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Abstract. We describe the structure of artin algebras for which all cycles of inde-
composable finitely generated modules are finite and all Auslander—Reiten components
are semiregular.

1. Introduction and the main results. Throughout the paper, by an
algebra we mean a basic indecomposable artin algebra over a commutative
artin ring K. For an algebra A, we denote by mod A the category of finitely
generated right A-modules, by ind A the full subcategory of mod A formed
by the indecomposable modules, and by D : mod A — mod A°P the standard
duality Homg (—, E'), where E is a minimal injective cogenerator in mod K.

The Jacobson radical rads of mod A is the ideal generated by all non-
invertible homomorphisms between modules in ind A, and the infinite radical
rad% of mod A is the intersection of all powers rad’y, i > 1, of rad4. By
a result due to M. Auslander [4], rad} = 0 if and only if A is of finite
representation type, that is, ind A admits only a finite number of pairwise
non-isomorphic modules. On the other hand, if A is of infinite representation
type then (rad%’)? # 0, by a result proved in [6].

We denote by I'y the Auslander—Reiten quiver of A, and by 74 and
Tzl the Auslander—Reiten translations D Tr and Tr D, respectively. We do
not distinguish between an indecomposable module in ind A and the vertex
of I'y corresponding to it. By a component of I’y we mean a connected
component of the translation quiver I'4. A component C of I'4 is called
regular if C contains neither a projective module nor an injective module,
and semireqular if C does not contain both a projective module and an
injective module. The shapes of regular and semiregular components of the
Auslander—Reiten quivers I'4 of algebras A have been described by S. Liu
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in [16], [I7] and Y. Zhang (regular components) in [41]. An algebra A is said
to be of semireqular type if all components in I'4 are semiregular.

In the paper we are concerned with the problem of describing the algebras
A of semiregular type. This class of algebras contains: the hereditary algebras
of infinite representation type [8|, |[26], the tilted algebras with semiregular
connecting components [10], [18], [28], the canonical algebras [27], [29], and
the quasitilted algebras of canonical type [7], [I5]. We also note that every
algebra A with I'4 having all components semiregular is of infinite represen-
tation type.

A prominent role in the representation theory of algebras is played by
cycles of modules (see [22], [33]). Recall that a cycle in the module category
mod A of an algebra A is a sequence

Xo & x, 2 I x, = X

of non-zero non-isomorphisms in ind A, and such a cycle is said to be fi-
nite if the homomorphisms fi,..., f; do not belong to rad%’. We mention
that the Auslander—Reiten quiver I'4 admits at most finitely many 74-orbits
containing indecomposable modules not lying on cycles in mod A (directing
modules) [35]. Following [3] an algebra A is said to be cycle-finite if all cycles
in mod A are finite. The class of cycle-finite algebras contains: the algebras of
finite representation type, the tame tilted algebras [12], [27], the tame double
tilted algebras [24], the tame generalized double tilted algebras [25], the tubu-
lar algebras [27], [29], the iterated tubular algebras [23], the tame quasitilted
algebras [15], [38], the tame generalized multicoil algebras [21], the algebras
with cycle-finite derived categories [2], and the strongly simply connected
algebras of polynomial growth [36]. The representation theory of arbitrary
cycle-finite algebras is still only emerging. We refer to the survey article [19]
for some general results on the structure of finite-dimensional cycle-finite
algebras over an algebraically closed field, and their module categories.

In Section 3 we introduce the concept of a coherent sequence B =
(By,...,By,) of tame quasitilted algebras of canonical type and the asso-
ciated algebra A(B), being a pushout glueing of the algebras By, ..., By.

The main aim of the paper is to prove the following theorem.

THEOREM 1.1. Let A be an algebra. The following statements are equiv-
alent:

(i) A is cycle-finite of semiregular type.
(ii) A is isomorphic to the algebra A(B) associated to a coherent sequence
B = (Bi,...,By) of tame quasitilted algebras of canonical type.

As a direct consequence of the above theorem and Theorem [3.5 we obtain
the following description of components in the Auslander—Reiten quivers of
cycle-finite algebras of semiregular type.
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COROLLARY 1.2. Let A be a cycle-finite algebra of semiregular type. Then
the Auslander—Reiten quiver I'4 of A consists of one postprojective compo-
nent, one preinjective component, and infinitely many semiregular tubes.

Following [33], the component quiver X4 of an algebra A has the com-
ponents of I'4 as vertices, and two components C and D are linked in X'4 by
an arrow C — D if rad}(X,Y) # 0 for some modules X in C and Y in D.
Then we obtain the following consequence of Theorems and

COROLLARY 1.3. Let A be a cycle-finite algebra of semiregular type. Then
the component quiver X4 of A is acyclic.

A crucial role in the proof of Theorem is played by the following
structure results.

THEOREM 1.4. Let A be a cycle-finite algebra of semireqular type. Then
A admits a tame concealed convex subcategory C such that all but finitely
many stable tubes of I'c are stable tubes of I'4.

THEOREM 1.5. Let A be a cycle-finite algebra of semireqular type, C' a
tame concealed convex subcategory of A and T¢ = (KC)AGA the family of all
stable tubes of I'c. The following statements hold:

(i) For each X € A, I's contains a unique semiregular tube T{*(C) con-
taining all modules of 7')\0.

(ii) The support B(C)=supp(T4(C)) of the family TA(C) = (T(C))rea
is a tame quasitilted algebra of canonical type and a convex subcat-
egory of A.

(iii) B(C) is a tame semiregular branch enlargement of C.

COROLLARY 1.6. Let A be a cycle-finite algebra of semireqular type and
C a component of I'a. Then there exists a tame concealed convex subcategory
C of A such that C is a component of I'p(c).

For basic background on the relevant representation theory we refer to
the books [1], [5], [27], [30], [31], [40].

2. Preliminaries. We recall some notation, concepts and results on
algebras and modules needed in our further considerations.

Let A be an algebra (basic, indecomposable) and ey, ..., e, be a set of
pairwise orthogonal primitive idempotents of A with 14 = e; + -+ + ey.
Then

e P,=¢;A, i€ {l,...,n}, is a complete set of pairwise non-isomorphic
indecomposable projective modules in mod A;
o [;=D(Ae;),i€{l,...,n}, is a complete set of pairwise non-isomorphic

indecomposable injective modules in mod A;
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e S; =top(P) =e;A/e;rad A, i € {1,...,n}, is a complete set of pair-
wise non-isomorphic simple modules in mod A;
e S; =soc(l;) for any i € {1,...,n}.

Moreover, F; = Enda(S;) = e;Ae;/ei(rad A)e;, for i € {1,...,n}, are divi-
sion algebras. The quiver Q4 of A is the valued quiver defined as follows:

e the vertices of Q4 are the indices 1,...,n of the chosen set e1,..., e,
of primitive idempotents of A;

e for two vertices ¢ and j in Q) 4, there is an arrow ¢ — j from 4 to j in Q4
if and only if e;(rad A)e;/e;(rad A)%e; # 0. Moreover, one associates
to an arrow ¢ — j in Q4 the valuation (d;, d;j), so we have in Q4 the
valued arrow

. (dij,di;)

L — ),
where the valuation numbers are d;; = dimp, ¢;(rad A)e; /e;(rad A)?e;
and d;; = dimp, e;(rad A)e;/e;(rad A)e;.

It is known that @4 coincides with the Ext-quiver of A. Namely, Q4 con-
(dijodiz) :
tains a valued arrow i ——2» j if and only if Ext}(S;,S;) # 0 and

dij = dimp, Ext}q(Si,Sj), d’z-j = dimp, Exth(Si,Sj). An algebra A is called
triangular provided its quiver @ 4 is acyclic (has no oriented cycle). We shall
identify an algebra A with the associated category A* whose objects are the
vertices 1,...,n of Q4, Homy«(i,j) = e;Ae; for any objects ¢ and j of A*,
and the composition of morphisms in A* is given by multiplication in A.
For a module M in mod A, we denote by supp(M) the full subcategory of
A = A* given by all objects i such that Me; # 0, and call it the support
of M. More generally, for a family C = (C;);er of components of I'4, we
denote by supp(C) the full subcategory of A given by all objects i such that
Xe; # 0 for some indecomposable module X in C, and call it the support
of C. Then a module M in mod A (respectively, a family C of components
in I'4) is said to be sincere if supp(M) = A (respectively, supp(C) = A).
Finally, a full subcategory B of A is said to be a convex subcategory of A if
every path in Q) 4 with source and target in B has all vertices in B. Observe
that, for a convex subcategory B of A, there is a fully faithful embedding of
mod B into mod A such that mod B is the full subcategory of mod A con-
sisting of the modules M with Me; = 0 for all objects i of A which are not
objects of B.

For algebras A, B and C such that C* is a common full subcategory of
A* and B*, we may consider the pushout category

D* = A* L B*
C’*

of A* and B* over C*, defined as follows:
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e the objects of D* are the objects of A* and of B*, where the common
objects from C* are counted only once;

e Homp-«(z,y) = Homy-(x,y) for objects z,y in A*;

e Homp-(z,y) = Homp«(z,y) for objects x,y in B*,

e Homp-«(z,y) = 0 and Homp-(y,z) = 0 for any objects = in A* but
not in B* and y in B* but not in A*.

We may also consider the associated algebra
D= AUB,
C

with (AgB)* = A* CITL B*, called the pushout algebra of A and B over C.

