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A SPHERICAL TRANSFORM ON SCHWARTZ FUNCTIONS

ON THE HEISENBERG GROUP ASSOCIATED

TO THE ACTION OF U(p, q)

BY

T. GODOY and L. SAAL (Córdoba)

Abstract. Let S(Hn) be the space of Schwartz functions on the Heisenberg group Hn.
We define a spherical transform on S(Hn) associated to the action (by automorphisms)
of U(p, q) on Hn, p + q = n. We determine its kernel and image and obtain an inversion
formula analogous to the Godement–Plancherel formula.

1. Introduction. Let n ≥ 2 and let p, q be natural numbers such that
p + q = n. Let Hn be the Heisenberg group defined by Hn = C

n × R with
group law

(z, t)(z′, t′) =
(
z + z′, t+ t′ − 1

2 ImB(z, z′)
)

where

B(z, w) =

p∑

j=1

zjwj −
n∑

j=p+1

zjwj .

For x = (x1, . . . , xn) ∈ R
n, we write x = (x′, x′′) with x′ ∈ R

p, x′′ ∈ R
q. So,

R
2n can be identified with C

n via the map

ϕ(x′, x′′, y′, y′′) = (x′ + iy′, x′′ − iy′′), x′, y′ ∈ R
p, x′′, y′′ ∈ R

q.

In this setting, the form − ImB(z, w) agrees with the standard symplectic
form on R

2(p+q), and the vector fields

Xj = −
1

2
yj
∂

∂t
+

∂

∂xj
, Yj =

1

2
xj
∂

∂t
+

∂

∂yj
, j = 1, . . . , n, T =

∂

∂t

form a standard basis for the Lie algebra hn of Hn. Thus Hn can be viewed
as R

n × R
n × R via the map (x, y, t) 7→ (ϕ(x, y), t). From now on, we will

use freely this identification.
Let S(Hn) be the Schwartz space on Hn and let S ′(Hn) be the space of

corresponding tempered distributions. Consider the action of U(p, q) on Hn

given by g · (z, t) = (gz, t) (note that since we have assumed that p, q ≥ 1,
U(p, q) is noncompact). So U(p, q) acts on L2(Hn), S(Hn) and S ′(Hn) in
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the canonical way. The subalgebra UU(p,q)(hn) of left invariant differential
operators which commute with this action is generated by L and T where

L =

p∑

j=1

(X2
j + Y 2

j ) −
n∑

j=p+1

(X2
j + Y 2

j )

and T is as above (cf. [5]). We observe that it is commutative, since T
belongs to the center of hn.

Moreover, for λ ∈ R − {0} and k ∈ Z, there exists a tempered U(p, q)-
invariant distribution (on Hn) Sλ,k satisfying

(1.1) LSλ,k = −|λ|(2k + p− q)Sλ,k, iTSλ,k = λSλ,k

and such that, for all f ∈ S(Hn),

(1.2) f =
∑

k∈Z

∞\
−∞

f ∗ Sλ,k|λ|
n dλ

(cf. [5]).

Let us recall some facts concerning the compact case p = n, q = 0, i.e.,
when U(p, q) = U(n). In this case it is well known (see [6]) that UU(n)(hn)

is a commutative algebra if and only if the convolution algebra L1
U(n)(Hn)

of U(n)-invariant integrable functions is commutative, that is, (Hn, U(n))
is a Gelfand pair. Its spectrum, denoted by ∆(U(n), Hn), can be identi-
fied, via integration, with the set of bounded spherical functions of the pair
(U(n), Hn). These spherical functions can be classified (see [2]) as:

a) The spherical functions of type I , i.e., those that restricted to the
center of Hn are nontrivial characters. These are given by

Φn−1
λ,k (z, t) := e−iλtLn−1

k (|λ| |z|2/2)e−|λ| |z|2/4, λ 6= 0, k ≥ 0,

where Ln−1
k is the Laguerre polynomial of order n− 1 and degree k normal-

ized by Ln−1
k (0) = 1.

b) The spherical functions ηw of type II , i.e., those that are constant on
the center. They are given, for w ∈ C

n − {0}, by

ηw(z, t) =
2n−1(n− 1)!

(|z| |w|)n−1
Jn−1(|z| |w|)

where Jn−1 is the Bessel function of order n− 1 of the first kind, and by

η0(z, t) = 1.

We set

∆1(U(n), Hn) = {Ψ ∈ ∆(U(n), Hn) : Ψ is of type I},

∆2(U(n), Hn) = {Ψ ∈ ∆(U(n), Hn) : Ψ is of type II}.
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For f ∈ L1
U(n)(Hn), its spherical transform f̂ : ∆(U(n), Hn) → C is

defined by

f̂(Ψ) =
\
Hn

f(z, t)Ψ(z, t)dz dt

where dzdt is the Haar measure (i.e., the Lebesgue measure) on Hn.

In this case (p = n, q = 0) the image of the radial Schwartz functions on

Hn under the map f 7→ f̂ is explicitly described in [3]. The notion of rapidly
decreasing functions on ∆(U(n), Hn) is introduced and it is proved that the

image of S(Hn) under the spherical transform is the space Ŝ(U(n), Hn) of
rapidly decreasing functions F on ∆(U(n), Hn) such that certain “deriva-
tives” of F are also rapidly decreasing (see Definitions 6.1 and 6.3 in [3]).

Also, in [4], a map E : ∆(U(n), Hn) → [0,∞) × R is defined by E(Ψ) =

(−L̂(Ψ), iT̂ (Ψ)), where L̂(Ψ) and T̂ (Ψ) denote the eigenvalues of L and T
respectively, associated to Ψ . The image of E is the so-called Heisenberg fan

A(U(n), Hn) and it is the set

{(|λ|(2k + n), λ) : λ 6= 0, k ∈ N ∪ {0}} ∪ {[0,∞) × {0}}.

It is proved that E is a homeomorphism from ∆(U(n), Hn) (equipped with
the Gelfand topology) onto the Heisenberg fan (provided with the topology
induced from R

2).

From the above considerations it is natural to consider, for arbitrary
p, q ∈ N with p + q = n and for f ∈ S(Hn), the “spherical transform”
F(f) : (R − {0}) × Z → C defined by

(1.3) F(f)(λ, k) = 〈Sλ,k, f〉.

Our aim is to characterize F(S(Hn)) and Ker(F). In order to state our
results, let us introduce some additional notations.

For m : (R−{0}) × Z → C and (λ, k) ∈ (R−{0}) × Z define

m∗(λ, k) =

{
m(λ, k) if k ≥ 0,

(−1)n−2m(λ, k) if k < 0.

m∗∗(λ, k) =

{
m(λ, k) if k < 0,

(−1)n−2m(λ, k) if k ≥ 0.

We also set

(1.4)

E(m)(λ, k) =
n−1∑

l=0

(−1)l
(
n− 1

l

)
m(λ, k − l),

Ẽ(m)(λ, k) =

n−1∑

l=0

(−1)l
(
n− 1

l

)
m(λ, k + l).

Our main result is the following
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Theorem 1.1. Assume that p, q ≥ 1 with p+ q = n. Then F(S(Hn)) is

the space of functions m : (R − {0}) × Z → C such that

(i) we have the estimate

(1.5) |m(λ, k)| ≤ cN

(
|k|n−1 +

1

|λ|n−1

)
1

|λ|N (|k| + 1)N
, N ∈ N ∪ {0},

(ii) the functions defined on (R − {0}) × (N ∪ {0}) by

(λ, k) 7→ E(m∗)(λ, k + q), (λ, k) 7→ Ẽ(m∗∗)(λ,−k − p)

extend to two functions belonging to Ŝ(U(1), H1).

We also obtain an inversion formula for F analogous to the Godement–
Plancherel formula and we determine the kernel of F .

Acknowledgments. We express our thanks to Fulvio Ricci, who in-
spired this work, to Daniel Penazzi for useful talks about combinatorial
identities, and to the referee for his/her useful suggestions and comments.

