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THE DUNFORD�PETTIS PROPERTY,THE GELFAND�PHILLIPS PROPERTY, AND L-SETSBYIOANA GHENCIU (River Falls, WI) and PAUL LEWIS (Denton, TX)Abstra
t. The Dunford�Pettis property and the Gelfand�Phillips property are stud-ied in the 
ontext of spa
es of operators. The idea of L-sets is used to give a dual 
hara
-terization of the Dunford�Pettis property.1. Introdu
tion. Numerous papers have investigated whether spa
esof operators inherit the Dunford�Pettis property or the Gelfand�Phillipsproperty when the 
o-domain and the dual of the domain have the respe
-tive property; e.g., see the introdu
tion and Se
tion 2 of [10℄, Theorem 3through Corollary 11 of [15℄, and Se
tions 2 and 3 of [17℄. In this paperweak pre
ompa
tness and S
hauder basis theory are used in spa
es of op-erators to establish simple mapping results whi
h extend and 
onsolidateresults in [10℄, [15℄, and [17℄. The hereditary Dunford�Pettis property isalso studied. Additionally, the S
hur property is 
hara
terized in terms ofDunford�Pettis properties, and L-sets are used in a dual 
hara
terization ofthe Dunford�Pettis property.2. De�nitions and notation. Let ea
h of X, Y, E, and F denote a realBana
h spa
e, let X∗ denote the 
ontinuous linear dual of X, let L(X, Y )denote the spa
e of all 
ontinuous linear operators T : X → Y , and let
K(X, Y ) denote the 
ompa
t linear maps. The w∗-w 
ontinuous operatorswill be denoted by Lw∗(X∗, Y ), and Kw∗(X∗, Y ) will denote the 
ompa
tand w∗-w 
ontinuous operators.Definition 2.1. An operator T : X → Y is 
ompletely 
ontinuous if
(T (xn)) is norm 
onvergent in Y whenever (xn) is weakly 
onvergent in X.All 
ompa
t operators are 
ompletely 
ontinuous. However, if weaklyCau
hy sequen
es in X are norm 
onvergent, then all operators with do-main X are 
ompletely 
ontinuous. We say that X has the S
hur propertyif every weakly Cau
hy sequen
e in X is norm 
onvergent.2000 Mathemati
s Subje
t Classi�
ation: 46B20, 46B25, 46B28.Key words and phrases: Dunford�Pettis property, Gelfand�Phillips property, L-sets,
w∗-w 
ontinuity, 
ompletely 
ontinuous operator.[311℄
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A 
ombination of 
lassi
al results of Dunford and Pettis [11℄ and Grothen-die
k [22℄ shows that if X is a C(K)-spa
e or an L1-spa
e, then every weakly
ompa
t operator T : X → Y is 
ompletely 
ontinuous. (See the introdu
tionto Se
tion 4 of this paper for a qui
k proof.) Grothendie
k suggested thefollowing terminology.Definition 2.2. The Bana
h spa
e X has the Dunford�Pettis property ,DPP for short, if every weakly 
ompa
t operator T : X → Y is 
ompletely
ontinuous.We note that some authors 
all 
ompletely 
ontinuous operators Dun-ford�Pettis operators. The survey arti
le [7℄ by Diestel is an ex
ellent sour
eof information about 
lassi
al 
ontributions to the study of the DPP. The-orem 1 of [7℄ shows that X has the DPP i� x∗

n(xn) → 0 whenever (x∗
n) isweakly null in X∗ and (xn) is weakly null in X. Kevin Andrews lo
alizedthis idea in [1℄.Definition 2.3. A bounded subset S of X is 
alled a Dunford�Pettissubset of X if every weakly null sequen
e (x∗

n) in X∗ tends to 0 uniformlyon S, that is,
lim
n

sup{|x∗
n(x)| : x ∈ S} = 0.Every DP subset of X is weakly pre
ompa
t , i.e., if S is a DP subset of Xand (xn) is a sequen
e from S, then (xn) has a weakly Cau
hy subsequen
e.See [1℄ and [26, p. 377℄ for proofs.Diestel [7℄ modi�ed De�nition 2.1 and Emmanuele [15℄ modi�ed De�ni-tion 2.3 to produ
e the next 
on
epts.Definition 2.4.(i) The Bana
h spa
e X has the hereditary DPP if ea
h 
losed linearsubspa
e of X has the DPP.(ii) The Bana
h spa
e X has the Dunford�Pettis relatively 
ompa
t prop-erty , DPr
P for short, if every Dunford�Pettis subset of X is rela-tively 
ompa
t.Note that ℓ1 and c0 have the hereditary DPP (
f. [7℄) and every S
hurspa
e has the DPr
P.Definition 2.5. A bounded subset S of X is 
alled a limited subset of