Note that the algebra C can be viewed as C = eAe = eBe for a common
idempotent e of A and B, the pushout algebra D is (as a K-module) the
pushout (A & B)/A(C) of the K-modules A and B over C, with A(C) =
{(¢,—c) € A® B | c € C}, multiplication in D is given by
((al, b1) + A(C)) ((CLQ, bQ) + A(C)) = (a1a2, blbg) + A(C)
for aj,as € Aand by,by € B, and 1p = (14, 1p)+ A(C) is the identity of D.
More generally, for a family of algebras Ai,..., A, and Cq,...,Cy_1,

with n > 3, such that C} is a common full subcategory of A and A}, for
any i € {1,...,n — 1}, we define the pushout category

ATCITJ*CI*—I A;‘l

1 n—1
of A}, ..., A} over C7,...,Cr_;, and the associated pushout algebra
Ayl U A
! 1 Coa "

of Aq,..., A, over C1,...,C, such that

* * *
(Alcl—‘l.”c,lilAn) _Al(%”'c'jlilA”'
Let A be an algebra and C be a component of I'4. Then C is said to be
postprojective if C is acyclic and each module in C belongs to the 74-orbit of a
projective module. Dually, C is said to be preinjective if C is acyclic and each
module in C belongs to the 74-orbit of an injective module. Moreover, C is
called a postprojective component of Fuclidean type (respectively, preinjective
component of Euclidean type) if C is a semiregular postprojective component
(respectively, a semiregular preinjective component) and admits a Euclidean
section. Further, a stable tube of I'4 is a component T of the form ZA./(7"),
for some positive integer r called the rank of T. A ray tube (respectively, a
coray tube) of I’y is a component C obtained from a stable tube by a finite
number (possibly zero) of ray insertions (respectively, coray insertions) [25],
[31]. By a semireqular tube of I'4 we mean a ray tube or a coray tube of I'4.
Following [32], a component C of Iy is said to be generalized standard if
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rady’ (X,Y) = 0 for all modules X and Y in C. Two components C and D of
I'y are said to be orthogonal if Hom4(X,Y) = 0 and Homyu (Y, X) = 0 for
all modules X in C and Y in D.

Let A be an algebra and X an indecomposable module in mod A. Then
X is said to be acyclic if X does not lie on an oriented cycle in I'4. Following
[20], the cyclic part .I'4 of I'4 is the translation quiver obtained by removing
all acyclic modules and the arrows attached to them. The connected compo-
nents of .I'4 are called cyclic components of I'4. It has been proved in [20],
Proposition 5.1] that two indecomposable modules X and Y belong to one
cyclic component of I'4 if and only if there is an oriented cycle in I'4 passing
through X and Y. We note that the cyclic part .7 of a semiregular tube T
of I'4 is a cyclic component of I'4 containing all but finitely many modules
of T.

The following result on the structure of semiregular components of the
Auslander—Reiten quivers of cycle-finite algebras was proved in [37, Propo-
sition 3.3].

PROPOSITION 2.1. Let A be a cycle-finite algebra and C be a semiregu-
lar component of I'a. Then C is a generalized standard component, and has
one of the following forms: a postprojective component of Euclidean type, a
preinjective component of Euclidean type, a ray tube, or a coray tube.

This leads to the following fact proved in [37, Corollary 3.4].

PROPOSITION 2.2. Let A be a cycle-finite algebra of semiregqular type.
Then A is a triangular algebra.

We also need the following lemma.

LEMMA 2.3. Let A be a cycle-finite algebra and C a semireqular tube
of I'y. Then supp(C) is a convex subcategory of A.

Proof. Let C = supp(C). Assume to the contrary that C' is not a convex
subcategory of A. Then Q4 contains a path

. (digiy dis)  (digig,di ) ) (dig_qisodi, 5,) .
=10 11 19— " —ilg] — 1s = ],

with s > 2, 4,7 in C and 41, ...,is_1 not in C. Since () 4 coincides with the
Ext-quiver of A, we have Ext}(S;,_,,S;,) # 0 for t € {1,...,s}. Then there
exist in mod A non-split exact sequences

0—=5,—=L—S5;, , —0

for all t € {1,...,s}. Clearly, Ly,...,Ls are indecomposable modules in
mod A of length 2. In particular, we obtain non-zero non-isomorphisms f; :
L, — L,y withIm f, = 5;,_, forr e {2,...,s}.

Consider now the ideal J in A of the form

J = Ae;(rad A)e;, (rad A) + (rad A)e;, _, (rad A)e; A
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and the quotient algebra B = A/J. Since i; and is_; do not belong to
C' = supp(C), for any module M in C we have Me;, =0 and Me;, , =0,
and consequently MJ = 0. This shows that C is a stable tube of I'z. More-
over, it follows from the definition of J that S;, is a direct summand of
the radical rad P of the projective cover P’ = ;B of S; in mod B and
Sis_y is a direct summand of the socle factor I7/S; of the injective envelope
I7 = D(Bej) of Sj in mod B. Further, since i and j are in C, there exist
indecomposable modules X and Y in the cyclic part .C of C such that S; is a
composition factor of X and S is a composition factor of Y. Then we infer
that Homp(P;", X) # 0 and Homp(Y,I;) # 0, because C is a component
of I'g. Observe that we have in C a path from X to Y, because X and Y are
in .C. Therefore, we obtain in mod A a cycle of the form

X2 Y =L =8, —»Lig—-—Ly— S, =P =X,

which is an infinite cycle, because X and Y belong to C but S;, and S;__,
are not in C. This contradicts the cycle-finiteness of A. Hence C' = supp(C)
is indeed a convex subcategory of A. =

We also recall the following concept. For an algebra A, a family C =
(Ci)ier of components of I'y is said to be a separating family in mod A if
the components in I'4 split into three disjoint families, P4, C4 = C and Q4,
such that the following conditions are satisfied:

(S1) C4 is a sincere family of pairwise orthogonal generalized standard
components;

(S2) Hom4(Q4,P4) =0, Homy(Q4,C4) = 0, Hom (CA, PA) = 0;

(S3) every homomorphism from P4 to Q4 in mod A factors through
add(C4).

Moreover, if (S1), (S2) and the condition

(S3*) every homomorphism from P4 to Q4 in mod A factors through
add(C;) for any i € T

are satisfied, then C is said to be a strongly separating family in mod A
(see [21], [22], [27]). We then say that C* separates (respectively, strongly
separates) PA from Q4.

We shall also use the following lemmas on almost split sequences over
triangular matrix algebras (see [27, (2.5)], [39, Lemma 5.6]).

LEMMA 2.4. Let R and S be algebras, M an S-R-bimodule and A =
[g%f] the matriz algebra defined by the bimodule sMpg. Then an almost
split sequence

0=-X—=>Y—>2—-0
in mod R is almost split in mod A if and only if Homp(M,X) = 0.



218 J. BIALKOWSKI ET AL.

LEMMA 2.5. Let R and S be algebras, N an S-R-bimodule and I' =
[lg D(SN)} be the matriz algebra defined by the dual R-S-bimodule D(N) =

Hompg (N, E). Then an almost split sequence
0=-X—=Y =20
in mod R is almost split in mod I" if and only if Homg(Z, N) = 0.

3. Tame quasitilted algebras of canonical type. In this section we
recall the structure of the Auslander—Reiten quivers of representation-infinite
tilted algebras of Euclidean type and tubular algebras, and then describe
the structure of the Auslander—Reiten quivers of tame quasitilted algebras
of canonical type.

By a tame concealed algebra we mean a tilted algebra C = EndH( ),
where H is a hereditary algebra of Euclidean type AH, Alg, An, ]Bn, (Cn,
IB%Cn, BDn, (C]D)n, ]D)n, E6, E7, Eg, F41, F42, Ggl, or GQQ (5ee [8]) and T
is a (multiplicity-free) tilting H-module from the additive category of the
postprojective component of I'r7. The Auslander—Reiten quiver I'¢ of a tame
concealed algebra C' is of the form

Ie=P°uTULQY,
where P is a postprojective component of Euclidean type containing all
indecomposable projective C-modules, Q¢ is a preinjective component of
Euclidean type containing all indecomposable injective C-modules, and 7¢
is an infinite family of pairwise orthogonal generalized standard stable tubes
strongly separating P¢ from QC.

More generally, by a tilted algebra of Euclidean type we mean a tilted al-
gebra B = Endy(T), where H is a hereditary algebra of Euclidean type
and T is a (multiplicity-free) tilting module in mod H. Assume B is a
representation-infinite tilted algebra of Euclidean type. Then one of the fol-
lowing holds:

(1) B is a domestic tubular (branch) extension of a tame concealed alge-
bra C and

g =PPuTBUQ",
where PB = PC is the postprojective component of I', T2 is an infinite
family of pairwise orthogonal generalized standard ray tubes, obtained from
the family 7C of stable tubes of I'c by ray insertions, QF is a preinjective
component of Euclidean type containing all indecomposable injective B-
modules, and 7 strongly separates P2 from QF;

(2) B is a domestic tubular (branch) coextension of a tame concealed
algebra C' and

rg=P?uT?UQ”
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where P is a postprojective component of Euclidean type containing all
indecomposable projective B-modules, 77 is an infinite family of pairwise
orthogonal generalized standard coray tubes, obtained from the family 7€
of stable tubes of I'c by coray insertions, Q8 = Q¢ is the preinjective
component of I'c, and 77 strongly separates P? from QF.

