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KEMPISTY’S THEOREM FOR THE

INTEGRAL PRODUCT QUASICONTINUITY

BY

ZBIGNIEW GRANDE (Bydgoszcz)

Abstract. A function f : R
n → R satisfies the condition Qi(x) (resp. Qs(x), Qo(x))

at a point x if for each real r > 0 and for each set U ∋ x open in the Euclidean topology
of R

n (resp. strong density topology, ordinary density topology) there is an open set I such

that I ∩U 6= ∅ and |(1/µ(U ∩ I))
T

U∩I
f(t) dt− f(x)| < r. Kempisty’s theorem concerning

the product quasicontinuity is investigated for the above notions.

For x = (x1, . . . , xn) ∈ R
n and positive reals r1, . . . , rn put

Ii = (xi − ri, xi + ri) for i = 1, . . . , n,

P (x; r1, . . . , rn) = I1 × · · · × In, Q(x, r) = P (x; r, . . . , r).

Denote by µ the Lebesgue measure and by µe the outer Lebesgue measure
in R

n. For A ⊂ R
n and x ∈ R

n we define the upper (resp. lower) outer strong

density Du(A, x) (resp. Dl(A, x)) of A at x as

lim sup
h1,...,hn→0+

µe(A ∩ P (x; h1, . . . , hn))

µ(P (x; h1, . . . , hn))

and

lim inf
h1,...,hn→0+

µe(A ∩ P (x; h1, . . . , hn))

µ(P (x; h1, . . . , hn))

respectively. Similarly for A ⊂ R
n and x ∈ R

n we define the upper (resp.
lower) outer ordinary density du(A, x) (resp. dl(A, x)) of A at x as

lim sup
h→0+

µe(A ∩ Q(x, h))

µ(Q(x, h))
and lim inf

h→0+

µe(A ∩ Q(x, h))

µ(Q(x, h))

respectively. A point x is said to be an outer strong density point (resp.
a strong density point) of A if Dl(A, x) = 1 (resp. if there is a Lebesgue
measurable set B ⊂ A such that Dl(B, x) = 1).
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Similarly we define the notions of an outer ordinary density point and
of an ordinary density point.

The family Ts,d (resp. To,d) of all sets all of whose points are strong (resp.
ordinary) density points is a topology called the strong (resp. ordinary)
density topology ([1, 2, 9, 7]). If n = 1 then Ts,d = To,d is called the density

topology .

If Te denotes the Euclidean topology in R
n then evidently Te ⊂ Ts,d

⊂ To,d and all sets in To,d are Lebesgue measurable ([1, 2, 9]).

The continuity of mappings f from (Rn, Ts,d) (resp. from (Rn, To,d)) to
(R, Te) is called the strong (resp. ordinary) approximate continuity ([1, 2, 9]).

In [5, 6] the following notion is investigated.

A function f : R
n → R is quasicontinuous at a point x (written f ∈ Q(x))

if for each r > 0 and each U ∈ Te containing x there is a nonempty set I ∈ Te

such that I ⊂ U and |f(t) − f(x)| < r for all t ∈ I.

A function f is quasicontinuous if f ∈ Q(x) for every x ∈ R
n.

A function f : R
n → R is integrally quasicontinuous at a point x

(f ∈ Qi(x), [4]) if for each r > 0 and each U ∈ Te containing x there is
a nonempty set I ∈ Te such that I ⊂ U and

∣

∣

∣

∣

T
I
f(t) dt

µ(I)
− f(x)

∣

∣

∣

∣

< r.

A function f is integrally quasicontinuous (f ∈ Qi) if f ∈ Qi(x) for all
x ∈ R

n.

A function f : R
n → R belongs to Qs(x) (resp. f ∈ Qo(x), [4]) if for each

η > 0 and each U ∈ Ts,d (resp. U ∈ To,d) containing x there is a nonempty
set I ∈ Te such that I ∩ U 6= ∅, f is Lebesgue integrable on I ∩ U and

∣

∣

∣

∣

1

µ(I ∩ U)

\
I∩U

f(t) dt − f(x)

∣

∣

∣

∣

< η.

If f ∈ Qs(x) (resp. f ∈ Qo(x)) for all x ∈ R
n then we write f ∈ Qs (resp.

f ∈ Qo).

The inclusions Qo ⊂ Qs ⊂ Qi are true and each measurable quasicontin-
uous function f : R

n → R is integrally quasicontinuous ([4]). If n = 1 then
Qo = Qs.

Now let n1, n2 be two positive integers with n1 + n2 = n and let R
n =

R
n1 × R

n2 . For x = (x1, . . . , xn1
) ∈ R

n1 and y = (xn1+1, . . . , xn) ∈ R
n2 we

write (x, y) = (x1, . . . , xn1
, xn1+1, . . . , xn) ∈ R

n.

