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Abstract. The Dunford—Pettis property and the Gelfand—Phillips property are stud-
ied in the context of spaces of operators. The idea of L-sets is used to give a dual charac-
terization of the Dunford—Pettis property.

1. Introduction. Numerous papers have investigated whether spaces
of operators inherit the Dunford—Pettis property or the Gelfand—Phillips
property when the co-domain and the dual of the domain have the respec-
tive property; e.g., see the introduction and Section 2 of [10], Theorem 3
through Corollary 11 of [15], and Sections 2 and 3 of [17]. In this paper
weak precompactness and Schauder basis theory are used in spaces of op-
erators to establish simple mapping results which extend and consolidate
results in [10], [15], and [17]. The hereditary Dunford-Pettis property is
also studied. Additionally, the Schur property is characterized in terms of
Dunford—Pettis properties, and L-sets are used in a dual characterization of
the Dunford—Pettis property.

2. Definitions and notation. Let each of X, Y, F, and F denote a real
Banach space, let X* denote the continuous linear dual of X, let L(X,Y)
denote the space of all continuous linear operators T : X — Y, and let
K(X,Y) denote the compact linear maps. The w*-w continuous operators
will be denoted by L.« (X*,Y), and K, (X*Y) will denote the compact
and w*-w continuous operators.

DEFINITION 2.1. An operator T : X — Y is completely continuous if
(T'(xy,)) is norm convergent in Y whenever (z,,) is weakly convergent in X.

All compact operators are completely continuous. However, if weakly
Cauchy sequences in X are norm convergent, then all operators with do-
main X are completely continuous. We say that X has the Schur property
if every weakly Cauchy sequence in X is norm convergent.
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A combination of classical results of Dunford and Pettis [11] and Grothen-
dieck [22] shows that if X is a C'(K)-space or an Lj-space, then every weakly
compact operator 7' : X — Y is completely continuous. (See the introduction
to Section 4 of this paper for a quick proof.) Grothendieck suggested the
following terminology.

DEFINITION 2.2. The Banach space X has the Dunford—Pettis property,
DPP for short, if every weakly compact operator T : X — Y is completely
continuous.

We note that some authors call completely continuous operators Dun-
ford—Pettis operators. The survey article [7| by Diestel is an excellent source
of information about classical contributions to the study of the DPP. The-
orem 1 of [7] shows that X has the DPP iff 2} (z,) — 0 whenever (7)) is
weakly null in X* and (x,) is weakly null in X. Kevin Andrews localized
this idea in [1].

DEFINITION 2.3. A bounded subset S of X is called a Dunford—Pettis
subset of X if every weakly null sequence (z}) in X* tends to 0 uniformly
on S, that is,

lirrlnsup{]x:(x)\ cxeSH=0.

Every DP subset of X is weakly precompact, i.e., if S is a DP subset of X
and (z,) is a sequence from S, then (x,) has a weakly Cauchy subsequence.
See [1] and [26, p. 377] for proofs.

Diestel [7] modified Definition 2.1 and Emmanuele [15] modified Defini-
tion 2.3 to produce the next concepts.

DEFINITION 2.4.

(i) The Banach space X has the hereditary DPP if each closed linear
subspace of X has the DPP.

(ii) The Banach space X has the Dunford—Pettis relatively compact prop-
erty, DPrcP for short, if every Dunford—Pettis subset of X is rela-
tively compact.

Note that ¢; and cg have the hereditary DPP (cf. [7]) and every Schur
space has the DPrcP.

DEFINITION 2.5. A bounded subset S of X is called a limited subset of
X if each w*-null sequence (z}) in X™* tends to 0 uniformly on S, and X

is said to have the Gelfand—Phillips property if every limited subset of X is
relatively compact.

All separable Banach spaces have the Gelfand—Phillips property, but non-
separable spaces need not have this property. See Bourgain and Diestel [6],
Drewnowski and Emmanuele [10], and especially Schlumprecht [28] for dis-
cussions of limited sets. Specifically, note that every limited subset of X is a
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DP subset of X. If P is one of the properties we have defined, we sometimes
indicate that X has property P by writing X € (P); e.g., the assertion that
X has the Gelfand-Phillips property may appear as X € (GP).

