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A MULTIPLIER THEOREM FOR FOURIER SERIES

IN SEVERAL VARIABLES

BY

NAKHLE ASMAR (Columbia, MO), FLORENCE NEWBERGER (Long Beach, CA)
and SALEEM WATSON (Long Beach, CA)

Abstract. We define a new type of multiplier operators on Lp(TN ), where T
N is the

N -dimensional torus, and use tangent sequences from probability theory to prove that the
operator norms of these multipliers are independent of the dimension N . Our construction
is motivated by the conjugate function operator on Lp(TN ), to which the theorem applies
as a particular example.

1. Introduction. On the one-dimensional torus T, we can define the
conjugate function f̃ of f ∈ Lp(T) by the Fourier multiplier operator

̂̃
f(n) = −i sgn(n)f̂(n) (n ∈ Z),

where sgn(n) = 1, −1, or 0, according as n is positive, negative or 0. Parse-

val’s theorem implies that the operator f 7→ f̃ is bounded from L2(T) into
L2(T) with norm equal to 1. The celebrated theorem of M. Riesz establishes
the boundedness of this operator from Lp(T) into Lp(T), where 1 < p < ∞.
M. Riesz’s theorem plays an important role in harmonic analysis. It has been
generalized in many directions (for a brief history of this theorem, including
the extensions cited below, see [1] or [3]).

One version of the M. Riesz theorem on the N -dimensional torus, due to
S. Bochner (1939), was extended by H. Helson to any compact (connected)
abelian group G whose dual group Γ contains an order P . Recall that a
subset P of Γ is called an order if it satisfies the following three axioms:

P ∩ (−P ) = {0}, P ∪ (−P ) = Γ, P + P = P.

Helson’s definition of the conjugate function is as follows. Given an order
P ⊂ Γ , we define a signum function with respect to P by sgnP (χ) = −1,
0, or 1, according as χ ∈ (−P ) \ {0}, χ = 0, or χ ∈ P \ {0}. For f ∈ L2(G),

define f̃ by the Fourier multiplier
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̂̃
f(χ) = −i sgnP (χ)f̂(χ) (χ ∈ Γ ).

Helson proved that, for 1 < p < ∞, this operator is bounded from Lp(G)
into Lp(G), with norm that depends only on p and not on P or G. Indeed,
Berkson and Gillepsie [4], using transference methods, showed that the norm
on Lp(G) is equal to the norm on Lp(T). It is also clear from [4] (see also
[2]) that, in order to study the conjugate function on an arbitrary group
G, it is enough to consider the case G = TN , with a lexicographic order on
Γ = ZN . This will be the setting of our main result.

2. The Fourier series of E(f | Fn). In this section we recall several
well known properties and constructions of martingales on TN . We sketch
some proofs as we establish the notation for this paper. For more details,
we refer the reader to [5].

We define a partition Fn of TN and show that for 1 ≤ n ≤ N the
Fourier series of the conditional expectation E(f | Fn) is the projection of
the Fourier series of f onto Zn. For 1 ≤ n ≤ N , let θn : TN → T be given by
θn(x1, . . . , xN ) = xn, and let Fn be the σ-algebra generated by {θ1, . . . , θn}.
Let F0 be the σ-algebra containing only TN and the empty set. Note that the
sets in Fn are of the form A× [0, 2π)N−n, where A ⊆ [0, 2π)n is a Lebesgue
measurable set. Furthermore, a function g : TN → R is measurable with
respect to Fn if and only if there is a measurable function G : Tn → R such
that g(x1, . . . , xN ) = G(x1, . . . , xn), i.e. g does not depend on the last N −n

coordinates. Functions measurable with respect to F0 are constant on TN .
Let g ∈ L1(TN ). Then the Fourier coefficients of g are given by

bk =
\

TN

g(x)e−ik·x dx,

where dx denotes the normalized Lebesgue measure on TN . Suppose g is
measurable with respect to the σ-algebra Fn, and let G : Tn → T be such
that g(x1, . . . , xN ) = G(x1, . . . , xn). Then the Fourier coefficients for g are
given by

bk =
\

TN

g(x)e−ik·x dx =
\

Tn

G(x1, . . . , xn)e−i(k1x1+···+knxn) dx1 . . . dxn

×
\

TN−n

e−i(kn+1xn+1+···+kNxN ) dxn+1 . . . dxN .

