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CB-DEGENERATIONS AND RIGID DEGENERATIONS

OF ALGEBRAS
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ADAM HAJDUK (Toruń)

Abstract. The main aim of this note is to prove that if k is an algebraically closed
field and a k-algebra A0 is a CB-degeneration of a finite-dimensional k-algebra A1, then
there exists a factor algebra A0 of A0 of the same dimension as A1 such that A0 is a
CB-degeneration of A1. As a consequence, A0 is a rigid degeneration of A1, provided A0

is basic.

Introduction. There are at least three different concepts of geometric
degenerations for k-algebras: degenerations in the classical sense referring
to the geometry of orbits in a variety of algebras (the idea goes back to
nineteenth century algebraists, see [8]), the so-called rigid degenerations
using the notion of degeneration of (ordered) locally bounded categories (see
[5]), and the CB-degenerations introduced by Crawley-Boevey in [2] (see [3]
for the precise definitions). All these three concepts are useful for deciding
in some specific situations whether a fixed algebra is tame. This method is
based on three “degeneration theorems” (see [5, 6, 2]), each of which states
that, if a finite-dimensional tame k-algebra A0 is a degeneration of a fixed
algebra A1, then A1 is also tame. For classical and rigid degenerations this
was proved by Geiss, who uses ordered locally bounded categories, avoiding
the so-called Gabriel lemma whose proof is rather involved and requires at
least the use of projective geometry (see [7] and also [4, 10]). The result of
Crawley-Boevey appeared a little later and is mainly applied in the study
of biserial algebras.

In the last fifteen years the degeneration technique has found many inter-
esting applications; in particular, it was successfully used in solving several
important classification problems for tame algebras. Also certain natural
theoretical questions concerning degenerations have been considered. In [3]
some interrelations between the three notions of degeneration are studied.
It is shown there that a basic algebra A0 is a CB-degeneration of a (basic)
algebra A1 of the same dimension as A0 over a field k if and only if A0 is a
rigid degeneration of A1 ([3, Theorem 5.1]). Moreover, a reduction of CB-
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degeneration problems for nonbasic algebras to those for their basic repre-
sentatives in Morita equivalence classes is discussed. Finally, it is proved that
for every CB-degeneration of an algebra A1 to A0, obtained along an affine
line, there exists a factor algebra A0 of A0 such that dimk A0 = dimk A1

and A0 is also a CB-degeneration of A1. As a consequence, A0 is also a rigid
degeneration of A1, provided A0 is basic ([3, Theorem 6.1]).

The aim of this note is to prove a generalization of this result to the case
of all CB-degenerations, without any restriction on the variety involved (see
Theorem of Section 2). Consequently, the theoretical scope of [2, Theorem B]
is exactly the same as that of the original version of the Geiss theorem
from [5].

1. Preliminaries. Throughout the paper, we use the well known defi-
nitions (see [2, 6]) and notation introduced in [3]. We now briefly recall the
most important of them.

Throughout the paper k denotes an algebraically closed field. By an
algebra we mean a finite-dimensional k-algebra.

For any m, n ∈ N, we denote by Mm×n(k) the set of all m × n-matrices
with coefficients in k, by Mn(k) the algebra Mn×n(k) of square n × n -
matrices and by Gln(k) the group of invertible matrices in Mn(k). For a

fixed dimension vector d ∈ N
n2

, we set

Hd(k) =
∏

i,j=1,...,n

Gldi,j
(k).

Following [2], we introduce a useful definition (see [2, Theorem B]).

Definition. Given two algebras A0 and A1, the algebra A0 is a CB-

degeneration of A1 if there exists a finite-dimensional algebra A, an irre-
ducible variety X and regular maps f1, . . . , fr : X → A such that A1

∼= Ax

for all x in some nonempty open subset U of X, and A0
∼= Ax0

for some
x0 ∈ X, where Ay = A/(f1(y), . . . , fr(y)) for any y ∈ X.

In the situation as above, the data sequence D = (A, X,F , U, x0) is called
a degenerating collection defining a CB-degeneration of A1 to A0 along X
by use of A, where F = {f1, . . . , fr}.

The concept of rigid degenerations is based on the notion of degener-
ation for finite locally bounded categories R with a fixed linearly ordered
set (x1, . . . , xn) of objects and with the dimension vector d ∈ N

n2

, n ≥ 1,
where di,j = dimk JR(xi, xj) for all i, j and JR is the Jacobson radical
of R.

Given d as above, we consider a group action

· : Hd(k) × lbcd(k) → lbcd(k),
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where lbcd(k) is the affine variety of constant structures for locally bounded
k-categories with a fixed object set {1, . . . , n} and dimension vector d
(see [3]).

