VOL. 106

2006

NO. 2

KEMPISTY'S THEOREM FOR THE INTEGRAL PRODUCT QUASICONTINUITY

ΒY

ZBIGNIEW GRANDE (Bydgoszcz)

Abstract. A function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies the condition $Q_i(x)$ (resp. $Q_s(x)$, $Q_o(x)$) at a point x if for each real r > 0 and for each set $U \ni x$ open in the Euclidean topology of \mathbb{R}^n (resp. strong density topology, ordinary density topology) there is an open set I such that $I \cap U \neq \emptyset$ and $|(1/\mu(U \cap I)) \int_{U \cap I} f(t) dt - f(x)| < r$. Kempisty's theorem concerning the product quasicontinuity is investigated for the above notions.

For $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ and positive reals r_1, \dots, r_n put $I_i = (x_i - r_i, x_i + r_i)$ for $i = 1, \dots, n$, $P(x; r_1, \dots, r_n) = I_1 \times \dots \times I_n$, $Q(x, r) = P(x; r, \dots, r)$.

Denote by μ the Lebesgue measure and by μ_e the outer Lebesgue measure in \mathbb{R}^n . For $A \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$ we define the *upper* (resp. *lower*) *outer strong density* $D_u(A, x)$ (resp. $D_l(A, x)$) of A at x as

$$\limsup_{h_1,\ldots,h_n\to 0^+} \frac{\mu_e(A\cap P(x;h_1,\ldots,h_n))}{\mu(P(x;h_1,\ldots,h_n))}$$

and

$$\liminf_{h_1,\dots,h_n\to 0^+} \frac{\mu_e(A\cap P(x;h_1,\dots,h_n))}{\mu(P(x;h_1,\dots,h_n))}$$

respectively. Similarly for $A \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$ we define the *upper* (resp. lower) outer ordinary density $d_u(A, x)$ (resp. $d_l(A, x)$) of A at x as

$$\limsup_{h \to 0^+} \frac{\mu_e(A \cap Q(x,h))}{\mu(Q(x,h))} \quad \text{and} \quad \liminf_{h \to 0^+} \frac{\mu_e(A \cap Q(x,h))}{\mu(Q(x,h))}$$

respectively. A point x is said to be an outer strong density point (resp. a strong density point) of A if $D_l(A, x) = 1$ (resp. if there is a Lebesgue measurable set $B \subset A$ such that $D_l(B, x) = 1$).

²⁰⁰⁰ Mathematics Subject Classification: 26B05, 26A03, 26A15.

Key words and phrases: density topology, integral quasicontinuity, quasicontinuity, functions of two variables.

Similarly we define the notions of an outer ordinary density point and of an ordinary density point.

The family $T_{s,d}$ (resp. $T_{o,d}$) of all sets all of whose points are strong (resp. ordinary) density points is a topology called the *strong* (resp. *ordinary*) density topology ([1, 2, 9, 7]). If n = 1 then $T_{s,d} = T_{o,d}$ is called the *density* topology.

If T_e denotes the Euclidean topology in \mathbb{R}^n then evidently $T_e \subset T_{s,d} \subset T_{o,d}$ and all sets in $T_{o,d}$ are Lebesgue measurable ([1, 2, 9]).

The continuity of mappings f from $(\mathbb{R}^n, T_{s,d})$ (resp. from $(\mathbb{R}^n, T_{o,d})$) to (\mathbb{R}, T_e) is called the *strong* (resp. *ordinary*) approximate continuity ([1, 2, 9]).

In [5, 6] the following notion is investigated.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is quasicontinuous at a point x (written $f \in Q(x)$) if for each r > 0 and each $U \in T_e$ containing x there is a nonempty set $I \in T_e$ such that $I \subset U$ and |f(t) - f(x)| < r for all $t \in I$.

A function f is quasicontinuous if $f \in Q(x)$ for every $x \in \mathbb{R}^n$.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous at a point x $(f \in Q_i(x), [4])$ if for each r > 0 and each $U \in T_e$ containing x there is a nonempty set $I \in T_e$ such that $I \subset U$ and

$$\left|\frac{\int_{I} f(t) \, dt}{\mu(I)} - f(x)\right| < r.$$

A function f is integrally quasicontinuous $(f \in Q_i)$ if $f \in Q_i(x)$ for all $x \in \mathbb{R}^n$.

