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KEMPISTY’S THEOREM FOR THE
INTEGRAL PRODUCT QUASICONTINUITY

BY

ZBIGNIEW GRANDE (Bydgoszcz)

Abstract. A function f:R"™ — R satisfies the condition Q;(x) (resp. Qs(z), Qo(x))
at a point z if for each real r > 0 and for each set U 5 x open in the Euclidean topology
of R™ (resp. strong density topology, ordinary density topology) there is an open set I such
that INU # @ and |(1/u(UNIT)) SUN f(@t)dt — f(z)| < r. Kempisty’s theorem concerning
the product quasicontinuity is investigated for the above notions.

For x = (z1,...,x,) € R™ and positive reals r1,...,r, put
I =(x;—ri,z;i+r;) fori=1,...,n,
P(xyry,...,rp) =11 X -+ x I, Q(z,7r) = P(x;7,...,7).
Denote by p the Lebesgue measure and by p. the outer Lebesgue measure

in R”. For A C R™ and = € R" we define the upper (resp. lower) outer strong
density D, (A, x) (resp. Dj(A,z)) of A at x as

(ANP(x;hy, ..., ¢y
lim sup pe(A N P(w; h )
hi,...,hp—07F lu’(P(xv hla ceey h’ﬂ))

and
i inf te(ANP(x;hy, ... hy))
hirehn—0t  (P(xshy, ... hy))

respectively. Similarly for A C R™ and x € R™ we define the upper (resp.
lower) outer ordinary density d,(A,x) (resp. dj(A,z)) of A at x as

lim sup H(ANQ(, h)) and liminf He(ANQ(z, 1))
h—ot  H(Q(z,h)) ot p(Q(z, h))
respectively. A point z is said to be an outer strong density point (resp.

a strong density point) of A if Dj(A,x) = 1 (resp. if there is a Lebesgue
measurable set B C A such that D;(B,z) = 1).
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Similarly we define the notions of an outer ordinary density point and
of an ordinary density point.

The family T 4 (resp. T, 4) of all sets all of whose points are strong (resp.
ordinary) density points is a topology called the strong (resp. ordinary)
density topology ([1, 2, 9, 7]). If n =1 then T 4 = T, 4 is called the density
topology.

If T, denotes the Euclidean topology in R" then evidently T, C T4
C T, 4 and all sets in T, 4 are Lebesgue measurable ([1, 2, 9]).

The continuity of mappings f from (R", T} 4) (resp. from (R", T 4)) to
(R, T¢) is called the strong (resp. ordinary) approzimate continuity ([1, 2, 9]).

In [5, 6] the following notion is investigated.

A function f : R"™ — R is quasicontinuous at a point x (written f € Q(z))
if for each r > 0 and each U € T, containing x there is a nonempty set I € T,
such that I C U and |f(t) — f(x)| <r for all t € I.

A function f is quasicontinuous if f € Q(z) for every x € R™.

A function f : R™ — R is integrally quasicontinuous at a point x
(f € Qi(z), [4]) if for each r > 0 and each U € T, containing z there is
a nonempty set I € T, such that I C U and

§; f(t)dt B
p(l)
A function f is integrally quasicontinuous (f € @Q;) if f € Q;(z) for all
x € R™
A function f : R™ — R belongs to Qs(x) (resp. f € Qo(x), [4]) if for each

n > 0 and each U € Ty 4 (resp. U € T, 4) containing x there is a nonempty
set I € T, such that INU # (), f is Lebesgue integrable on I N U and
1

’m)wf(t)dt—f(x)

f(a:)‘ <.

<.

If f € Qs(x) (resp. [ € Qo(x)) for all z € R™ then we write f € Qs (resp.
f € Qo).

The inclusions Q, C Qs C @Q; are true and each measurable quasicontin-
uous function f : R™ — R is integrally quasicontinuous ([4]). If n = 1 then
Qo = Qs.

Now let n1,n9 be two positive integers with n1 + ne = n and let R" =
R™ x R™. For © = (x1,...,%p,) € R™ and y = (xpn,+1,...,2n) € R™ we
write (z,y) = (1,...,Tnys Tny+1,-- -, 2n) € R™

For a function f : R™ — R and for points t € R™ and y € R™ we define
the sections f; : R™ — R and fY:R™ — R by

fily) = f(t,y) and  f(t) = f(t,y).
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If n = nq + no with nq,ng > 0 then we refer to different types of quasi-
continuity of functions f : R” — R as product quasicontinuties.
The following theorem of Kempisty is well known ([5, 6]).

THEOREM 1. If all sections fi and fY of a function f : R®" — R are
quasicontinuous then f is also quasicontinuous.

To prove that analogues of Kempisty’s theorem for integral quasiconti-
nuities are not true, we start from the following lemma.

LEMMA 1. Let A, B C R be disjoint countable nonempty sets. There are
disjoint measurable sets E, G such that

EDA GDOB, FEUG=R,
D,(E,x) >0 for each x € E,
D,(G,y) >0 for each y € G.

Proof. This is an immediate consequence of Lemma 3 from [3].