X if ea
h w∗-null sequen
e (x∗
n) in X∗ tends to 0 uniformly on S, and Xis said to have the Gelfand�Phillips property if every limited subset of X isrelatively 
ompa
t.All separable Bana
h spa
es have the Gelfand�Phillips property, but non-separable spa
es need not have this property. See Bourgain and Diestel [6℄,Drewnowski and Emmanuele [10℄, and espe
ially S
hlumpre
ht [28℄ for dis-
ussions of limited sets. Spe
i�
ally, note that every limited subset of X is a
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DP subset of X. If P is one of the properties we have de�ned, we sometimesindi
ate that X has property P by writing X ∈ (P); e.g., the assertion that
X has the Gelfand�Phillips property may appear as X ∈ (GP).Definition 2.6. A bounded subset S of X∗ is 
alled an L-subset of X∗if every null sequen
e (xn) in X tends to 0 uniformly on S.We remark that Bator [2℄ showed that ℓ1 6 →֒ X i� X∗ has the DPr
P, andEmmanuele [13℄ showed that ℓ1 6 →֒ X i� every L-subset of X∗ is relatively
ompa
t.We refer the reader to [8℄ and [25℄ for unde�ned terminology and notation.In parti
ular, (en) will denote the 
anoni
al unit ve
tor basis of c0, and (e∗n)the 
anoni
al unit ve
tor basis of ℓ1.3. Spa
es of operatorsTheorem 3.1.(i) Suppose that H is a weakly pre
ompa
t subset of L(E, F ). If His not 
ompa
t and ‖A∗

n(y∗) − B∗
n(y∗)‖ → 0 whenever y∗ ∈ F ∗ and

(An−Bn) is a weakly null sequen
e in H−H, then there is a separablelinear subspa
e X of F and an operator A : X → c0 whi
h is not
ompletely 
ontinuous.(ii) Suppose that H is a weakly pre
ompa
t subset of Lw∗(E∗, F ). If His not 
ompa
t and ‖An(x∗) − Bn(x∗)‖ → 0 whenever x∗ ∈ E∗and (An − Bn) is a weakly null sequen
e in H − H, then there is aseparable subspa
e X of E and an operator A : X → c0 whi
h is not
ompletely 
ontinuous.Proof. (i) Suppose that H is not 
ompa
t. Choose ε > 0 and sequen-
es (An), (Bn) from H so that An − Bn
w
→ 0 and ‖An − Bn‖ > ε forea
h n. Choose a normalized sequen
e (xn) from E so that ‖An(xn)−Bn(xn)‖

> ε for ea
h n. Sin
e ‖A∗
n(y∗) − B∗

n(y∗)‖ → 0 for all y∗ ∈ F ∗, we have
An(xn) − Bn(xn)

w
→ 0.By the Bessaga�Peª
zy«ski sele
tion prin
iple ([8℄, [5℄), we may (and do)assume that (yk)
∞
k=1

:= (Ak(xk) − Bk(xk))
∞
k=1

is a seminormalized weaklynull basi
 sequen
e in F . Let X = [{yk : k ∈ N}], let (y∗k) be the sequen
eof 
oe�
ient fun
tionals asso
iated with (yk), and de�ne A : X → c0 by
A(x) = (y∗k(x)). Then A is a bounded linear operator de�ned on a separablespa
e, and A is not 
ompletely 
ontinuous.(ii) Suppose that (An), (Bn), and ε are as in (i). Choose a normalizedsequen
e (y∗n) in F ∗ so that ‖A∗

n(y∗n) − B∗
n(y∗n)‖ > ε for ea
h n. Sin
e

‖An(x∗)−Bn(x∗)‖ → 0 for ea
h x∗ ∈ E∗, the w∗-w 
ontinuity of the opera-tors ensures that (A∗
n(y∗n) − B∗

n(y∗n)) =: (zn) is a weakly null sequen
e in E.
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Thus we may assume that (zn) is a weakly null and seminormalized basi
sequen
e in E. We �nish the argument as in (i).Corollary 3.2 ([17, Theorem 2℄). If E∗ ∈ (GP) and F has the S
hurproperty , then L(E, F ) ∈ (GP).Proof. Deny the 
on
lusion. Apply part (i) of Theorem 3.1 to obtain anon-
ompletely 
ontinuous operator de�ned on a 
losed linear subspa
e Xof F . This is a 
lear 
ontradi
tion sin
e X also has the S
hur property.Corollary 3.3. Suppose that F ∈ (DPrcP) and S is a 
losed linearsubspa
e of Lw∗(E∗, F ). If S 6∈ (DPrcP), then there is a separable subspa
e
X of E and a non-
ompletely 
ontinuous operator T : X → c0.Proof. Let H be a DP subset of S whi
h is not relatively 
ompa
t.Apply (ii) of 3.1.Corollary 3.3 signi�
antly extends Theorem 7 of [15℄: Let E have theS
hur property and F the DPr
P. Then the Bana
h spa
e Kw∗(E∗, F ) hasthe DPr
P.Corollary 3.4. If E∗ ∈ (DPrcP) and F has the S
hur property , then