DEFINITION 2.6. A bounded subset S of X* is called an L-subset of X*
if every null sequence (x,) in X tends to 0 uniformly on S.

We remark that Bator [2] showed that ¢; <~ X iff X* has the DPrcP, and
Emmanuele [13] showed that ¢; X iff every L-subset of X* is relatively
compact.

We refer the reader to [8] and [25] for undefined terminology and notation.
In particular, (e,) will denote the canonical unit vector basis of ¢y, and (e)
the canonical unit vector basis of /.

3. Spaces of operators
THEOREM 3.1.

(i) Suppose that H is a weakly precompact subset of L(E,F). If H
is not compact and || Al (y*) — B (y*)|| — 0 whenever y* € F* and
(A,—By,) is a weakly null sequence in H—H , then there is a separable
linear subspace X of F and an operator A : X — co which is not
completely continuous.

(ii) Suppose that H is a weakly precompact subset of Ly~(E*, F). If H
is not compact and ||An(z*) — Bp(z*)|| — 0 whenever z* € E*
and (A, — By) is a weakly null sequence in H — H, then there is a
separable subspace X of E and an operator A : X — co which is not
completely continuous.

Proof. (i) Suppose that H is not compact. Choose ¢ > 0 and sequen-
ces (Ay), (By) from H so that A, — B, = 0 and ||A, — B,| > ¢ for
each n. Choose a normalized sequence (x,,) from E so that || Ay, (x)—Bp(25)]]
> ¢ for each n. Since ||A}(y*) — B (y*)|| — 0 for all y* € F*, we have
Ap(zn) — Bn(zn) 2 0.

By the Bessaga-Pelczynski selection principle ([8], [5]), we may (and do)
assume that (yx)72, = (Ar(zr) — Br(zi))32, is a seminormalized weakly
null basic sequence in F. Let X = [{y, : k € N}|, let (y;) be the sequence
of coefficient functionals associated with (y), and define A : X — ¢y by
A(x) = (y;(x)). Then A is a bounded linear operator defined on a separable
space, and A is not completely continuous.

(ii) Suppose that (A,),(By), and ¢ are as in (i). Choose a normalized
sequence (y;) in F* so that ||A}(y}:) — B} (y})|| > € for each n. Since
|An(2z*) — By (2*)|| — 0 for each z* € E*, the w*-w continuity of the opera-
tors ensures that (A% (y)) — B} (y))) =: (zn) is a weakly null sequence in E.
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Thus we may assume that (z,) is a weakly null and seminormalized basic
sequence in E. We finish the argument as in (i). m

COROLLARY 3.2 ([17, Theorem 2|). If E* € (GP) and F has the Schur
property, then L(E, F) € (GP).

Proof. Deny the conclusion. Apply part (i) of Theorem 3.1 to obtain a
non-completely continuous operator defined on a closed linear subspace X
of F'. This is a clear contradiction since X also has the Schur property. =

COROLLARY 3.3. Suppose that F' € (DPrcP) and S is a closed linear
subspace of Ly«(E*, F). If S & (DPrcP), then there is a separable subspace

Y

X of E and a non-completely continuous operator T : X — cy.
Proof. Let H be a DP subset of S which is not relatively compact.
Apply (ii) of 3.1. =

Corollary 3.3 significantly extends Theorem 7 of [15]: Let E have the
Schur property and F the DPrcP. Then the Banach space K+(E*, F) has
the DPrcP.

COROLLARY 3.4. If E* € (DPrcP) and F has the Schur property, then
L(E,F) € (DPrcP).

The next three corollaries follow from the proof of 3.1.

COROLLARY 3.5 ([10, Theorem 2.1|). If E and F belong to (GP), then
K., (E*,F) € (GP).