A function $f : \mathbb{R}^n \to \mathbb{R}$ belongs to $Q_s(x)$ (resp. $f \in Q_o(x)$, [4]) if for each $\eta > 0$ and each $U \in T_{s,d}$ (resp. $U \in T_{o,d}$) containing x there is a nonempty set $I \in T_e$ such that $I \cap U \neq \emptyset$, f is Lebesgue integrable on $I \cap U$ and

$$\left|\frac{1}{\mu(I\cap U)}\int_{I\cap U}f(t)\,dt - f(x)\right| < \eta.$$

If $f \in Q_s(x)$ (resp. $f \in Q_o(x)$) for all $x \in \mathbb{R}^n$ then we write $f \in Q_s$ (resp. $f \in Q_o$).

The inclusions $Q_o \subset Q_s \subset Q_i$ are true and each measurable quasicontinuous function $f : \mathbb{R}^n \to \mathbb{R}$ is integrally quasicontinuous ([4]). If n = 1 then $Q_o = Q_s$.

Now let n_1, n_2 be two positive integers with $n_1 + n_2 = n$ and let $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2}$. For $x = (x_1, \ldots, x_{n_1}) \in \mathbb{R}^{n_1}$ and $y = (x_{n_1+1}, \ldots, x_n) \in \mathbb{R}^{n_2}$ we write $(x, y) = (x_1, \ldots, x_{n_1}, x_{n_1+1}, \ldots, x_n) \in \mathbb{R}^n$.

For a function $f : \mathbb{R}^n \to \mathbb{R}$ and for points $t \in \mathbb{R}^{n_1}$ and $y \in \mathbb{R}^{n_2}$ we define the sections $f_t : \mathbb{R}^{n^2} \to \mathbb{R}$ and $f^y : \mathbb{R}^{n_1} \to \mathbb{R}$ by

$$f_t(y) = f(t, y)$$
 and $f^y(t) = f(t, y)$.

If $n = n_1 + n_2$ with $n_1, n_2 > 0$ then we refer to different types of quasicontinuity of functions $f : \mathbb{R}^n \to \mathbb{R}$ as product quasicontinuities.

The following theorem of Kempisty is well known ([5, 6]).

THEOREM 1. If all sections f_t and f^y of a function $f : \mathbb{R}^n \to \mathbb{R}$ are quasicontinuous then f is also quasicontinuous.

To prove that analogues of Kempisty's theorem for integral quasicontinuities are not true, we start from the following lemma.

LEMMA 1. Let $A, B \subset \mathbb{R}$ be disjoint countable nonempty sets. There are disjoint measurable sets E, G such that

$$E \supset A, \quad G \supset B, \quad E \cup G = \mathbb{R},$$

 $D_u(E, x) > 0 \quad for \ each \ x \in E,$
 $D_u(G, y) > 0 \quad for \ each \ y \in G.$

Proof. This is an immediate consequence of Lemma 3 from [3].

REMARK 1. Assume the Continuum Hypothesis CH. There is a function $f : \mathbb{R}^2 \to \mathbb{R}$ such that all sections f_t and f^y , $t, y \in \mathbb{R}$, belong to $Q_s = Q_o$ and the restriction f|A is not measurable for any measurable set $A \subset \mathbb{R}^2$ with $\mu(A) > 0$.

Proof. Let

$$a_0, a_1, \ldots, a_\alpha, \ldots, \quad \alpha < \omega_1,$$

be a transfinite sequence of all reals such that $a_{\alpha} \neq a_{\beta}$ for $\alpha < \beta < \omega_1$, where ω_1 denotes the first uncountable ordinal.

Let $S \subset \mathbb{R}^2$ be such that the inner Lebesgue measures $\mu_i(S)$ and $\mu_i(\mathbb{R}^2 \setminus S)$ are 0 and $\operatorname{card}(p \cap S) \leq 2$ for each straight line p([8]).

For $\alpha < \omega_1$ we will define by transfinite induction two functions g_α, h_α : $\mathbb{R} \to \{0, 1\}$.