L(E, F ) ∈ (DPrcP).The next three 
orollaries follow from the proof of 3.1.Corollary 3.5 ([10, Theorem 2.1℄). If E and F belong to (GP), then
Kw∗(E∗, F ) ∈ (GP).Proof. Suppose not and let (zn) = (A∗

n(y∗n)−B∗
n(y∗n)) be as in (ii) above.Then (zn) is a seminormalized and weakly null basi
 sequen
e in E. If (x∗

n) is
w∗-null in E∗, T ∈ Kw∗(E∗, F ) and x∗

n ⊗ y∗n(T ) is de�ned to be 〈T (x∗
n), y∗n〉,then x∗

n⊗y∗n(T ) → 0; that is, (x∗
n⊗y∗n) is w∗-null as a sequen
e of 
ontinuouslinear fun
tionals de�ned on Kw∗(E∗, F ). Combine this observation with thefa
t that (An − Bn) is a limited sequen
e to see that (zn) is also a limitedsequen
e. Thus, sin
e E ∈ (GP), ‖zn‖ → 0, and we have a 
ontradi
tion.A Bana
h spa
e X has the Grothendie
k property , or X is a Grothendie
kspa
e [9℄, if w∗-null sequen
es (x∗
n) in X∗ are weakly null. If X is a Grothen-die
k spa
e, then the limited and DP subsets of X 
oin
ide.Corollary 3.6. If E and F have the DPr
P and Kw∗(E∗, F ) is aGrothendie
k spa
e, then Kw∗(E∗, F ) has the DPr
P.Proof. If Kw∗(E∗, F ) is a Grothendie
k spa
e, then E and F are Grothen-die
k spa
es. Thus E, F ∈ (GP). Apply 3.5.Corollary 3.7. If X∗, Y ∈ (GP), then K(X, Y ) ∈ (GP).
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Proof. Suppose not and let (An −Bn) be a weakly null limited sequen
ein K(X, Y ) so that ‖An − Bn‖ > ε > 0 for all n. Let (xn) be a normalizedsequen
e in X so that ‖An(xn) − Bn(xn)‖ > ε for all n. Arguing as in 3.5above, one sees that (An(xn)−Bn(xn)) is weakly null and limited in Y . Thus
‖An(xn) − Bn(xn)‖ → 0, and we have a 
ontradi
tion.See [15℄ for results related to the next theorem.Theorem 3.8. If X∗ and Y have the DPr
P and L(Y ∗, X∗) =
K(Y ∗, X∗), then L(X, Y ) has the DPr
P .Proof. Suppose not and let (Tn) be a weakly null DP sequen
e in L(X, Y )so that ‖Tn‖ = 1 for ea
h n. Let (y∗n) be a sequen
e in BY ∗ and (xn) be asequen
e in BX so that y∗n(Tn(xn)) > 1/2 for ea
h n. Note that (Tn(xn)) isweakly null sin
e ‖T ∗

n(y∗)‖ → 0 for y∗ ∈ Y ∗.Suppose that v∗n
w
→ 0 in Y ∗, and let T ∈ L(X, Y ∗∗) ∼= (X ⊗γ Y ∗)∗. Then

T ∗ ∈ L(Y ∗∗∗, X∗) and T ∗
|Y ∗

is a 
ompa
t operator. Therefore |〈xn⊗v∗n, T 〉| ≤

‖T ∗(v∗n)‖ and (T ∗(v∗n)) is relatively 
ompa
t and weakly null. Thus (xn⊗v∗n)is weakly null in X ⊗γ Y ∗.Now L(X, Y ) embeds isometri
ally in L(X, Y ∗∗) and (Tn) is a DP se-quen
e in L(X, Y ∗∗). Sin
e a DP subset of a dual spa
e is ne
essarily an
L-subset of the dual spa
e, v∗n(Tn(xn)) → 0. Thus (Tn(xn)) is a weakly nullDP sequen
e in Y , ‖Tn(xn)‖ → 0, and we have a 
ontradi
tion.The arguments in this se
tion�parti
ularly the proof of Theorem 3.1�also produ
e the next two results:

(†) If E∗ ∈ (GP), BF ∗ is w∗-sequentially 
ompa
t, and all operators
T : F → c0 are 
ompletely 
ontinuous, then L(E, F ) ∈ (GP).