Proof. Suppose not and let (z,) = (AX(y})— B;:(y;)) be as in (ii) above.
Then (z,,) is a seminormalized and weakly null basic sequence in E. If (27 is
w*-null in EB*, T € Ky« (E*, F) and =} @y} (T) is defined to be (T'(z}),y"),
then x} @y (T) — 0; that is, (2} ®y) is w*-null as a sequence of continuous
linear functionals defined on K« (E*, F'). Combine this observation with the

fact that (A, — By) is a limited sequence to see that (z,) is also a limited
sequence. Thus, since £/ € (GP), |zn|| — 0, and we have a contradiction. =

A Banach space X has the Grothendieck property, or X is a Grothendieck
space [9], if w*-null sequences () in X* are weakly null. If X is a Grothen-
dieck space, then the limited and DP subsets of X coincide.

COROLLARY 3.6. If E and F have the DPrcP and K,+(E*,F) is a
Grothendieck space, then Ky~ (E*, F) has the DPrcP.

Proof. If Ky« (E*, F) is a Grothendieck space, then E and F' are Grothen-
dieck spaces. Thus E, F' € (GP). Apply 3.5. =

COROLLARY 3.7. If X*,Y € (GP), then K(X,Y) € (GP).
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Proof. Suppose not and let (A,, — B,,) be a weakly null limited sequence
in K(X,Y) so that ||A,, — By|| > ¢ > 0 for all n. Let (z,,) be a normalized
sequence in X so that ||A,(z,) — Bp(zy)|| > € for all n. Arguing as in 3.5
above, one sees that (A, (z,)— Bn(zy)) is weakly null and limited in Y. Thus
|An(zn) — Bn(xy)|| — 0, and we have a contradiction. m

See [15] for results related to the next theorem.

THEOREM 3.8. If X* and Y have the DPrcP and L(Y*, X*) =
K(Y*, X*), then L(X,Y) has the DPrcP .

Proof. Suppose not and let (T},) be a weakly null DP sequence in L(X,Y)
so that ||T,|| = 1 for each n. Let (y}) be a sequence in By~ and (z,) be a
sequence in Bx so that v (T, (x,)) > 1/2 for each n. Note that (T},(z,,)) is
weakly null since ||T(y*)|| — 0 for y* € Y*.

Suppose that v} = 0 in Y*, and let T € L(X,Y**) = (X ®, Y*)*. Then
T* € L(Y*™*, X*) and T}y is a compact operator. Therefore [z @ul, T)| <
IT*(v})| and (T*(v})) is relatively compact and weakly null. Thus (z, ®v})
is weakly null in X ®, Y*.

Now L(X,Y) embeds isometrically in L(X,Y™**) and (7,,) is a DP se-
quence in L(X,Y™). Since a DP subset of a dual space is necessarily an
L-subset of the dual space, v} (T}, (x,)) — 0. Thus (T},(x,,)) is a weakly null
DP sequence in Y, ||T},(z,)|| — 0, and we have a contradiction. =

The arguments in this section—particularly the proof of Theorem 3.1—
also produce the next two results:

(f) If E* € (GP), Bp+ is w*-sequentially compact, and all operators
T : F — ¢y are completely continuous, then L(E, F) € (GP).

(t1) If E and F have the DPrcP and all operators T : E — ¢y are
completely continuous, then K« (E*, F') has the DPrcP.

We remark that if F' is infinite-dimensional and all operators T : F' — ¢y
are completely continuous, then ¢; — F. To see this, begin by using the
Josefson—Nissenzweig theorem to obtain a normalized and w*-null sequence
(x}), and then choose any sequence (x,,) so that ||z, || <1 and z(z,) > 1/2
for each n. Since the map = — (x}(x))52; is completely continuous by hy-
pothesis, (z,) cannot have a weakly Cauchy subsequence. Rosenthal’s clas-
sical £1-theorem then puts a copy of ¢1 in F'.