2. Notations and preliminaries. Let us introduce some notation and
recall some known facts. Let H denote the Heaviside function (i.e., H(τ) =
χ(0,∞)(τ)) and let H be the space of functions ϕ : R → C such that

ϕ(τ) = ϕ1(τ) + τn−1ϕ2(τ)H(τ), ϕ1, ϕ2 ∈ S(R).

It is proved in [9] that H, provided with a suitable topology, is a Fréchet
space. Moreover, H is the space of functions ϕ ∈ C∞(R−{0}) that are rapid-
ly decreasing at ±∞ in the usual sense, have the limits limτ→0+ ∂jϕ/∂τ j and
limτ→0− ∂

jϕ/∂τ j for all j ∈ N, and admit n−2 continuous derivatives at the
origin. For p+ q = n, p, q ≥ 1, in [9] there is also given a linear, continuous
and surjective map N : S(Rn) → H whose adjoint N ′ : H′ → S ′(Rn)O(p,q)

is a linear homeomorphism onto the space of O(p, q)-invariant tempered
distributions on R

n. As pointed out in [5], this construction also works to
describe the space S ′(Cn)U(p,q), i.e., there exists a linear, continuous and
surjective map, still denoted by N : S(Cn) → H, whose adjoint N ′ : H′ →
S ′(Cn)U(p,q) is a homeomorphism. For f ∈ S(Hn), we will write Nf(τ, t) for
N(f(·, t))(τ). We have (cf. (2.11) in [5])

Nf(τ, t) =
\

̺>|τ |

Mf(·, t)(̺, τ)(̺+ τ)p−1(̺− τ)q−1d̺,

where for ̺ ≥ |σ|,

Mf(·, t)(̺, σ) :=
\

S2p−1×S2q−1

f

((
̺+ σ

2

)1/2

wu,

(
̺− σ

2

)1/2

wv, t

)
dwu dwv.
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Let H# be the space of functions ϕ on R
2 of the form

ϕ(τ, t) = ϕ1(τ, t) + τn−1H(τ)ϕ2(τ, t), ϕ1, ϕ2 ∈ S(R2).

Remark 2.1. A straightforward adaptation of the proofs of Lemmas 4.2
and 4.3 in [9] shows that N : S(Hn) → H# is surjective.

In order to give an explicit expression of the distributions Sλ,k we recall
the definition of the Laguerre polynomials. For nonnegative integers m and
α let Lαm(τ) (see, e.g., [8, pp. 99–101]) be given by

(2.1) L0
m(τ) =

m∑

j=0

(
m

j

)
(−1)j

τ j

j!
, Lα+1

m−1(τ) = −
d

dτ
Lαm(τ).

For λ ∈ R, k, s ∈ N ∪ {0} and (τ, t) ∈ [0,∞) × R we set

ψsλ,k(τ, t) := e−iλtLsk(|λ|τ/2)e−|λ|τ/4,(2.2)

ϕsλ,k(τ, t) := e−iλtLsk(|λ|τ/2)e−|λ|τ/4,(2.3)

where Lsk denotes the Laguerre polynomial of degree k and order s normal-

ized by Lsk(0) = 1, i.e., given by Lsk(τ) = Lsk(τ)/
(k+s
k

)
.

It is well known that the family e−τ/2L0
m(τ), m ≥ 0, is an orthonormal

basis of L2(0,∞). Thus (cf. [5, Theorem 4.1 and Remarks 4.2, 4.3])

(2.4) Sλ,k = Fλ,k ⊗ e−iλt,

with Fλ,k ∈ S ′(Cn) defined by

(2.5) 〈Fλ,k, g〉 = 〈(L0
k−q+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Ng(2|λ|−1τ)〉

for k ≥ 0, λ 6= 0 and by

(2.6) 〈Fλ,k, g〉 = 〈(L0
−k−p+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Ng(−2|λ|−1τ)〉

for k < 0, λ 6= 0.
For ϕ ∈ H and j ∈ N ∪ {0} a computation gives

(2.7) 〈(L0
jH)(n−1), ϕ〉

=

∞\
0

(L0
j)

(n−1)ϕ(τ) dτ +
∑

0≤s≤n−2

(L0
j)

(n−2−s)(0)〈δ(s), ϕ〉.

Lemma 2.2. For r ∈ Z such that 0 ≤ r ≤ n− 2 and for ϕ ∈ H,

〈(L0
rH)(n−1), τ 7→ e−τ/2ϕ(τ)〉 = (−1)n−2〈(L0

n−2−rH)(n−1), τ 7→ e−τ/2ϕ(−τ)〉.

Proof. A computation using (2.7) gives

〈(L0
rH)(n−1), τ 7→ e−τ/2ϕ(τ)〉

=
∑

0≤l≤n−2

∑

max(n−2−r,l)≤j≤n−2

1

2j−l

(
j

l

)
(−1)n−j

(
r

n− 2 − j

)
〈δ(l), ϕ〉
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and also

〈(L0
n−2−rH)(n−1), τ 7→ e−τ/2ϕ(−τ)〉

=
∑

0≤l≤n−2

∑

max(r,l)≤j≤n−2

1

2j−l

(
j

l

)
(−1)n−j+l

(
n− 2 − r

n− 2 − j

)
〈δ(l), ϕ〉.

To show the lemma it is enough to see that for 0 ≤ r ≤ n − 2 and 0 ≤ l
≤ n− 2,

∑

max(n−2−r,l)≤j≤n−2

1

2j

(
j

l

)
(−1)n−j

(
r

n− 2 − j

)

= (−1)n−2
∑

max(r,l)≤j≤n−2

1

2j

(
j

l

)
(−1)n−j+l

(
n− 2 − r

n− 2 − j

)
,

i.e., to show that for 0 ≤ r ≤ n− 2, the following polynomial identity holds:

(2.8)
∑

0≤l≤n−2

tl
∑

max(n−2−r,l)≤j≤n−2

1

2j

(
j

l

)
(−1)n−j

(
r

n− 2 − j

)

= (−1)n−2
∑

0≤l≤n−2

tl
∑

max(r,l)≤j≤n−2

1

2j

(
j

l

)
(−1)n−j+l

(
n− 2 − r

n− 2 − j

)
.

If we change the summation order, (2.8) becomes

(2.9) (−1)n
∑

n−2−r≤j≤n−2

(−1)j
(

r

n− 2 − j

)
1

2j

∑

0≤l≤j

(
j

l

)
tl

=
∑

r≤j≤n−2

1

2j

(
n− 2 − r

n− 2 − j

)
(−1)j

∑

0≤l≤j

(
j

l

)
(−1)ltl,

which, by the binomial formula, is equivalent to

(2.10) (−1)n
∑

n−2−r≤j≤n−2

(
r

n− 2 − j

)(
−
t+ 1

2

)j

=
∑

r≤j≤n−2

(
n− 2 − r

n− 2 − j

)(
t− 1

2

)j

,

i.e., to

(2.11)

(
−

1 + t

2

)n−2 ∑

n−2−r≤j≤n−2

(
r

n− 2 − j

)(
−

2

1 + t

)n−2−j

= (−1)n
(
t− 1

2

)n−2 ∑

r≤j≤n−2

(
n− 2 − r

n− 2 − j

)(
2

t− 1

)n−2−j

.
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After changing j to n − 2 − j and recalling that 0 ≤ r ≤ n − 2, by the
binomial formula (2.11) reduces to

(
−

1 + t

2

)n−2(
1 −

2

1 + t

)r

= (−1)n
(
t− 1

2

)n−2(
1 +

2

t− 1

)n−2−r

,

which clearly holds.