(††) If E and F have the DPr
P and all operators T : E → c0 are
ompletely 
ontinuous, then Kw∗(E∗, F ) has the DPr
P.We remark that if F is in�nite-dimensional and all operators T : F → c0are 
ompletely 
ontinuous, then ℓ1 →֒ F . To see this, begin by using theJosefson�Nissenzweig theorem to obtain a normalized and w∗-null sequen
e
(x∗

n), and then 
hoose any sequen
e (xn) so that ‖xn‖ ≤ 1 and x∗
n(xn) > 1/2for ea
h n. Sin
e the map x 7→ (x∗

n(x))∞n=1 is 
ompletely 
ontinuous by hy-pothesis, (xn) 
annot have a weakly Cau
hy subsequen
e. Rosenthal's 
las-si
al ℓ1-theorem then puts a 
opy of ℓ1 in F .Moreover, if one assumes that all operators T : X → ℓ∞ are 
ompletely
ontinuous, then it is easy to see that X has the S
hur property. In fa
t, if
S is a separable subspa
e of X, A : S → ℓ∞ is an isometri
ally isomorphi
embedding of S into ℓ∞, and T : X → ℓ∞ is a 
ontinuous linear extensionof A, then the 
omplete 
ontinuity of T immediately guarantees that every
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weakly null sequen
e in S is norm null. Clearly X has the S
hur property i�every separable 
losed linear subspa
e of X has the S
hur property.The next result extends the observations in these two paragraphs.Theorem 3.9. If X is a Bana
h spa
e, then the following are equivalent :(i) X is a S
hur spa
e.(ii) All operators T : X → ℓ∞ are 
ompletely 
ontinuous.(iii) Every weakly null sequen
e in X is limited in its 
losed linear span.(iv) X ∈ (DPrcP) and all operators T : X → c0 are 
ompletely 
ontinu-ous.(v) X ∈ (GP) and all operators T : X → c0 are 
ompletely 
ontinuous.Proof. That (ii) implies (i) was noted above. Certainly (i) implies (ii).Also, sin
e a DP subset is weakly pre
ompa
t, (i) (or (ii)) implies (iv), and(iv) 
learly implies (v).Now suppose that (ii) holds, and let (xn) be a weakly null sequen
ein X. Suppose that x∗

n
w∗

→ 0 in [{xn : n ∈ N}]∗, and de�ne A : [{xn}] → c0by A(x) = (x∗
n(x)). Let T : X → ℓ∞ be a 
ontinuous linear extension of A.Sin
e T is 
ompletely 
ontinuous, x∗

n(xn) → 0, and it follows that (xn) islimited. Thus (ii) implies (iii).Suppose that (iii) holds, xn
w
→ 0 in X, and ‖xn‖ = 1 for ea
h n. Withoutloss of generality, one may assume that (xn) is basi
. Let (x∗

n) be the 
oef-�
ient fun
tionals, and observe that x∗
n

w∗

→ 0 in [{xn}]
∗. Sin
e x∗

n(xn) = 1for ea
h n, (xn) 
annot be a limited sequen
e. This 
ontradi
tion shows that(iii) implies (i).Now suppose that (every) T : X → c0 is 
ompletely 
ontinuous and
X ∈ (GP). Re
all that the operators from X to c0 
orrespond to the w∗-nullsequen
es in X∗. Let (x∗

n) be w∗-null in X∗ so that T (x) = (x∗
n(x)). If

xn
w
→ 0 in X, then ‖T (xn)‖ → 0. Consequently, (xn) is a limited sequen
ein X. Thus {xn : n ∈ N} is relatively 
ompa
t. Sin
e (xn) is weakly null,

‖xn‖ → 0, and (v) implies (i).This argument and the separable inje
tivity of c0 immediately yield thenext result.Corollary 3.10. If X is separable, then the following are equivalent :(i) X is S
hur.(ii) Every operator T : X → c0 is 
ompletely 
ontinuous.(iii) Every weakly null sequen
e in X is limited in X.As a 
onsequen
e of Theorem 3.9, it is 
lear that (††) is subsumed byCorollary 3.3 above.The fa
t that the 
ontinuous linear image of a Dunford�Pettis (resp.limited) set is Dunford�Pettis (resp. limited) 
an be 
oupled with the Bator�



THE DUNFORD�PETTIS PROPERTY 317

Emmanuele 
hara
terization of the DPr
P for dual spa
es [2℄, [13℄ to easilyprodu
e results for quotient spa
es. See [7, p. 42℄ and [10℄ for dis
ussions ofthe subtleties and 
omplexity of the general problem.Theorem 3.11. If X∗ ∈ (DPrcP) (respe
tively , X∗ ∈ (GP)) and Z isa quotient of X, then Z∗ ∈ (DPrcP) (respe
tively , Z∗ ∈ (GP)).Proof. Let Q : X → Z be a quotient map. Then Q∗ : Z∗ → X∗ isan isomorphism. If K is a DP (resp. limited) subset of Z∗, then Q∗(K) isa DP (resp. limited) subset of X∗. Thus Q∗(K) and K must be relatively
ompa
t.Corollary 3.12. The following are equivalent :(i) ℓ1 6 →֒ X.(ii) If Y is a 
losed linear subspa
e of X, then ℓ1 6 →֒ Y and ℓ1 6 →֒ X/Y .Proof. Bator [2℄ and Emmanuele [15℄ showed that X∗ ∈ (DPrcP) i�
ℓ1 6 →֒ X. This 
hara
terization and 3.11 immediately yield the 
orollary.In the next theorem, CC(X, c0) denotes the spa
e of 
ompletely 
ontin-uous operators from X to c0.Theorem 3.13. If X has the DPP and L(X, c0) 6= CC(X, c0), then
ℓ1 →֒ X∗. If X has the hereditary DPP and L(X, c0) 6= CC(X, c0), then ℓ1embeds 
omplementably in X∗ and c0 →֒ X.Proof. Choose a non-
ompletely 
ontinuous T ∈ L(X, c0). Sin
e (T ∗(e∗i ))is w∗-null in X∗ and T is not 
ompletely 
ontinuous, there is a weaklynull sequen
e (xn) in X whi
h is not limited. By a result of S
hlumpre
ht([28℄, [16, p. 126℄) we may 
hoose a w∗-null sequen
e (x∗