Moreover, if one assumes that all operators T : X — £, are completely
continuous, then it is easy to see that X has the Schur property. In fact, if
S is a separable subspace of X, A : S — { is an isometrically isomorphic
embedding of S into /., and T : X — f, is a continuous linear extension
of A, then the complete continuity of 1" immediately guarantees that every
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weakly null sequence in S is norm null. Clearly X has the Schur property iff
every separable closed linear subspace of X has the Schur property.
The next result extends the observations in these two paragraphs.

THEOREM 3.9. If X is a Banach space, then the following are equivalent:

(i) X is a Schur space.

(ii) All operators T : X — U are completely continuous.

(iii) Every weakly null sequence in X is limited in its closed linear span.

(iv) X € (DPrcP) and all operators T : X — ¢y are completely continu-
ous.

(v) X € (GP) and all operators T : X — c¢o are completely continuous.

Proof. That (ii) implies (i) was noted above. Certainly (i) implies (ii).
Also, since a DP subset is weakly precompact, (i) (or (ii)) implies (iv), and
(iv) clearly implies (v).

Now suppose that (ii) holds, and let (x,) be a weakly null sequence
in X. Suppose that z}, 220 in [{zn : n € N}*, and define A : [{z,}] — co
by A(x) = (z}(z)). Let T : X — l+ be a continuous linear extension of A.
Since T' is completely continuous, x(x,) — 0, and it follows that (z,) is
limited. Thus (ii) implies (iii).

Suppose that (iii) holds, z,, = 0 in X, and ||z, = 1 for each n. Without
loss of generality, one may assume that (z,) is basic. Let (z})) be the coef-

ficient functionals, and observe that =} “ 0 in [{xn}]*. Since z}(x,) =1
for each n, (z,) cannot be a limited sequence. This contradiction shows that
(iii) implies (i).

Now suppose that (every) T : X — ¢p is completely continuous and
X € (GP). Recall that the operators from X to ¢g correspond to the w*-null
sequences in X*. Let (z) be w*-null in X* so that T'(z) = (z}(z)). If
T, > 0in X, then ||T(x,)| — 0. Consequently, (z,) is a limited sequence
in X. Thus {z, : n € N} is relatively compact. Since (z,) is weakly null,
|zn|| — 0, and (v) implies (i). =

This argument and the separable injectivity of ¢g immediately yield the
next result.

COROLLARY 3.10. If X is separable, then the following are equivalent:
(i) X is Schur.

(ii) Fvery operator T : X — ¢y is completely continuous.
(iii) Every weakly null sequence in X is limited in X .

As a consequence of Theorem 3.9, it is clear that (ff) is subsumed by
Corollary 3.3 above.

The fact that the continuous linear image of a Dunford—Pettis (resp.
limited) set is Dunford—Pettis (resp. limited) can be coupled with the Bator—
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Emmanuele characterization of the DPrcP for dual spaces [2], [13] to easily
produce results for quotient spaces. See [7, p. 42] and [10] for discussions of
the subtleties and complexity of the general problem.

THEOREM 3.11. If X* € (DPrcP) (respectively, X* € (GP)) and Z is
a quotient of X, then Z* € (DPrcP) (respectively, Z* € (GP)).

Proof. Let QQ : X — Z be a quotient map. Then Q* : Z* — X* is
an isomorphism. If K is a DP (resp. limited) subset of Z*, then Q*(K) is
a DP (resp. limited) subset of X*. Thus @*(K) and K must be relatively
compact. m

COROLLARY 3.12. The following are equivalent:

(i) &6 X.

(ii) If Y is a closed linear subspace of X, then {1 Y and {1 4 X/Y.

Proof. Bator [2] and Emmanuele [15] showed that X* € (DPrcP) iff
{1 4> X. This characterization and 3.11 immediately yield the corollary. =

In the next theorem, CC(X, ¢g) denotes the space of completely contin-
uous operators from X to ¢g.

THEOREM 3.13. If X has the DPP and L(X,co) # CC(X,cp), then
01 — X*. If X has the hereditary DPP and L(X, cq) # CC(X,¢), then {1
embeds complementably in X* and ¢y — X.