Suppose we are now given two basic k-algebras A0 and A1 of the same di-
mension. We say that A0 is a rigid degeneration of A1 if there exist complete
sequences e(0) = (e0

1, . . . , e
0
n) and e(1) = (e1

1, . . . , e
1
n) of primitive pairwise or-

thogonal idempotents in A0 and A1, respectively, such that

dimk(e
0
i A0e

0
j ) = dimk(e

1
i A1e

1
j)

for all i, j = 1, . . . , n, and that for any constant structures c(0), c(1) ∈ lbcd(k)
of finite locally bounded k-categories R0 = R(A0, e

(0)) and R1 = R(A1, e
(1))

respectively, we have the inclusion

Hd · c
(0) ⊂ Hd · c(1).

Here we treat R0 and R1 via the correspondence e0
i ↔ i ↔ e1

i , as categories
with the object set {1, . . . , n}; see [3] for more details.

2. Main theorem. Now we are able to formulate the main result of
the paper, generalizing [3, Theorem 6.1].

Theorem. Let A0 and A1 be finite-dimensional k-algebras. Assume that

A0 is a CB-degeneration of A1 (with respect to a finite-dimensional algebra

A). Then A1 admits a CB-degeneration (with respect to A) to some factor

algebra A0 of A0 such that dimk A0 = dimk A1. In particular, if A0 is basic,
then A1 admits a rigid degeneration to the same A0.

For the proof we need some auxiliary facts.

Lemma. Let X be an irreducible affine k-variety, X ′ ⊆ X a nonempty

open subset, and x0 ∈ X \ X ′. Then there exists an irreducible closed curve

Γ ⊆ X such that x0 ∈ Γ and X ′ ∩ Γ 6= ∅.

Proof. We proceed by induction on dimX. If dimX = 1, then obviously
Γ = X. Suppose that dimX > 1 and the lemma is proved for all varieties of

dimension less than dimX. We can assume that X ⊆ A
◦

n(k) is a closed set (in
the Zariski topology). Let X\X ′ = X1∪· · ·∪Xs be a decomposition of X\X ′

into irreducible components, and x1 ∈ X1, . . . , xs ∈ Xs a fixed selection
of elements. Choose a polynomial F ∈ k[T1, . . . , Tn] such that F (x0) = 0
and F (xi) 6= 0 for i = 1, . . . , s. Then the set V = X ∩ V (F ) contains
no Xi for i = 1, . . . , s. Let Z be an irreducible component of V passing
through x0. Then Z contains no Xi since Z ⊆ V . By [9, Theorem 3.3] we
have dimXi ≤ dim(X \ X ′) ≤ dimX − 1 = dim Z. Thus no Xi contains Z,
since otherwise dimXi = dimZ and by [9, Proposition 3.2] we get Xi = Z,
a contradiction. Therefore the open subset Z ′ = Z ∩ X ′ of Z is nonempty,
and by definition of Z the point x0 belongs to Z. By inductive assumption
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(dimZ = dimX − 1) there exists an irreducible affine curve Γ ⊆ Z such
that x0 ∈ Γ and Γ ∩ Z ′ 6= ∅. Notice that Γ ⊆ X is closed and Γ ∩ X ′ 6= ∅,
hence Γ is the required curve.

Corollary. Every CB-degeneration A0 of an algebra A1 can be ob-

tained along a nonsingular irreducible affine curve.

Proof. Let A0, A1 be fixed finite-dimensional algebras and D = (A, X,F ,
U, x0) a collection defining a CB-degeneration from A1 to A0, where F =
{f1, . . . , fs} are regular maps from X to A. Changing X to a suitable prin-
cipal open set containing x0, we can assume that X is an irreducible affine
variety. By the Lemma there exists an irreducible curve Γ ⊆ X such that
x0 ∈ Γ and Γ ∩ U 6= ∅. Then replacing F by F|Γ = {f1|Γ , . . . , fs|Γ } and U
by U|Γ = U ∩ Γ we can assume that X is an irreducible affine curve.

Let p : X̃ → X be a normalization of X (see [11]). It is known that

X̃ is a nonsingular curve, since dimY − dim SingY ≥ 2 for any normal
variety Y , where SingY denotes the set of singular points of Y . We now
define a collection D̃ = (A, X̃, F̃ , Ũ , x̃0), where F̃ = {f1 ◦ p, . . . , fs ◦ p},

Ũ = p−1(U), x̃0 is a fixed point in p−1(x0). It is easily seen that D̃ defines
a CB-degeneration from A1 to A0.

Now we can prove the main result of this note.

