COLLOQUIUM MATHEMATICUM

On A LINEAR HOMOGENEOUS CONGRUENCE

BY
A. SCHINZEL (Warszawa) and M. ZAKARCZEMNY (Kraków)

Abstract

The number of solutions of the congruence $a_{1} x_{1}+\cdots+a_{k} x_{k} \equiv 0(\bmod n)$ in the box $0 \leq x_{i} \leq b_{i}$ is estimated from below in the best possible way, provided for all i, j either $\left(a_{i}, n\right) \mid\left(a_{j}, n\right)$ or $\left(a_{j}, n\right) \mid\left(a_{i}, n\right)$ or $n \mid\left[a_{i}, a_{j}\right]$.

1. Introduction. We shall consider the following conjecture proposed in [1]:

Conjecture. Let k, n and $b_{i}(1 \leq i \leq k)$ be positive integers, and let a_{i} $(1 \leq i \leq k)$ be any integers. The number $N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)$ of solutions of the congruence

$$
\begin{equation*}
\sum_{i=1}^{k} a_{i} x_{i} \equiv 0(\bmod n) \quad \text { in the box } 0 \leq x_{i} \leq b_{i} \tag{1}
\end{equation*}
$$

satisfies the inequality

$$
\begin{equation*}
N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right) \geq 2^{1-n} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{2}
\end{equation*}
$$

Since for $k=n-1$,

$$
N(n ; 1,1, \ldots, 1)=2^{1-n} \prod_{i=1}^{k}(1+1)
$$

if the above conjecture is true, then 2^{1-n} is the best possible coefficient independent of a_{i}, b_{i}, and dependent only on n, with which the inequality (2) holds. The first named author proved in [1] that (2) holds if (n, a_{i}) = 1 for all $i \leq k$. The aim of this paper is to prove

Theorem. The inequality (2) holds if for all $i, j \leq k$ we have either $\left(n, a_{i}\right) \mid\left(n, a_{j}\right)$ or $\left(n, a_{j}\right) \mid\left(n, a_{i}\right)$, or $n \mid\left[a_{i}, a_{j}\right]$.

Corollary 1. The inequality (2) holds for $n=p^{\alpha}$ and for $n=p q$ (p, q primes).

2000 Mathematics Subject Classification: Primary 11D79.
Key words and phrases: linear homogeneous congruence.
2. Lemmas. We shall use the following lemmas taken from [1]:

Lemma A. Inequality (2) holds for $n=4, a_{1}$ and a_{2} odd, $b_{1}=b_{2}=2$.
Lemma B. Let B be a set of residues $\bmod m$, and let $a, b \in \mathbb{N}$ with $(a, m)=1$. If x runs through the integers of the interval $[0, b]$ and y through the elements of B, then $a x+y$ gives at least $\min \{m,|B|+b\}$ residues mod m.

Lemma C. For positive integers a and $x \leq a$ we have

$$
\left(1+\frac{a}{x}\right)^{x+1} \leq 2^{a+1}
$$

except for $a=2$ and $x=1$.
From Lemma B we deduce
Lemma 1. Let A be a set of residues mod m, and let $a, b \in \mathbb{N}$ with $(a, m)=1$ and $b \geq m-|A|$. For every r the number of solutions of the congruence $a x+y \equiv r(\bmod m)$ such that $0 \leq x \leq b, y \in A$ is at least

$$
s=\left[\frac{b+1}{m+1-|A|}\right] \geq \max \left\{1, \frac{b+1}{2(m+1-|A|)-1}\right\} .
$$

Proof. Put $m-|A|=c$ and consider the intervals (reduced to a point for $c=0$)

$$
I_{i}=[c i+i, c(i+1)+i], \quad 0 \leq i \leq s-1
$$

Each interval I_{i} contains $c+1$ consecutive integers, hence by Lemma B, $a x+y$ with $y \in A$ gives $c+|A|=m$ residues $\bmod m$, thus in particular r. Since the s intervals I_{i} are disjoint we obtain the first part of the lemma. The second part (the inequality) follows from the inequality

$$
u \geq \frac{u v+v-1}{2 v-1}
$$

valid for $u, v \geq 1$, in which we take $u=\left[\frac{b+1}{m+1-|A|}\right], v=m+1-|A|$.
We have further
Lemma 2. If $a>(\log 2)^{-1}$, then the function $(a-x) 2^{x}$ is unimodal in the interval $[0, a]$ with the maximum at $x=a-(\log 2)^{-1}$.