But the last integral above equals 0 when (kn+1, . . . , kN ) 6= (0, . . . , 0), and
equals 1 when (kn+1, . . . , kN ) = (0, . . . , 0). Thus we have

bk =
\

Tn

G(x1, . . . , xn)e−i(k1x1+···+knxn) dx1 . . . dxn

when k ∈ Zn, and bk = 0 when k ∈ ZN \ Zn, where Z0 = {0}, and
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Z
n = {(k1, . . . , kn, 0, . . . , 0) : kj ∈ Z}.

If g is measurable with respect to the σ-algebra F0, then the Fourier
coefficients are given by bk = 0 if k 6= 0 and

b0 =
\

TN

f dx.

Now let f ∈ L1(TN ), and let E(f | Fn) be the conditional expectation
of f relative to the σ-algebra Fn. Then E(f | Fn) is the unique function up
to a set of measure zero that is measurable with respect to Fn such that for
any set A × TN−n ∈ Fn,\

A×TN−n

E(f | Fn) dx =
\

A×TN−n

f dx.

Consider the function

G(x) =
\

TN−n

f(x1, . . . , xn, sn+1, . . . , sN ) dsn+1 . . . dsN .

Then G is measurable with respect to Fn by Fubini’s theorem. Furthermore,
if A × TN−n ∈ Fn, then\

A×TN−n

f(x) dx =
\
A

[ \
TN−n

f(x) dxn+1 . . . dxN

]
dx1 . . . dxn

=
\
A

G(x) dx1 . . . dxn =
\

A×TN−n

G(x) dx.

By the uniqueness of the conditional expectation, we have E(f | Fn) = G

a.e. In other words,

E(f | Fn)(x1, . . . , xN ) =
\

TN−n

f(x1, . . . , xn, sn+1, . . . , sN ) dsn+1 . . . dsN .

We just calculated the Fourier coefficients of an Fn-measurable function
g in terms of the function G on Tn such that g(x1, . . . , xN ) = G(x1, . . . , xn).
We will apply this to find the Fourier coefficients of E(f | Fn).

For k ∈ ZN , denote the Fourier coefficients of E(f | Fn) by bk and of f

by ak. Let 1 ≤ n ≤ N ; since E(f | Fn) is measurable with respect to Fn, we
have bk = 0 when k ∈ ZN \ Zn, and when k ∈ Zn,

bk =
\

Tn

G(x1, . . . , xn)e−i(k1x1+···+knxn) dx1 . . . dxn

=
\

Tn

[ \
TN−n

f(x1, . . . , xn, sn+1, . . . , sN ) dsn+1 . . . dsN

]

× e−i(k1x1+···+knxn) dx1 . . . dxn,

=
\

TN

e−ik·xf(x) dx = ak,
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since k ∈ Zn implies k1x1 + · · · + knxn = k · x. Thus we have

bk =

{
ak if k ∈ Zn,

0 if k ∈ ZN \ Zn.

It follows that for 1 ≤ n ≤ N , E(f | Fn) is obtained from f by projecting
the Fourier transform of f on Zn. Trivially, E(f | F0) is obtained from f by
projecting the Fourier transform of f onto {0} ⊆ ZN .

3. Martingale difference series decomposition. The finite sequence
(E(f | Fn))N

n=1 forms a martingale relative to (Fn)N
n=1. (For details, see [3].)

We define the martingale difference series decomposition of a function f ∈
L1(TN ), using these conditional expectations. Let

d0(f) = E(f | F0) =
\

TN

f dx,

and for j = 1, . . . , N , let

dj(f) = E(f | Fj) − E(f | Fj−1).

Since f is measurable with respect to FN , we have

f = E(f | FN ) =
N∑

n=0

dn(f).

This is called the martingale difference series decomposition of f .

We will calculate the Fourier coefficients a
j
k

of dj(f) in terms of the
Fourier coefficients of f to show that dj(f) (j = 1, . . . , N) is obtained from
f by projecting the Fourier transform of f onto the set differences Zj \Zj−1.
Note that the sets Zj \ Zj−1 for j = 1, . . . , N partition ZN .

Let ak and b
j
k

denote the kth Fourier coefficient for f and for E(f | Fj),
respectively. Then for 2 ≤ j ≤ N ,

b
j
k

=

{
ak if k ∈ Zj ,

0 if k ∈ ZN \ Zj .

For j = 2, . . . , N , by linearity, the Fourier coefficient a
j
k

for dj(f) is given
by

a
j
k

= b
j
k
− b

j−1
k

=





0 if k ∈ Zj−1,

ak if k ∈ Zj \ Zj−1,

0 if k ∈ ZN \ Zj .

