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CONTRACTIONS OF NADLER TYPE ON PARTIAL
TVS-CONE METRIC SPACES

BY

XUN GE (Suzhou) and SHOU LIN (Ningde)

Abstract. This paper introduces partial tvs-cone metric spaces as a common gen-
eralization of both tvs-cone metric spaces and partial metric spaces, and gives a new
fixed point theorem for contractions of Nadler type on partial tvs-cone metric spaces.
As corollaries, we obtain the main results of S. B. Nadler (1969), D. Wardowski (2011),
S. Radenović et al. (2011) and H. Aydi et al. (2012) are deduced.

1. Introduction. Let (X, p) be a metric space and H be the Hausdorff
metric on CB(X), the collection of all nonempty, closed, bounded subsets
of X. A set-valued mapping T : X → CB(X) is called a contraction of
Nadler type if there is k ∈ (0, 1) such that H(Tx, Ty) ≤ kp(x, y) for all
x, y ∈ X; and it is said to have a fixed point if there is x ∈ X such that
x ∈ Tx.

The study of fixed points for contractions using the Hausdorff metric
was initiated by S. B. Nadler [9] who proved the following theorem.

Theorem 1.1 ([9]). Let (X, d) be a complete metric space and T : X →
CB(X) be a contraction of Nadler type. Then T has a fixed point.

Recently, Nadler’s theorem has been extended and generalized to cone
metric spaces by D. Wardowski [12], to tvs-cone metric spaces by S. Raden-
ović et al. [10] and to partial metric spaces by H. Aydi et al. [1]. Cone metric
spaces, tvs-cone metric spaces and partial metric spaces were introduced by
Huang–Zhang [4], Du [3] and Matthews [8], respectively.

Definition 1.2 ([3, 4]). Let X be a non-empty set and (E,P ) be an
ordered Banach space (resp. ordered topological vector space) with zero
vector θ. A mapping d : X ×X → P is called a cone metric (resp. tvs-cone
metric) and (X, d) is called a cone metric space (resp. tvs-cone metric space)
if the following are satisfied for all x, y, z ∈ X:
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(1) d(x, y) = θ ⇔ x = y.

(2) d(x, y) = d(y, x).

(3) d(x, y) ≤ d(x, z) + d(z, y).

Definition 1.3 ([8]). Let X be a non-empty set and R≥0 be the set
of all nonnegative real numbers. A mapping p : X × X → R≥0 is called a
partial metric and (X, p) is called a partial metric space if the following are
satisfied for all x, y, z ∈ X:

(1) x = y ⇔ p(x, x) = p(y, y) = p(x, y).

(2) p(x, y) = p(y, x).

(3) p(x, x) ≤ p(x, y).

(4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Note that tvs-cone metric spaces and partial metric spaces generalize
metric spaces in two different directions. Furthermore, there is no inclu-
sion between tvs-cone metric spaces and partial metric spaces. Thus, we are
interested in extending and generalizing Theorem 1.1 to a common gener-
alization of both tvs-cone metric spaces and partial metric spaces. In this
paper, partial tvs-cone metric spaces are introduced naturally and the fol-
lowing implications hold:

metric ⇒ cone metric ⇒ tvs-cone metric

⇓ ⇓ ⇓
partial metric ⇒ partial cone metric ⇒ partial tvs-cone metric

The following question is of interest.

Question 1.4. Can “metric” in Theorem 1.1 be relaxed to “partial tvs-
cone metric”?

In this paper, we answer the above question affirmatively. As corollar-
ies of our result, we obtain the main results of S. B. Nadler [9], D. War-
dowski [12], S. Radenović et. al. [10] and H. Aydi et. al. [1].

Throughout this paper, N, R>0 and R≥0 denote the set of all natural
numbers, the set of all positive real numbers and the set of all nonnegative
real numbers, respectively.

2. Ordered topological vector spaces

Definition 2.1 ([3]). Let E be a topological vector space with zero
vector θ. A subset P of E is called a tvs-cone in E if:

(1) P is non-empty and closed in E.

(2) α, β ∈ P and a, b ∈ R≥0 ⇒ aα+ bβ ∈ P .

(3) α,−α ∈ P ⇒ α = θ.
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Definition 2.2 ([3]). Let P be a tvs-cone in a topological vector spaceE.
The partial orderings ≤, < and � on E with respect to P are defined as
follows, for α, β ∈ E:

(1) α ≤ β if β − α ∈ P .
(2) α < β if α ≤ β and α 6= β.
(3) α� β if β − α ∈ P ◦, where P ◦ denotes the interior of P in E.

The pair (E,P ) is called an ordered topological vector space.