By a tubular algebra we mean a tubular (branch) extension (equivalently,
tubular (branch) coextension) of a tame concealed algebra with the Euler
quadratic form positive semidefinite of corank 2 (see [13], [14], [27], [29)]).
By general theory, a tubular algebra B admits two different tame concealed
convex subcategories Cj and Co such that B is a tubular (branch) extension
of Cy and a tubular (branch) coextension of Cy, and the Auslander—Reiten
quiver I'g is of the form

rs=Pf uTPU (U 77) uTZ U ek,
qeQt
where Pég = P is the postprojective component of I Cos 763 is an infinite
family of pairwise orthogonal generalized standard ray tubes with at least
one projective module, obtained from the family 7¢° of stable tubes of I Co
by ray insertions, Q8 = Q%> is the preinjective component of I ., TE is
an infinite family of pairwise orthogonal generalized standard coray tubes
with at least one injective module, obtained from the family 7> of stable
tubes of I'c__ by coray insertions, and, for each ¢ € QT (the set of positive
rational numbers), 7'qB is an infinite family of pairwise orthogonal generalized
standard stable tubes. Moreover, for any ¢ € QT U {0, 00}, the family 7;3
strongly separates P2 U (Up<q T.2) from (Upsq TE)u QFb.
The following characterizations of tame concealed and tubular algebras
have been established in [37, Theorem 4.1].

THEOREM 3.1. Let A be an algebra. The following statements are equiv-
alent:

(i) A is cycle-finite and I'4 admits a sincere stable tube;
(ii) A is either tame concealed or tubular.

An algebra is said to be minimal representation-infinite if A is of infinite
representation type and, for every non-zero two-sided ideal I of A, A/I is
of finite representation type. Then we have the following characterization of
representation-infinite cycle-finite algebras, which is a consequence of a more
general result proved in [34, Theorem 4.1].

THEOREM 3.2. Let A be an algebra. The following statements are equiv-
alent:

(i) A is a minimal representation-infinite and cycle-finite algebra;
(ii) A is a tame concealed algebra.
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Our next aim is to describe the tame quasitilted algebras of canonical
type and their Auslander—Reiten quivers.

Let C be a tame concealed algebra and 7 the family of all stable tubes
in I'c. By a semireqular branch enlargement of C we mean an algebra of the
form

D M 0
B= |0 C D(N)|,
0 0 H
where
B = [D M] and B = ¢ D(N)]
0 C 0 H

are respectively a tubular extension of C' and a tubular coextension of C' in
the sense of [27], (4.7)] (see also [31], Chapter XV]), and no tube in 7¢ admits
both a direct summand of M and a direct summand of N (see [I5], [38]).
Then B is a quasitilted algebra of canonical type, and B(") and BY are called
the right part and the left part of B, respectively. Moreover, following [3§],
B is said to be a tame semiregular branch enlargement of C' if B(") and B")
are tilted algebras of Euclidean type or tubular algebras. Finally, by a tame
quasitilted algebra of canonical type we mean a tame semiregular branch
enlargement of a tame concealed algebra. We note that tame quasitilted
algebras of canonical type are quasitilted algebras in the sense of [9], that
is, algebras A of global dimension at most 2 and with every indecomposable
module in mod A of projective or injective dimension at most 1.

The following characterization of tame quasitilted algebras of canonical
type follows from [I5, Theorem 3.4] and [38, Theorem A].

THEOREM 3.3. Let A be an algebra. The following statements are equiv-
alent:

(i) A is a tame quasitilted algebra of canonical type;
(ii) A is a cycle-finite quasitilted algebra of canonical type;
(iii) A is cycle-finite and 'y admits a separating family of semiregular
tubes;
(iv) A is cycle-finite and I'y admits a strongly separating family of semi-
reqular tubes.

In particular, we obtain the following theorem on the structure of the
Auslander—Reiten quiver of a tame quasitilted algebra of canonical type.

THEOREM 3.4. Let B be a tame quasitilted algebra of canonical type.
Then the Auslander—Reiten quiver I'g of B has a disjoint union decomposi-
tion

rg=P’vTPVv QP
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where

(i) TB is a sincere family of pairwise orthogonal generalized standard
semireqular tubes strongly separating PP from QF;

(i) of BW s a tilted algebra of Euclidean type, then P is the unique
postprojective component pBY of I'gay, and contains all indecom-
posable projective BW _modules;

(iit) of BY is a tubular algebra, then

,PB _ ,POB(I) U76B<l) U ( U EB(Z))v

qeQ+

and 73(’)9(” U%B(”contains all indecomposable projective B -modules;
(iv) of B") s a tilted algebra of Euclidean type, then QF is the unique
preinjective component QB(T) of I'gy, and contains all indecompos-
able injective B -modules;
(v) if B") is a tubular algebra, then

oB — ( U 77}3(70) U Togm U QoBo(T)v

qeQt

and T£(” UQOBO(T)contains all indecomposable injective B -modules;
(vi) every indecomposable projective B-module belongs to PB UTE;
(vii) every indecomposable injective B-module belongs to TP U QF.

A sequence B = (By, ..., By,) of algebras is said to be a coherent sequence
of tame quasitilted algebras of canonical type if the following conditions are
satisfied:

(1) By,..., B, are tame quasitilted algebras of canonical type,
(2) forn >2and i € {1,...,n — 1}, Bi(r) = Bi(le and it is a tubular
algebra.
For a coherent sequence B = (By,..., B,) of tame quasitilted algebras of

canonical type, we define the algebra A(B) in the following way: A(B) = B,
for n = 1, and A(B) is the pushout algebra

By U-- U B,=B; U - U By,
B<T) B(") B(l) B(l)
1 n—1 2 n

for n > 2. We note that each B;, for i € {1,...,n}, is a convex subcategory
of A(B). We have the following consequence of Theorem [3.4]

THEOREM 3.5. Let B = (Bi,...,By,) be a coherent sequence of tame
quasitilted algebras of canonical type and A = A(B) the associated algebra.
Then the following statements hold:

(i) A is a cycle-finite algebra of semireqular type.
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(ii) The Auslander—Reiten quiver I'y of A has a disjoint union decompo-

sition
Iy=PBu ( U EB)UQB
qcQ},
where QL = QN [1,n], and the following statements hold:
(a) If B%l) is a tilted algebra of Fuclidean type, then PP = PBY) is
a unique postprojective component of I'4.
(b) If By) 1s a tubular algebra, then

(1) B(l) B(l> ]B(l)
PB:PBl :Pol U76 1 U( U 7:11 >,

qeQt

and 7739 s a unique postprojective component of I'a.

(c) If Bg) is a tilted algebra of Euclidean type, then QF = QB’(“T) 18
a unique preinjective component of I'4.

(d) If BT(ZT) 1s a tubular algebra, then

B BY B B B
QF = 0 :(U T )uToof Ul

qeQt

(r) . . . .
and QB is a unique preinjective component of I's.
(e) For each v € {1,...,n}, TB = TPB is a family (7;I:BA)A€AT of
patrwise orthogonal generalized standard semireqular tubes.

(f) Foreachq € QL\{1,...,n}, 7:13 is a family (EI?A)AEA(; of pairwise

orthogonal ge@emlized standard stable tubes.
(g) For each q € QL, we have

HomA<<pL>Jq7;B> U Q% PR U (ngnﬁ)) — 0.

(h) For each q € QL, every homomorphism from P® U (Up<q T,) to
(Up>q T2)U QP factors through add(7;1?5/\) for any A € Ay.
Proof. The statement (i) is a direct consequence of (ii). Therefore we will
prove that I'y has the structure and properties described in (ii).
For n = 1, the statement (ii) follows from Theorem because then
A(B) = Bj is a tame quasitilted algebra of canonical type.
Assume n > 2. For a positive integer i, we set

§+1:Qﬂ(%1+1) and @24_1:@(7[2,1—{—1]
Observe that there are order-preserving bijections of sets

§+1 — Q" and @24-1 — {0} uQt U {oo}.
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Applying Theorem [3.4] we may describe the Auslander-Reiten quivers I'p,
of the algebras B;, i € {1,...,n}, as follows:

e ['p, has the form
0) B(r> B B
I'p, =PH uTBlu(U )UTOO UQs
q€@2

(r)

. @ . ..
because B, ’ is a tubular algebra, where PB1 is a postprojective com-

ponent of Euclidean type if B%l)

and 77351) is of the form

0 ) 0) 0)
pBi =Pl U u( U 7% ),

is a tilted algebra of Euclidean type,

Q

qeQ*
if Bgl) is a tubular algebra;
e if n>3and i€ {2,...,n— 1}, then I'p, is of the form
B(l B(l> B(l> ) B(” B(’") B(’")
FB_POZLNBZU(U JuThu (U™ )ume vk,
QEQ27 qe@wl

because Bi(l) and BZ-(T) are tubular algebras;
e [’ has the form

() (1) Q] (r)
FB — B TB ( U 7;Bn > UTBnUQBn ,
qeQr!