If the vertical straight line p_0 defined by the equation $t = a_0$ is such that $p_0 \cap S = \emptyset$ then we put $h_0(y) = 0$ for $y \in \mathbb{R}$. Analogously if the horizontal straight line q_0 defined by $y = a_0$ is such that $q_0 \cap S = \emptyset$ then we put $g_0(t) = 0$ for $t \in \mathbb{R}$.

If $p_0 \cap S \neq \emptyset$ then we put $h_0(y) = 1$ for $y \in \mathbb{R}$; if $q_0 \cap S \neq \emptyset$ then we put $g_0(t) = 1$ for $t \in \mathbb{R}$.

Fix a countable ordinal number $\alpha > 0$ and assume that we have defined $g_{\beta}, h_{\beta} : \mathbb{R} \to \{0, 1\}$ for $\beta < \alpha$.

Let p_{α} be defined by $t = a_{\alpha}$ and let q_{α} be defined by $y = a_{\alpha}$. Set

$$A_{1,\alpha} = \{a_{\beta}; \beta < \alpha \text{ and } h_{\beta}(a_{\alpha}) = 1\} \cup \{(t \in \mathbb{R}; (t, a_{\alpha}) \in q_{\alpha} \cap S\}.$$

Moreover let $A_{2,\alpha} \subset \mathbb{R} \setminus A_{1,\alpha}$ be a countable dense set. By Lemma 1, there are disjoint measurable sets $E_{1,\alpha} \supset A_{1,\alpha}$ and $E_{2,\alpha} \supset A_{2,\alpha}$ such that $\mathbb{R} = E_{1,\alpha} \cup E_{2,\alpha}$, $D_u(E_{1,\alpha},t) > 0$ for each $t \in E_{1,\alpha}$ and $D_u(E_{2,\alpha},t) > 0$ for each $t \in E_{2,\alpha}$. Put

$$g_{\alpha}(t) = \begin{cases} 1 & \text{for } t \in E_{1,\alpha}, \\ 0 & \text{otherwise on } \mathbb{R}. \end{cases}$$

Set

$$B_{1,\alpha} = \{a_{\beta}; \beta \le \alpha \text{ and } g_{\beta}(a_{\alpha}) = 1\} \cup \{y \in \mathbb{R}; (a_{\alpha}, y) \in p_{\alpha} \cap S\}$$

and let $B_{2,\alpha} \subset \mathbb{R} \setminus B_{1,\alpha}$ be a countable dense set. By Lemma 1, there are disjoint measurable sets $G_{1,\alpha} \supset B_{1,\alpha}$, and $G_{2,\alpha} \supset B_{2,\alpha}$ such that $\mathbb{R} = G_{1,\alpha} \cup G_{2,\alpha}$, $D_u(G_{1,\alpha}, t) > 0$ for each $t \in G_{1,\alpha}$ and $D_u(G_{2,\alpha}, t) > 0$ for each $t \in G_{2,\alpha}$. Let

$$h_{\alpha}(y) = \begin{cases} 1 & \text{for } t \in G_{1,\alpha} \\ 0 & \text{otherwise on } \mathbb{R}. \end{cases}$$

Now for $x \in \mathbb{R}$ we find an ordinal α such that $x = a_{\alpha}$ and put

$$f(x,v) = h_{\alpha}(v) \quad \text{for } v \in \mathbb{R},$$

$$f(u,x) = g_{\alpha}(u) \quad \text{for } u \in \mathbb{R}.$$

Let

$$\Pr(S) = \{t; \exists_y(t, y) \in S\}.$$

Since f(t, y) = 1 for $(t, y) \in S$ and $\mu_i(f_t^{-1}(0)) > 0$ for $t \in \Pr(S)$, the restriction f|A is not measurable for any measurable $A \subset \mathbb{R}^2$ with $\mu(A) > 0$. If $t = a_\alpha$ then $f^t = g_\alpha \in Q_s$ and $f_t = h_\alpha \in Q_s$ (see [4, Th. 2]). This finishes the proof.

COROLLARY 1. The function f constructed in the proof of Remark 1 is not in Q_i , so analogues of Kempisty's theorem for the integral quasicontinuities are not true.