Proof. By differentiation.
For the proof of further lemmas we need the following definitions and corollaries.

DEFINITION 1. $d_{i}=\left(n, a_{i}\right), n_{i}=n / d_{i}(1 \leq i \leq k)$.
Corollary 2. Under the assumption of the Theorem we have for all $i, j \leq k$ either $n_{i} \mid n_{j}$ or $n_{j} \mid n_{i}$ or $\left(n_{i}, n_{j}\right)=1$.

Definition 2. We write $i \prec j$ if $n_{i} \mid n_{j}$ and either $n_{i}<n_{j}$ or $i<j$.
Corollary 3. \prec is a partial ordering of the set $\{1, \ldots, k\}$.

Definition 3. N_{l} is the number of residues mod n given by the numbers $\sum_{i \preceq l} a_{i} x_{i}$, where $0 \leq x_{i} \leq b_{i}$.

DEFINITION 4. $c(i)$ is the number of $j \leq i$ such that $n_{j}=n_{i}$.
Now we can formulate
Lemma 3. If for $0 \leq x_{i} \leq b_{i}$ the sum $\sum_{i \prec l} a_{i} x_{i}$ gives at least $1+\sum_{i \prec l} b_{i}$ residues mod n, then

$$
N_{l} \geq \min \left\{n_{l}, 1+\sum_{i \preceq l} b_{i}\right\}
$$

Proof. Since $\left(n, a_{l}\right)=d_{l}$ divides a_{i} for $i \prec l$,

$$
\sum_{i \prec l} \frac{a_{i}}{d_{l}} x_{i} \text { gives at least } 1+\sum_{i \prec l} b_{i} \text { residues } \bmod n_{l} \text {. }
$$

We apply Lemma B with B being the set of these residues and with $m=n_{l}$, $a=a_{l} / d_{l}$. The assumptions are satisfied, since

$$
\left(\frac{a_{l}}{d_{l}}, n_{l}\right)=\frac{\left(a_{l}, n\right)}{d_{l}}=1
$$

Therefore, the number of residues $\bmod n_{l}$ of $\sum_{i \preceq l}\left(a_{i} / d_{l}\right) x_{i}$ is at least

$$
\min \left\{n_{l}, 1+\sum_{i \preceq l} b_{i}\right\}
$$

and hence

$$
\sum_{i \preceq l} a_{i} x_{i} \text { gives at least } \min \left\{n_{l}, 1+\sum_{i \preceq l} b_{i}\right\} \text { residues } \bmod n .
$$

LEMMA 4. If for an $l \leq k$ and all $g \prec l$ we have

$$
\begin{equation*}
\sum_{i \preceq g} b_{i} \leq n_{g}-1 \tag{3}
\end{equation*}
$$

then

$$
N_{l} \geq \min \left\{n_{l}, 1+\sum_{i \preceq l} b_{i}\right\}
$$

Proof. Let I_{h} be the set of $i \leq k$ for which there exists a sequence i_{1}, \ldots, i_{h} such that $i_{1}=i, n_{i_{\nu}} \mid n_{i_{\nu+1}}, n_{i_{\nu}}<n_{i_{\nu+1}}(1 \leq \nu<h)$ and there exists no longer sequence with this property. Clearly, for a certain s,

$$
\{1, \ldots, k\}=\bigcup_{h=1}^{s} I_{h}
$$

and $I_{g} \cap I_{h}=\emptyset$ for $g \neq h$. Moreover, by Corollary 2,

$$
\begin{equation*}
\text { if } i, j \in I_{h} \text { and } n_{i} \neq n_{j}, \text { then }\left(n_{i}, n_{j}\right)=1 \tag{4}
\end{equation*}
$$

If $l \in I_{h}$ we shall write $h(l)=h$. We shall prove the lemma by a double induction, with respect to $s-h(l)$ and with respect to $c(l)$. If $s-h(l)=0$ and $c(l)=1$, then $i \preceq l$ implies $i=l$. We have two possibilities.