()

. (r) . s
because By’ is a tubular algebra, where QP»" is a preinjective com-

ponent of Euclidean type if Bff) is a tilted algebra of Euclidean type,
and QB’(:) is of the form

(r) (r) () ()
QBn :<U7;Bn>u7'£n UQg;n
qeQ*t
if BT(Z") is a tubular algebra.
For each r € {1,...,n}, we define T,2 = T5". Observe that 7,® is a family

’7; " A € A, of pairwise orthogonal generalized standard semiregular tubes
of I'g,. Formn >3 and i € {1,...,n—1}, we have BZ«(T) = BZ-(_?l, and hence we

(r) 0 .
may define T]B 7;3 = TBZ“ for any ¢ € Q}, ;. We note that, for each

q € Q 11 q is a family T , A € Ay, of pairwise orthogonal generalized
standard stable tubes of FB and I'p
Now, consider the algebras

AB)D =B, U --- U B;=B, U --- UB;
B{" B B  BW

i+1°
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for i € {2,...,n}. Observe that A(B)? is a tubular extension of B; us-
(r)
ing modules from stable tubes of the family To]jl , and consequently the

Auslander—Reiten quiver I” Am)@ of A(B)? has a disjoint union decomposi-

tion
(l) (r)
FA(B)(Q) =ph ( U TB> U QP:
q€Q2
if n =2, and

) B( r) B(v")
q€QN[1,3)
if n > 3. In particular, if n = 2, then A(B)?) = A(B) = A and I'4 has the
required disjoint union decomposition with P® = PBY) and QP = QBS).
Assume now that n > 3,i € {1,...,n — 1}, and FA(]B)(i> has the disjoint
union decomposition

(1) (r) (r)
ygyw =PP1 U ( U 7:}5‘) uTE Uk
q€QN(L,i+1)
We note that A(B)(+1) is a tubular extension of A(B)® using modules from

(r)
stable tubes of the family Tofi . Then the Auslander—Reiten quiver I” A(B) (D)

of A(B)(*Y has a disjoint union form

FA(IB)(“‘U = ’P ( U TIB) U QB’H
qEQH—I
ifi=n—1, and
0 B
FA(B)('H»l) == PBl U < U T]B> 7’Bl+1 U Q 2+1
q€QN[1,i+2)
if ¢ < n — 1. Hence, it follows by induction on 4 that I'y has the required
disjoint union decomposition

n=7ru(|J 77)ue?
q€Q}
with P® = PB() and QF = QB , and the families of tubes 7;18, qe Q. =
QnN[1, n], described above. Consequently, we have proved that the conditions

(a)—(f) are satisfied.
The statements (g) and (h) follow from the fact that

e for any r € {1,...,n}, T2 = TB is a strongly separating family of
semiregular tubes of I'p,_,
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, (r)
e for any ¢ € Qj ; withi € {1,...,n — 1} and n > 3, ’EB = 7:131 =
B
T, " is a strongly separating family of stable tubes of ooy =Ty =
i i+1

4. Proof of Theorem[1.4] Let A be a cycle-finite algebra of semiregular
type. Then A is of infinite representation type and it follows from Theorem
that there is an ideal I in A such that C' = A/I is a tame concealed
algebra. Let

Ie=P°vTVvQ°
be the disjoint union decomposition of I'c, where P is a postprojective
component containing all indecomposable projective C-modules, Q¢ is a
preinjective component containing all indecomposable injective C-modules,
and 7¢ is an infinite family of pairwise orthogonal generalized standard
stable tubes strongly separating P¢ from Q. Then Theorem follows
from Theorem and the following theorem.

THEOREM 4.1. Let A be a cycle-finite algebra of semiregular type, C a
tame concealed quotient algebra of A, and T = (T)\C)AEA the family of all
stable tubes of I'c. Then the following statements hold:

(i) For any A\ € A, I'x contains a semiregular tube TA(C) containing
all modules of 7j\c.
(i) TA(C) # EA(C) for any X\ # p in A.
(ili) For all but finitely many A € A, we have T,A(C) = TL.
(iv) C is a convex subcategory of A.

Proof. (i) Let A € A. Then, for any two indecomposable C-modules X
and Y lying in 7.C, there exists a cycle

X=X x, & . Inx —x

of irreducible homomorphisms in mod C' between indecomposable modules
from T,¢ and with X, =Y for some s € {1,...,7 —1}. Since C is a quotient
algebra of A, this cycle is also a cycle in mod A, and hence fy,..., f, do
not belong to rad®y’, by the assumption on A. Then it follows that there is
a cycle of irreducible homomorphisms between indecomposable modules in
mod A passing through the modules Xy, X1,...,X,. In particular, the mod-
ules X = Xy and Y = X, lie in the same component of I'4. Therefore, there
exists a component T1(C) in I'4 containing all modules of the stable tube
T.¢. Observe also that T,;4(C) contains oriented cycles and is semiregular,
because all components in I'4 are assumed to be semiregular. Applying now
Proposition we conclude that 7j\A(C) is a semiregular tube.

(ii) Take A # p in A. Assume to the contrary that T,4(C) = 7;;4(0).

Since TA(C) = 7;‘4(0) is a semiregular tube containing all indecomposable
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modules of 7;0 and '7;0, we conclude that there are indecomposable modules
U e TAC and W € 7;0, and sectional paths of irreducible homomorphisms in
mod A between indecomposable modules in 74(C) of the forms

U=Uy 25U, %5 2 u,=vV,
corresponding to arrows of 7;‘4(0) pointing to the mouth,
| VAN 7NN v/ 74

corresponding to arrows of T{1(C) pointing to infinity, and with Us_1 =
TAV1. Moreover, 7')\‘4(0) admits full translation subquivers

i1 i—1 i—1 i—1
'HZ%H)HZ(l NS A —C R
AL z) o 79 Z9 = v;

for j € {1,...,t}, formed by parallel infinite sectional paths. Then it follows
from [16, Corollary 1.6] that the irreducible homomorphisms hy, ..., h; are
of infinite left degree. Further, by [I1, Theorem 13.3], we have g5...g1 €
rad’ (U, V) \ rad’" (U, V). Hence we conclude that h...h1gs ... g1 belongs
to rad®™ (U, W) \ rad’'*! (U, W), and consequently Hom 4 (U, W) # 0. But
then Home (U, W) = Homy (U, W) # 0, which contradicts the orthogonality
of 7;0 and ’7;0 in mod C, because A # y. Summing up, we have proved that
I'y contains a family 74(C) = (T;4(C))xea of semiregular tubes such that
TA(C) contains all modules of 7,7, for any A € A.

(iii) Since I'4 admits only finitely many components containing projective
or injective modules, we conclude that 71(C) is a stable tube for all but
finitely many A € A. Take A € A such that 7,4(C) is a stable tube of I'4.
We claim that then 74(C) = T.¢. We know from (i) that 7,;4(C) contains
all modules of 7')\0, and hence infinitely many indecomposable C-modules.
Take an indecomposable module M in T;2(C). Then there exist in mod 4 a
sectional path of irreducible monomorphisms in mod A

M=My 2 My &5 2 My =2
and a sectional path of irreducible epimorphisms in mod A
N=Ny 5N ... N, =7

with N an indecomposable C-module from 7:\0. Hence Z is a quotient module
of N and M is isomorphic to a submodule of Z, and consequently M is a
C-module. This shows that 7,4(C)) consists of C-modules, and then T;4(C)
=TC.
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(iv) Since A is infinite, we may choose A € A such that T,A(C) is a
stable tube, and consequently 7j\A(C) = ’7;0. We note that C = supp(’T)\C),
because 7:\0 belongs to the strongly separating family 7 of stable tubes of
I'c. Finally, it follows from Lemma that the support C' = supp(7,¥) =
supp(T{1(C)) of the stable tube 73(C) of the cycle-finite algebra A is a
convex subcategory of A. m

5. Proof of Theorem Let A be a cycle-finite algebra of semiregular
type, C' a tame concealed convex subcategory of A, and 7¢ = (7')\0) AeA
the family of all stable tubes of I'c. Since C' is a tame concealed quotient
algebra of A, it follows from Theoremthat I contains a family 74(C) =
(TA(C))aea of semiregular tubes such that 7,4(C) contains all modules of
TC, for any A € A. Moreover, TA(C) # EA(C) for A # p in A. This
proves (i). We will prove that (ii) and (iii) hold.

Consider the family 74(C)) of all ray tubes in 74(C) and the family
TA(C)W of all coray tubes in T4(C), and their support categories

B(C)") = supp(TA)™) and B(C)Y = supp(TA(C)V).

We note that, for all but finitely many A € A, TA(C) = T is a stable
tube and belongs to both 74(C)") and T4(C)®, and hence C is a convex
subcategory of B(C)(™ and a convex subcategory of B(C)®.

Assume that B(C) = supp(74(C)) is not a convex subcategory of A.
Then () 4 contains a path

. . (dioil’dgoh) (diliz’d;ﬂz) (dis—lis’d;sfﬂs) . .
() i=1p i1 ls =]

with s > 2, 4,7 in B(C) and i not in B(C') for any t € {1,...,s —1}. Then
we have a path in mod A of the form

P=p 5. LR =P,

where P;, = e;, A are the indecomposable projective modules in mod A given
by the vertices i, for t € {0,1,...,s}, and the homomorphisms f; : P;, —
P;, |, are given by elements aj € e;, ,(rad A)e;, \ e;, ,(rad A)2ei,c for k €
{1,...,s}.

Since C is a convex subcategory of A, we have i ¢ Q¢ or j ¢ Qc. We
first prove that, if 4 belongs to B(C)("), then i € Q¢ and j is not in B(C)().

Assume that 7 belongs to B(C)("). Suppose to the contrary that i ¢ Qc.
Then P; is a projective module of a ray tube T{1(C). Moreover, rad P; is a
direct sum of indecomposable modules lying in 7:\A(C'), and hence the pro-
jective cover P(rad P;) of rad P; in mod A is a direct sum of indecomposable
projective modules P, with [ in B(C)(T). On the other hand, we have in
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mod A a commutative diagram of the form
P.