A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be strongly (resp. ordinarily) approximately quasicontinuous at a point $x \in \mathbb{R}^n$ if for each $\eta > 0$ and each $U \in T_{s,d}$ (resp. $U \in T_{o,d}$) containing x there is a nonempty set $V \subset U$ belonging to $T_{s,d}$ (resp. to $T_{o,d}$) for which $f(V) \subset (f(x) - \eta, f(x) + \eta)$ (cf. [3]). If n = 1then the notions of strong and ordinary approximate quasicontinuity are equivalent and in this case we say that f is approximately quasicontinuous.

Observe that all sections f_t and f^y , $t, y \in \mathbb{R}$, of the function $f : \mathbb{R}^2 \to \mathbb{R}$ constructed in the proof of Remark 1 are approximately quasicontinuous at each point.

By the Lebesgue density theorem, functions strongly (and ordinarily) approximately quasicontinuous at all points are measurable (cf. [3]).

For $A \subset \mathbb{R}^n$, $t \in \mathbb{R}^{n_1}$ and $y \in \mathbb{R}^{n_2}$ define the sections

 $A_t = \{ v \in \mathbb{R}^{n_2}; \, (t,v) \in A \} \quad \text{and} \quad A^y = \{ u \in \mathbb{R}^{n_1}; \, (u,y) \in A \}.$

Let

 $T^+_{s,d} = \{A \subset \mathbb{R}^n; A \text{ is measurable and }$

$$A_u, A^v \in T_{s,d}$$
 for all $u \in \mathbb{R}^{n_1}$ and $v \in \mathbb{R}^{n_2}$ },

 $T^+_{o,d} = \{A \subset \mathbb{R}^n; A \text{ is measurable and }$

$$A_u, A^v \in T_{o,d}$$
 for all $u \in \mathbb{R}^{n_1}$ and $v \in \mathbb{R}^{n_2}$.

In connection with Remark 1 we have the following.

THEOREM 2. If all sections f_u and f^v , $u \in \mathbb{R}^{n_1}$, $v \in \mathbb{R}^{n_2}$, of a measurable function $f : \mathbb{R}^n \to \mathbb{R}$ are strongly (resp. ordinarily) approximately quasicontinuous at all points then for each $(t, y) \in \mathbb{R}^n$, each $\eta > 0$ and each $A \in T^+_{s,d}$ (resp. $A \in T^+_{o,d}$) containing (t, y) there is a mesurable subset $B \subset A$ such that $\mu(B) > 0$ and $f(B) \subset (f(t, y) - \eta, f(t, y) + \eta)$.

Proof. Fix $(t, y) \in \mathbb{R}^n$, $A \in T^+_{s,d}$ containing (t, y), and $\eta > 0$. Since f^y is strongly approximately quasicontinuous at t, there is a measurable set $U \subset A^y$ such that $\mu(U) > 0$ and $f^y(U) \subset (f(t, y) - \eta/3, f(t, y) + \eta/3)$. Since all sections $f_u, u \in U$, are strongly approximately quasicontinuous at y, for each $u \in U$ there is a measurable set $V(u) \subset A_u$ of positive measure such that $f_u(V(u)) \subset (f(u, y) - \eta/3, f(u, y) + \eta/3)$. Let

$$E = \{(u, v); u \in U \text{ and } v \in V(u)\}$$

and let $H \subset A$ be a measurable cover of E, i.e. $H \supset E$ is a measurable set and each measurable subset of $B \setminus E$ is of measure zero. Evidently the set

$$B = H \cap \{(u, v) \in \mathbb{R}^n; |f(u, v) - f(t, y)| < \eta\}$$

is as required. The proof for the case of ordinary approximate quasicontinuity is the same.

Theorem 2 implies the following:

THEOREM 3. If all sections f_u and f^v , $u \in \mathbb{R}^{n_1}$, $v \in \mathbb{R}^{n_2}$, of a bounded measurable function $f : \mathbb{R}^n \to \mathbb{R}$ are strongly (resp. ordinarily) approximately quasicontinuous at all points then for each $(t, y) \in \mathbb{R}^n$, each $\eta > 0$ and each $A \in T^+_{s,d}$ (resp. $A \in T^+_{o,d}$) containing (t, y) there is a bounded set $E \in T_e$ such that $E \cap A \neq \emptyset$ and

$$\left|\frac{\int_{A\cap E} f}{\mu(A\cap E)} - f(t,y)\right| < \eta.$$

Proof. Fix $(t, y) \in \mathbb{R}^n$, $A \in T^+_{s,d}$ containing (t, y), and $\eta > 0$. By Theorem 2 there is a measurable set $B \subset A$ such that $\mu(B) > 0$ and