If $b_{l}+1 \geq n_{l}$, then $\left(a_{l} / d_{l}\right) x_{l}\left(0 \leq x_{l} \leq b_{l}\right)$ gives all residues mod n_{l}, hence $a_{l} x_{l}$ gives n_{l} residues mod n, thus $N_{l}=n_{l}$.

If $b_{l}+1<n_{l}$, then $\left(a_{l} / d_{l}\right) x_{l}\left(0 \leq x_{l} \leq b_{l}\right)$ gives $b_{l}+1$ residues mod n_{l}, hence $a_{l} x_{l}$ gives $b_{l}+1$ residues $\bmod n$, thus $N_{l} \geq b_{l}+1$. Assume now that the assertion is true for $s-h\left(l^{\prime}\right)=0$ and $c\left(l^{\prime}\right)=c-1(c \geq 2)$, and that $s-h(l)=0, c(l)=c$. Then $i \prec l$ if and only if $i \preceq l^{\prime}$, where $n_{l^{\prime}}=n_{l}$ and $c\left(l^{\prime}\right)=c-1$. Clearly $s-h\left(l^{\prime}\right)=0$ and by the inductive assumption and by (3) with $g=l^{\prime}$,

$$
N_{l^{\prime}} \geq \min \left\{n_{l^{\prime}}, 1+\sum_{i \preceq l^{\prime}} b_{i}\right\} \geq 1+\sum_{i \preceq l^{\prime}} b_{i} .
$$

Hence, by Lemma 3,

$$
N_{l} \geq \min \left\{n_{l}, 1+\sum_{i \preceq l} b_{i}\right\} .
$$

Assume now that the assumption is true for $s-h\left(l^{\prime}\right)=s-h-1$ and that $h(l)=h, c(l)=1$. Put

$$
\Lambda_{l}=\left\{i \prec l: i \in I_{h+1} \wedge i=\max \left\{q: n_{q}=n_{i}\right\}\right\}=\left\{i_{1}, \ldots, i_{t}\right\} .
$$

If $t=0$, then $i \preceq l$ implies $i=l$ and the proof proceeds as above for $s-h(l)=0, c(l)=1$. Therefore we assume that $t>0$ and infer from (4) that

$$
\begin{equation*}
\left(n_{i_{\mu}}, n_{i_{\nu}}\right)=1 \quad \text { for } \mu \neq \nu \tag{5}
\end{equation*}
$$

Since $c(l)=1, i \prec l$ implies $i \preceq i_{u}$ for some $u \leq t$. By the inductive assumption the assertion is true for every $l^{\prime}=i_{u} \in \Lambda_{l} \subset I_{h+1}$, hence by (3) for all $u \leq t$,

$$
\begin{equation*}
N_{i_{u}} \geq 1+\sum_{i \preceq i_{u}} b_{i} . \tag{6}
\end{equation*}
$$

For $i \preceq i_{u}$ we have

$$
n_{i}\left|n_{i_{u}}, \quad d_{i_{u}}\right| d_{i} \mid a_{i}
$$

hence for each $u \leq t$,

$$
\sum_{i \preceq i_{u}} \frac{a_{i}}{d_{i_{u}}} x_{i} \quad\left(0 \leq x_{i} \leq b_{i}\right) \quad \text { gives } \quad N_{i_{u}} \geq 1+\sum_{i \preceq i_{u}} b_{i} \text { residues mod } n_{i_{u}}
$$