Corollary 2.3. Let g ∈ S(Cn). For 0 ≤ k ≤ q − 1, λ 6= 0 we have

(2.12) 〈Fλ,k, g〉

= (−1)n−2〈(L0
−k−p+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Ng(−2|λ|−1τ)〉,

and

(2.13) 〈Fλ,k, g〉

= (−1)n−2〈(L0
k−q+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Ng(2|λ|−1τ)〉

for −p+ 1 ≤ k < 0.

For a given set X and for f : X × R → C, λ ∈ R we set f(z, λ̂) :=
(t 7→ f(z, t))∧(λ) where ()∧ denotes the one-dimensional Fourier transform
(provided that it exists).

Proposition 2.4. Ker(F) = Ker(N).

Proof. If f ∈ S(Hn) and Nf = 0, then, by (2.5) and (2.6), F(f)(λ, k) =

〈Sλ,k, f〉 = 〈Fλ,k ⊗ e−iλt, f〉 = 0 and so F(f) = 0.
If F(f) = 0, from the definition of Sλ,k, for k ≥ 0 and λ 6= 0 we have

〈(L0
k−q+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(2|λ|−1τ, λ̂)〉 = 0

and, by Lemma 2.2, for −p+ 1 ≤ k < 0,

〈(L0
k−q+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(2|λ|−1τ, λ̂)〉

= (−1)n−2〈(L0
−k−p+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(−2|λ|−1τ, λ̂)〉 = 0.

Thus, for j ≥ 0,

2|λ|−1
∞\
0

e−τ/2L0
j(τ)e

τ/2 dn−1

dτn−1
(e−τ/2Nf(2|λ|−1τ, λ̂)) dτ = 0.

Thus
dn−1

dτn−1
(e−τ/2Nf(2|λ|−1τ, λ̂)) = 0 for τ ≥ 0, λ 6= 0.

So for such τ and λ, e−τ/2Nf(2|λ|−1τ, λ̂) = Pλ(τ) where Pλ(τ) is a
polynomial of degree at most n − 2 with coefficients which (in principle)

depend on λ. Thus Nf(2|λ|−1τ, λ̂) = eτ/2Pλ(τ). For each λ 6= 0,

limτ→∞Nf(2|λ|−1τ, λ̂) = 0 and so Pλ ≡ 0. This implies Nf(τ, λ̂) = 0
for τ ≥ 0 and λ ∈ R.
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A similar argument starting with the fact that, for k < 0,

〈(L0
−k−p+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(−2|λ|−1τ, λ̂)〉 = 0

shows that Nf(τ, λ̂) = 0 for τ < 0, λ ∈ R.

3. Necessary conditions. In this section we find necessary conditions
for a function m defined on (R − {0}) × Z to belong to the image of F .

To do this, we recall the definition of the space Ŝ(U(n), Hn). We say that
F : ∆(U(n), Hn) → C is rapidly decreasing (cf. [3, Definition 6.1]) if

(i) F is continuous,
(ii) for w ∈ C

n, w 7→ F (ηw) belongs to SU(n)(C
n) where ηw is the

spherical function of type II described in the introduction,
(iii) the map λ 7→ F (λ, k) is smooth on R − {0},
(iv) for each j,N ≥ 0 there exists a constant cj,N such that

∣∣∣∣
∂j

∂λj
F (λ, k)

∣∣∣∣ ≤
cj,N

|λ|j+N(2k + n)N
.

Also we set (see [3, Definition 6.2])

M−F (λ, k) =





∂F

∂λ
(λ, k) −

k

λ
[F (λ, k) − F (λ, k − 1)] for λ > 0,

∂F

∂λ
(λ, k) −

k + n

λ
[F (λ, k + 1) − F (λ, k)] for λ < 0,

and

M+F (λ, k) =





∂F

∂λ
(λ, k) −

k + n

λ
[F (λ, k + 1) − F (λ, k)] for λ > 0,

∂F

∂λ
(λ, k) −

k

λ
[F (λ, k) − F (λ, k − 1)] for λ < 0.

The space Ŝ(U(n), Hn) is defined as the set of all functions F : ∆(U(n), Hn)
→ C for which (M+)l(M−)mF is rapidly decreasing for all l,m ≥ 0.

Our results in this section are as follows:

Theorem 3.1. For f ∈ S(Hn) and k ∈ Z, ∂j(Ff(λ, k))/∂λj exists for

all j ∈ N and λ 6= 0. Moreover , for each j,N ∈ N ∪ {0} there exists a

positive constant c independent of λ and k such that

(3.1)

∣∣∣∣
∂j(Ff(λ, k))

∂λj

∣∣∣∣ ≤ c

(
|k|n−1 +

1

|λ|n−1

)
1

|λ|N+j(|k| + 1)N
.

Theorem 3.2. Let f ∈ S(Hn) and let m = Ff . Then the function

defined on (R−{0})× (N∪{0}) by (λ, k) 7→ E(m∗)(λ, k+q) (with E, m∗ as

in the introduction) can be extended to a function belonging to Ŝ(U(1), H1).
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Moreover , for k ≥ 0 and λ 6= 0,

(3.2) E(m∗)(λ, k + q) = (−1)n−1
∞\
0

L0
k(|λ|τ/2)e

−|λ|τ/4Nf(τ, λ̂) dτ.

Theorem 3.3. Let f ∈ S(Hn) and let m as in Theorem 3.2. Then the

function defined on (R − {0}) × (N ∪ {0}) by (λ, k) 7→ Ẽ(m∗∗)(λ,−k − p)

(Ẽ and m∗∗ as in the introduction) extends to a function in Ŝ(U(1), H1).
Furthermore

(3.3) Ẽ(m∗∗)(λ,−k − p) = (−1)n−1
∞\
0

L0
k(|λ|τ/2)e

−|λ|τ/4Nf(−τ, λ̂) dτ.

For j, s ∈ N ∪ {0}, let ϕsλ,j(τ, t) be defined by (2.3). From (2.7) and the
definition of Sλ,k we have

(3.4) Ff(λ, k) = I(λ, k) + II(λ, k)

where

I(λ, k) =





(−1)n−1
\
R

\
τ>0

e−iλtϕλ,k−q(τ, t)e
−|λ|/4τNf(τ, t) dτ dt

for k ≥ q,

(−1)n−1
\
R

\
τ>0

ϕλ,−k−p(τ, t)Nf(−τ, t) dτ dt

for k ≤ −p,

0 for −p+ 1 ≤ k ≤ q − 1,

(3.5)

II(λ, k) =
n−2∑

r=0

cr,k|λ|
−(l+1)〈δ(r), Nf(·, λ̂)〉 for k ∈ Z,(3.6)

with

cr,k =





4r
n−2∑

j=r

1

2j

(
j

r

)
(L0

k−q+n−1)
(n−j−2)(0) for k ≥ 0,

(−1)r4r
n−2∑

j=r

1

2j

(
j

r

)
(L0

−k−p+n−1)
(n−j−2)(0) for k < 0.

Proof of Theorem 3.1. Since Nf ∈ H# we have ∂
∂τ (τNf(τ, t)) ∈ H#, so

by Remark 2.1, there is g ∈ S(Hn) such that Ng(τ, t) = ∂
∂τ (τNf(τ, t)).

We claim that for λ 6= 0 and k ∈ Z, ∂Ff(λ, k)/∂λ exists and

(3.7)
∂Ff(λ, k)

∂λ
= −iF(tf)(λ, k)−

1

λ
Fg(λ, k).

Indeed, consider the case k ≥ q. Let I(λ, k) and II(λ, k) be given by (3.5)
and (3.6) respectively. Since for j ≥ 0 we have

∂

∂λ
ϕλ,j(τ, t) = −itϕλ,j(τ, t) +

τ

λ

∂

∂τ
ϕλ,j(τ, t),
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after integration by parts we obtain

∂I

∂λ
(λ, k) =

∂

∂λ

(\
R

\
τ>0

(−1)n−1ϕλ,k−q(τ, t)Nf(τ, t) dτ dt
)

(3.8)

=
\
R

\
τ>0

(−1)n−1ϕλ,k−q(τ, t)(−itNf(τ, t)) dτ dt

−
1

λ

\
R

\
τ>0

(−1)n−1ϕλ,k−q(τ, t)
∂

∂τ
(τNf(τ, t)) dτ dt.