Furthermore, since d0(f) is constant the Fourier coefficients for d0(f) are
given by

a0
k =

{T
TN f dx if k = 0

0 if k ∈ ZN \ {0}

}
=

{
a0 if k = 0,

0 if k ∈ ZN \ {0}.
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Thus for j = 1, . . . , N , dj(f) is obtained from f by projecting the Fourier
transform of f on Zj \Zj−1, and d0(f) is obtained from f by projecting the
Fourier transform of f onto {0}.

In our notation, we write the Fourier series for dj(f) as

dj(f) =
∑

k∈ZN

a
j
k
eik·x.

Since a
j
k

= 0 on the complement of Zj \ Zj−1, it follows that

dj(f) =
∑

k∈Zj\Zj−1

a
j
k
eik·x.

Letting x = (t1, . . . , tN ) and k = (k1, . . . , kN ), we have

a
j
k
eik·x = eikjtj [aj

k
ei(k1t1+···+kj−1tj−1+kj+1tj+1+···+kN tN )].

For k ∈ Z with k 6= 0, define

fj,k =
∑

k

a
j
k
eik·x

where the sum ranges over all k ∈ Zj \Zj−1 of the form k = (k1, . . . , kj−1, k,

0, . . . , 0). Note that a
j
k

= 0 whenever k satisfies ki 6= 0 for i > j or kj = 0.
Thus fj,k = fj,k(t1, . . . , tj−1) is a function of the first j − 1 coordinates of x

only. As a result, we can express the Fourier series of dj(f) as

dj(f) =

∞∑

k=−∞, k 6=0

fj,k(t1, . . . , tj−1)e
iktj .

Since the sets Zj \ Zj−1 for j = 1, . . . , N partition ZN , we get the mar-

tingale difference series decomposition of f :

f =

N∑

j=0

dj(f).(1)

4. Main theorem. With respect to the lexicographic order on ZN , the
conjugate function operator on L2(TN ) can be defined using the martingale
difference decomposition given in (1) and the operator in one dimension, as
follows. For f ∈ L2(TN ), define the conjugate function of f by

f̃ =

N∑

j=0

dj(f)∼,(2)

where

dj(f)∼ = −i

∞∑

k=−∞, k 6=0

sgn(k)fj,k(t1, . . . , tj−1)e
iktj .



226 N. ASMAR ET AL.

If we let Tj denote the one-dimensional conjugate function operator applied
to the jth coordinate, then (2) has the following expression:

f̃ =
N∑

j=0

Tj(dj(f))(t1, . . . , tj−1, tj),

where Tj is the conjugate function of the function tj 7→ dj(f)(t1, . . . , tj−1, tj).
Thus, from [4], we have, for 1 < p < ∞,

∥∥∥
N∑

j=0

Tj(dj(f))
∥∥∥

p
≤ Ap‖f‖p,(3)

where Ap = ‖Tj‖p is the norm of the operator Tj on Lp(T).
We are now ready to state the main result of our paper. For j = 1, . . . , N ,

and 1 < p < ∞, let Tj denote a bounded multiplier from Lp(T) into Lp(T),
with multiplier function mj . Thus, for f ∈ L2(T),

T̂j(f)(n) = mj(n)f̂(n).

Define a multiplier T on Lp(TN ) by

T (f) =
N∑

j=0

Tj(dj(f)),(4)

where

Tj(dj(f)) =

∞∑

k=−∞, k 6=0

mj(k)fj,k(t1, . . . , tj−1)e
iktj .(5)

(We are abusing notation here for convenience, since Tj is an operator on
Lp(T) and djf is a function in Lp(TN ).) Let ‖Tj‖p denote the norm of the
operator Tj from Lp(T) into Lp(T) and let ‖T‖p denote the norm of the
operator T from Lp(TN ) into Lp(TN ). The main result of this paper is the
following.

Theorem 1 (Main Theorem). Given 1 < p < ∞, there is a constant

cp > 0, depending only on p, such that

‖T‖p
p ≤ cp max

1≤j≤N
{‖Tj‖

p
p, ‖mj‖

2
∞}.

Remarks.

(a) The operator T is indeed a multiplier operator on Lp(TN ) with mul-
tiplier function

m(n1, . . . , nN ) = m0(0)1{0} +

N∑

j=1

1Zj\Zj−1mj(nj),

where 1Zj\Zj−1 is the indicator function of the set Zj \ Zj−1.