Now, by (5) for all integers $z_{1}, \ldots, z_{t}, r_{1}, \ldots, r_{t}$ we have

$$
\sum_{u=1}^{t} \frac{n}{n_{i_{u}}} z_{u} \equiv \sum_{u=1}^{t} \frac{n}{n_{i_{u}}} r_{u}(\bmod n)
$$

if and only if $z_{u} \equiv r_{u}\left(\bmod n_{i_{u}}\right)$ for all $u \leq t$. It follows that the number of residues $\bmod n$ given by

$$
\sum_{u=1}^{t} \frac{n}{n_{i_{u}}} \sum_{i \preceq i_{u}} \frac{a_{i}}{\frac{n}{n_{i_{u}}}} x_{i}=\sum_{u=1}^{t} d_{i_{u}} \sum_{i \preceq i_{u}} \frac{a_{i}}{d_{i_{u}}} x_{i}=\sum_{u=1}^{t} \sum_{i \preceq i_{u}} a_{i} x_{i}=\sum_{i \prec l} a_{i} x_{i}
$$

for $0 \leq x_{i} \leq b_{i}$ is equal to $\prod_{u=1}^{t} N_{i_{u}}$, hence by (6) it is at least

$$
\prod_{u=1}^{t}\left(1+\sum_{i \preceq i_{u}} b_{i}\right) \geq 1+\sum_{u=1}^{t} \sum_{i \preceq i_{u}} b_{i}=1+\sum_{i \prec l} b_{i} .
$$

Using Lemma 3 we obtain

$$
N_{l} \geq \min \left\{n_{l}, 1+\sum_{i \preceq l} b_{i}\right\}
$$

which proves the assertion for $s-h(l)=s-h, c(l)=1$.
Assume now that the assertion is true for $s-h\left(l^{\prime}\right)=s-h$ and $c\left(l^{\prime}\right)=c-1$ $(c \geq 2)$ and that $s-h(l)=s-h, c(l)=c$. Then $i \prec l$ if and only if $i \preceq l^{\prime}$, where $n_{l^{\prime}}=n_{l}$ and $c\left(l^{\prime}\right)=c-1$. Clearly $s-h\left(l^{\prime}\right)=s-h$, thus by the inductive assumption and by (3),

$$
N_{l^{\prime}} \geq \min \left\{n_{l^{\prime}}, 1+\sum_{i \preceq l^{\prime}} b_{i}\right\} \geq 1+\sum_{i \preceq l^{\prime}} b_{i}
$$

Hence, by Lemma 3,

$$
N_{l} \geq \min \left\{n_{l}, 1+\sum_{i \preceq l} b_{i}\right\}
$$

Definition 5. $M=\bigcup_{i=1}^{k}\left\{n_{i}\right\}$.
LEMMA 5. Let us order a_{i} in such a way that $i \leq j$ implies $n_{i} \leq n_{j}$. Under the assumption of the Theorem, for every $l \preceq k$ either

$$
\begin{equation*}
\text { there exists } m^{\prime} \mid n_{l}, m^{\prime} \in M \backslash\left\{n_{l}\right\} \tag{7}
\end{equation*}
$$

such that

$$
\sum_{n_{i} \mid m^{\prime}} b_{i} \geq m^{\prime}
$$

or

$$
\begin{align*}
& \sum_{n_{i} \mid n_{l}, i \leq l} a_{i} x_{i}\left(0 \leq x_{i} \leq b_{i}\right) \text { gives at least } \tag{8}\\
& \min \left\{n_{l}, 1+\sum_{n_{i} \mid n_{l}, i \leq l} b_{i}\right\} \text { residues mod } n .
\end{align*}
$$

Proof. We apply Lemma 4. If there exists g not satisfying (3) such that $n_{g} \mid n_{l}, n_{g}<n_{l}$ then (7) holds with $m^{\prime}=n_{g}$. If there exist g not satisfying (3)
with $n_{g} \mid n_{l}$, but for all of them $n_{g}=n_{l}$, then taking the least such g, by Lemma 4 we obtain

$$
N_{l} \geq N_{g} \geq \min \left\{n_{g}, \sum_{n_{i} \mid n_{g}, i \leq g} b_{i}\right\}=n_{g}=\min \left\{n_{l}, \sum_{n_{i} \mid n_{l}, i \leq l} b_{i}\right\}
$$

thus (8) holds.
Finally, if (3) is satisfied by all g with $n_{g} \mid n_{l}, g<l$, then (8) holds by Lemma 4.