Proof. Choose a non-completely continuous 7" € L(X, cp). Since (T*(e]))
is w*-null in X* and T is not completely continuous, there is a weakly
null sequence (z,) in X which is not limited. By a result of Schlumprecht
(28], [16, p. 126]) we may choose a w*-null sequence (x}) in X* so that
x} (xn) = Omn. Now suppose that (z}) has a weakly Cauchy subsequence.
In fact, suppose that xj, — z7 4 % 0. Since X has the DPP, (z,) is a DP
sequence, and 1 = (x}, — x} |, 2,) — 0. This contradiction and Rosenthal’s
{1-theorem finishes the first assertion.

Now suppose that X has the hereditary DPP. As in the previous para-
graph, we may assume that (z,,) is weakly null and not limited in X. Thus
we may (and do) assume that (z,,) is basic and normalized. Suppose that
no subsequence of (z,) is equivalent to (e,). By a fundamental result of
J. Elton [7, pp. 27-30], we obtain a subsequence (y,) of (z,) so that if (wy,)
is any subsequence of (y,) and (¢,) is a non-null sequence of real numbers,
then supy, || Eszl tnwy|| = 0o. Arguing precisely as on p. 28 of [7], one sees
that the coefficient functionals (w}) are weakly null. However, since (wy,) is
weakly null and W = [(wy,)] has the DPP, (w,) is a DP sequence in W,
1 = w}(wy,) — 0, and we have an obvious contradiction. Thus some subse-
quence of (x,) is equivalent to the unit vector basis of ¢y. The main result
of [24] ensures that ¢; is complemented in X*. =
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COROLLARY 3.14. Suppose that X is an infinite-dimensional Banach
space with the hereditary DPP. Then either

(i) co =Y and Y* contains a complemented copy of {1 wheneverY is
a separable and infinite-dimensional closed linear subspace of X, or

(i) 6 — X.

Proof. Suppose that X is infinite-dimensional and has the heredi-
tary DPP. Either L(Y,cp) = CC(Y,¢p) for some separable and infinite-
dimensional subspace Y of X, or the equality holds for no separable and
infinite-dimensional subspace of X. Apply 3.10 and 3.13. =

Theorem 1 of [7] and another application of Rosenthal’s ¢1-theorem easily
produce the following dichotomy for spaces with the DPP.

THEOREM 3.15. If the Banach space X has the DPP, then either X is a
Schur space or {1 — X*.

Proof. Suppose that X is not a Schur space, and let (x,,) be a normalized
and weakly null sequence in X. Choose (z},) in Bx+ so that z},(z,) =1 for

all n. By part (f) of Theorem 1 of [7], (z}) has no weakly Cauchy subse-
quence. Rosenthal’s ¢1-theorem guarantees that ¢ — X*. =

Since ¢; — X* whenever /1 — X ([8, p. 211]), it follows directly from
3.15 that if X is an infinite-dimensional space with the DPP, then ¢; — X*.

The next corollary provides a counterpoint to Corollary 3.14 above and
to the comment immediately following Theorem 7 on p. 28 of [7]. Rosenthal’s
{1-theorem shows that every infinite-dimensional Schur space contains ¢1.

COROLLARY 3.16. If X is infinite-dimensional and 1 <+~ X*, then every
nfinite-dimensional closed linear subspace of X fails to have the DPP.

COROLLARY 3.17. Suppose that X is a separable Banach space which has
the DPP. If ¢cg — Y, then the space W(X,Y) of weakly compact operators
is not complemented in L(X,Y).

Proof. Choose (z}) in X* so that (z)) ~ (e}). Using the separability
of X, one may assume that x}, S 2*. Thus X* contains a weak*-null sequence
which is not weakly null. Theorem 4 of [3] ensures that W(X,Y) is not

complemented in L(X,Y). m

Schlumprecht’s result [16, p. 126] also leads to a non-complementation
result when X € (GP) but X ¢ (DPrcP).