n) in X∗ so that
x∗

m(xn) = δmn. Now suppose that (x∗
n) has a weakly Cau
hy subsequen
e.In fa
t, suppose that x∗

n − x∗
n+1

w
→ 0. Sin
e X has the DPP, (xn) is a DPsequen
e, and 1 = 〈x∗

n − x∗
n+1, xn〉 → 0. This 
ontradi
tion and Rosenthal's

ℓ1-theorem �nishes the �rst assertion.Now suppose that X has the hereditary DPP. As in the previous para-graph, we may assume that (xn) is weakly null and not limited in X. Thuswe may (and do) assume that (xn) is basi
 and normalized. Suppose thatno subsequen
e of (xn) is equivalent to (en). By a fundamental result ofJ. Elton [7, pp. 27�30℄, we obtain a subsequen
e (yn) of (xn) so that if (wn)is any subsequen
e of (yn) and (tn) is a non-null sequen
e of real numbers,then supk ‖
∑k

n=1
tnwn‖ = ∞. Arguing pre
isely as on p. 28 of [7℄, one seesthat the 
oe�
ient fun
tionals (w∗

n) are weakly null. However, sin
e (wn) isweakly null and W = [(wn)] has the DPP, (wn) is a DP sequen
e in W ,
1 = w∗

n(wn) → 0, and we have an obvious 
ontradi
tion. Thus some subse-quen
e of (xn) is equivalent to the unit ve
tor basis of c0. The main resultof [24℄ ensures that ℓ1 is 
omplemented in X∗.
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Corollary 3.14. Suppose that X is an in�nite-dimensional Bana
hspa
e with the hereditary DPP. Then either(i) c0 →֒ Y and Y ∗ 
ontains a 
omplemented 
opy of ℓ1 whenever Y isa separable and in�nite-dimensional 
losed linear subspa
e of X, or(ii) ℓ1 →֒ X.Proof. Suppose that X is in�nite-dimensional and has the heredi-tary DPP. Either L(Y, c0) = CC(Y, c0) for some separable and in�nite-dimensional subspa
e Y of X, or the equality holds for no separable andin�nite-dimensional subspa
e of X. Apply 3.10 and 3.13.Theorem 1 of [7℄ and another appli
ation of Rosenthal's ℓ1-theorem easilyprodu
e the following di
hotomy for spa
es with the DPP.Theorem 3.15. If the Bana
h spa
e X has the DPP, then either X is aS
hur spa
e or ℓ1 →֒ X∗.Proof. Suppose that X is not a S
hur spa
e, and let (xn) be a normalizedand weakly null sequen
e in X. Choose (x∗

n) in BX∗ so that x∗
n(xn) = 1 forall n. By part (f) of Theorem 1 of [7℄, (x∗

n) has no weakly Cau
hy subse-quen
e. Rosenthal's ℓ1-theorem guarantees that ℓ1 →֒ X∗.Sin
e ℓ1 →֒ X∗ whenever ℓ1 →֒ X ([8, p. 211℄), it follows dire
tly from3.15 that if X is an in�nite-dimensional spa
e with the DPP, then ℓ1 →֒ X∗.The next 
orollary provides a 
ounterpoint to Corollary 3.14 above andto the 
omment immediately following Theorem 7 on p. 28 of [7℄. Rosenthal's
ℓ1-theorem shows that every in�nite-dimensional S
hur spa
e 
ontains ℓ1.Corollary 3.16. If X is in�nite-dimensional and ℓ1 6 →֒ X∗, then everyin�nite-dimensional 
losed linear subspa
e of X fails to have the DPP.Corollary 3.17. Suppose that X is a separable Bana
h spa
e whi
h hasthe DPP. If c0 →֒ Y , then the spa
e W (X, Y ) of weakly 
ompa
t operatorsis not 
omplemented in L(X, Y ).Proof. Choose (x∗

n) in X∗ so that (x∗
n) ∼ (e∗n). Using the separabilityof X, one may assume that x∗