REMARK 1. Assume the Continuum Hypothesis CH. There is a function
f : R?2 — R such that all sections f; and fY, t,y € R, belong to Qs = Q,
and the restriction f|A is not measurable for any measurable set A C R?
with uw(A) > 0.

Proof. Let

A0, A1y -y Aoyy e v vy a < wi,

be a transfinite sequence of all reals such that a, # ag for a < 8 < wy,
where wy denotes the first uncountable ordinal.

Let S C R? be such that the inner Lebesgue measures p;(S) and
pi(R2\ S) are 0 and card(p N S) < 2 for each straight line p ([8]).

For a < wy we will define by transfinite induction two functions g, hq
R — {0,1}.

If the vertical straight line pg defined by the equation ¢ = ag is such that
po NS = () then we put ho(y) = 0 for y € R. Analogously if the horizontal
straight line gg defined by y = ag is such that ¢gg NS = () then we put
go(t) =0 for t € R.

If po NS # O then we put ho(y) = 1 for y € R; if gg N S # O then we put
go(t) =1 for t € R.

Fix a countable ordinal number o > 0 and assume that we have defined
93,hg : R — {0,1} for § < a.

Let p, be defined by t = a, and let g, be defined by y = a,. Set

Ao ={ag; B < aand hg(an) =1} U{(t €R; (t,aq) € g N S}
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Moreover let Ay o, C R\ Ay, be a countable dense set. By Lemma 1, there
are disjoint measurable sets E1 o D A1 and Fy, D Az, such that R =
EioUEsq, Dy(E1,t) >0 for each t € Ey  and Dy (E3q,t) > 0 for each
t e E27a. Put

Galt) = { 1 forte 'E'La,
0 otherwise on R.

Set,
Bio ={ag; < aand gglan) =1} U{y €R; (an,y) € pa NS}

and let By, C R\ By, be a countable dense set. By Lemma 1, there
are disjoint measurable sets G1 o O Bia, and G2 O B2, such that R =
G1,0 UG24, Dy(Gia,t) > 0 for each t € G1 o and Dy (G24,t) > 0 for each
te G27a. Let

1 forteGia

0 otherwise on R.

ha(n) = {

Now for z € R we find an ordinal « such that z = a, and put
f(z,v) = ho(v) forveR,
flu,z) = go(u) for u € R.
Let
Pr(S) = {t; 3,(t,y) € S}.

Since f(t,y) = 1 for (t,y) € S and w;(f;*(0)) > 0 for t € Pr(S), the
restriction f|A is not measurable for any measurable A C R? with u(A) > 0.
If t = ao then f! =g, € Qs and f; = hy € Qs (see [4, Th. 2]). This finishes
the proof.

COROLLARY 1. The function f constructed in the proof of Remark 1 is
not in Q;, so analogues of Kempisty’s theorem for the integral quasicontinu-
ities are not true.

A function f : R™ — R is said to be strongly (resp. ordinarily) approxi-
mately quasicontinuous at a point x € R" if for each n > 0 and each U € T 4
(resp. U € T, 4) containing z there is a nonempty set V' C U belonging to
Tsq (resp. to T, q) for which f(V) C (f(xz) —n, f(z)+n) (cf. [3]). Ifn =1
then the notions of strong and ordinary approximate quasicontinuity are
equivalent and in this case we say that f is approzimately quasicontinuous.

Observe that all sections f; and f¥, t,y € R, of the function f : R? — R
constructed in the proof of Remark 1 are approximately quasicontinuous at
each point.

By the Lebesgue density theorem, functions strongly (and ordinarily)
approximately quasicontinuous at all points are measurable (cf. [3]).
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For A C R™, t € R™ and y € R™ define the sections
Ay ={v e R"%; (t,v) € A} and AY ={u e R™; (u,y) € A}.
Let
T; 4= {A C R™; A is measurable and
Ay, AV € Ty 4 for all uw € R™ and v € R"?},
T;“ 4= 1A C R™; A is measurable and
Ay, AV € T, 4 for all uw € R™ and v € R"?}.
In connection with Remark 1 we have the following.

THEOREM 2. If all sections f, and f¥, u € R™, v € R"2, of a mea-
surable function f : R™ — R are strongly (resp. ordinarily) approrimately
quasicontinuous at all points then for each (t,y) € R™, each n > 0 and each
Ae T:d (resp. A € T;Fd) containing (t,y) there is a mesurable subset B C A
such that u(B) >0 and f(B) C (f(t,y) —n, f(t,y) +n).

Proof. Fix (t,y) € R", A € Tjd containing (t,y), and n > 0. Since fY
is strongly approximately quasicontinuous at ¢, there is a measurable set
U C AY such that u(U) > 0 and fY(U) C (f(t,y) —n/3, f(t,y)+n/3). Since
all sections f,, u € U, are strongly approximately quasicontinuous at y, for
each u € U there is a measurable set V(u) C A, of positive measure such
that fu(V(u)) C (f(u,y) —n/3, f(u,y) +1/3). Let

E={(u,v);ueUandveV(u}
and let H C A be a measurable cover of E, i.e. H D F is a measurable set
and each measurable subset of B\ E is of measure zero. Evidently the set

B = Hn{(u,v) € R |f(u,v) — f(t,y)| <n}

is as required. The proof for the case of ordinary approximate quasicontinu-
ity is the same.