 $f(B) \subset (f(t, y) - \eta/2, f(t, y) + \eta/2)$. So,

$$\left|\frac{\int_B f}{\mu(B)} - f(t, y)\right| \le \frac{\eta}{2}.$$

From the absolute continuity of the Lebesgue integral it follows that there is a nonempty set $E \subset \mathbb{R}^n$ belonging to T_e such that $E \supset B$ and

$$\left|\frac{\int_{A\cap E} f}{\mu(A\cap E)} - f(t,y)\right| < \eta.$$

This completes the proof.

Let Z be a nonempty set of indices. We will say that functions h_{α} : $\mathbb{R}^{n_2} \to \mathbb{R}$, $\alpha \in Z$, are strongly (resp. ordinarily) integrally equiquasicontinuous at a point $v \in \mathbb{R}^{n_2}$ if for each set $V \subset \mathbb{R}^{n_2}$ containing v and belonging to $T_{s,d}$ (resp. to $T_{o,d}$) and for each $\eta > 0$ there is a set $G \subset \mathbb{R}^{n_2}$ belonging to T_e and such that $\emptyset \neq V \cap G$ and

$$\left|\frac{\int_{V\cap G} f_{\alpha}}{\mu(G\cap V)} - f_{\alpha}(v)\right| < \eta \quad \text{for } \alpha \in Z.$$

THEOREM 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a locally bounded measurable function such that

(i) for each $(u, v) \in \mathbb{R}^n$ there is a set $A(u, v) \subset \mathbb{R}^{n_1}$ belonging to $T_{s,d}$ and containing u for which the sections $f_t, t \in A(u, v)$, are strongly integrally equiquesicontinuous at v.

If $f^y \in Q_s$ for all $y \in \mathbb{R}^{n_2}$, then f satisfies the following condition:

(a) for each $(t, y) \in \mathbb{R}^n$, each $\eta > 0$ and all $U \in T_{s,d}$ with $t \in U$ and $V \in T_{s,d}$ with $y \in V$ there are $Z \subset \mathbb{R}^{n_1}$ and $Y \subset \mathbb{R}^{n_2}$ belonging to T_e and such that $\emptyset \neq U \cap Z$, $\emptyset \neq V \cap Y$ and

$$\left|\frac{\int_{(U\times V)\cap(Z\times Y)}f}{\mu((U\times V)\cap(Z\times Y))}-f(t,y)\right|<\eta.$$

Proof. Fix $(t, y) \in \mathbb{R}^n$, $\eta > 0$ and $U, V \in T_{s,d}$ such that $(t, y) \in U \times V$. Since $f^y \in Q_s$ and $t \in U \cap A(t, y) \in T_{s,d}$, there is a bounded set $W \in T_e$ such that $K = W \cap U \cap A(t, y) \neq \emptyset$ and

$$\left|\frac{\int_K f^y}{\mu(K)} - f(t,y)\right| < \frac{\eta}{2}.$$

By our hypothesis (i) there is a set $Y \subset \mathbb{R}^{n_2}$ belonging to T_e and such that $V \cap Y \neq \emptyset$ and

$$\left|\frac{\int_{V\cap Y} f_u}{\mu(Y\cap V)} - f(u, y)\right| < \frac{\eta}{2} \quad \text{for } u \in K.$$

Let $H = K \times (Y \cap V)$. Observe that

$$\begin{split} \left| \frac{\int_{H} f(u,v) \, du \, dv}{\mu(H)} - f(t,y) \right| \\ & \leq \left| \frac{\int_{K} (\int_{Y \cap V} f(u,v) \, dv) \, du}{\mu(H)} - \frac{\int_{K} f(u,y) \mu(V \cap Y) \, du}{\mu(H)} \right| \\ & + \left| \frac{\int_{K} f(u,y) \mu(V \cap Y) \, du}{\mu(H)} - f(t,y) \right| \\ & \leq \frac{\int_{K} \left| \frac{\int_{Y \cap V} f(u,v) \, dv}{\mu(Y \cap V)} - f(u,y) \right| \, du}{\mu(K)} + \left| \frac{\int_{K} f(u,y) \, du}{\mu(K)} - f(t,y) \right| \\ & < \frac{\eta}{2} + \frac{\eta}{2} = \eta. \end{split}$$

Since f is locally bounded and measurable, from the absolute continuity of the Lebesgue integral it follows that there is a bounded set $X \subset \mathbb{R}^{n_1}$ containing K, belonging to T_e and such that for $M = X \times (Y \cap V)$ we have

$$\left|\frac{\int_M f(u,y)\,du\,dv}{\mu(M)} - f(t,y)\right| < \eta.$$

So the proof is finished.