Also,

∂II

∂λ
(λ, k) =

∂

∂λ

( n−2∑

l=0

cl,k|λ|
−(l+1)〈δ(l), Nf(·, λ̂)〉

)
(3.9)

= −
n−2∑

l=0

(l + 1)cl,k|λ|
−(l+2)sg(λ)〈δ(l), Nf(·, λ̂)〉

+
n−2∑

l=0

cl,k|λ|
−(l+1)〈δ(l),−i(tNf(·, t))∧(λ)〉

where (·)∧ denotes the Fourier transform in the variable t. Thus the deriva-
tive ∂Ff(λ, k)/∂λ exists. On the other hand,

−iF(tf(z, t))(λ, k) =
\
R

\
τ>0

(−1)n−1ϕλ,k−q(τ, t)(−itNf(τ, t)) dτ dt(3.10)

+
n−2∑

l=0

cl,k|λ|
−(l+1)〈δ(l),−i(tNf(·, t))∧(λ)〉.

Since
〈
δ(l), ∂∂τ (τNf(τ, t))

〉
= (l + 1)〈δ(l), Nf(·, t)〉) we have

−
1

λ
Fg(λ, k) = −

n−2∑

l=0

(l + 1)cl,k|λ|
−(l+2)sg(λ)〈δ(l), Nf(·, λ̂)〉(3.11)

−
1

λ

\
R

\
τ>0

(−1)n−1ϕλ,k−q(τ, t)
∂

∂τ
(τNf(τ, t)) dτ dt

and now (3.8)–(3.11) give (3.7) for k ≥ q. The case k < q follows from a
similar argument and using the corresponding expressions for I(λ, k) and
II(λ, k).

Now, induction on j implies that ∂jFf(λ, k)/∂λj exists for λ 6= 0, k ∈ Z

and all j.

In the rest of the proof, c1, c2, . . . , c
′, c′′, will denote positive constants

independent of λ and k. To prove (3.1) we first consider the case k ≥ q.
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From (3.4), we have

|Ff(λ, k)| ≤ Ln−1
k−q (0)‖Nf‖L1((0,∞)×R) + c1

n−2∑

l=0

|cl,k| |λ|
−(l+1).

Since Ln−1
k−q (0) =

(
k−q+n−1
n−1

)
≤ c2k

n−1 and |cl,k| ≤ c3k
n−l−2 we have

|Ff(λ, k)| ≤ c4

(
kn−1 +

n−2∑

l=0

kn−1−(l+1)|λ|−(l+1)
)

(3.12)

≤ c4

(
k +

1

|λ|

)n−1

≤ c5

(
kn−1 +

1

|λ|n−1

)
.

Applying (3.12) to LNf instead of f and recalling (1.1) we get

|2k + p− q|N |λ|N |Ff(λ, k)| = |F(LNf)(λ, k)| ≤ c′
(
|k|n−1 +

1

|λ|n−1

)

and since 2k + p− q 6= 0 because k ≥ q, this gives

(3.13) |Ff(λ, k)| ≤ c′′
(
|k|n−1 +

1

|λ|n−1

)
1

|2k + p− q|N |λ|N
.

A similar argument applies to the case k < q, giving (3.13) except when
q − p ∈ 2Z and k = (q − p)/2. In this case we take (iT )Nf instead of LNf
above to get

(3.14) |Ff(λ, k)| ≤ c

(
|k|n−1 +

1

|λ|n−1

)
1

|λ|N

for k = (q − p)/2. From (3.13) and (3.14) we obtain (3.1) for j = 0 and all
k and N .

Observe that for r ∈ N ∪ {0}, (3.1) used with j = 0 and N + r instead
of N gives immediately that

(3.15) |λ|r|Ff(λ, k)| ≤ c

(
|k|n−1 +

1

|λ|n−1

)
1

|λ|N(|k| + 1)N
.

An easy induction using (3.7) shows that for j ≥ 1,

(3.16) λj
∂jFf

∂λj
(λ, k) =

∑

0≤r≤j

λrFfr(λ, k)

for some f1, . . . , fj belonging to S(Hn) and independent of λ and k. Now,
(3.15) and (3.16) give (3.1) for all j.

Lemma 3.4. Let f ∈ S(Hn). If either k ≥ q or k ≤ −p, then

n−2∑

r=0

|λ|−(r+1)
n−1∑

l=0

(−1)l
(
n− 1

l

)
cr,k−l〈δ

(r), Nf(·, λ̂)〉 = 0.
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Proof. Assume k ≥ q. For r = 0, 1, . . . , n− 2 we have
n−1∑

l=0

(−1)l
(
n− 1

l

)
cr,k−l

=
n−1∑

l=0

(−1)l
(
n− 1

l

) n−2∑

j=r

1

2j

(
j

r

)
(−1)n−j

(
k − l − q + n− 1

n− j − 2

)

=
n−2∑

j=r

1

2j

(
j

r

)
(−1)n−j

n−1∑

l=0

(−1)l
(
n− 1

l

)(
k − l − q + n− 1

n− j − 2

)
.

Let

β :=
n−1∑

l=0

(−1)l
(
n− 1

l

)(
k − l − q + n− 1

n− j − 2

)
.

We claim that if 0 ≤ r ≤ j ≤ n− 2 then β = 0. To see this we note that β
is the coefficient of ys in the polynomial

∑n−1
l=0 (−1)l

(
n−1
l

)
(1 + y)m−l (where

m = k − q + n − 1 and s = n − j − 2), i.e. β is the coefficient of ys in
(1+ y)m−(n−1)

∑n
l=0(−1)l

(
n−1
l

)
(1+ y)n−1−l = (1+ y)m−(n−1)yn−1. So β = 0

since s = n − j − 2 < n − 1. The proof for the case k ≤ −p is similar,
replacing k − q by −k − p.

We recall that (cf. [8, p. 101])

(3.17) Lnj (x) = Ln+1
j (x) − Ln+1

j−1 (x).

Lemma 3.5. For j ≥ 0,

(3.18)

min(j,n−1)∑

l=0

(−1)l
(
n− 1

l

)
Ln−1
j−l (x) = L0

j (x).

Proof. We first give the proof for the case j ≥ n − 1. We proceed by
induction on n. For n = 1 the lemma is clear. Suppose that it holds for n
and j ≥ n− 1. Then for j ≥ n,
n∑

l=0

(−1)l
(
n

l

)
Lnj−l(x) = Lnj (x) + (−1)nLnj−n(x)

+
n−1∑

l=1

(−1)l
(
n− 1

l

)
Lnj−l(x) +

n−1∑

l=1

(−1)l
(
n− 1

l − 1

)
Lnj−l(x).

An index change in the last sum gives
n∑

l=0

(−1)l
(
n

l

)
Lnj−l(x) = Lnj (x) + (−1)nLnj−n(x)

+
n−1∑

l=1

(−1)l
(
n− 1

l

)
Lnj−l(x) +

n−2∑

l=0

(−1)l−1

(
n− 1

l

)
Lnj−l−1(x)
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= Lnj (x) + (−1)nLnj−n(x) − Lnj−1(x) + (−1)n−1Lnj−(n−1)(x)

+

n−2∑

l=1

(−1)l
(
n−1

l

)
(Lnj−l−L

n
j−l−1)(x)

=

n−1∑

l=0

(−1)l
(
n− 1

l

)
(Lnj−l(x) − Lnj−l−1(x))

=

n−1∑

l=0

(−1)l
(
n− 1

l

)
Ln−1
j−l (x) = L0

j (x).