Remark 2.3 ([7]). Let (E,P ) be an ordered topological vector space.
(1) It is known that θ ∈ P − P ◦, and we always suppose P ◦ 6= ∅.
(2) For convenience, we also use the notations “≥”, “>” and “�” in

(E,P ), with the obvious meaning. The following hold:

(a) α ≥ β ⇔ α− β ≥ θ ⇔ α− β ∈ P .
(b) α > β ⇔ α− β > θ ⇔ α− β ∈ P − {θ}.
(c) α� β ⇔ α− β � θ ⇔ α− β ∈ P ◦.
(d) α� β ⇒ α > β ⇒ α ≥ β.

Definition 2.4 ([11]). An ordered topological vector space (E,P ) is
called strongly minihedral [11] if every subset of E bounded from above has
a supremum, or equivalently, every subset of E bounded from below has an
infimum.

Remark 2.5. In this paper, all ordered topological vector spaces are
assumed to be strongly minihedral. Let (E,P ) be an ordered topological
vector space and F ⊆ E.

(1) If F is bounded from above, then supF exists and is finite.
(2) If F is not bounded from above, then supF = +∞.
(3) If F is bounded from below, then inf F exists and is finite.
(d) If F is not bounded from below, then inf F = −∞.

Lemma 2.6 ([7]). Let (E,P ) be an ordered topological vector space.

(1) If α� θ, then rα� θ for every r ∈ R≥0.
(2) If α� θ, then α� 1

2α� · · · �
1
nα� · · · � θ.

(3) If α1 � β1 and α2 ≥ β2, then α1 + α2 � β1 + β2.
(4) If α� β ≥ γ or α ≥ β � γ, then α� γ.
(5) If α� θ and β ∈ E, then there is n ∈ N such that 1

nβ � α.
(6) If α � θ and β � θ, then there is γ � θ such that γ � α and

γ � β.

In order to investigate convergence for sequences in partial tvs-cone met-
ric spaces, we need to introduce convergence for sequences in ordered topo-
logical vector spaces, which is different from the one in topological vector
spaces.
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Definition 2.7. Let (E,P ) be an ordered topological vector space, {αn}
be a sequence in E and α ∈ E. We say that {αn} converges to α in (E,P ) if
for any ε� θ, there is n0 ∈ N such that α− ε� αn � α+ ε for all n > n0.

We then write l̂imn→∞ αn = α.

Lemma 2.8. Let (E,P ) be an ordered topological vector space, {αn} be

a sequence in E and α ∈ E. If limn→∞ αn = α, then l̂imn→∞ αn = α.

Proof. Assume that limn→∞ αn = α. Let ε� θ, i.e., ε ∈ P ◦. Then there
is a neighborhood U of ε in E such that U ⊆ P ◦. Set U1 = α + ε − U and
U2 = U + α− ε. Then U1 and U2 are neighborhoods of α in E. Since {αn}
converges to α, there is n0 ∈ N such that αn ∈ U1 ∩ U2 for all n > n0. Let
n > n0.

(1) Since αn ∈ U1, we have αn = α+ ε− βn for some βn ∈ U . It follows
that α+ ε− αn = βn ∈ U ⊆ P ◦. So α+ ε− αn � θ, i.e., αn � α+ ε.

(2) Since αn ∈ U2, we have αn = γn + α− ε for some γn ∈ U . It follows
that αn − α+ ε = γn ∈ U ⊆ P ◦. So αn − α+ ε� θ, i.e., αn � α− ε.

By (1) and (2), α− ε� αn � α+ ε for all n > n0, so l̂imn→∞ αn = α.

Remark 2.9. In [6, proof of Lemma 2.4], Z. Kadelburg, S. Radenović
and V. Rakočević showed that the implication in Lemma 2.8 cannot be
reversed even if (E,P ) is an ordered Banach space.

Lemma 2.10. Let (E,P ) be an ordered topological vector space, and {αn}
and {βn} be sequences in E with l̂imn→∞ αn = α and l̂imn→∞ βn = β. Then

l̂imn→∞(αn ± βn) = α± β.

Proof. Let ε � θ. Since l̂imn→∞ αn = α and l̂imn→∞ βn = β, there is
n0 ∈ N such that α− ε/2� αn � α+ ε/2 and β − ε/2� βn � β + ε/2 for
all n > n0. It follows that α± β − ε� αn ± βn � α± β + ε for all n > n0.

So l̂imn→∞(αn ± βn) = α± β.

Lemma 2.11. Let (E,P ) be an ordered topological vector space, and {αn}
and {βn} be sequences in E.

(1) Let αn ≥ βn for all n ∈ N. If l̂imn→∞ αn = α and l̂imn→∞ βn = β,
then α ≥ β.