For a function f : R
n → R and for points t ∈ R

n1 and y ∈ R
n2 we define

the sections ft : R
n2

→ R and fy : R
n1 → R by

ft(y) = f(t, y) and fy(t) = f(t, y).



KEMPISTY’S THEOREM 259

If n = n1 + n2 with n1, n2 > 0 then we refer to different types of quasi-
continuity of functions f : R

n → R as product quasicontinuties.

The following theorem of Kempisty is well known ([5, 6]).

Theorem 1. If all sections ft and fy of a function f : R
n → R are

quasicontinuous then f is also quasicontinuous.

To prove that analogues of Kempisty’s theorem for integral quasiconti-
nuities are not true, we start from the following lemma.

Lemma 1. Let A, B ⊂ R be disjoint countable nonempty sets. There are

disjoint measurable sets E, G such that

E ⊃ A, G ⊃ B, E ∪ G = R,

Du(E, x) > 0 for each x ∈ E,

Du(G, y) > 0 for each y ∈ G.

Proof. This is an immediate consequence of Lemma 3 from [3].

Remark 1. Assume the Continuum Hypothesis CH. There is a function

f : R
2 → R such that all sections ft and fy, t, y ∈ R, belong to Qs = Qo

and the restriction f |A is not measurable for any measurable set A ⊂ R
2

with µ(A) > 0.

Proof. Let

a0, a1, . . . , aα, . . . , α < ω1,

be a transfinite sequence of all reals such that aα 6= aβ for α < β < ω1,
where ω1 denotes the first uncountable ordinal.

Let S ⊂ R
2 be such that the inner Lebesgue measures µi(S) and

µi(R
2 \ S) are 0 and card(p ∩ S) ≤ 2 for each straight line p ([8]).

For α < ω1 we will define by transfinite induction two functions gα, hα :
R → {0, 1}.

If the vertical straight line p0 defined by the equation t = a0 is such that
p0 ∩ S = ∅ then we put h0(y) = 0 for y ∈ R. Analogously if the horizontal
straight line q0 defined by y = a0 is such that q0 ∩ S = ∅ then we put
g0(t) = 0 for t ∈ R.

If p0 ∩ S 6= ∅ then we put h0(y) = 1 for y ∈ R; if q0 ∩ S 6= ∅ then we put
g0(t) = 1 for t ∈ R.

Fix a countable ordinal number α > 0 and assume that we have defined
gβ, hβ : R → {0, 1} for β < α.

Let pα be defined by t = aα and let qα be defined by y = aα. Set

A1,α = {aβ ; β < α and hβ(aα) = 1} ∪ {(t ∈ R; (t, aα) ∈ qα ∩ S}.
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Moreover let A2,α ⊂ R \ A1,α be a countable dense set. By Lemma 1, there
are disjoint measurable sets E1,α ⊃ A1,α and E2,α ⊃ A2,α such that R =
E1,α ∪ E2,α, Du(E1,α, t) > 0 for each t ∈ E1,α and Du(E2,α, t) > 0 for each
t ∈ E2,α. Put

gα(t) =

{

1 for t ∈ E1,α,

0 otherwise on R.

Set

B1,α = {aβ ; β ≤ α and gβ(aα) = 1} ∪ {y ∈ R; (aα, y) ∈ pα ∩ S}

and let B2,α ⊂ R \ B1,α be a countable dense set. By Lemma 1, there
are disjoint measurable sets G1,α ⊃ B1,α, and G2,α ⊃ B2,α such that R =
G1,α ∪ G2,α, Du(G1,α, t) > 0 for each t ∈ G1,α and Du(G2,α, t) > 0 for each
t ∈ G2,α. Let

hα(y) =

{

1 for t ∈ G1,α

0 otherwise on R.

Now for x ∈ R we find an ordinal α such that x = aα and put

f(x, v) = hα(v) for v ∈ R,

f(u, x) = gα(u) for u ∈ R.

Let

Pr(S) = {t; ∃y(t, y) ∈ S}.

Since f(t, y) = 1 for (t, y) ∈ S and µi(f
−1
t (0)) > 0 for t ∈ Pr(S), the

restriction f |A is not measurable for any measurable A ⊂ R
2 with µ(A) > 0.

If t = aα then f t = gα ∈ Qs and ft = hα ∈ Qs (see [4, Th. 2]). This finishes
the proof.

Corollary 1. The function f constructed in the proof of Remark 1 is

not in Qi, so analogues of Kempisty’s theorem for the integral quasicontinu-

ities are not true.

A function f : R
n → R is said to be strongly (resp. ordinarily) approxi-

mately quasicontinuous at a point x ∈ R
n if for each η > 0 and each U ∈ Ts,d

(resp. U ∈ To,d) containing x there is a nonempty set V ⊂ U belonging to
Ts,d (resp. to To,d) for which f(V ) ⊂ (f(x) − η, f(x) + η) (cf. [3]). If n = 1
then the notions of strong and ordinary approximate quasicontinuity are
equivalent and in this case we say that f is approximately quasicontinuous.

