constant. Since (3.5) is an identity,
the coefficient of the term t10 in (3.5) must be zero, which yields

(3.8) R2 = R2(λR+ ν)2.

Now, we have two possible cases.

Case 1: R is not identically zero on M. Consider the open set U =
{p ∈ M | R(p) 6= 0}. Suppose U 6= ∅. Then (3.8) implies that ν is constant
on a component U0 on U since λR is a constant. From (3.7), we also see
that µ = 0 on U0. Thus (3.7) shows that λ is a constant on U0 and so is R
on U0. By continuity, R is a non-zero constant on M . Using (3.8), we see
that ν is a constant on M since λR is a constant. Hence, λ is also a constant
on M . As ν is constant, (3.7) implies µ = 0 and so λ = νR.

Moreover, combining equations (3.4) and (3.6) with the above results,
we obtain

(3.9) R2A2
1 − 4Q2B2

1 = 0.

Also, the leading coefficient of (3.9) is zero, i.e.,

(3.10) Q2 − (Q′′ − u′R)2 = 0.

Suppose Q is not identically zero. Without loss of generality, we may assume
Q = Q′′ − u′R. Comparing the leading coefficients of equations (3.5) and
(3.6) after substituting Q = Q′′ − u′R in them, we have a contradiction.
Therefore, Q ≡ 0. Consequently, u is constant.

On the other hand, the second equation of (3.1) implies

(3.11) β′′′(s) + a2β′(s) = 0,

where a =
√
R2 + 1. Without loss of generality, we may assume that β

satisfies the initial conditions β(0) = (1, 0, 0), β′(0) = (0, 1, 0), β′′(0) =
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(−1, 0, R). Then the unique solution of (3.11) is

(3.12) β(s) =

(
1− 1

a2
+

1

a2
cos as,

1

a
sin as,

R

a2
− R

a2
cos as

)
.

We easily see that its torsion vanishes and the curvature is the non-zero
constant a. Since β itself is a spherical curve, M is a part of a circular cone.
In fact, its parametrization is given by x(s, t̄) = t̄β(s) +C0, where t̄ = u+ t
and C0 is a constant vector.

Case 2: R is identically zero on M. From (3.7), ν is a constant and we
also get λ+ λ′′ = 0. Suppose λ is non-trivial. Then we have

(3.13) λ(s) = A sin(s+ s0)

for some constants A and s0.

If we compute the leading coefficient with respect to t in (3.5) with
R = 0, we have

Q′2 − ν2Q′2 = 0.

Since ν is a constant, Q is a constant if ν2 6= 1. If Q = 0, the mean curvature
H vanishes on M , that is, M is minimal. This contradicts the hypothesis
that the Gauss map is of pointwise 1-type of the second kind. Hence Q is
a non-zero constant. Using the leading coefficient of (3.4), we obtain, from
(3.7) λu′′ + 3λ′u′ = 0. Solving the above equation, we get

(3.14) u′ = k1λ
−3

for some constant k1. Also, from the leading coefficient of (3.5), we have

(3.15) 9u′2 = (2λQ− 3νu′)2.

Putting (3.13) and (3.14) into (3.15), we obtain k1 = 0 and A = 0, a
contradiction. Therefore λ = 0. From (3.3), we easily get B1 = 0 and thus u
is a constant. Hence the mean curvature H vanishes on M, a contradiction.
Consequently, we have ν2 = 1.

Next, the leading coefficient of the left hand side of (3.4) gives, by (3.7),

λQ′′ + 2λ′Q′ = 0.

If λ is non-zero, the solution of the above equation is given by

(3.16) Q′ = k2λ
−2

for some constant k2. Moreover, we also get

µQ′′(QQ′′ +Q′2 + 2Q2) = 0,

which is derived from the leading coefficient in (3.6) using ν2 = 1. From
(3.7), we easily get µ 6= 0. Hence we have

(3.17) Q′′(QQ′′ +Q′2 + 2Q2) = 0.
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Putting (3.13) and (3.16) into (3.17), we obtain k2 = 0 and so Q is a
constant. Since the mean curvature H is non-vanishing, Q is a non-zero
constant. Since ν2 = 1, from the leading coefficient of (3.5), we have

(3.18) λQ− 3νu′ = 0.

Putting (3.13) and (3.14) into (3.18), we obtain λ = 0. In view of those
facts, equation (3.3) shows that B1 = 0. This implies that u′ = 0. Hence,
the mean curvature H vanishes, a contradiction. Thus, Case 2 can never
occur.

Conversely, as shown in the Introduction, a circular cone has pointwise
1-type Gauss map of the second kind.

Consequently, we have

Main Theorem 3.1 (Characterization). Let M be a non-cylindrical
ruled surface in E3. Then M has pointwise 1-type Gauss map of the sec-
ond kind if and only if M is a part of a circular cone.

Using a result in [cck], we obtain

Corollary 3.2. Let M be a surface of E3. Then the following are equiv-
alent:

(i) M is a non-cylindrical ruled surface with pointwise 1-type Gauss
map of the second kind.

(ii) M is a surface of revolution of the polynomial kind with pointwise
1-type Gauss map of the second kind.

(iii) M is a part of a circular cone.

Combining the results in [cky] with the above characterization, we have

Main Theorem 3.3. Let M be a ruled surface in E3. If M has pointwise
1-type Gauss map, then M is a part of a plane, a circular cylinder, a helicoid,
a cylinder of an infinite type or a circular cone.
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