n
w∗

→ x∗. Thus X∗ 
ontains a weak∗-null sequen
ewhi
h is not weakly null. Theorem 4 of [3℄ ensures that W (X, Y ) is not
omplemented in L(X, Y ).S
hlumpre
ht's result [16, p. 126℄ also leads to a non-
omplementationresult when X ∈ (GP) but X 6∈ (DPrcP).Theorem 3.18. Suppose that X fails to have the DPr
P but X ∈ (GP).If c0 →֒ Y , then W (X, Y ) is not 
omplemented in L(X, Y ).Proof. Suppose that K is a DP subset whi
h is not relatively 
ompa
t.Then there is a weakly null sequen
e (xn) in K − K and a δ > 0 so that
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‖xn‖ > δ for ea
h n. Therefore (xn) is not a limited sequen
e. Then we 
an�nd (x∗
n) in X∗ so that x∗

n
w∗

→ 0 and x∗
n(xm) = δnm. Thus (x∗

n) is w∗-nulland not w-null. Again by Theorem 4 of [3℄, W (X, Y ) is not 
omplementedin L(X, Y ).4. L-sets. It is well known that X must have the DPP if X∗ has theDPP and that the reverse impli
ation is false (see e.g. [7, pp. 19�23℄). In thisse
tion we identify a natural property involving L-subsets of X∗ whi
h is in
omplete duality with the DPP.If X is a Bana
h spa
e, then we say that X∗ has the L-property (or
X∗ ∈ (LP)) if every operator T ∈ Lw∗(X∗, c0) is 
ompletely 
ontinuous. SeeTheorem 3.1 of [4℄ for related ideas. Sin
e the operators T ∈ Lw∗(X∗, c0)
orrespond to the weakly null sequen
es in X, the statement that X∗ ∈ (LP)is equivalent to the assertion that every weakly null sequen
e in X is a DPsequen
e in X. A dire
t appli
ation of Theorem 2.6 of [20℄ then shows that
X has the DPP if and only if X∗ ∈ (LP).This simple 
hara
terization provides a parti
ularly easy way to showthat C(K) (and L1(µ)) enjoy the DPP. Suppose that T : C(K)∗ → c0 is a
w∗-w 
ontinuous operator and let (fn) be a w-null (and therefore bounded)sequen
e in C(K) so that T (µ) = (

T
fndµ)∞n=1. If (λn) is a weakly null se-quen
e of regular Borel measures in C(K)∗, 
hoose a non-negative regularmeasure λ so that λn ≪ λ uniformly in n. Now fn → 0 uniformly ex
ept onsets of arbitrarily small λ-measure. Consequently, ‖T (λn)‖c0 → 0. See alsopp. 113�114 of [8℄.One 
an 
he
k that X has the DPP if and only if ea
h of its weakly
ompa
t sets is a DP subset of X. Further, it is well known that a subset S of

X is a DP subset of X i� L(S) is relatively 
ompa
t whenever L : X → Y isa weakly 
ompa
t operator [1℄. The next two lemmas and theorems 
ontinueto emphasize the duality that exists between L-subsets of X∗ and DP subsetsof X.Lemma 4.1. If A is an L-subset of X∗, BY ∗ is w∗-sequentially 
ompa
t ,and T ∈ Lw∗(X∗, Y ), then T (A) is relatively 
ompa
t.Proof. Suppose that T ∈ Lw∗(X∗, Y ) and T (A) is not relatively 
om-pa
t. Sin
e any element in Lw∗(X∗, Y ) sends L-sets to DP sets, we 
hoosesequen
es (u∗
k) and (v∗k) in A and ε > 0 so that ‖T (u∗

k) − T (v∗k)‖ > εfor all k and T (u∗
k) − T (v∗k)

w
→ 0. Let (y∗k) be a sequen
e in BY ∗ so that

y∗k(T (u∗
k)−T (v∗k)) > ε, and, without loss of generality, suppose that y∗k

w∗

→ y∗.Consequently, T ∗(y∗k)
w
→ T ∗(y∗) in X, and 〈T ∗(y∗k) − T ∗(y∗), x∗〉 → 0 uni-formly for x∗ ∈ A. Sin
e 〈T ∗(y∗), u∗

k − v∗k〉 = y∗(T (u∗
k) − T (v∗k)) → 0, itfollows that 〈T ∗(y∗k), u

∗
k − v∗k〉 → 0, and we have a 
ontradi
tion.
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Lemma 4.2. If T (A) is relatively 
ompa
t for ea
h T ∈ Lw∗(X∗, c0),then A is an L-subset of X∗.Proof. Suppose that xn

w
→ 0 in X, and de�ne T : X∗ → c0 by T (x∗) =

(x∗(xn))∞n=1. If λ = (λn) ∈ ℓ1, then T ∗(λ) =
∑

λnxn ∈ X, and T is w∗-w
ontinuous. Thus T (A) is relatively 
ompa
t, and limn supx∗∈A x∗(xn) = 0.
Remark. A 
ombination of 4.1 and 4.2 dire
tly shows that a subset