Observe that all sections ft and fy, t, y ∈ R, of the function f : R
2 → R

constructed in the proof of Remark 1 are approximately quasicontinuous at
each point.

By the Lebesgue density theorem, functions strongly (and ordinarily)
approximately quasicontinuous at all points are measurable (cf. [3]).
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For A ⊂ R
n, t ∈ R

n1 and y ∈ R
n2 define the sections

At = {v ∈ R
n2 ; (t, v) ∈ A} and Ay = {u ∈ R

n1 ; (u, y) ∈ A}.

Let

T+
s,d = {A ⊂ R

n; A is measurable and

Au, Av ∈ Ts,d for all u ∈ R
n1 and v ∈ R

n2},

T+
o,d = {A ⊂ R

n; A is measurable and

Au, Av ∈ To,d for all u ∈ R
n1 and v ∈ R

n2}.

In connection with Remark 1 we have the following.

Theorem 2. If all sections fu and fv, u ∈ R
n1 , v ∈ R

n2 , of a mea-

surable function f : R
n → R are strongly (resp. ordinarily) approximately

quasicontinuous at all points then for each (t, y) ∈ R
n, each η > 0 and each

A ∈ T+
s,d (resp. A ∈ T+

o,d) containing (t, y) there is a mesurable subset B ⊂ A

such that µ(B) > 0 and f(B) ⊂ (f(t, y) − η, f(t, y) + η).

Proof. Fix (t, y) ∈ R
n, A ∈ T+

s,d containing (t, y), and η > 0. Since fy

is strongly approximately quasicontinuous at t, there is a measurable set
U ⊂ Ay such that µ(U) > 0 and fy(U) ⊂ (f(t, y)−η/3, f(t, y)+η/3). Since
all sections fu, u ∈ U , are strongly approximately quasicontinuous at y, for
each u ∈ U there is a measurable set V (u) ⊂ Au of positive measure such
that fu(V (u)) ⊂ (f(u, y) − η/3, f(u, y) + η/3). Let

E = {(u, v); u ∈ U and v ∈ V (u)}

and let H ⊂ A be a measurable cover of E, i.e. H ⊃ E is a measurable set
and each measurable subset of B \ E is of measure zero. Evidently the set

B = H ∩ {(u, v) ∈ R
n; |f(u, v) − f(t, y)| < η}

is as required. The proof for the case of ordinary approximate quasicontinu-
ity is the same.

Theorem 2 implies the following:

Theorem 3. If all sections fu and fv, u ∈ R
n1 , v ∈ R

n2 , of a bounded

measurable function f : R
n → R are strongly (resp. ordinarily) approxi-

mately quasicontinuous at all points then for each (t, y) ∈ R
n, each η > 0

and each A ∈ T+
s,d (resp. A ∈ T+

o,d) containing (t, y) there is a bounded set

E ∈ Te such that E ∩ A 6= ∅ and
∣

∣

∣

∣

T
A∩E

f

µ(A ∩ E)
− f(t, y)

∣

∣

∣

∣

< η.

Proof. Fix (t, y) ∈ R
n, A ∈ T+

s,d containing (t, y), and η > 0. By

Theorem 2 there is a measurable set B ⊂ A such that µ(B) > 0 and
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f(B) ⊂ (f(t, y) − η/2, f(t, y) + η/2). So,
∣

∣

∣

∣

T
B

f

µ(B)
− f(t, y)

∣

∣

∣

∣

≤
η

2
.

From the absolute continuity of the Lebesgue integral it follows that there
is a nonempty set E ⊂ R

n belonging to Te such that E ⊃ B and
∣

∣

∣

∣

T
A∩E

f

µ(A ∩ E)
− f(t, y)

∣

∣

∣

∣

< η.

This completes the proof.

Let Z be a nonempty set of indices. We will say that functions hα :
R

n2 → R, α ∈ Z, are strongly (resp. ordinarily) integrally equiquasicontin-

uous at a point v ∈ R
n2 if for each set V ⊂ R

n2 containing v and belonging
to Ts,d (resp. to To,d) and for each η > 0 there is a set G ⊂ R

n2 belonging
to Te and such that ∅ 6= V ∩ G and

∣

∣

∣

∣

T
V ∩G

fα

µ(G ∩ V )
− fα(v)

∣

∣

∣

∣

< η for α ∈ Z.

Theorem 4. Let f : R
n → R be a locally bounded measurable function

such that

(i) for each (u, v) ∈ R
n there is a set A(u, v) ⊂ R

n1 belonging to Ts,d

and containing u for which the sections ft, t ∈ A(u, v), are strongly

integrally equiquasicontinuous at v.