The last equality follows from (3.17) and the inductive hypothesis.
For the case j < n− 1 we write

j∑

l=0

(−1)l
(
n− 1

l

)
Ln−1
j−l (x) =

n−1∑

l=0

(−1)l
(
n− 1

l

)
clL

n−1
j−l (x),

where cl = 1 for 0 ≤ l ≤ j and cl = 0 for j ≤ l ≤ n−1, and now we proceed
as above.

Proof of Theorem 3.2. Let m = Ff . For k ≥ n− 1,

(3.19) E(m∗)(λ, k + q) =
n−1∑

l=0

(−1)l
(
n− 1

l

)
m(λ, k + q − l)

=
n−1∑

l=0

(−1)l
(
n− 1

l

)
(−1)n−1

∞\
0

Ln−1
k−l (|λ|τ/2)e−|λ|τ/4Nf(τ, λ̂) dτ

+
n−1∑

l=0

(−1)l
(
n−1

l

) n−2∑

r=0

cr,k+q−l|λ|
−(r+1)〈δ(r), Nf(·, λ̂)〉= I+II.

Now, by Lemma 3.4, II = 0 and Lemma 3.5 gives

I = (−1)n−1
∞\
0

L0
k(|λ|τ/2)e−|λ|τ/4Nf(τ, λ̂) dτ.

Thus, for k ≥ n− 1,

(3.20) E(m∗)(λ, k + q) = (−1)n−1
∞\
0

L0
k(|λ|τ/2)e−|λ|τ/4Nf(τ, λ̂) dτ.

On the other hand, if 0 ≤ k < n− 1,

E(m∗)(λ, k + q) =
∑

0≤l≤min(k+q,n−1)

(−1)l
(
n− 1

l

)
m(λ, k + q − l)

+
∑

k+q<l≤n−1

(−1)l
(
n− 1

l

)
(−1)n−2m(λ, k + q − l)
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(with the convention that a sum on an empty set is zero). Since, for 0 ≤ l
≤ min(k + q, n− 1),

m(λ, k + q − l) = 〈(L0
k−l+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Ng(2|λ|−1τ)〉

and since for k + q < l ≤ n− 1 Corollary 2.3 gives

(−1)n−2m(λ, k + q − l)

= 〈(L0
k−l+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Ng(2|λ|−1τ)〉,

we obtain E(m∗)(λ, k + q) = I + II also for 0 ≤ k < n − 1 (with I and II
as in (3.19)). Proceeding as in the case k ≥ n − 1 we conclude that (3.20)
holds for all k.

Let F1 be the U(1)-spherical transform on S(H1) defined in [3] and let
f1 be the radial function in S(H1) given by f1(z, t) = Nf(|z|2, t). Then, by
definition,

F1(f1)(λ, k) =
\
C

L0
k(|λ| |z|

2/2)e−|λ| |z|2/4Nf(|z|2, λ̂) dz.

We use polar coordinates z = reiθ and then we perform the change of
variable s = r2 to get

F1(f1)(λ, k) = π

∞\
0

L0
k(|λ|s/2)e−|λ|s/4Nf(s, λ̂) ds,

i.e. (−1)n−1E(Ff)(λ, k + q) = F1(f1)(λ, k) for k ≥ 0.

Proof of Theorem 3.3. As before, it is enough to find g1 ∈ S(H1) such

that for k ≥ 0, F1g1(λ, k) = (−1)n−1Ẽ(m∗∗)(λ,−k − p). Set g1(z, t) =
Nf(−|z|2, t). Following the lines of the proof of Theorem 3.2 we obtain

F1(g1)(λ, k) = π

∞\
0

L0
k(|λ|s/2)e

−|λ|s/4Nf(−s, λ̂) ds

= (−1)n−1Ẽ(m∗∗)(λ,−k − p)

for k ≥ 0.

4. The image of the spherical transform

Lemma 4.1. For k ≥ 0,

(4.1)
dn−1

dτn−1

(
1

(n− 1)!
τn−1Ln−1

k (τ)e−τ
)

= L0
k+n−1(τ)e

−τ .
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Proof. We have

1

(n− 1)!

dn−1

dτn−1
(τn−1Ln−1

k (τ)e−τ )

=
1

(n− 1)!

(n− 1)!k!

(k + n− 1)!

dn−1

dτn−1
(τn−1Ln−1

k (τ)e−τ )

=
1

(k + n− 1)!

(
d

dτ

)n−1+k

(τn−1+ke−τ ) = L0
k+n−1(τ)e

−τ

where we have used (twice) the fact that

Lαj (τ)ταe−τ =
1

j!

dj

dτ j
(τα+je−τ ) for j ≥ 0 (Rodrigues formula).

LetD be the linear operator defined on the space of polynomial functions
by DL0

k = L0
k − L0

k−1 for k ≥ 1 and D1 = 1.

Lemma 4.2. For all m ≥ 0,

(4.2)

(
d

dτ

)m

(e−τDm(P (τ))) = (−1)me−τP (τ).

Proof. We proceed by induction on m. For m = 0 there is nothing to
prove. Assume that (4.2) holds. Then, for k ≥ 0,

(
d

dτ

)m+1

(e−τDm+1(L0
k(τ))) =

d

dτ

(
d

dτ

)m

(e−τDm(DL0
k(τ)))

= (−1)m
d

dτ
(e−τDL0

k(τ)) = (−1)m+1e−τL0
k(τ).

In fact, the last equality follows from a direct computation for k = 0, 1, and
for k ≥ 2 observe that, taking into account (2.1) and (3.17),

(−1)m
d

dτ
(e−τDL0

k(τ)) = (−1)m
d

dτ
(e−τ (L0

k(τ) − L0
k−1(τ)))

= (−1)m(−e−τL0
k(τ) + e−τL0

k−1(τ) − e−τL1
k−1(τ) + e−τL1

k−2(τ))

= (−1)m(−e−τL0
k(τ) + e−τL0

k−1(τ) − e−τL0
k−1(τ)) = (−1)m+1e−τL0

k(τ).

Lemma 4.3. (a) For k ≥ 0 and m ≥ 0,

(4.3) Dm(L0
k) =

min(m,k)∑

l=0

(−1)l
(
m

l

)
L0
k−l.

(b) If k > m then Dm(L0
k)(0) = 0.
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Proof. The proof proceeds along similar lines to the proof of Lem-
ma 3.5.

Lemma 4.4. For r ≥ n− 1,

(4.4) Dn−1(L0
r)(τ) = (−1)n−1 1

(n− 1)!
τn−1Ln−1

r−(n−1)(τ)

Proof. From Lemma 4.2 we have
(
d

dτ

)n−1

(e−τDn−1(L0
r(τ))) = (−1)n−1e−τL0

r(τ),

thus e−τDn−1(L0
r(τ)) is an (n− 1)-primitive of (−1)n−1e−τL0

r(τ) and then,
by Lemma 4.1,

e−τDn−1(L0
r(τ)) = (−1)n−1 1

(n− 1)!
τn−1Ln−1

r−n−1(τ)e
−τ +Q(τ)

for some polynomial Q of degree at most n− 2. But this is impossible if Q
does not vanish identically.

Theorem 4.5. Let a : (R − {0}) × (N ∪ {0}) → C be such that for each

N ∈ N∪ {0} there exists a positive constant c independent of λ and k such

that

(4.5) |a(λ, k)| ≤ cN

(
|k|n−1 +

1

|λ|n−1

)
1

|λ|N(|k| + 1)N
.

Then for each s ∈ N ∪ {0} the function Ψ : [0,∞) × R → R defined by

(4.6) Ψ(τ, t) :=
∑

k≥0

∞\
−∞

a(λ, k)Lsk(|λ|τ/2)e−|λ|τ/4e−iλt|λ|n dλ

is well defined and belongs to C∞([0,∞)×R). Moreover , the series in (4.6)
converges absolutely and uniformly on [0,∞) × R.