Lemma 6. Let t, x_{1}, \ldots, x_{t} be integers greater than 1. Then

$$
\sum_{u=1}^{t}\left(x_{u}-2\right) \leq \frac{1}{2} \prod_{u=1}^{t} x_{u}-2
$$

Proof. Since $x+y \leq x y$ for $x, y \geq 2$, we have

$$
\sum_{u=1}^{t}\left(x_{u}-2\right)=\sum_{u=1}^{t} x_{u}-2 t \leq \prod_{u=1}^{t-1} x_{u}+x_{t}-2 t
$$

Since $x+y-2 \leq x y / 2$ for $x, y \geq 2$, we have

$$
\prod_{u=1}^{t-1} x_{u}+x_{t}-2 t \leq \frac{1}{2} \prod_{u=1}^{t} x_{u}-2(t-1) \leq \frac{1}{2} \prod_{u=1}^{t} x_{u}-2
$$

Combining both inequalities we obtain the lemma.
3. Proof of the Theorem. We may assume without loss of generality that if $i \leq j$ then either $n_{i}<n_{j}$, or $n_{i}=n_{j}$ and $b_{i} \geq b_{j}$. By Corollary 2, for all $i, j \leq k$ we have

$$
\begin{equation*}
\text { either } n_{i} \mid n_{j} \text { or } n_{j} \mid n_{i} \text { or }\left(n_{i}, n_{j}\right)=1 \tag{9}
\end{equation*}
$$

We proceed by induction on k. For $k=1$, (2) is trivially true. Assume it is true for all $k^{\prime}<k$. If $n_{1}=1$ then

$$
N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)=\left(b_{1}+1\right) N\left(n ; a_{2}, b_{2}, \ldots, a_{k}, b_{k}\right)
$$

hence (2) follows from the inductive assumption.
Therefore assume that $n_{i} \geq 2$, and $n \geq 4$ by the result of [1]. Suppose that there exist $\bar{m} \in M$ such that $\sum_{n_{i} \mid \bar{m}} b_{i} \geq \bar{m}-1$ and let m be the least number with this property. Hence for all $m^{\prime}<m, m^{\prime} \in M$ we have

$$
\begin{equation*}
\sum_{n_{i} \mid m^{\prime}} b_{i} \leq m^{\prime}-2 \tag{10}
\end{equation*}
$$

Let $m_{u}(1 \leq u \leq t)$ be all maximal elements with respect to divisibility in the set $\{\mu \in M \backslash\{m\}: \mu \mid m\}$. We have $m_{u} \in M \backslash\{m\}, m_{u} \mid m$, and the m_{u} are not divisible by one another, hence by $(9),\left(m_{u}, m_{v}\right)=1$ for $u \neq v$. It follows that

$$
\begin{equation*}
\prod_{u=1}^{t} m_{u} \mid m \tag{11}
\end{equation*}
$$

We take the least j such that

$$
\begin{equation*}
\sum_{n_{i} \mid m, i \leq j} b_{i} \geq m-1 \tag{12}
\end{equation*}
$$

By (10) we have

$$
\sum_{n_{i} \mid m_{u}} b_{i} \leq m_{u}-2
$$

hence by Lemma 6,

$$
\begin{equation*}
\sum_{u=1}^{t} \sum_{n_{i} \mid m_{u}} b_{i} \leq \sum_{u=1}^{t}\left(m_{u}-2\right) \leq \frac{1}{2} \prod_{u=1}^{t} m_{u}-2 \leq \frac{1}{2} m-2 \tag{13}
\end{equation*}
$$

unless $t \leq 1$. However, for $t \leq 1$ the inequality

$$
\sum_{u=1}^{t}\left(m_{u}-2\right) \leq \frac{1}{2} m-2
$$

is also true, thus (12) and (13) imply $n_{j} \nmid m_{u}(1 \leq u \leq t)$, hence $n_{j}=m$.
Also, by Lemma 5, inequality (10) and the choice of j the number of residues mod n given by $\sum_{n_{i} \mid m, i<j} a_{i} x_{i}\left(0 \leq x_{i} \leq b_{i}\right)$ is at least $1+\sum_{n_{i} \mid m, i<j} b_{i}$. For every choice of $x_{i}\left(n_{i} \nmid m\right.$ or $\left.i>j\right)$ such that

$$
\begin{equation*}
\sum_{n_{i} \nmid m \text { or } i>j} a_{i} x_{i} \equiv 0\left(\bmod \frac{n}{m}\right) \tag{14}
\end{equation*}
$$