THEOREM 3.18. Suppose that X fails to have the DPrcP but X € (GP).
If co =Y, then W(X,Y) is not complemented in L(X,Y).

Proof. Suppose that K is a DP subset which is not relatively compact.
Then there is a weakly null sequence (x,) in K — K and a § > 0 so that
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||zn|| > ¢ for each n. Therefore (x,) is not a limited sequence. Then we can

find (z}) in X* so that z %% 0 and ) (X)) = Opm. Thus (z}) is w*-null

and not w-null. Again by Theorem 4 of [3], W(X,Y) is not complemented
in L(X,Y). m

4. L-sets. It is well known that X must have the DPP if X* has the
DPP and that the reverse implication is false (see e.g. [7, pp. 19-23]). In this
section we identify a natural property involving L-subsets of X* which is in
complete duality with the DPP.

If X is a Banach space, then we say that X* has the L-property (or
X* € (LP)) if every operator T' € Ly~ (X™,cg) is completely continuous. See
Theorem 3.1 of [4] for related ideas. Since the operators T € L« (X*, o)
correspond to the weakly null sequences in X, the statement that X* € (LP)
is equivalent to the assertion that every weakly null sequence in X is a DP
sequence in X. A direct application of Theorem 2.6 of [20] then shows that
X has the DPP if and only if X* € (LP).

This simple characterization provides a particularly easy way to show
that C'(K) (and Li(u)) enjoy the DPP. Suppose that 7' : C(K)* — ¢ is a
w*-w continuous operator and let (f,,) be a w-null (and therefore bounded)
sequence in C(K) so that T'(p) = ({ fndp)?2,. If (A\,) is a weakly null se-
quence of regular Borel measures in C'(K)*, choose a non-negative regular
measure A so that A, < A uniformly in n. Now f, — 0 uniformly except on
sets of arbitrarily small A-measure. Consequently, ||T'(A\y)|c, — 0. See also
pp. 113-114 of [8].

One can check that X has the DPP if and only if each of its weakly
compact sets is a DP subset of X . Further, it is well known that a subset S of
X is a DP subset of X iff L(S) is relatively compact whenever L : X — Y is
a weakly compact operator [1]. The next two lemmas and theorems continue
to emphasize the duality that exists between L-subsets of X* and DP subsets
of X.

LEMMA 4.1. If A is an L-subset of X*, By« is w*-sequentially compact,
and T € Ly« (X*,Y), then T(A) is relatively compact.

Proof. Suppose that T" € L,+(X*,Y) and T(A) is not relatively com-
pact. Since any element in L,«(X*,Y") sends L-sets to DP sets, we choose
sequences (uj) and (vy) in A and € > 0 so that ||T(u}) — T(v})| > ¢
for all k and T(u}) — T(v) = 0. Let (y}) be a sequence in By~ so that
yp(T(uy)—T(vy)) > ¢, and, without loss of generality, suppose that y; w, y*.
Consequently, T*(y;) — T*(y*) in X, and (T*(y;) — T*(y*),z*) — 0 uni-
formly for * € A. Since (T*(y*),u; — v;) = y*(T'(u;) — T(v})) — 0, it
follows that (T™(y}), uj — vj;) — 0, and we have a contradiction. =
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LEMMA 4.2, If T(A) is relatively compact for each T € Ly« (X*, cp),
then A is an L-subset of X*.

Proof. Suppose that z, - 0 in X, and define T : X* — ¢y by T(z*) =
(" (xn))oy. IE X = (An) € 41, then T*(A) = > A\pzp, € X, and T is w*-w
continuous. Thus T'(A) is relatively compact, and lim,, sup«c 4 *(z,) = 0. »

REMARK. A combination of 4.1 and 4.2 directly shows that a subset
A of X* is an L-subset of X* iff T'(A) is relatively compact for each T €
Ly (X*, ¢p). These two lemmas also facilitate two additional characteriza-
tions of the L-property.