1

g1
/ lfl
P(rad P;) ——>rad P,

because Im f; is contained in rad P; = rad P;,. Since 41 is not in B (C’)(T), we
see that g1 € rad4(F;,, P(rad P;)). But this leads to a contradiction because
f1 is given by an element a1 € e;(rad A)e;, \ e;(rad A)%e;, . Therefore, indeed
1€ Qc.

We now show that j is not in B(C)("). Assume to the contrary that j is
an object of B(C)"). Observe that i € Q¢ forces j ¢ Qc. Hence P; lies in a
ray tube ’7;‘4(0) of T4(C). Since i5_1 is not in B(C), we conclude that P
is not in 7;LA(C'), and so fs is a non-zero homomorphism in rady’(P;, P;, ;).
Then there exists an infinite path in 7;;4(0) of the form

Pi=Zy— 21— = Zy— -

such that rada(Zm,, P, ,) = Homa(Zy, P;,_,) # 0 for any m € N. Since
1 € Q¢ and 7;0 is a sincere stable tube of I, there exists an indecomposable
module M in 7;0 such that rad%’(P;, M) =rada(P;, M) =Homa(F;, M) # 0.
Moreover every module of ’7;0 belongs to the cyclic part of 77;4 (C). Further,
there exists a positive integer mg such that all modules Z,, with m > my
belong to the cyclic part of EA(C’ ), because the ray tube EA(C ) may contain
only finitely many acyclic (directing) indecomposable modules. In particular,
we conclude that there is a path in 7LA(C’) from M to Z,,,. Summing up,
we obtain in mod A a cycle of the form

PP—-M--—=Zy =P, ,— =P, =P, =F,

which is not a finite cycle in modA because Homy (P;, M) = rady’ (P;, M),
a contradiction with the cycle-finiteness of A. Therefore, j is not in B(C)().
Observe that this also shows that B(C)() is a convex subcategory of A.

Further, it follows from [37, Proposition 2.3| that, for any ray tube 72’4(0 )
of T4(C) containing at least one projective module, all rays of 720 are com-
plete rays of ’EA(C). Since all tubes in 74(C) are pairwise orthogonal and
generalized standard, we conclude that B(C)(") is a tubular (branch) exten-
sion of the tame concealed algebra C and I" B(C)™) admits a strongly separat-
ing family TBOW = (’7'>\]3(C)<T> )aca of ray tubes, obtained from the strongly
separating family 7¢ = (7}\0) ac of stable tubes of I'c by the correspond-
ing ray insertions. Clearly, B (C’)(T) is cycle-finite as a convex subcategory of
the cycle-finite algebra A. In particular, Theorems [3-3] and [3.4] imply that
B (C)(”) is either a tilted algebra of Fuclidean type with all indecomposable
injective modules lying in the preinjective component, or a tubular algebra.
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The given path in Q4 also induces a path in mod A°P,
Ae; = Ae;, EIN Ae;, = EENINRLIN Ae;, = Ae;j

between indecomposable projective modules in mod A°P with homomor-
phisms gy, : Ae;, , — Ae;, given by ai € e;,_,(rad A)e;, \ €;, , (rad A)2eik,
for k € {1,...,s}, and consequently a path in mod A of the form

I =1, LENy §

Zsl———> —>I =1

with hy = D(gx) for any k € {1,...,s}. Then, applying dual arguments, we
prove that, if j belongs to B(C)® then j € Q¢ and i is not in B(C)Y. In
particular, B(C)® is also a convex subcategory of A.

Further, it follows from [37, Proposition 2.2| that, for any coray tube
777’4(0) of T4(C) containing at least one injective module, all corays of 7:70
are complete corays of 7;,A(C’). Since all tubes in 74(C) are pairwise or-
thogonal and generalized standard, we conclude that B(C)") is a tubular
(branch) coextension of the tame concealed algebra C', and I'gcy0) admits a

strongly separating family 75( @0 = (TB(C)( )),\6/1 of coray tubes, obtained
from the strongly separating family 7¢ = (T,")xca of stable tubes of I
by the corresponding coray insertions. Obviously, B(C’)(l) is cycle-finite as
a convex subcategory of the cycle-finite algebra A. In particular, Theorems
and [3.4imply B(C)® is either a tilted algebra of Euclidean type with all
indecomposable projective modules lying in the postprojective component,
or a tubular algebra.

It follows from the above discussion that i belongs to B(C)® but not
to C, and j belongs to B(C)) but not to C. In particular, P; is not in 74(C)
and P; is in T4(C). Moreover, either P; lies in the unique postprojective
Component of I'g(cyw, or B(C’)( ) is a tubular algebra and P lies in the family
’76 of ray tubes of I B(C)® containing the projective modules not lying
in the postprojective component, and all coray tubes with injective modules
in the family T8 'Y are coray tubes of T4(C). Then we conclude that
there is in mod A a path from F; to a module N in the ray tube 7:;4(0)
containing P; (see Theorem . But then we obtain in mod A an infinite
cycle of the form

P—-.--—>N—>...=>Z,,—+F,, = —F —F, =F,

because rad’ (Zm,, Pi, ) =Homa(Zp,, Pi, ,) for the module Z,,, in 7;;4(0)
described above.

Summing up, we have proved that B(C') is a convex subcategory of A
and a semiregular branch enlargement of C. Moreover, B(C) is cycle-finite.
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Hence it follows from Theorem that B(C) is a tame quasitilted algebra
of canonical type.

6. Proof of Theorem [1.1, The implication (ii)=-(i) follows directly
from Theorem [3.5] We will prove that (i) implies (ii).

Let A be a cycle-finite algebra of semiregular type. Then it follows from
Theorem [I.4] that A admits a tame concealed convex subcategory C. Ap-
plying now Theorem we conclude that there exists a convex subcategory
B(C) of A such that B(C) is a tame quasitilted algebra of canonical type,
and a tame semiregular branch enlargement of C'. Further, I'4 admits a fam-
ily T4(C) = (TA(C)) xea of semiregular tubes such that 74(C) is a strongly
separating family of semiregular tubes in I'g(c) and, for any A € 4, TA(C' )
contains all modules of the stable tube TC of the family 7¢ = (’TC) aca of
all stable tubes of I'c. Moreover, TA(C) = T.¢ if TA(C) is a stable tube. The
Auslander-Reiten quiver of I'g(c) has, by Theorem the disjoint union
decomposition

Ipcy = PpBC) y 7By 9B

where T8 = TA(C), and PBC) and QB(©) are of the following forms:

o If B(C)Y is a tilted algebra of Euclidean type, then PP() is the
unique postprojective component PB(C)U) of FB(C’)U)? containing all

indecomposable projective B(C')"-modules.
e If B(C)® is a tubular algebra, then

PB(C) _ PéB(C)(l) U'T C)() ( U TB(C)m)’
qeQt

where PB(C)

O]
To B s a strongly separating family of ray tubes of I'pieyw hav-

. . . 4 B(C)(l>
ing at least one projective module, and, for each ¢ € Q™, 7,

is a strongly separating family of stable tubes in I B(Cc)®, and hence

is the unique postprojective component of I’ B(C)®

Py BO)O TB(C)(Z) contains all indecomposable projective B(C)®-mo-
dules.
o If B(C)") is a tilted algebra of Euclidean type, then QF(©) is the

unique preinjective component PP O of B(C)(n, containing all in-

decomposable injective B(C)("-modules.
e If B(C)™ is a tubular algebra, then

QB(©) _ ( U EB(CW) U TBEO" | QBOW

qeQ*
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c)m (r)
where QOBO( is the unique preinjective component of I" B(C)™) ,’Too ©

is a strongly separating family of coray tubes of I B(C)™ having at
()

least one injective module, and, for each ¢ € QT 7:13 is a strongly

)(r)
separatlng family of stable tubes in I" B(C)™") and hence TB(C U
i(c) contains all indecomposable injective B(C)(")-modules.

We will prove that there exists a coherent sequence B = (Bj,...,By,)
of tame quasitilted algebras of canonical type such that A(B) is a convex
subcategory of A and, for the canonical decomposition

Dy =P*0 (U 77 v e?
q€Q},

of I'ym) with QL =Qn[1,n], we have:

e PP is a postprojective component of I A(B)S
e OP is a preinjective component of I’ A(B);
e Uyeqr 7, is a family of components of I's.

This implies that By) and By(f) are tilted algebras of Euclidean type and the
following statements hold:

@ . . . .

e PB = PBi" is a unique postprojective component of I’ B0
(r)

e OF = OB’ is a unique preinjective component of Iy

e For each r € {1,...,n}, T2 = TB is a family (T2

T’
orthogonal generalized standard semiregular tubes.

e For each ¢ € QL \ {1,...,n}, 7;3 is a family (EBA)AEAQ of pairwise
orthogonal generalized standard stable tubes.

e For each ¢ € Q}, we have
HomA<<U 7;}8) uoB pEU (U 7;3)> =
P>q p<q

e For each g € @}L, every homomorphism from PB U (Up<q 7;) B) to
(Upsq T2) U QF factors through add(’]jIB)\) for any A € A,.

A ) aeq, of pairwise

Moreover, for any i € {1,...,n}, B; is a maximal semiregular branch
enlargement of a tame concealed convex subcategory Cj; inside A. Further,

if n > 2, then B( N = 1(21, for i € {1,...,n}, are tubular algebras.