MULTIPLIER THEOREM FOR FOURIER SERIES 227

(b) We should emphasize that cp is independent of N , and so a version
of the theorem holds for infinite sequences of operators if both ‖Tj‖p

and ‖mj‖∞ are uniformly bounded for all j.
(c) When all the Tj ’s are equal to the conjugate function operator on

Lp(T), we know from the Berkson–Gillespie paper [4] that cp = 1. In
general, we are not even close to this constant. Our proof will yield
cp ≈ p3.

(d) The theorem fails for p = 1. It suffices to consider Tj(djf) = ±djf .
Then the operator T in (4) changes the signs of the terms in the
martingale difference series of f . It is well known that these operators
are not uniformly bounded for all N .

5. Proof of the Main Theorem. The proof combines a classical result
of Rosenthal and a theorem from a relatively new area in probability, known
as tangent sequences, due to Kwapień and Woyczyński [6]. To our knowledge,
Theorem 1 is the first application of tangent sequences to harmonic analysis.

We start with the definition of tangent sequences. We take the concrete
construction of [7]. Given f in Lp(TN ) and its martingale difference se-
ries (1), the tangent sequence to f is another martingale difference series g

defined on TN × TN by

g(t1, . . . , tN , s1, . . . , sN ) = d0(f) +
N∑

j=1

dj(f)(t1, . . . , tj−1, sj).

(Note that the tangent sequence g does not depend on tN .) Kwapień and
Woyczyński [6] showed the following result for tangent sequences.

Theorem 2. Given 1 < p < ∞, there is a constant Cp > 0, depending

only on p, such that

C−1
p ‖f‖Lp(TN ) ≤ ‖g‖Lp(TN×TN ) ≤ Cp‖f‖Lp(TN ).

The next result of Rosenthal concerns sums of independent mean-zero
random variables over a probability space. Given a sequence of random
variables (Xn)N

n=1, for p ∈ [2,∞), define the quantity

|||(Xn)|||(p) = max
{( N∑

n=1

‖Xn‖
2
2

)1/2
,
( N∑

n=1

‖Xn‖
p
p

)1/p}
.

Rosenthal’s result is the following (see [8]).

Theorem 3. Given 2 ≤ p < ∞, there is a constant Kp > 0, depending

only on p, such that for any sequence of mean-zero, independent random
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variables, we have

K−1
p |||(Xn)|||(p) ≤

∥∥∥
N∑

n=1

Xn

∥∥∥
p
≤ Kp|||(Xn)|||(p).

Proof od Main Theorem. Since T is a multiplier operator, it is enough
to prove that it is bounded from Lp(TN ) into Lp(TN ) for 2 ≤ p < ∞. The
case 1 < p < 2 follows by a well known duality argument. Let f ∈ Lp(TN ),
where 2 ≤ p < ∞. We may suppose that f has mean zero; otherwise consider
f −
T
TN f(x) dx. Also, we may suppose that f is a trigonometric polynomial,

so all the series that we will consider in this proof are finite sums, and there
is no ambiguity in interpreting them. By comparing Fourier transforms, it
is clear that

Tj(djf) = dj(Tj(djf)).(6)

Also, using (5) and the bound of Tj on Lp(T), we find\
T

|Tj(djf)|p dtj =
\
T

∣∣∣
∑

k

mj(k)fj,k(t1, . . . , tj−1)e
iktj

∣∣∣
p
dtj(7)

≤ ‖Tj‖
p
p

\
T

∣∣∣
∑

k

fj,k(t1, . . . , tj−1)e
iktj

∣∣∣
p
dtj

= ‖Tj‖
p
p

\
T

|dj(f)|p dtj,

where ‖Tj‖p is the norm of the multiplier operator on Lp(T).

For f ∈ Lp(TN ), form the tangent sequence of f and apply Theorem 2.
Write the inequalities in Theorem 2 in the following convenient notation:

‖f‖p
Lp(TN )

≈
∥∥∥

N∑

j=1

djf(t1, . . . , tj−1, sj)
∥∥∥

p

Lp(T2N )
.

Note that

∥∥∥
N∑

j=1

djf(t1, . . . , tj−1, sj)
∥∥∥

p

Lp(T2N )

=
\

TN

∥∥∥
N∑

j=1

djf(t1, . . . , tj−1, sj)
∥∥∥

p

Lp(TN ,ds)
dt.