Proof. For λ 6= 0 and k, s ∈ N ∪ {0} let ψsλ,k be defined by (2.2). Since
|ψsλ,k| ≤ 1 (cf. [3]), in order to prove the absolute and uniform convergence

of the series in (4.6) it is enough to show that

(4.7)
∑

k≥q

∞\
−∞

|a(λ, k)| |λ|n dλ <∞.

From (4.5) used with N = 0 and since kn−1 + 1/|λ|n−1 ≤ 2/|λ|n−1 if
|λ(k + 1)| ≤ 1, we get

∑

k≥0

\
|λ(k+1)|≤1

|a(λ, k)| |λ|n dλ ≤ c
∑

k≥0

\
|λ(k+1)|≤1

|λ|

2
dλ ≤ c′′

∑

k≥0

1

(k+1)2
<∞.
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Also, from (4.5) used with N = n+2 and since kn−1+1/|λ|n−1 ≤ 2(k+1)n−1

if |λ(k + 1)| > 1, we get

∑

k≥0

\
|λ(k+1)|>1

|a(λ, k)| |λ|n dλ ≤ c
∑

k≥0

\
|λ(k+1)|>1

(k + 1)n−1|λ|n

(k + 1)n+2|λ|n+2
dλ

= c
∑

k>0

1

(k + 1)2
<∞.

Thus we have (4.7) and so the series in (4.6) converges absolutely and uni-
formly.

To prove the remaining assertion of the lemma we observe that for k ≥ 1,

d

dτ
Lsk(|λ|τ/2) = −

|λ|

2

k

s+ 1
Ls+1
k−1(|λ|τ/2)

and so, for k ≥ 1,

∂

∂τ
(a(λ, k)Lsk(|λ|τ/2)e−|λ|τ/4)

=

(
−

1

2(s+ 1)
a1(λ, k)L

s+1
k−1(|λ|τ/2) −

1

4
a2(λ, k)L

s
k(|λ|τ/2)

)
e−|λ|τ/4

where a1(λ, k) := |λ|ka(λ, k) and a2(λ, k) := |λ|a(λ, k). A similar identity
holds for k = 0 with the term involving Ls+1

k−1 deleted. Since a1 and a2 satisfy
the same estimates assumed for a, it follows that the series defining Ψ can be
differentiated term by term and that ∂Ψ/∂τ is a series of the form (4.6) with
a(λ, k) replaced by a new ã(λ, k) satisfying the estimates (4.5). Similarly, we
can show that the same conclusion holds for ∂Ψ/∂t. Now the lemma follows
by induction.

Remark 4.6. Let a = a(λ, k) satisfy the conditions of Theorem 4.5.
Then for τ ≥ 0 and λ 6= 0, the series

Ψ(τ, λ) =
|λ|

2

∑

k≥0

a(λ, k)L0
k(|λ|τ/2)e−|λ|τ/4

converges absolutely (so it can be rearranged) and Ψ(τ, ·) ∈ L1(R). Indeed,
this follows from the assumption on a(λ, k) and the fact that |ϕ0

λ,k| ≤ 1.
Moreover, for each l ≥ 0,

∂lΨ(2|λ|−1τ, λ)

∂τ l
=

|λ|

2

∑

k≥0

a(λ, k)
∂l

∂τ l
(L0

k(τ)e
−τ/2).

Theorem 4.7. Let f ∈ S(Hn). Then, for (τ, t) ∈ [0,∞) × R,

(4.8) Nf(τ, t)

= (−1)n−1
\
R

|λ|

2

∑

k≥0

E(m∗)(λ, k + q)L0
k(|λ|τ/2)e−|λ|τ/4e−iλt dλ
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and for (τ, t) ∈ (−∞, 0] × R,

(4.9) Nf(τ, t)

= (−1)n−1
\
R

|λ|

2

∑

k≥0

Ẽ(m∗∗)(λ,−k − p)L0
k(−|λ|τ/2)e|λ|τ/4e−iλt dλ.

Proof. Let f ∈ S(Hn) and m = Ff . Since {L0
k(τ)e

−τ/2}k≥0 is an or-
thonormal basis of L2(0,∞), Theorems 3.2 and 3.3 imply that for all λ 6= 0,

(4.10) Nf(τ, λ̂) = (−1)n−1 |λ|

2

∑

k≥0

E(m∗)(λ, k + q)L0
k(|λ|τ/2)e

−|λ|τ/4

for a.e. τ > 0, and

(4.11) Nf(τ, λ̂) = (−1)n−1 |λ|

2

∑

k≥0

Ẽ(m∗∗)(λ,−k − p)L0
k(−|λ|τ/2)e|λ|τ/4

for a.e. τ < 0. We multiply these equalities by e−iλt and then integrate with
respect to λ. Since, by Lemma 4.5, the above series can be integrated term
by term, (4.8) and (4.9) follow (because they hold for a.e. τ > 0 and a.e.
τ < 0 respectively and have both sides continuous in τ).

Remark 4.8. Theorem 4.7 also follows from formula (1.1) in [3] since

the restrictions to (R−{0}) × (N ∪ {0}) can be extended to Ŝ(U(1), H1).

In order to obtain, for a given m(λ, k) satisfying the hypothesis of The-
orem 1.1, a function f ∈ S(Hn) such that Ff = m, Theorem 4.7 suggests
considering the functions ϕ1 : [0,∞) × R → C and ϕ2 : (−∞, 0] × R → C

defined by the right sides of (4.8) and (4.9) respectively. After checking that
they agree for τ = 0, we will prove that the function ϕ : R

2→ C given by ϕ1

and ϕ2 belongs to H#, and then we will choose f such that N f = ϕ. We
fix such ϕ1 and ϕ2 from now on.

S([0,∞) × R) will denote the space of functions h : [0,∞) × R → C

which are C∞ and rapidly decreasing at infinity (with the derivatives at
τ = 0 understood as lateral derivatives).

Lemma 4.9. Assume that m satisfies the conditions of Theorem 1.1.
Then ϕ1 ∈ S([0,∞) × R) and ϕ2 ∈ S((−∞, 0] × R).

Proof. From our assumptions on m, Theorem 6.1 in [3] gives functions
f1 = f1(z, t) and f2 = f2(z, t) which are radial in z, belong to S(H1) and

f1(z, t) = (−1)n−1
\
R

|λ|

2

∑

k≥0

E(m∗)(λ, k + q)L0
k(|λ| |z|

2/2)e−|λ| |z|2/4e−iλt dλ
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and

f2(z, t)

= (−1)n−1
\
R

|λ|

2

∑

k≥0

E(m∗∗)(λ,−k−p)L0
k(|λ| |z|

2/2)e−|λ| |z|2/4e−iλt dλ.

So ϕ1(τ, t) = f1(τ
1/2, t) for (τ, t) ∈ [0,∞)×R and ϕ2(τ, t) = f2(|τ |1/2, t) for

(τ, t) ∈ (−∞, 0] × R, and the lemma follows by proceeding as in the proof
of Theorem 6.1 in [3, pp. 410–412].

From the definition of ϕ1 we have

ϕ1(τ, t)

= (−1)n−1
∑

k≥0

∑

0≤l≤n−1

\
R

(−1)l
(
n−1

l

)
|λ|

2
m∗(λ, k+q − l)ϕ0

λ,k(τ, t) dλ.

Note that this series can be rearranged by Theorem 4.5. We first change
the summation order, then we change the index in the sum on k setting
j = k − q − l, and finally we change l to n− 1 − l to obtain

ϕ1(τ, t)

=
∑

0≤l≤n−1

∑

j≥−p+1+l

\
R

(−1)l
(

n− 1

n− 1 − l

)
|λ|

2
m∗(λ, j)ϕ0

λ,j−q+n−1−l(τ, t) dλ.