We have two cases to consider. Recall that it follows from Lemma 2.3
and Theorem that the support category supp(7) of a stable tube T of

I'y is either a tame concealed or tubular convex subcategory of A.
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Assume that A does not contain a tubular convex subcategory. Let C
be a tame concealed convex subcategory of A. Then, for the tame semireg-
ular branch enlargement B(C) of C, B(C)® and B(C)") are tilted alge-
bras of Euclidean type, and hence the one-element sequence B = (B;) with
B; = B(C) has the required properties, because A(B) = B(C) is a convex
subcategory of A and Tlﬁ = TB() is a family of semiregular tubes of I'4.

Assume now that A contains a convex tubular subcategory B. Observe
that then B is a tubular extension B") = B of a tame concealed convex
subcategory Cp of A and a tubular coextension BY) = B of a tame con-
cealed convex subcategory C,, of A, and we have the coherent sequence
(B(’”),B(l)) of tame quasitilted algebras of canonical type. Hence we may
choose a coherent sequence B = (By,...,B,) of tame quasitilted alge-
bras of canonical type with BY) = Bél),...,Bff_)l = B,(f) tubular alge-
bras, n > 2 maximal, and such that A(B) is a convex subcategory of A.
Then, there exist tame concealed convex subcategories C1, ..., C, of A such
that, for any ¢ € {1,...,n — 1}, Bi(r) is a maximal tubular extension of
C; and Bi(i)l is a maximal tubular coextension of C;4; inside A. This im-
plies that, if » > 3, then for any r € {2,...,n — 1}, we have B, = B(C,),
and hence TB = 75 = 7B() is a family of semiregular tubes of I'4.
Take now q € Qz+1 = Qn (i,i+ 1) for some i € {1,...,n — 1}. Then

(r)
’7; 7'q = (7;]:} Jxe, is a family of pairwise orthogonal generalized

standard stable tubes in the Auslander—Reiten quiver I 50 of the tubular

algebra Bi( ). We claim that 7;13 is a family of semlregularL tubes in I'y. In-

deed, since A is a cycle-finite algebra of semiregular type, for any A € A,
‘(T)
there exists a semlregular tube T in I'4 containing all modules of 'T 2

(r)

Assume 7T, )\ #T o for some A € A,. Then there is inside A a semiregular

B
branch enlargement D of Bi( ) using the strongly separating family 771

of stable tubes of I" B and D is a quasitilted algebra of wild canonical
type (see |15l Theorem 3.4]). Moreover, the Auslander—Reiten quiver I'p
contains acyclic components of the form ZA. (see [15, Theorem 4.3]), and
these components consist of modules lying on infinite cycles, by [35, Corol-
lary 2|. This contradicts the cycle-finiteness of A. Summing up, we have

proved that
B
U 7

q€QN(1,n)
is a family of components of I'4.

Applying Theorem we conclude that there exists a convex subcate-
gory B(C1) of A which is a tame semiregular branch enlargement of C; in-
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side A such that I’y admits a family 74(C1) = (T;2(C1))rea, of semiregular
tubes, which is a strongly separating family of semiregular tubes in I'p(c,)-
Moreover, for any A € Ay, T4(C1) contains all modules of the stable tube

7;\01 of the family 7 = (7:\01) a4, of all stable tubes of I'c,. Observe also

that B(C;)") = BY’), because Bj is a tubular algebra, and hence a maximal
tubular extension of C; inside A. Similarly, applying Theorem again,
we conclude that there exists a convex subcategory B(C,,) of A which is a
semiregular branch enlargement of C), inside A such that I'4 admits a family
TA(Cr) = (TA(Cn))rea, of semiregular tubes, which is a strongly separat-
ing family of semiregular tubes in I'g(c,). Moreover, for any A € A,, TA(Cy)
contains all modules of the stable tube 7:\0” of the family 76 = (7;\0") A,

of all stable tubes of I',. Observe also that B(C,,)") = BS), because B, is
a tubular algebra, and hence a maximal tubular coextension of C), inside A.
We define

B = (Bi,...,B),

where By = B(C4), B, = B(Cy), and B; = B; fori € {2,...,n—1} ifn > 3.
Clearly, B is a coherent sequence of tame quasitilted algebras of canonical
type. We claim that A(B) is a convex subcategory of A.

Consider the coherent sequences of tame quasitilted algebras of canonical
type BY) = (B, Bg, ...y Bp) and B = (B1,...,Bn-1,Bp), and the associ-
ated algebras A(BW") and A(B()). Observe that A(B) is a common convex
subcategory of A(B() and A(B(")), and

AB) = ABY) U ABM).
A(B)
Assume that A(B) is not a convex subcategory of A. Then Q4 contains a
path

L (igadig) L (g i) . (dig_yisodi,_yi)) .

1 =19 11 = —ilg ] ———— s =)
with s > 2, 4,j € A(B) and 4; not in A(B) for any ¢ € {1,...,s — 1}. Then
there exist elements ay, € e;,_, (rad A)e;, \e;,_, (rad A)%e;, for k € {1,...,s}.
Hence we have a path in mod A of the form

pi=p tp L. Ihp —p,

with P;, = e;, A the indecomposable projective modules in mod A given by
the vertices i; for t € {0,1,..., s}, and the homomorphisms fj : P;,, — P

iK1
given by the elements ay for k € {1,...,s}. Similarly, we have in mod A a

path of the form

P AN A NNy ey}

1s—1

with I;, = D(Ae;,) the indecomposable injective modules in mod A given by
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the vertices i; for ¢t € {0,1,...,s}, and the homomorphisms hy = D(gs) :
I, — I;,_, with gr : Ae;_, — Ae;, given by the elements a; for k €
{1, 1 ., s}. Applying arguments as in the proof of Theorem [1.5( we conclude
that i belongs to A(B®) but not to A( ) and j belongs to A(B ")) but not to
A(B). In particular, we have By # B; and B,, # B,,. Observe that then either

P; lies in the unique postprojective component of I'p,), or B(C1)® is a

tubular algebra and P, lies in the family TB(CI)(Z) of ray tubes of FB(Cl)U)‘ On

the other hand, P; belongs to a ray tube ’TB(C

r (r)
family TBEC)" = (7:\3(0") )aea, of ray tubes of I'g¢, y(r. Then, using the
structure of I'y(g) described in Theorem we conclude that we have in
mod A an infinite cycle of the form

of the strongly separating

P—-=Z=PF = =P =P, =F

with Z an indecomposable module in 7')\B(C")<T> such that Homy (P, Z)
# 0 and Homu(Z, P, ) = rad¥(Z, P;,_,) # 0. This contradicts the cycle-
finiteness of A. Therefore, A(B) is indeed a convex subcategory of A. Fi-
nally observe that, by the maximality of the number n in the chosen co-
herent sequence B = (Bj,. .., B,) of quasitilted algebras of canonical type,
the algebras BY) and BT(f) are tilted algebras of Euclidean type. Indeed,
if BY) (respectively, B,(f)) is a tubular algebra, then we have the coherent
sequence B’ = (Bgl), By, ..., By) (respectively, B” = (By,..., Bn,BT(LT))) of
quasitilted algebras of canonical type, consisting of n + 1 algebras, and with
A(B') = A(B) (respectively, A(B"”) = A(B)) a convex subcategory of A.

Summing up, B = (By, ..., B,,) is a coherent sequence of tame quasitilted
algebras satisfying the required conditions.

We will show that A = A(B). We know from Proposition [2.2| that A is a
triangular algebra. In particular, for any indecomposable projective module
P and indecomposable injective module I in mod A, the endomorphism al-
gebras End 4 (P) and End 4 (1) are division algebras. Assume to the contrary
that A # A(B). Then A can be obtained from its convex subcategory A(B)
by iterated one-point extensions and coextensions, starting from one-point
extensions and one-point coextensions by modules in mod A(B). Suppose
that there is inside A a one-point extension

F 0

AB)M] = |, A(B)

with M a module in mod A(B) and F’ a division algebra. Then A(B)[M] is a
quotient algebra of A, and hence 7;3, q € Ql, are families of components in

I'A®)[n]- Therefore, applying Lemma we conclude that Hom 4g) (M, TqB)
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= 0 for any ¢ € QL. Further, for any module X in the postprojective com-

ponent P® = PBY), there is a monomorphism X — Y for a module Y
in add(77®), because there is a monomorphism X — I with I an injective
module in mod A(B), P2 does not contain injective modules, and every ho-
momorphism from X to an injective module in 7;153 with p € {2,...,n} orin

QB = QB’(LT) factors through a module in add(7;%). Then Hom () (M, T{*) =0
implies Hom 4(g) (M, X) = 0, and consequently Hom 4(g) (M, PB) = 0. This
shows that M belongs to the additive category add(QP®) of the preinjective
component Q% of I A(B)- Similarly, if there is inside A a one-point coextension

with N a module in mod A(B) and G a division algebra, then applying
Lemma [2.5] we conclude, as above, that N belongs to the additive cate-
gory add(PB) of the postprojective component P® of I’ A(B)- Summing up,
applying Lemmas and we conclude that one of the following holds:

e the postprojective component P® of I’ A(B) contains a cofinite transla-
tion subquiver X', closed under successors, which is a full translation
subquiver of a component C of I'4 and is closed under successors in C,
and C contains an injective module,

e the preinjective component Q% of I’ A(B) contains a cofinite translation
subquiver 2, closed under predecessors, which is a full translation sub-
quiver of a component D of I'4 and is closed under predecessors in D,
and D contains a projective module.

On the other hand, it follows from Proposition [2.1] that every semiregular
component of the cycle-finite algebra A is one of the following forms: a
postprojective component of Euclidean type, a preinjective component of
Euclidean type, a ray tube or a coray tube. Because the translation quivers
2’ and {2 are acyclic, this implies that one of the components C or D is not
semiregular, which contradicts the assumption on A. Therefore, A = A(B).