A of X∗ is an L-subset of X∗ i� T (A) is relatively 
ompa
t for ea
h T ∈
Lw∗(X∗, c0). These two lemmas also fa
ilitate two additional 
hara
teriza-tions of the L-property.Theorem 4.3. Every weakly 
ompa
t subset of X∗ is an L-subset of X∗i� X∗ ∈ (LP).Proof. If X∗ ∈ (LP) and A is a weakly 
ompa
t subset of X∗, then,by the Eberlein�Shmul'yan theorem, T (A) is relatively 
ompa
t whenever
T ∈ Lw∗(X∗, c0). Thus A is an L-subset of X∗.Conversely, suppose that every w-
ompa
t subset of X∗ is an L-subsetof X∗, and let T ∈ Lw∗(X∗, c0). If x∗

n
w
→ x∗

0, then U = {x∗
n : n ≥ 0} is

w-
ompa
t. Thus T (U) is relatively 
ompa
t, and ‖T (x∗
n) − T (x∗

0)‖ → 0.Theorem 4.4. A bounded subset S of X∗ is an L-subset of X∗ if andonly if T ∗(S) is relatively 
ompa
t whenever Y is a Bana
h spa
e and T :
Y → X is weakly 
ompa
t.Proof. Suppose that T : Y → X is a weakly 
ompa
t operator and let
R be a re�exive spa
e and A : Y → R and B : R → X be operators so that
T = BA ([8, p. 237℄). Suppose that S is an L-subset of X∗ and T ∗(S) isnot relatively 
ompa
t. Then B∗(S) is an L-subset of R∗, and B∗(S) is notrelatively 
ompa
t. Consequently, we may assume that Y itself is re�exive.Now 
hoose a sequen
e (x∗

n) in S, δ > 0, and y∗∈Y ∗ so that T ∗(x∗
n)

w
→ y∗and ‖T ∗(x∗

n) − y∗‖ > δ for ea
h n. Choose yn ∈ BY so that
yn(T ∗(x∗

n) − y∗) > δ, n ∈ N.Without loss of generality, suppose that yn
w
→ y ∈ BY (Y is re�exive).Therefore 〈yn − y, T ∗(x∗

n)〉 → 0 sin
e T ∗(S) is an L-subset of Y ∗. Sin
e
〈y, T ∗(x∗

n)−y∗〉
n
→ 0 and y∗(yn−y)

n
→ 0, it follows that yn(T ∗(x∗

n)−y∗)
n
→ 0,and we have a 
lear 
ontradi
tion.Conversely, suppose that if T : Y → X is weakly 
ompa
t, then T ∗(S) isrelatively 
ompa
t. Let (xn) be weakly null in X, and let (x∗

n) be a sequen
ein S. De�ne L : X∗ → c0 by L(x∗) = (x∗(xn)). If λ = (λn) ∈ ℓ1, then
L∗(λ) =

∑
λnxn, and L∗(Bℓ1) is 
ontained in the 
losed and absolutely
onvex hull of {xn : n ∈ N}. Thus L∗ and L are weakly 
ompa
t. Moreover,it is 
lear that L itself is an adjoint. Therefore L(S) is relatively 
ompa
tin c0, limn x∗
n(xn) = 0, and S is an L-subset of X∗.
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Corollary 4.5. The bounded subset S of X∗ is an L-subset of X∗ ifand only if T ∗(S) is relatively 
ompa
t in R∗ whenever R is re�exive and
T : R → X is an operator.Our next result gives an extension of Theorem 3 of [15℄. An operator
T : X → Y is 
alled limited if T (BX) is limited in Y , and the set of alllimited operators from X to Y is denoted by ltd(X, Y ). Certainly every
ompa
t operator is limited. If T : X → Y is a limited operator and y∗n

w∗

→ y∗,note that
lim
n

sup{〈y∗n − y∗, T (x)〉 : ‖x‖ ≤ 1} 7→ 0.That is, ‖T ∗(y∗n) − T ∗(y∗)‖ → 0.Theorem 4.6. Suppose that every operator T : X → Y ∗ is limited.If (xn) is bounded and (yn) is weakly null in Y , then (xn ⊗ yn) is weaklynull in X ⊗γ Y . Consequently , if (Tn) is a DP sequen
e in L(X, Y ∗), then
{Tn(xn) : n ∈ N} is an L-subset of Y ∗.Proof. Re
all that (X ⊗γ Y )∗ ∼= L(X, Y ∗) ([9, p. 229℄), and let T ∈

L(X, Y ∗). Sin
e L(X, Y ∗) = ltd(X, Y ∗), ‖T ∗(u∗∗
n )‖ → 0 if u∗∗

n
w∗

→ 0 in Y ∗∗.Therefore |〈T, xn ⊗ yn〉| = |〈T (xn), yn〉| = |〈xn, T ∗(yn)〉| → 0. Consequently,if (Tn) is a DP sequen
e in L(X, Y ∗), then |〈xn ⊗ yn, Tn〉| → 0.In Se
tion 3 of this paper, 
ompa
tness properties of Dunford�Pettissets and limited sets were repeatedly used. Compa
tness questions involv-ing L-sets naturally arise in this 
ontext. As noted in Se
tion 2 above,Emmanuele [13℄ showed that L-subsets of X∗ are relatively 
ompa
t i�
ℓ1 6 →֒ X. In fa
t, if ℓ1 →֒ X, then L-subsets of X∗ may well fail to be evenweakly pre
ompa
t. Spe
i�
ally, if X is any in�nite-dimensional S
hur spa
e,then all bounded subsets of X∗ are L-subsets, and thus there are L-subsetsof X∗ whi
h fail to be weakly pre
ompa
t. The next theorem presents asimple operator-theoreti
 