Now we change the summation order again to get

ϕ1(τ, t)

=
∑

j≥−p+1

\
R

|λ|

2
m∗(λ, j)

∑

0≤l≤min(j+p−1,n−1)

(−1)l
(
n−1

l

)
ϕ0
λ,j−q+n−1−l(τ, t) dλ

and so by Lemma 4.3,

(4.12) ϕ1(τ, t) =
∑

j≥q

\
R

|λ|

2
m∗(λ, j)(Dn−1L0

j−q+n−1)(|λ|τ/2)e
−|λ|τ/4e−iλt dλ

+
∑

−p+1≤j≤q−1

\
R

|λ|

2
m∗(λ, j)(Dn−1L0

j−q+n−1)(|λ|τ/2)e
−|λ|τ/4e−iλt dλ.

Then, by Lemma 4.4,

ϕ1(τ, t) =
∑

j≥q

\
R

|λ|

2
m(λ, j)(−1)n−1 1

(n− 1)!
(|λ|τ/2)n−1ψn−1

λ,j−q(τ, t) dλ

+
∑

−p+1≤j≤q−1

\
R

|λ|

2
m∗(λ, j)(Dn−1L0

j−q+n−1)(|λ|τ/2)e
−|λ|τ/4e−iλt dλ
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Thus, ϕ1(τ, t) = ξ1(τ, t) + η1(τ, t) where

ξ1(τ, t) =
∑

j≥q

\
R

|λ|

2
m(λ, j)(−1)n−1 1

(n− 1)!
(|λ|τ/2)n−1ψn−1

λ,j−q(τ, t) dλ,

η1(τ, t)

=
∑

−p+1≤j≤q−1

\
R

|λ|

2
m∗(λ, j)

∑

0≤l≤j+p−1

(−1)l
(
n− 1

l

)
ψ0
λ,j−q+n−1−l(τ, t) dλ.

Similarly, ϕ2(τ, t) = ξ2(τ, t) + η2(τ, t) where

ξ2(τ, t) =
∑

j≤−p

\
R

|λ|

2
m(λ, j)(−1)n−1 1

(n− 1)!
(|λ|τ/2)n−1ψn−1

λ,−j−p(−τ, t) dλ,

η2(τ, t)

=
∑

−p<j≤q−1

\
R

|λ|

2
m∗∗(λ, j)

∑

0≤l≤q−1−j

(−1)l
(
n− 1

l

)
ψ0
λ,−j−p+n−1−l(−τ, t) dλ.

Observe that by Theorem 4.5, ξ1(τ, t)=τ
n−1ξ̃1(τ, t) with ξ̃1∈C∞([0,∞)×R),

and so ∂lξ1
∂τ l (0, t) = 0 for 0≤ l≤ n−2 and all t∈R. Analogously, ∂

lξ2
∂τ l (0, t) = 0

for 0 ≤ l ≤ n− 2, t ∈ R.
Our next step is to prove that

(4.13)
∂sϕ1

∂τ s
(0, t) =

∂sϕ2

∂τ s
(0, t), 0 ≤ s ≤ n− 2, t ∈ R,

i.e., for each t,

(4.14)
∂sη1

∂τ s
(0, t) =

∂sη2

∂τ s
(0, t), 0 ≤ s ≤ n− 2.

Observe that from Theorem 4.5 we have, for t ∈ R and 0 ≤ l ≤ n− 2,

∂lη1

∂τ l
(0, t) =

\
R

|λ|

2

( −1∑

j=−p+1

(−1)n−2m(λ, j)Gj,l(λ)+

q−1∑

j=0

m(λ, j)Gj,l(λ)
)
e−iλt dλ

and

∂lη2

∂τ l
(0, t) =

\
R

|λ|

2

( −1∑

j=−p+1

m(λ, j)Hj,l(λ)+

q−1∑

j=0

(−1)n−2m(λ, j)Hj,l(λ)
)
e−iλt dλ

with Gj,l, Hj,l independent of m and the integrals being absolutely conver-
gent. But (4.14) holds if and only if

(4.15)

−1∑

j=−p+1

(−1)n−2m(λ, j)Gj,l(λ) +

q−1∑

j=0

m(λ, j)Gj,l(λ)

=
−1∑

j=−p+1

m(λ, j)Hj,l(λ) +

q−1∑

j=0

(−1)n−2m(λ, j)Hj,l(λ)

for all λ 6= 0.
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From Theorem 4.7, this clearly holds if m = Ff for some f ∈ S(Hn),
because the first n− 2 derivatives of Nf(·, t) are continuous at the origin.

Moreover, for each λ and j such that λ 6= 0 and −p + 1 ≤ j ≤ q − 1,
Proposition 4.10 below gives an f ∈ S(Hn) (depending of λ and j) such that
for −p+ 1 ≤ k ≤ q− 1, Ff(λ, k) = 1 if k = j, and Ff(λ, k) = 0 if k 6= j. So
for such λ and j, Gj,l(λ) = (−1)n−2Hj,l(λ), 0 ≤ l ≤ n− 2.

Proposition 4.10. Given λ 6= 0 and n−1 complex numbers {aj}
q−1
j=p+1,

there exists f ∈ S(Hn) such that

(4.16) Ff(λ, j) = aj , −p+ 1 ≤ j ≤ q − 1.

Proof. We take f such that Nf(τ, λ̂) := ω(|λ|τ/2)e|λ|τ/4ψ̂(λ) where

ω, ψ ∈ S(R), ω ∈ Cc(R) and ψ̂(λ) = 1. We recall that from the definition
of Ff ,

Ff(λ, k) = 〈(L0
k−q+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(2|λ|−1τ, λ̂)〉,

0 ≤ k ≤ q − 1,

and

Ff(λ, k) = 〈(L0
−k−p+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(−2|λ|−1τ, λ̂)〉,

−p+ 1 ≤ k < 0,

and from Corollary 2.3,

Ff(λ, k) = (−1)n−2〈(L0
k−q+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(2|λ|−1τ, λ̂)〉

for −p + 1 ≤ k < 0. So, from our choice of f and since ψ̂(λ) = 1, (4.16)
reads ak = 2|λ0|−1〈(L0

k−q+n−1H)(n−1), ω〉 for 0 ≤ k ≤ q − 1, and ak =

(−1)n−22|λ0|−1〈(L0
k−q+n−1H)(n−1), ω〉 for −p+1 ≤ k < 0. But for −p+1 ≤

k ≤ q − 1 we have 0 ≤ k − q + n− 1 ≤ n− 2. So, by (2.7),

(L0
k−q+n−1H)(n−1) =

n−2∑

s=0

(L0
k−q+n−1)

(n−2−s)(0)δ(s).

To obtain (4.16) it is enough to find β0, . . . , βn−2 solving

n−2∑

s=0

(L0
k−q+n−1)

(n−2−s)(0)(−1)(s)βs = |λ|ak/2, 0 ≤ k ≤ q − 1,

n−2∑

s=0

(L0
k−q+n−1)

(n−2−s)(0)(−1)(s)βs = (−1)n−2|λ|ak/2, −p+ 1 ≤ k < 0,

and then to find ω ∈ C∞
c (R) such that ω(s)(0) = βs for s= 0, 1, . . . , n−2.

This is a linear system in {ω(s)(0)}n−2
s=0 . Since (L0

k)
(s)(0) = (−1)s

(k
s

)
, the as-

sociated (n−1)×(n−1) matrix A is lower triangular with ±1 on the diagonal.
So A is nonsingular and the existence of β0, . . . , βn−2 follows. Now, we take
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ω = P (τ)ω̃(τ), where P is a polynomial of degree n − 1 with P (s)(0) = βs
for s = 0, . . . , n− 2 and where ω̃ ∈ C∞

c (R), supp(ω̃) ⊂ (−2, 2) and ω̃(τ) = 1
for τ ∈ (−1, 1).

A classical result due to Borel states that given a sequence {aj}∞j=1 of

complex numbers, there exists a C∞(R) function ψ such that ψ(j)(0) = aj
for all j. Moreover ψ can be taken in C∞

c (R). A similar result holds in two
variables. Since we have not been able to find it in the literature we give a
proof for completeness.