If fy ∈ Qs for all y ∈ R
n2 , then f satisfies the following condition:

(a) for each (t, y) ∈ R
n, each η > 0 and all U ∈ Ts,d with t ∈ U and

V ∈ Ts,d with y ∈ V there are Z ⊂ R
n1 and Y ⊂ R

n2 belonging to Te

and such that ∅ 6= U ∩ Z, ∅ 6= V ∩ Y and
∣

∣

∣

∣

T
(U×V )∩(Z×Y ) f

µ((U × V ) ∩ (Z × Y ))
− f(t, y)

∣

∣

∣

∣

< η.

Proof. Fix (t, y) ∈ R
n, η > 0 and U, V ∈ Ts,d such that (t, y) ∈ U × V .

Since fy ∈ Qs and t ∈ U ∩ A(t, y) ∈ Ts,d, there is a bounded set W ∈ Te

such that K = W ∩ U ∩ A(t, y) 6= ∅ and
∣

∣

∣

∣

T
K

fy

µ(K)
− f(t, y)

∣

∣

∣

∣

<
η

2
.

By our hypothesis (i) there is a set Y ⊂ R
n2 belonging to Te and such that

V ∩ Y 6= ∅ and
∣

∣

∣

∣

T
V ∩Y

fu

µ(Y ∩ V )
− f(u, y)

∣

∣

∣

∣

<
η

2
for u ∈ K.
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Let H = K × (Y ∩ V ). Observe that
∣

∣

∣

∣

T
H

f(u, v) du dv

µ(H)
− f(t, y)

∣

∣

∣

∣

≤

∣

∣

∣

∣

T
K

(
T
Y ∩V

f(u, v) dv) du

µ(H)
−

T
K

f(u, y)µ(V ∩ Y ) du

µ(H)

∣

∣

∣

∣

+

∣

∣

∣

∣

T
K

f(u, y)µ(V ∩ Y ) du

µ(H)
− f(t, y)

∣

∣

∣

∣

≤

T
K

∣

∣

T
Y ∩V

f(u,v) dv

µ(Y ∩V ) − f(u, y)
∣

∣ du

µ(K)
+

∣

∣

∣

∣

T
K

f(u, y) du

µ(K)
− f(t, y)

∣

∣

∣

∣

<
η

2
+

η

2
= η.

Since f is locally bounded and measurable, from the absolute continuity
of the Lebesgue integral it follows that there is a bounded set X ⊂ R

n1

containing K, belonging to Te and such that for M = X × (Y ∩ V ) we have
∣

∣

∣

∣

T
M

f(u, y) du dv

µ(M)
− f(t, y)

∣

∣

∣

∣

< η.

So the proof is finished.

In the same way we can prove the following theorem.

Theorem 5. Let f : R
n → R be a locally bounded measurable function

such that

(ii) for each (u, v) ∈ R
n there is a set A(u, v) ⊂ R

n1 belonging to To,d

and containing u for which the sections ft, t ∈ A(u, v), are ordinarily

integrally equiquasicontinuous at v.

If fy ∈ Qo for all y ∈ R
n2 , then f satisfies the following condition:

(b) for each (t, y) ∈ R
n, each η > 0 and all U ∈ To,d with t ∈ U and

V ∈ To,d with y ∈ V there are Z ⊂ R
n1 and Y ⊂ R

n2 belonging to

Te and such that ∅ 6= U ∩ Z, ∅ 6= V ∩ Y and
∣

∣

∣

∣

T
(U×V )∩(Z×Y ) f

µ((U × V ) ∩ (Z × Y ))
− f(t, y)

∣

∣

∣

∣

< η.

Problem. Let f : R
n → R be a locally bounded function satisfying

condition (i) of Theorem 4 (resp. condition (ii) of Theorem 5) and having
measurable sections fy for all y ∈ R

n2 . Is f measurable?

Let Z be a nonempty set of indices. We will say that functions hα :
R

n2 → R, α ∈ Z, are integrally equiquasicontinuous at a point y ∈ R
n2 if

for each set U ⊂ R
n2 containing y and belonging to Te and for each η > 0
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there is a nonempty set V ⊂ U belonging to Te such that
∣

∣

∣

∣

T
V

fα

µ(V )
− fα(y)

∣

∣

∣

∣

< η for α ∈ Z.

Theorem 6. Let f : R
n → R be a bounded measurable function such

that fv ∈ Qi for all v ∈ R
n2 , and for each (t, y) ∈ R

n there is a set

A(t, y)⊂R
n1 containing t and belonging to Te such that the sections fu,

u ∈ A(t, y), are integrally equiquasicontinuous at y. Then f ∈ Qi.

The proof of Theorem 6 is completely similar to the proof of Theorem 4.
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