THEOREM 4.3. FEvery weakly compact subset of X* is an L-subset of X*
iff X* e (LP).

Proof. If X* € (LP) and A is a weakly compact subset of X*, then,
by the Eberlein-Shmul’yan theorem, T'(A) is relatively compact whenever
T € Ly+(X*,cp). Thus A is an L-subset of X*.

Conversely, suppose that every w-compact subset of X* is an L-subset
of X*, and let T € Ly« (X* o). If 2 % af, then U = {z% : n > 0} is
w-compact. Thus T'(U) is relatively compact, and ||T'(x}) — T(z§)|| — 0. m

THEOREM 4.4. A bounded subset S of X* is an L-subset of X* if and
only if T*(S) is relatively compact whenever Y is a Banach space and T :
Y — X is weakly compact.

Proof. Suppose that T : Y — X is a weakly compact operator and let
R be a reflexive space and A:Y — R and B : R — X be operators so that
T = BA ([8, p. 237]). Suppose that S is an L-subset of X* and T%(9) is
not relatively compact. Then B*(S) is an L-subset of R*, and B*(S) is not
relatively compact. Consequently, we may assume that Y itself is reflexive.

Now choose a sequence (%) in S, § >0, and y* €Y* so that T*(z3) = y*
and || T*(x}) — y*|| > ¢ for each n. Choose y,, € By so that

yn(T*('fZ) — y*) > 5, n € N.

Without loss of generality, suppose that y, — y € By (Y is reflexive).
Therefore (y, — y, T*(z})) — 0 since T*(S) is an L-subset of Y*. Since
(y, T*(z¥) —y*) = 0 and y* (y, —y) — 0, it follows that g, (T*(z%) —y*) - 0,
and we have a clear contradiction.

Conversely, suppose that if T: Y — X is weakly compact, then 77(S) is
relatively compact. Let (z,,) be weakly null in X, and let (z}) be a sequence
in S. Define L : X* — ¢g by L(z*) = (x*(x,)). If A = (\,) € {1, then
L*(A\) = > Apzp, and L*(By,) is contained in the closed and absolutely
convex hull of {x,, : n € N}. Thus L* and L are weakly compact. Moreover,
it is clear that L itself is an adjoint. Therefore L(S) is relatively compact
in ¢, limy, 2} (z,) = 0, and S is an L-subset of X*. m
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COROLLARY 4.5. The bounded subset S of X* is an L-subset of X* if
and only if T*(S) is relatively compact in R* whenever R is reflerive and
T : R— X is an operator.

Our next result gives an extension of Theorem 3 of [15]. An operator
T : X — Y is called limited if T(Bx) is limited in Y, and the set of all
limited operators from X to Y is denoted by 1td(X,Y’). Certainly every

compact operator is limited. If T': X — Y is a limited operator and ¥ =N T
note that

liénsup{(y:b -y, T(x)) : |lz]| <1} = 0.
That is, | T*(y;) — T*(y*)|| — O.

THEOREM 4.6. Suppose that every operator T : X — Y™ is limited.
If (xy,) is bounded and (yy) is weakly null in Y, then (x, ® yyn) is weakly
null in X ®, Y. Consequently, if (T,,) is a DP sequence in L(X,Y™), then
{T,,(x) : n € N} is an L-subset of Y*.

Proof. Recall that (X ®, Y)* = L(X,Y™*) ([9, p. 229]), and let T' €
L(X,Y"). Since L(X,Y™) = Itd(X, Y™), |[T*(u}*)|| — 0 if u)* Y0 in Y*.
Therefore (T, z, @ yn)| = {T(20), Yn)| = [{xn, T*(yn))| — 0. Consequently,
if (7},) is a DP sequence in L(X,Y™), then (2, ® yn,Ty)| — 0. m

In Section 3 of this paper, compactness properties of Dunford—Pettis
sets and limited sets were repeatedly used. Compactness questions involv-
ing L-sets naturally arise in this context. As noted in Section 2 above,
Emmanuele [13] showed that L-subsets of X* are relatively compact iff
1 4 X. In fact, if £1 — X, then L-subsets of X* may well fail to be even
weakly precompact. Specifically, if X is any infinite-dimensional Schur space,
then all bounded subsets of X* are L-subsets, and thus there are L-subsets
of X* which fail to be weakly precompact. The next theorem presents a
simple operator-theoretic characterization of weak precompactness, relative
weak compactness, and relative norm compactness for L-sets. An operator
T:X — Y is said to be almost weakly compact |7, pp. 17-18] if T(Bx) is
weakly precompact in Y.