Proof of Theorem. We carry out the proof by induction on n = dimk A0−
dimk A1. If n = 0 then we simply get A0 = A0. Assume that n > 0 and
let D = (A, X,F , U, x0) be a collection defining a CB-degeneration from
A1 to A0, where as usual F = {f1, . . . , fs}. Denote by v1, . . . , vm ∈ A a
basis of A, where m = dimk A. By the Corollary we can assume that X
is an irreducible nonsingular curve. Without loss of generality we can also
assume that Ix = 〈f1(x), . . . , fs(x)〉 for all x ∈ X. For any i = 1, . . . , s

we denote by {f j
i }j=1,...,m the family of regular functions on X such that

fi(x) =
∑m

j=1 f j
i (x)vj for x ∈ X. We set

f(x) = [f j
i (x)]

for any x ∈ X ([f j
i (x)] ∈ Ms×m(k)) and r = r(f(x0)). Note that r < r(f(x))

for all x ∈ U , since r = dimk Ix0
and r(f(x)) = dimk Ix. By the definition of r

there exists a nonzero r×r-minor of the matrix f(x0). We can assume that it
is the determinant of the upper-left r×r-submatrix of f(x0). Let h : X → k
be the regular function defined by x 7→ det(f(x)r) for x ∈ X, where f(x)r =

[f j
i (x)]i,j=1,...,r ∈ Mr(k). Clearly h(x0) 6= 0. Now we use the identification

Ms×m(k) =

[
Mr×r(k) Mr×(m−r)(k)

M(s−r)×r(k) M(s−r)×(m−r)(k)

]

(m, s > r, since r(f(x)) > r for any x ∈ U). By applying two-step Gaussian-
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row elimination, we transform f(x) to a matrix f(x) = [f
j

i (x)] ∈ Ms×m(k),
for x ∈ X such that h(x) 6= 0, as follows:

f(x) 

[
idr ∗

∗ ∗

]
 

[
idr ∗

0 ∗

]
(= f(x)),

where the first transformation corresponds to multiplication of f(x) from the

left by the block diagonal matrix
[

(f(x)r)−1 0
0 ids−r

]
. In this way all functions

f
j

i (x) are rational and belong to the local ring Ox0
(X), since h(x0) 6= 0 and

therefore 1/h ∈ Ox0
(X). We regard here Ox0

(X) as a subring of k(X) (X

is irreducible). Moreover, observe that f
j

i = 0 for all r < i ≤ s, 1 ≤ j ≤ r,

and f
j

i (x0) = 0 for all r < i ≤ s, r < j ≤ m.

Now, since dimk Ix > dimk Ix0
for x ∈ U , and Ix = 〈f1(x), . . . , fs(x)〉

for x ∈ X such that h(x) 6= 0, we infer that, for all x ∈ U such that
h(x) 6= 0, there exists a pair (i, j) with r < i ≤ s, r < j ≤ m such that

f
j

i (x) 6= 0. Consequently, all functions f
j

i , r < i ≤ s, r < j ≤ m, belong to
the maximal ideal mx0

(X) ⊆ Ox0
(X) and not all of them are zero. By the

Auslander–Buchsbaum theorem (see [1]), Ox0
(X) is a unique factorization

domain, hence mx0
(X) is a principal ideal generated by some g ∈ mx0

(X),
since Krull. dim Ox0

(X) = 1.

Note that p = max{k ∈ N; gk | f
j

i , r < i ≤ s, r < j ≤ m} is finite. We get

now equations f
j

i = gp · f̃ j
i , r < i ≤ s, r < j ≤ m, in Ox0

(X), for some ratio-

nal functions f̃ j
i ∈ Ox0

(X). By definition of p, not all f̃ j
i belong to mx0

(X).

We can assume there exists r < j ≤ m such that f̃ j
r+1 /∈ mx0

(X). We now de-

fine a regular map f̃s+1 : X ′ → A by f̃s+1(x) =
∑m

j=r+1 f̃ j
r+1(x)vj for x ∈ X ′,

where X ′ is an open set (a neighbourhood of x0) obtained as the intersection

of the domains of all rational functions f̃ j
r+1, r < j ≤ m. Observe that f̃s+1

is a regular function on X ′ and that f̃s+1(x0) /∈ Ix0
, since f̃ j

r+1 6∈ mx0
(X)

for some r < j ≤ m, and f̃s+1(x) ∈ Span{vr+1, . . . , vm} for x ∈ X ′.

We set f̃i = fi|X′ for i = 1, . . . , s, thus obtaining a collection D′ =
(A, X ′,F ′, U ′, x0) defining a CB-degeneration from A1 to some factor alge-

bra A0 of A0 such that dimk A0 < dimk A0, where F ′ = {f̃1, . . . , f̃s, f̃s+1}
and U ′ = U ∩X ′. By the inductive assumption (dimk A0−dimk A1 < n), A1

admits a CB-degeneration to a factor algebra A0 of A0 such that dimk A0 =

dimk A1. But A0 is also a factor algebra of A0. This completes the proof of
the first assertion.

The second assertion follows immediately from [3, Theorem 5.1], since
A0 is a basic algebra, and consequently so is A1 (see [3, Corollary 4.1]),
provided A0 is basic.
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