there exist, by Lemma 1, at least

$$
\max \left\{1, \frac{b_{j}+1}{2\left(m-\sum_{n_{i} \mid m, i<j} b_{i}\right)-1}\right\}
$$

solutions of the congruence

$$
\frac{m}{n} \sum_{n_{i} \mid m, i<j} a_{i} x_{i}+\frac{m a_{j}}{n} x_{j}+\frac{m}{n} \sum_{n_{i} \nmid m \text { or } i>j} a_{i} x_{i} \equiv 0(\bmod m),
$$

satisfying $0 \leq x_{i} \leq b_{i}\left(n_{i} \mid m\right.$ and $\left.i \leq j\right)$. However, the number of summands in (14) is less than k, hence, by the inductive assumption, the number of solutions of (14) with $0 \leq x_{i} \leq b_{i}$ is at least

$$
2^{1-n / m} \prod_{n_{i} \nmid m \text { or } i>j}\left(b_{i}+1\right) .
$$

Thus we obtain

$$
\begin{align*}
& N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right) \tag{15}\\
& \quad \geq 2^{1-n / m} \prod_{n_{i} \nmid m \text { or } i>j}\left(b_{i}+1\right) \max \left\{1, \frac{b_{j}+1}{2\left(m-\sum_{n_{i} \mid m, i<j} b_{i}\right)-1}\right\} .
\end{align*}
$$

We consider three cases:

$$
\begin{align*}
& m<n \tag{16}\\
& m=n \quad \text { and } \quad \text { either } j=1 \text { or } n_{j-1}<n, \tag{17}\\
& m=n, \quad j \geq 2 \quad \text { and } \quad n_{j-1}=n \tag{18}
\end{align*}
$$

In the case (16) we have, by (15) and Bernoulli's inequality,

$$
\begin{align*}
& N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)^{-1} \prod_{i=1}^{k}\left(b_{i}+1\right) \tag{19}\\
& \quad \leq 2^{n / m}\left(m-\sum_{n_{i} \mid m, i<j} b_{i}-\frac{1}{2}\right) \prod_{n_{i} \mid m, i<j}\left(b_{i}+1\right) \\
& \quad \leq 2^{n / m}\left(m-b-\frac{1}{2}\right) 2^{b}
\end{align*}
$$

where $b=\sum_{n_{i} \mid m, i<j} b_{i}$. By the choice of j we have

$$
b \leq m-2<m-\frac{1}{2}-\frac{1}{\log 2}
$$

hence by Lemma 2,

$$
\left(m-b-\frac{1}{2}\right) 2^{b} \leq 3 \cdot 2^{m-3}<2^{m-1}
$$

and by (19),

$$
N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)^{-1} \prod_{i=1}^{k}\left(b_{i}+1\right)<2^{n / m+m-1} \leq 2^{n-1}
$$

because $n-n / m-m=(n / m-1)(m-1)-1 \geq 0$.
In the case (17) we have again (19), but now, by (13),

$$
b \leq \frac{1}{2} n-2 \leq n-\frac{1}{2}-\frac{1}{\log 2}
$$

hence by Lemma 2 and Bernoulli's inequality

$$
\left(m-b-\frac{1}{2}\right) 2^{b} \leq\left(\frac{n}{2}+\frac{3}{2}\right) 2^{n / 2-2} \leq 2^{n-3 / 2}
$$

In the case (18) we have, by (15),

$$
\begin{gather*}
N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)^{-1} \prod_{i=1}^{k}\left(b_{i}+1\right) \leq \prod_{n_{i} \mid m, i \leq j}\left(b_{i}+1\right) \tag{20}\\
\leq \prod_{n_{i} \mid m, n_{i}<m}\left(b_{i}+1\right) \cdot \prod_{n_{i}=m, i \leq j}\left(b_{i}+1\right) \\
\leq 2^{\sum_{n_{i} \mid m, n_{i}<m} b_{i}} \prod_{n_{i}=m, i \leq j}\left(b_{i}+1\right) .
\end{gather*}
$$