hara
terization of weak pre
ompa
tness, relativeweak 
ompa
tness, and relative norm 
ompa
tness for L-sets. An operator
T : X → Y is said to be almost weakly 
ompa
t [7, pp. 17�18℄ if T (BX) isweakly pre
ompa
t in Y .Theorem 4.7. Suppose that X is a Bana
h spa
e.(I) The following are equivalent :I(i) If T : Y → X∗ is an operator and T ∗

|X is 
ompletely 
ontin-uous, then T is almost weakly 
ompa
t.I(ii) If T : ℓ1 → X∗ is an operator and T ∗
|X is 
ompletely 
ontin-uous, then T is almost weakly 
ompa
t.I(iii) Any L-subset of X∗ is weakly pre
ompa
t.
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(II) The following are equivalent :II(i) If T : Y → X∗ is an operator and T ∗

|X is 
ompletely 
ontin-uous, then T is weakly 
ompa
t.II(ii) If T : ℓ1 → X∗ is an operator and T ∗
|X is 
ompletely 
ontin-uous, then T is weakly 
ompa
t.II(iii) Any L-subset of X∗ is relatively weakly 
ompa
t.(III) The following are equivalent :III(i) If T : Y → X∗ is an operator and T ∗

|X : X → Y ∗ is
ompletely 
ontinuous, then T is 
ompa
t.III(ii) If T : ℓ1 → X∗ is an operator and T ∗
|X : X → ℓ∞ is
ompletely 
ontinuous, then T is 
ompa
t.III(iii) Every L-subset of X∗ is relatively 
ompa
t.Proof. Sin
e the proofs of (I), (II), and (III) are essentially the same, wepresent the argument for (III) only. Suppose that (iii) holds and T1 = T ∗

|Xis 
ompletely 
ontinuous. Let (xn) be a w-null sequen
e in X. If (yn) isa sequen
e in BY , then |xn(T (yn))| = |T1(xn)(yn)| ≤ ‖T1(xn)‖ → 0, and
T (BY ) is an L-subset of X∗. Therefore T is 
ompa
t and (iii) implies (i).Certainly (i) implies (ii). Now suppose (ii) holds, and let (x∗

n) be a se-quen
e from the L-subset A of X∗. De�ne T : ℓ1 → X∗ by T (λ) =
∑∞

i=1
λix

∗
i .Now suppose that (xn) is weakly null in X. Sin
e A is an L-subset of X,

lim
n

sup
i

|x∗
i (xn)| = 0,and (ii) ensures that T is 
ompa
t. Sin
e T (e∗i ) = x∗

i for ea
h i, the set
{x∗

n : n ∈ N} is relatively 
ompa
t.The Bana
h spa
e X has the re
ipro
al Dunford�Pettis property (RDPP)([14℄, [4℄) provided that every 
ompletely 
ontinuous operator T : X → Y isweakly 
ompa
t.Corollary 4.8 ([14, Theorem 1℄; [23℄). The Bana
h spa
e X has theRDPP i� every L-subset of X∗ is relatively weakly 
ompa
t.Corollary 4.9. The Bana
h spa
e X has the RDPP i� every 
om-pletely 
ontinuous operator T : X → ℓ∞ is weakly 
ompa
t.Proof. Every L-subset of X∗ is relatively weakly 
ompa
t i� every 
om-pletely 
ontinuous operator T : X → ℓ∞ is weakly 
ompa
t.Corollary 4.10. If X is a Bana
h spa
e, then the following are equiv-alent :(i) Every L-subset of X∗ is relatively 
ompa
t.(ii) Every 
ompletely 
ontinuous operator with domain X is 
ompa
t.
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Proof. The operator T : X → Y is 
ompletely 
ontinuous i� T ∗(BY ∗) isan L-subset of X∗. Therefore (i) 
ertainly yields (ii).Now suppose that T : ℓ1 → X∗ is an operator and T ∗
|X is 
ompletely
ontinuous. By (ii) this restri
tion is 
ompa
t and thus T itself is 
ompa
t.The pre
eding theorem then applies, and (i) follows.Corollary 4.11 ([7, Theorem 3℄). If X has the DPP and ℓ1 6 →֒ X,then X∗ has the S
hur property.Proof. If x∗

n
w
→ x∗ in X∗ and X has the DPP, then A = {x∗

n : n ∈ N} is an
L-subset of X∗. Thus A is relatively 
ompa
t by 4.10, and ‖x∗

n − x∗‖ → 0.
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