THEOREM 4.7. Suppose that X is a Banach space.

(I) The following are equivalent:

I(i) If T:Y — X* is an operator and T& is completely contin-
uwous, then T is almost weakly compact.
I(ii) If T : ¢y — X* is an operator and T‘} is completely contin-
wous, then T is almost weakly compact.
I(iii) Any L-subset of X* is weakly precompact.
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(IT) The following are equivalent:

II(i) If T:Y — X* is an operator and Tl} s completely contin-
uwous, then T is weakly compact.
II(ii) If T : 41 — X* is an operator and T}y is completely contin-
uous, then T is weakly compact.
I1(iii)) Any L-subset of X* is relatively weakly compact.

(III) The following are equivalent:

IIG) If T :' Y — X* is an operator and Ty + X — Y™ s

completely continuous, then T is compact.

(i) If T : ¢4 — X* is an operator and Ty « X = loo is
completely continuous, then T is compact.

IT1(iii) Ewvery L-subset of X* is relatively compact.

Proof. Since the proofs of (I), (II), and (III) are essentially the same, we
present the argument for (III) only. Suppose that (iii) holds and 77 = T
is completely continuous. Let (x,) be a w-null sequence in X. If (y,) is
a sequence in By, then [zn(T(ya))| = |Ti(za)(ym)| < |Ta(@a)]| — 0, and
T(By) is an L-subset of X*. Therefore T" is compact and (iii) implies (i).

Certainly (i) implies (ii). Now suppose (ii) holds, and let (z}) be a se-
quence from the L-subset A of X*. Define T': {1 — X* by T'(\) = > 72, Nz}
Now suppose that (x,) is weakly null in X. Since A is an L-subset of X,

limsup |z} (z,,)| = 0,
no

and (ii) ensures that T is compact. Since T'(e) = z for each i, the set
{z} : n € N} is relatively compact. =

The Banach space X has the reciprocal Dunford—Pettis property (RDPP)
(|14], [4]) provided that every completely continuous operator 7': X — Y is
weakly compact.

COROLLARY 4.8 ([14, Theorem 1|; [23]). The Banach space X has the
RDPP iff every L-subset of X™ is relatively weakly compact.

COROLLARY 4.9. The Banach space X has the RDPP iff every com-
pletely continuous operator T : X — l is weakly compact.

Proof. Every L-subset of X* is relatively weakly compact iff every com-
pletely continuous operator T : X — f, is weakly compact. u

COROLLARY 4.10. If X 14s a Banach space, then the following are equiv-
alent:

1 very -SUuU0Set o 18 reLatively compact.
i) Every L-subset of X* is relativel t
11 VETY completely continuous operaror wi omain 18 compact.
i) B letely conti tor with domain X i t
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Proof. The operator T : X — Y is completely continuous iff 7*(By~) is

an L-subset of X*. Therefore (i) certainly yields (ii).

Now suppose that T : 1 — X™* is an operator and T"'}( is completely

continuous. By (ii) this restriction is compact and thus 7 itself is compact.
The preceding theorem then applies, and (i) follows. =

COROLLARY 4.11 (|7, Theorem 3|). If X has the DPP and ¢; + X,

then X* has the Schur property.

Proof. Ifz¥ = 2* in X* and X has the DPP, then A = {2}, : n € N} isan

L-subset of X*. Thus A is relatively compact by 4.10, and ||z} —z*|| — 0. =
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