For all (fixed) t=(t1, . . . , tN ) ∈ TN , the functions (djf(t1, . . . , tj−1, sj))
N
j=1

are independent functions on TN in the variable s = (s1, . . . , sN ). To simplify
notation, for each fixed t = (t1, . . . , tN ) ∈ TN and j = 1, . . . , N , write
djf(t1, . . . , tj−1, sj) as (djf)t(sj). Then the sequence of independent random
variables on Lp(TN ) becomes ((djf)t(sj))

N
j=1. Applying Theorem 3, we find



MULTIPLIER THEOREM FOR FOURIER SERIES 229

that, for each t = (t1, . . . , tN ) ∈ TN ,

∥∥∥
N∑

j=1

(djf)t(sj)
∥∥∥

p

Lp(TN ,ds)

≈ max
{ N∑

j=1

‖(djf)t(sj)‖
p
Lp(TN ,ds)

,

N∑

j=1

‖(djf)t(sj)‖
2
L2(TN ,ds)

}
.

Thus

(8) ‖f‖p
Lp(TN )

≈
\

TN

max
{ N∑

j=1

‖(djf)t(sj)‖
p
Lp(TN ,ds)

,

N∑

j=1

‖(djf)t(sj)‖
2
L2(TN ,ds)

}
dt.

Applying (8) to the function Tf in place of f and using (6), we find that

(9) ‖Tf‖p
Lp(TN )

≈
\

TN

max
{ N∑

j=1

‖(Tjdjf)t(sj)‖
p
Lp(TN ,ds)

,

N∑

j=1

‖(Tjdjf)t(sj)‖
2
L2(TN ,ds)

}
dt.

Using (7), we obtain

‖(Tjdjf)t(sj)‖
p
Lp(TN ,ds)

=
\

TN−1

\
T

|(Tjdjf)(t1, . . . , tj−1, sj)|
p dsjds1 . . . dsN

≤ ‖Tj‖
p
p

\
TN−1

\
T

|dj(f)(t1, . . . , tj−1, sj)|
p dsjds1 . . . dsN

= ‖Tj‖
p
p‖(djf)t(sj)‖

p
Lp(TN ,ds)

.

Similarly for the case p = 2. Putting this inequality into (9), we get

‖Tf‖p
Lp(TN )

≤ apA
\

TN

max
{ N∑

j=1

‖(djf)t(sj)‖
p
Lp(TN ,ds)

,

N∑

j=1

‖(djf)t(sj)‖
2
L2(TN ,ds)

}
dt,

where A = max1≤j≤N{‖Tj‖
p
p, ‖mj‖

2
∞} and ap depends only on p. Apply-

ing (8) once more, we find that

‖Tf‖p
Lp(TN )

≤ cp
pA‖f‖p

Lp(TN )
,

where cp depends on p only. This completes the proof of the Main Theorem.



230 N. ASMAR ET AL.

REFERENCES

[1] N. Asmar and E. Hewitt, Marcel Riesz’s theorem on conjugate Fourier series and its

descendants, in: Proc. Analysis Conference (Singapore, 1986), S. T. L. Choy et al.

(eds.), Elsevier Science, 1988, 1–56.
[2] N. Asmar and S. Montgomery-Smith, Hardy martingales and Jensen’s inequality,

Bull. Austral. Math. Soc. 55 (1997), 185–195.
[3] —, —, Hahn’s embedding theorem for orders and harmonic analysis on groups with

ordered duals, Colloq. Math. 70 (1996), 235–252.
[4] E. Berkson and T. A. Gillespie, The generalized M. Riesz theorem and transference,

Pacific J. Math. 120 (1985), 279–288.
[5] R. E. Edwards and G. I. Gaudry, Littlewood–Paley and Multiplier Theory, Ergeb.

Math. Grenzgeb. 90, Springer, 1977.
[6] S. Kwapień and W. A. Woyczyński, Tangent sequences of random variables, in: Al-

most Everywhere Convergence, G. A. Edgar and L. Sucheston (eds.), Academic Press,
1989, 237–265.

[7] S. Montgomery-Smith, Concrete representation of martingales, Electron. J. Probab.
3 (1998), no. 15.

[8] H. P. Rosenthal, On the subspaces of Lp (p > 2) spanned by sequences of independent

random variables, Israel J. Math. 8 (1970), 273–303.

Mathematics Department
University of Missouri
Columbia, MO 65211, U.S.A.
E-mail: nakhle@math.missouri.edu

Department of Mathematics and Statistics
California State University

Long Beach, CA 90840, U.S.A.
E-mail: fnewberg@csulb.edu

saleem@csulb.edu

Received 21 July 2005 (4638)