In the same way we can prove the following theorem.

THEOREM 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a locally bounded measurable function such that

(ii) for each $(u, v) \in \mathbb{R}^n$ there is a set $A(u, v) \subset \mathbb{R}^{n_1}$ belonging to $T_{o,d}$ and containing u for which the sections $f_t, t \in A(u, v)$, are ordinarily integrally equiquasicontinuous at v.

If $f^y \in Q_o$ for all $y \in \mathbb{R}^{n_2}$, then f satisfies the following condition:

(b) for each $(t, y) \in \mathbb{R}^n$, each $\eta > 0$ and all $U \in T_{o,d}$ with $t \in U$ and $V \in T_{o,d}$ with $y \in V$ there are $Z \subset \mathbb{R}^{n_1}$ and $Y \subset \mathbb{R}^{n_2}$ belonging to T_e and such that $\emptyset \neq U \cap Z$, $\emptyset \neq V \cap Y$ and

$$\left|\frac{\int_{(U\times V)\cap(Z\times Y)}f}{\mu((U\times V)\cap(Z\times Y))}-f(t,y)\right|<\eta.$$

PROBLEM. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a locally bounded function satisfying condition (i) of Theorem 4 (resp. condition (ii) of Theorem 5) and having measurable sections f^y for all $y \in \mathbb{R}^{n_2}$. Is f measurable?

Let Z be a nonempty set of indices. We will say that functions h_{α} : $\mathbb{R}^{n_2} \to \mathbb{R}, \ \alpha \in \mathbb{Z}$, are *integrally equiquasicontinuous at a point* $y \in \mathbb{R}^{n_2}$ if for each set $U \subset \mathbb{R}^{n_2}$ containing y and belonging to T_e and for each $\eta > 0$ there is a nonempty set $V \subset U$ belonging to T_e such that

$$\left|\frac{\int_V f_\alpha}{\mu(V)} - f_\alpha(y)\right| < \eta \quad \text{ for } \alpha \in Z.$$

THEOREM 6. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a bounded measurable function such that $f^v \in Q_i$ for all $v \in \mathbb{R}^{n_2}$, and for each $(t, y) \in \mathbb{R}^n$ there is a set $A(t, y) \subset \mathbb{R}^{n_1}$ containing t and belonging to T_e such that the sections f_u , $u \in A(t, y)$, are integrally equiquasicontinuous at y. Then $f \in Q_i$.

The proof of Theorem 6 is completely similar to the proof of Theorem 4.

REFERENCES

- A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, Berlin, 1978.
- [2] C. Goffman, C. Neugebauer and T. Nishiura, *Density topology and approximate con*tinuity, Duke Math. J. 28 (1961), 497–506.
- [3] Z. Grande, T. Natkaniec and E. Strońska, Algebraic structures generated by d-quasicontinuous functions, Bull. Polish Acad. Sci. Math. 35 (1987), 717–723.
- [4] Z. Grande and E. Strońska, On the integral quasicontinuity, J. Appl. Anal., submitted.
- [5] S. Kempisty, Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184–197.
- [6] T. Neubrunn, Quasi-continuity, Real Anal. Exchange 14 (1988–89), 259–306.
- [7] S. Saks, *Theory of the Integral*, Warszawa, 1937.
- [8] W. Sierpiński, Sur un problème concernant les ensembles mesurables superficiellement, Fund. Math. 1 (1920), 112–115.
- [9] F. D. Tall, The density topology, Pacific J. Math. 62 (1976), 275–284.

Institute of Mathematics Kazimierz Wielki University Plac Weyssenhoffa 11 85-072 Bydgoszcz, Poland E-mail: grande@ukw.edu.pl

> Received 30 March 2005; revised 19 December 2005

(4583)

264