Theorem 2 implies the following:

THEOREM 3. If all sections f, and f¥, u € R™, v € R", of a bounded
measurable function f : R™ — R are strongly (resp. ordinarily) approxi-
mately quasicontinuous at all points then for each (t,y) € R™, each n > 0
and each A € T;Fd (resp. A € T;rd) containing (t,y) there is a bounded set
E €T, such that ENA# 0 and

Yane /
AOES__ pig )| <.
AN fty) <
Proof. Fix (t,y) € R", A € T, containing (¢,y), and n > 0. By
Theorem 2 there is a measurable set B C A such that u(B) > 0 and
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§p.f n
- f t7 Yy S 5
(B) o) <3
From the absolute continuity of the Lebesgue integral it follows that there
is a nonempty set £ C R" belonging to T, such that £ D B and

‘ Sans S
w(ANE)

This completes the proof.

f(t,y)‘ <.

Let Z be a nonempty set of indices. We will say that functions h, :
R™ — R, « € Z, are strongly (resp. ordinarily) integrally equiquasicontin-
wous at a point v € R if for each set V' C R™ containing v and belonging
to Ts 4 (resp. to T;, q) and for each n > 0 there is a set G C R™ belonging
to T, and such that () # V N G and

Vvog fo
wGnNv)

THEOREM 4. Let f: R™ — R be a locally bounded measurable function
such that

— falv)| <n forae Z

(i) for each (u,v) € R™ there is a set A(u,v) C R™ belonging to T 4
and containing u for which the sections fi, t € A(u,v), are strongly
integrally equiquasicontinuous at v.

If fY € Qs for all y € R™2, then f satisfies the following condition:

(a) for each (t,y) € R™, each n > 0 and all U € Ty 4 with t € U and
V eTsq withy €V there are Z C R™ and Y C R"? belonging to Tt
and such that 0 AU NZ, 0 AV NY and

S(UXV)O(ZXY) f
‘M((U x V)N (ZxY)) —f(t,y)‘ <.

Proof. Fix (t,y) € R", n> 0 and U,V € T, 4 such that (t,y) € U x V.
Since fY € Qs and t € U N A(t,y) € Tsq, there is a bounded set W € T,
such that K =W NU N A(t,y) # 0 and

S i I’ n
— flt,y)| < =.

w(w) T <5

By our hypothesis (i) there is a set Y C R™2 belonging to T, and such that

VNY #0 and

'Svm—yfu for u € K.

AP T <

N3
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Let H= K x (Y NV). Observe that

§ g fu,v) dudv B
< ‘SK(SYHV f(uvv) dv) du _ SK f(u, y)u(VﬁY) du
N p(H) u(H)
N 'SKf(u,y;/(Lng)du _f(t’y)'
SK|%—ﬂu,y)|du $ic f(u,y) du
= p(K) +‘ = (K —f(t,y)‘
< g-f—g:n.

Since f is locally bounded and measurable, from the absolute continuity
of the Lebesgue integral it follows that there is a bounded set X C R™
containing K, belonging to T, and such that for M = X x (Y NV) we have

§as fu,y) dudv
p(M)

—f(t,y)‘ <.

So the proof is finished.
In the same way we can prove the following theorem.

THEOREM 5. Let f: R™ — R be a locally bounded measurable function
such that

(ii) for each (u,v) € R™ there is a set A(u,v) C R™ belonging to T, 4
and containing u for which the sections fi, t € A(u,v), are ordinarily
integrally equiquasicontinuous at v.

If fY € Q, for all y € R™, then f satisfies the following condition:

(b) for each (t,y) € R™, each n > 0 and all U € T, 4 with t € U and
VeT,q withy €V there are Z C R" and Y C R" belonging to
T. and such that 0 AU NZ, 0 AV NY and

Soxvinzs f
w((UxV)N(ZxY
PrROBLEM. Let f : R — R be a locally bounded function satisfying
condition (i) of Theorem 4 (resp. condition (ii) of Theorem 5) and having
measurable sections fY for all y € R™2. Is f measurable?

N fty)| <.

Let Z be a nonempty set of indices. We will say that functions h, :
R™ — R, a € Z, are integrally equiquasicontinuous at a point y € R™ if
for each set U C R™ containing y and belonging to T, and for each n > 0
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there is a nonempty set V' C U belonging to 7, such that

fyfo
(V) fa(y)

THEOREM 6. Let f : R™ — R be a bounded measurable function such
that f¥ € Q; for all v € R™, and for each (t,y) € R™ there is a set
A(t,y) CR™ containing t and belonging to T, such that the sections f,
u € A(t,y), are integrally equiquasicontinuous at y. Then f € Q;.

<n foraeZ

The proof of Theorem 6 is completely similar to the proof of Theorem 4.
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