7. Examples. The aim of this section is to present some examples of
cycle-finite algebras of semiregular type, illustrating the above considera-
tions.

ExXAMPLE 7.1. Let K be an algebraically closed field. Consider the bound
quiver algebras
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e By = KQW/IMW given by the quiver QY of the form

°
YO
o1
Otxl Y1 L]
-/3\
l Bo
8o ° 4
°
0

and the ideal I in the path algebra KQW of QM) generated by the

elements Sy — 20171, 720180, 017100, 0100;
e By = KQ(Q)/I(Q) given by the quiver Q) of the form

9e o7
8
a/ o6 /- 10
2e lél ° m

%5

ax
° 3
1 Bo
LI

and the ideal I® in the path algebra KQ® of Q) generated by the

elements B1a1 — 720171, 120150, 0150, Mmo171, 02051;
e B3 = KQW® /I®) given by the quiver Q©® of the form

and the ideal I®) in the path algebra KQ®) of Q) generated by the
elements Bio; — 20171, N10171, 0281, 627201;
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By = KQW/I® given by the quiver Q® of the form

11 \iz
i
o

%

> .%./

10

PN
VAl

and the ideal I in the path algebra KQ® of Q@ generated by the

elements Sy — 30272, 0251, 627201;
e By = KQ(5)/I(5) given by the quiver Q® of the form

12 @
as 13
o o Y
/ ko 52L11 o7
15 9 k. .
8

and the ideal 1 in the path algebra KQ®) of Q®) generated by the
elements oo — Y302y2, 0251, M20272.

We will show that B = (Bi, Ba, B3, By, Bs) is a coherent sequence of
tame quasitilted algebras of canonical type. We refer to [27, Appendix A2]
or [30, XIV.4] for a classification of tame concealed algebras of Euclidean
types &n, ﬁ)n, IE(;, IE7, I~E8.

(1) The algebra Bj contains the convex subcategory C given by all
objects of By except 0 and 8, and (' is a tame concealed algebra of Euclidean
type Eg. Further, the convex subcategory Dy of By given by all objects of B
except 8 is a one-point coextension of (1 using an indecomposable C1-module
lying on the mouth of a stable tube of I'¢, of rank 3, and hence Dy is a tilted
algebra of of Euclidean type E7. On the other hand, the convex subcategory
Dy of By given by all objects of By except 0 is a one-point extension of C
using an indecomposable Ci-module lying on the mouth of the unique stable
tube of rank 2 in I'c,, and hence D; is a tubular algebra of tubular type
(3,3,3). Therefore, B; is a tame quasitilted algebra of canonical type with

BY = Dy and B{" = D;.
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(2) The algebra Bs contains the convex subcategory Cy given by all
objects of Ba except 4, 9 and 10, and Cy is a tame concealed algebra of
Euclidean type Eg. Further, the convex subcategory Dy of Bs given by all
objects of By except 4 is a tubular extension of Cs using two indecomposable
C>-modules lying on the mouth of two stable tubes of I, of rank 3, creating
the vertices 9 and 10, and hence Dy is a tubular algebra of type (2,4,4). On
the other hand, the tubular algebra D is a one-point coextension of Cs by
an indecomposable Co-module lying on the mouth of the unique stable tube
of I'c, of rank 2, creating the vertex 4. Therefore, By is a tame quasitilted

algebra of canonical type with Bél) =D, = BY) a tubular algebra of type
(3,3,3) and Bg) = Dy a tubular algebra of type (2,4,4).

(3) The algebra Bs contains the convex subcategory C3 given by all
objects of B3 except 1, 11 and 12, and C3 is a tame concealed algebra of
Euclidean type E;. Further, the convex subcategory D3 of Bs given by all
objects of B3 except 1 is a tubular extension of C'3 using an indecomposable
Cs-module lying on the mouth of the unique stable tube of Iz, of rank 4
and the branch 11 < 12, and hence D3 is a tubular algebra of type (2,3, 6).
We also note that the tubular algebra D5 is the one-point coextension of
Cs using an indecomposable Cs-module lying on the mouth of the unique
stable tube of I'c, of rank 3. Therefore, B3 is a tame quasitilted algebra of

canonical type with B:gl) =Dy = Bgr) a tubular algebra of type (2,4,4) and

B:(,,T) = D3 a tubular algebra of type (2,3,6).

(4) The algebra By contains the convex subcategory Cj given by all
objects of By except 3, 5, 10 and 13, which is a tame concealed algebra of
Euclidean type Eg. Further, the convex subcategory D4 of By formed by
all objects of B4 except 3, 5, 10 is the one-point extension of C4 using an
indecomposable C4-module lying on the mouth of the unique stable tube of
I'c, of rank 2, and hence D, is a tubular algebra of type (3,3,3). Observe
also that the tubular algebra Ds is a tubular coextension of C4 using an
indecomposable Cj-module lying on the mouth of a stable tube of I'c, of

rank 3 and the branch 3 «— 5 <— 10. Therefore, By is a tame quasitilted
o1 m
(r)

algebra of canonical type with Bil) = D3 = B3’ a tubular algebra of type
(2,3,6) and By) = Dy a tubular algebra of type (3,3, 3).

(5) The algebra Bs contains the convex subcategory C5 given by all
objects of Bs except 2, 14 and 15, which is a tame concealed algebra of
Euclidean type Eg. Further, the convex subcategory D5 of Bs formed by all
objects of Bj except 2 is a tubular extension of C5 using an indecomposable
Cs-module lying on the mouth of a stable tube of I'c, of rank 3 and the

branch 15 & 14, and hence Ds is a tilted algebra of Euclidean type Eg.
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Observe also that the tubular algebra Dy is the one-point coextension of
Cs using an indecomposable Cs-module lying on the mouth of the stable
tube of I'c, of rank 3 different from the stable tube of rank 3 used in the
tubular extension of C5 creating the vertices 14 and 15. Hence, B is a tame

quasitilted algebra of canonical type with Bél) =Dy = By) a tubular algebra

of type (3,3,3) and Bér) = Dj a tilted algebra of of Euclidean type Es.
Therefore, indeed B = (By, B, B3, By, Bs) is a coherent sequence of tame
quasitilted algebras of canonical type. Moreover, the associated algebra

A(B):Bl LI B U By U By U Bs=By U By U Bg U By U Bg
BET) Bév) Bér) BzY) Bgl) Bé” Bz(ll) Bél)
is the bound quiver algebra K@Q/I given by the quiver @ of the form
12 @

and the ideal I in the path algebra K@ of () generated by the elements 81—
Y2611, Baca —¥302y2, 0150, 617160, V20180, Mo1Y1, 0251, 027201, N202y2. It
follows from Theorem that A(B) is a cycle-finite algebra of semiregular
type and the Auslander-Reiten quiver I'y) of A(B) has a disjoint union
decomposition
FA(IB%) :PBU(U EB> UQB7
a€Q}
where Q} = QN [1,5], and

o P8 = PBY) is a postprojective component of Euclidean type IE7, con-
taining the indecomposable projective modules Py, P;, P», P3, Py, Ps,
Fs, Pr,

o OF = QBéT) = Q% is a preinjective component of Euclidean type Es,
containing the indecomposable injective modules Ig, I7, Ig, Ig, 111, 112,
5, g, Iis,
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T is a family (7—1153/\) aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube with one indecompos-
able injective module Iy, one ray tube with one indecomposable pro-
jective module Pg, one stable tube of rank 3, and the remaining tubes
being stable tubes of rank 1,

for each ¢ € Q} = QN (1,2), 7;13 is a family (7;1?%/\),\6151;1([() of pairwise
orthogonal generalized standard stable tubes of tubular type (3,3, 3),
T2 is a family (7'218/\) aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube with one indecompos-
able injective module I, a ray tube containing the indecomposable
projective module Py, a ray tube containing the indecomposable pro-
jective module Pjg, and the remaining tubes being stable tubes of
rank 1,

for each ¢ € Q3 = QN (2,3), 7;13 is a family (E@A)Aepl([{) of pairwise
orthogonal generalized standard stable tubes of tubular type (2,4,4),
T2 is a family (7;}3/\) aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube containing the indecom-
posable injective module I;, one ray tube containing the indecompos-
able projective modules Pj; and Pjo, one stable tube of rank 2, and
the remaining tubes being stable tubes of rank 1,

for each ¢ € Q3 = QN (3,4), 7:13 is a family (7;1?%/\),\6151;1([() of pairwise
orthogonal generalized standard stable tubes of tubular type (2,3, 6),
TE is a family (7:3\) aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube containing the inde-
composable injective modules I3, I5, I1p, one ray tube containing the
indecomposable projective module P;3, one stable tube of rank 3, and
the remaining tubes being stable tubes of rank 1,

for each ¢ € Qf = QN (4,5), ’7;13 is a family (7;%),\6]}»1([() of pairwise
orthogonal generalized standard stable tubes of tubular type (3,3, 3),
TE is a family (7})3/\) aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube with one indecompos-
able injective module I, one ray tube with the indecomposable projec-
tive modules P14 and P35, one stable tube of rank 3, and the remaining
tubes being stable tubes of rank 1.