Now, by the choice of j,

$$
\sum_{n_{i} \mid m, i<j} b_{i} \leq n-2, \quad \sum_{n_{i}=m, i<j} b_{i} \leq n-2-\sum_{n_{i} \mid m, n_{i}<m} b_{i}
$$

thus $b_{j} \leq b_{j-1} \leq a / x$, where

$$
a=n-2-\sum_{n_{i} \mid m, n_{i}<m} b_{i}, \quad x=\sum_{n_{i}=m, i<j} 1
$$

By the inequality for the arithmetic and geometric mean and by Lemma C,

$$
\prod_{n_{i}=m, i \leq j}\left(b_{i}+1\right) \leq\left(1+\frac{a}{x}\right)^{x+1} \leq 2^{a+1}
$$

unless $a=2, x=1$. Leaving this case for a further consideration we obtain from (20),

$$
\begin{aligned}
N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)^{-1} & \prod_{i=1}^{k}\left(b_{i}+1\right) \\
& \leq 2^{\sum_{n_{i} \mid m, n_{i}<m} b_{i}} \cdot 2^{n-1-\sum_{n_{i} \mid m, n_{i}<m} b_{i}}=2^{n-1}
\end{aligned}
$$

If $a=2, x=1$ we obtain, because of (13),

$$
n-4=\sum_{n_{i} \mid m, n_{i}<m} b_{i} \leq \frac{1}{2} n-2
$$

hence $n \leq 4$, that is, $n=4$; moreover, $j=2, n_{1}=n_{2}=4, b_{2} \leq b_{1} \leq 2$ and

$$
N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)^{-1} \prod_{i=1}^{k}\left(b_{i}+1\right) \leq\left(b_{1}+1\right)\left(b_{2}+1\right) \leq 2^{n-1}
$$

unless $b_{1}=b_{2}=2$. However, the last case is covered by Lemma A.
Assume now that for every $m \in M$ we have

$$
\begin{equation*}
\sum_{n_{i} \mid m} b_{i} \leq m-2 \tag{21}
\end{equation*}
$$

If $n \in M$ it follows that

$$
\begin{equation*}
\sum_{i=1}^{k} b_{i} \leq n-2 \tag{22}
\end{equation*}
$$

If $n \notin M$, then for every n_{i} there exists the greatest $m \in M$ such that $n_{i} \mid m$. Put $m=f\left(n_{i}\right)$ and $M_{0}=f(M)$. It follows from (9) that the elements of M_{0} are coprime. Hence

$$
\prod_{m \in M_{0}} m \mid n
$$

and, by Lemma 6,

$$
\sum_{n \in M_{0}}(m-2) \leq \frac{1}{2} \prod_{m \in M_{0}} m-2 \leq \frac{1}{2} n-2
$$

unless M_{0} has just one element m_{0}.
However, $m_{0} \leq \frac{1}{2} n$, thus in each case, by (21),

$$
\sum_{i=1}^{k} b_{i} \leq \sum_{m \in M_{0}} \sum_{n_{i} \mid m} b_{i} \leq \sum_{m \in M_{0}}(m-2) \leq \frac{1}{2} n-2
$$

and (22) holds generally. It follows by Bernoulli's inequality that

$$
N\left(n ; a_{1}, b_{1}, \ldots, a_{k}, b_{k}\right)^{-1} \prod_{i=1}^{k}\left(b_{i}+1\right) \leq 2^{\sum_{i=1}^{k} b_{i}} \leq 2^{n-2}
$$

Added in proof. As proved in [2], the inequality (2) holds if $n=\prod_{j=1}^{l} q_{j}^{\alpha_{j}}$, where q_{j} are primes and $\sum_{j=1}^{l} 1 / q_{j}<1$.

REFERENCES

[1] A. Schinzel, The number of solutions of a linear homogeneous congruence, the volume in honour of Wolfgang M. Schmidt (to appear).
[2] -, The numbers of solutions of a linear homogeneous congruence II, the volume in honour of Klaus F. Roth (to appear).

Institute of Mathematics Institute of Mathematics
Polish Academy of Sciences
P.O. Box 21

00-956 Warszawa, Poland
E-mail: schinzel@impan.gov.pl

Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: hhuugg@wp.pl