Lemma 4.11. Let {aj(t)}∞j=1 be a sequence of functions in S(R). Then

there exists a ψ ∈ S(R2) such that ∂jψ
∂τj (0, t) = aj(t).

Proof. Let ω̃ be as in the proof of Proposition 4.10. For a given sequence
{λn}∞n=1 of positive numbers we set

gn(τ, t) :=
an(t)

n!
τnω̃(τ), fn(τ, t) :=

1

λ2n
n

gn(λnτ, t) =
1

λnn

an(t)

n!
τnω̃(λnτ).

Let

f(τ, t) :=
∑

n=1

fn(τ, t).

Clearly, the lemma will follow if we can prove (for a suitable sequence {λn})
that

(4.17)

∥∥∥∥t
s ∂

l

∂tl
∂k

∂τk
fn

∥∥∥∥
∞

≤
1

2n
for all 0 ≤ k, l, s ≤ n− 1,

We take λn ≥ 1 for all n. Taking into account that k ≤ n − 1 and aj(t) ∈
S(R), we can apply the Leibniz rule to get a positive constant cn such that

∣∣∣∣t
s ∂

l

∂tl
∂k

∂τk
fn

∣∣∣∣ ≤ ts
cn
λnn!

∣∣∣∣
∂lan
∂tl

∣∣∣∣ ≤
cn
λnn!

n−1∑

s,l=0

∥∥∥∥t
s ∂

lan
∂lt

∥∥∥∥
∞

.

Now (4.17) follows by choosing λn such that, in addition,

1

λn
≤

cn
2nn!

n−1∑

s,l=0

∥∥∥∥t
s ∂

lan
∂lt

∥∥∥∥
∞

.

Definition 4.12. Let m = m(λ, k) be a function satisfying the condi-
tions of the statement of Theorem 1.1. We define ϕ : R

2 → R by

(4.18) ϕ(τ, t) =

{
ϕ1(τ, t) for τ > 0, t ∈ R,

ϕ(τ, t) = ϕ2(τ, t) for τ ≤ 0, t ∈ R.

Proof of Theorem 1.1. Let m and ϕ be as in Definition 4.12. By Theo-
rems 3.2 and 3.3, it remains to see that ϕ belongs to H# and that if we take
f ∈ S(Hn) such that Nf = ϕ then Ff = m. To see that ϕ ∈ H# we must
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find ψ1 and ψ2 in S(R2) such that

ϕ(τ, t) = ψ2(τ, t) + τn−1ψ1(τ, t)H(τ)

(where H is the Heaviside function), i.e.,

ψ2(τ, t) =

{
ϕ2(τ, t) for τ ≤ 0,

ϕ1(τ, t) − τn−1ψ1(τ, t) for τ > 0.
(4.19)

For a given ψ1 ∈ S(R2), we define ψ2 by (4.19). In view of Lemma 4.9 and
(4.13), ψ2 ∈ S(R2) if and only if for a suitable ψ1 ∈ S(R2),

(4.20)
∂jϕ2

∂τ j
(0, t) =

∂jϕ1

∂τ j
(0, t) −

(
j

n− 1

)
(n− 1)!

∂j−(n−1)ψ1

∂τ j−(n−1)
(0, t).

for all j ≥ n− 1. But Lemma 4.11 gives a function ψ1 ∈ S(R2) such that

∂kψ1

∂τk
(0, t) =

1(k+n−1
n−1

)
(n− 1)!

∂k+n−1(ϕ2 − ϕ1)

∂τk+n−1
(0, t)

for k ∈ N ∪ {0}, i.e., (4.20) holds. Thus ϕ ∈ H#.

Let f ∈ S(Hn) be such that Nf = ϕ. To see that Ff = m we proceed
as follows. For k ≥ 0 and λ 6= 0 we have

(4.21) Ff(λ, k) = 〈(L0
k−q+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(2|λ|−1τ, λ̂)〉

= (−1)n−1
∞\
0

L0
k−q+n−1(τ)

∂n−1

∂τn−1
(2|λ|−1e−τ/2ϕ1(2|λ|

−1τ, λ̂)) dτ.

From the definition of ϕ1 and Remark 4.6,

2|λ|−1e−τ/2ϕ1(2|λ|
−1τ, λ̂) =

∑

j≥0

E(m∗)(λ, j + q)L0
j(τ)e

−τ .

Now, from similar computations to those that give (4.12) (allowed again by
Remark 4.6) we get

2|λ|−1e−τ/2ϕ1(2|λ|
−1τ, λ̂) =

(−1)n−1

(n− 1)!

|λ|

2

∑

j≥q

m(λ, j)Dn−1(L0
j−q+n−1)(τ)e

−τ

+
|λ|

2

∑

−p+1≤j≤q−1

m∗(λ, j)Dn−1(L0
j−q+n−1)(τ)e

−τ .

Then, by Lemma 4.2,

2|λ|−1(−1)n−1

(
d

dτ

)n−1

e−τ/2Nf(2|λ|−1τ, λ̂)

=
∑

j≥q

m(λ, j)L0
j−q+n−1e

−τ +
∑

−p+1≤j≤q−1

m∗(λ, j)L0
j−q+n−1(τ)e

−τ .
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Our assumptions on m imply that
∑

j≥qm(λ, j)L0
j−q+n−1e

−τ/2 belongs to

L2((0,∞), dτ). Also
T∞
0 L0

k−q+n−1(τ)L
0
j−q+n−1e

−τ = δjk; then from (4.21)
it follows that Ff(λ, k) = m(λ, k) for k ≥ q and Ff(λ, k) = m∗(λ, k) for
0 ≤ k ≤ q − 1. Since m(λ, k) = m∗(λ, k) for k ≥ 0 we have proved that
Ff(λ, k) = m(λ, k) for k ≥ 0.

A completely similar argument starting with the facts that

Ff(λ, k) = 〈(L0
−k−p+n−1H)(n−1), τ 7→ 2|λ|−1e−τ/2Nf(−2|λ|−1τ, λ̂)〉

= (−1)n−1
∞\
0

L0
−k−p+n−1(τ)

∂n−1

∂τn−1
(2|λ|−1e−τ/2ϕ2(−2|λ|−1τ, λ̂)) dτ

and that for τ < 0,

2|λ|−1eτ/2ϕ2(2|λ|
−1τ, λ̂) =

∑

j≥0

E(m∗∗)(λ, j + q)L0
j(−τ)e

τ

can be used in the case k < 0 to complete the proof of the theorem.

Remark 4.13. Recall that for h ∈ S(H1) and H(λ, k) = F1h(λ, k)
we have M+H = F1((|z|2/4 + it)h) and M−H = F1((|z|2/4 − it)h) (cf.
[3, p. 407]).

For f ∈ S(Hn) let f1 ∈ S(H1) be the function given by

f1(z, t) = Nf(|z|2, t).

We have seen that

F1(f1)(λ, k) = E(Ff)(λ, k + q).

Consider the map Ξ : S(Hn) → S(H1) defined by Ξ(f) = f1, let B(z, w) be
the quadratic form given in the introduction and set B(z) = B(z, z). It is
immediate to see thatN(B(z)f) = τNf and this says that Ξ((B(z)/4±it)f)
= (|z|2/4 ± it)f1. Then we can conclude that

M±(F1f1) = E(F(B(z)/4 ± it)f).

A similar expression can be obtained for M±(F1g1)(λ, k) (where g1(z, t) =
Nf(−|z|2, t)) that involves E(F(B(z)/4± it)f)(λ,−k−p) for k ≥ n−1 and

Ẽ(F(B(z)/4 ± it)f)(λ, k) for 0 ≤ k ≤ n− 2.
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[8] G. Szegő, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1939.
[9] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signa-

ture, Math. Scand. 8 (1960), 201–218.

FaMAF (Universidad Nacional de Córdoba) and
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