Observe also that Bgl) = BY) = BY), after renaming the vertices and

(r)

arrows of the quiver of B, ’. Hence, we may define, for any positive integer m,
the coherent sequence of tame quasitilted algebras of canonical type

B(m) - (Bla BQa B37 B47 327337 B4a .. 7B27B37 B4a B5)a

having m triples By, B3, By, and the cycle-finite algebra A(B(™)) of semireg-
ular type. This shows that there are coherent sequences with large numbers
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of tame quasitilted algebras of canonical type, containing tubular algebras
of different tubular types.

ExAMPLE 7.2. Let K be an algebraically closed field. Consider the bound
quiver algebra B = KQ/I, where @ is the quiver

v 4 P

10
e ° °
&6/7 11 12 13
[ ]
VAN

T7e L]
« B Y 8
[ ] [ ] [ ] [ ] [ ]
1 2 3 4 5

and I is the ideal in the path algebra K@ of () generated by the elements
CE, nu, Codvy, vnad. The algebra B contains the convex subcategory C' given
by the objects 4, 5, 6, 7, 8, 9, 10, and C' is a tame concealed algebra of
Euclidean type Eg. Further, the convex subcategory D of B given by the
objects i € {1,...,10} is a tubular coextension of C' using an indecomposable
C-module lying on the mouth of a stable tube T of I'¢ of rank 3 and the
branch

.%.i.

1 2 3

)

and hence D is a tubular algebra of type (2,3, 6). Similarly, the convex sub-
category E of B formed by the objects i € {4,...,13} is a tubular extension
of C using an indecomposable C-module lying on the mouth of a stable tube
T’ of I'c of rank 3, different from 7, and the branch

14 p
o —>0—>o

11 12 13

)

and hence F is a tubular algebra of type (2,3,6). Therefore, B is a tame
quasitilted algebra of canonical type with B() = D and B(") = E. We claim
that B = (B) is a unique coherent sequence of tame quasitilted algebras of
canonical type containing B.

Consider the convex subcategory C’ of B given by the objects i €
{1,...,8} and 10, and the convex subcategory C” of B given by the objects
j € {5,...,13}. Then C" and C” are tame concealed algebras of Euclidean
type IEg. Moreover, the tubular algebra D is the one-point extension of C’,
with the extension vertex 9, using an indecomposable C’-module lying on
the mouth of the unique stable tube of rank 5 in I'xr. Similarly, the tubular
algebra F is the one-point coextension of C”, with the coextension vertex
4, using an indecomposable C”-module lying on the mouth of the unique
stable tube of rank 5 in I'¢w.
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Let B = (B). It follows also from Theorem [3.4] that the Auslander—Reiten
quiver I'yg) = I'p has a disjoint union decomposition

Taw) = PE) U (| 77) U o),

qeQ}

where Q3 = QN [1,3], and

P(B) = P is a postprojective component of Euclidean type IES, con-
taining the indecomposable projective modules P; for i € {1,...,8}
U {10},

Q(B) = 0% is a preinjective component of Euclidean type Eg, con-
taining the indecomposable injective modules I, for j € {5,...,13},
T8 is a family (TlIB/\) Aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one ray tube with six rays and con-
taining the indecomposable projective module Py, one stable tube of
rank 2, one stable tube of rank 3, and the remaining tubes being stable
tubes of rank 1,

for each ¢ € Q} = QN (1,2), 7;3 is a family (7;15'%/\),\@1([() of pairwise
orthogonal generalized standard stable tubes of tubular type (2,3, 6),
T2 is a family (7'2153/\) aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube with six corays and
containing the indecomposable injective modules Iy, Is, I3, one ray
tube with six rays and containing the indecomposable projective mod-
ules Pi1, P2, P13, one stable tube of rank 2, and the remaining tubes
being stable tubes of rank 1,

for each ¢ € Q3 = QN (2,3), 7:113 is a family (7:1]%\))\6]}1)1([() of pairwise
orthogonal generalized standard stable tubes of tubular type (2,3,6),
T2 is a family (7515%/\) Aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having one coray tube with six corays and
containing the indecomposable injective module I4, one stable tube of
rank 2, one stable tube of rank 3, and the remaining tubes being stable
tubes of rank 1.

Observe now that the family 7¢ = (T)\Cl) AeP; (k) of stable tubes in I'cs

is of tubular type (2,3,5), and the unique stable tube of rank 5 in T has
been enlarged to the ray tube in 7{® containing the projective module Py.
Similarly, the family 7¢" = (’T)\C") APy (k) Of stable tubes in I'cw is of tubular

type (2,3,5), and the unique stable tube of rank 5 in 7" has been enlarged
to the coray tube in ’7513 containing the injective module I. This shows that
there is no tame semiregular branch enlargement of €’ having B! as a proper
convex subcategory, and there is no tame semiregular branch enlargement
of C" having B(") as a proper convex subcategory. Therefore, B = (B) is
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a unique coherent sequence of tame quasitilted algebras of canonical type
containing the algebra B.

ExaMPLE 7.3. Let K be an algebraically closed field and n > 1 a natural
number. We choose a family ai,...,an41,b1,...,bnh+1 of pairwise different
elements in K \ {0,1}. For each i € {1,...,n}, consider the bound quiver
algebra B; = KQW /I where Q® is the quiver

i i+1 i+2 i+3
[e 7} Q41 j42
[ ] ] [ ]
Yi Yi+4+1
5; Sit1
[ ] 3 [ ] 3 [ ] 3 [ ]
i B R § N ) U O - )

and I is the ideal in the path algebra KQ® of Q) generated by the
elements
Q104 — QiYit10iy Q1Y — Vi1 Bis Oit106 — biBit10s,
0ir1%i — Bit1Bis Qiyoiy1 — Qip1%it20i+1, Qip2Yit1 — Yir2Bit1,
Oi20ti+1 — bi1Bit20i+1, 0i2Yi+1 — Bit2Biv1-

Then B; contains the three tame concealed convex subcategories of Eu-
clidean type Ag: C;_1 given by the objects i,7,i+ 1 and (i + 1)’, C; given
by the objects i +1,(i+1)",i4+2 and (i +2)’, and C;41 given by the objects
i+2,(i4+2),i+3 and (i +3)". Further, B; is a tame semiregular branch en-
largement of the algebra C; using four indecomposable C;-modules lying in
four pairwise different stable tubes of rank 1 in I¢,, and hence B; is a tame
quasitilted algebra of canonical type. Moreover, Bi(l) is a tubular algebra of
type (2,2,2,2), which is a tubular extension of C;_; and a tubular coexten-

sion of Cj. Similarly, BZ-(T) is a tubular algebra of type (2,2,2,2), which is
a tubular extension of C; and a tubular coextension of Cj1. Therefore, we

obtain the coherent sequence
B=(Bi,...,Bn)
of tame quasitilted algebras of canonical type. The associated algebra

AB) = B |T|> l(") Bn =B |_<|l) |—<|Z>B"
Blr Bnr—l BQ Bn

is the bound quiver algebra K@Q/I, where @ is the quiver
n n+1 n+2 n+3

Qn

1 2 3 4
aq ag a3
. . . o< ... ° <— o ° < = .
><’Yl ><’y2 ><W3 \ / ><’Yi :'><’yn#><’yn+2
51 52 43 &5 Snt1 Snt2
¥ AN Bn Brn+1 Bn+2
° ° . o< ... . . °
X B1 o B2 3 B3 4

n' (n+1)" (n+2) (n+3)
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and [ is the ideal in the path algebra KQ of ) generated by the elements

Q110G — Y105, Q1Y — Yit1Bi, Oir104 — biBiy10;, 05417 — Bit15is

for all i € {1,...,n + 1}. It follows from Theorem that the Auslander—
Reiten quiver I'y(g) of A(B) has a disjoint union decomposition

L =P@®U( U 77)ue®)

q6@91+1

where @QLH =QnN[0,n+ 1], and

e P(B) = P is a postprojective component of Euclidean type 1&3, con-
taining the indecomposable projective modules Py, P/, Po,Por, B

e O(B) = QY+ is a preinjective component of Euclidean type Ag,
containing the indecomposable injective modules I, 2, I(y12), Int3,
I(n—|—3)’a

o T2 is a family (761?/\) aepy (k) of pairwise orthogonal generalized stan-
dard semiregular tubes, having two ray tubes containing the indecom-
posable projective modules P3 and Pj, two stable tubes of rank 2, and
the remaining tubes being stable tubes of rank 1,

e 72, is a family (EBH,)\) aepy (k) of pairwise orthogonal generalized
standard semiregular tubes, having two coray tubes containing the
indecomposable injective modules I,11 and I(, 41y, two stable tubes
of rank 2, and the remaining tubes being stable tubes of rank 1,

e foreach g € {1,...,n}, T is a family (7;]?/\))\6]}»1([() of pairwise orthog-
onal generalized standard semiregular tubes having two coray tubes
containing the indecomposable injective modules I, and I, two ray
tubes containing the indecomposable projective modules Pyy3, P(g43),
two stable tubes of rank 2, and the remaining tubes being stable tubes
of rank 1,

e foreachq € @QLH\{O, 1,...,n}, 7:113 is a family (7;1?3/\),\@}»1(1() of pairwise
orthogonal generalized standard stable tubes of tubular type (2, 2,2, 2).

We would like to point that, for any fixed natural number n > 1, there are
infinitely many pairwise non-isomorphic algebras A(B) given by the coherent
sequences B = (By, ..., B,) of quasitilted algebras of canonical type of the
above form, created by different choices of elements a1, ..., apy1,01, ..., bnt1
in K\ {0,1}. Moreover, we note that for all such sequences B, A(B) is of
global dimension n + 1.
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