(2) Let αn ≥ βn ≥ γn for all n ∈ N. If l̂imn→∞ αn = l̂imn→∞ γn = α,

then l̂imn→∞ βn = α.

Proof. (1) For every n ∈ N, set γn = αn − βn. Then γn ≥ θ and

l̂imn→∞ γn = α − β from Lemma 2.10. Set γ = α − β. It suffices to prove
that γ ≥ θ. First, we claim that if U is a neighborhood of θ, then there is
ε� θ such that ε ∈ U . In fact, pick δ � θ. Then limn→∞ δ/n = θ, so there
is n0 ∈ N such that δ/n0 ∈ U . Set ε = δ/n0. Then ε� θ and ε ∈ U .
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Now we prove that γ ≥ θ. If not, then γ 6∈ P , hence there is a neighbor-

hood V of γ such that V ∩P = ∅ since P is closed. Note that l̂imn→∞ γn = γ
and γn ≥ θ for all n ∈ N. For any ε � θ, γ + ε � γn ≥ θ for some n ∈ N,
hence γ + ε ∈ P . On the other hand, V − γ is a neighborhood of θ. By the
above claim, there is ε0 � θ such that ε0 ∈ V −γ. It follows that γ+ε0 ∈ V ,
hence γ + ε0 6∈ P . This contradicts γ + ε ∈ P for any ε� θ.

(2) Let ε� θ. Since l̂imn→∞ αn = l̂imn→∞ γn = α, there is n0 ∈ N such
that α− ε� αn � α+ ε and α− ε� γn � α+ ε for all n > n0. It follows

that α− ε� βn � α+ ε for all n > n0. So l̂imn→∞ βn = α.

Corollary 2.12. Let (E,P ) be an ordered topological vector space. If
θ ≤ α ≤ ε for every ε� θ, then α = θ.

3. Partial tvs-cone metric spaces. In this section, we define partial
tvs-cone metric spaces, a common generalization of both tvs-cone metric
spaces and partial metric spaces.

Definition 3.1. Let (E,P ) be an ordered topological vector space and
let X be a non-empty set. A mapping p : X × X → P is called a partial
tvs-cone metric and (X, p) is called a partial tvs-cone metric space if the
following are satisfied for all x, y, z ∈ X:

(1) x = y ⇔ p(x, x) = p(y, y) = p(x, y).
(2) p(x, y) = p(y, x).
(3) p(x, x) ≤ p(x, y).
(4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Now we exhibit some partial tvs-cone metric spaces which are neither
partial metric spaces nor tvs-cone metric spaces.

Example 3.2. Let (E,P ) be an ordered topological vector space.

(1) Set X = P and define p : X ×X → P by

p(α, β) = sup{α, β} for α, β ∈ X.
Then (X, p) is a partial tvs-cone metric space which is neither a partial
metric space nor a tvs-cone metric space.

(2) Set X = {(α, β) ∈ E × E : α ≤ β} and define p : X ×X → E by

p((α1, β1), (α2, β2)) = sup{β1, β2} − inf{α1, α2}
for (α1, β1), (α2, β2) ∈ X. Then (X, p) is a partial tvs-cone metric space
which is neither a partial metric space nor a tvs-cone metric space.

Remark 3.3. Let (X, p) be a partial tvs-cone metric space.

(1) For x, y ∈ X, if p(x, y) = θ, then x = y. In fact, p(x, x) ≤ p(x, y) by
Definition 3.1(3), so θ ≤ p(x, x) ≤ θ. It follows that p(x, x) = θ. Similarly,
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p(y, y) = θ. Consequently, p(x, x) = p(y, y) = p(x, y). By Definition 3.1(1),
x = y.

(2) However, x = y ∈ X does not imply p(x, y) = θ by Example 3.2.

Proposition 3.4. Let (X, p) be a partial tvs-cone metric space. Set
B = {B(x, ε) : x ∈ X and ε � θ}, where B(x, ε) = {y ∈ X : p(x, y) �
p(x, x) + ε} for every x ∈ X and every ε � θ. Then B is a base for some
topology on X.

Proof. It is clear that x ∈ B(x, ε) for every x ∈ X and every ε� θ, and
so X =

⋃
B. Let z ∈ B(x, α) ∩ B(y, β), where B(x, α), B(y, β) ∈ B. Since

z ∈ B(x, α), we have p(x, z) � p(x, x) + α. Set γ1 = p(x, x) + α − p(x, z).
Then γ1 � θ.

We claim that B(z, γ1) ⊆ B(x, α). In fact, if u ∈ B(z, γ1), then p(z, u)�
p(z, z) + γ1, hence p(z, u)− p(z, z)� γ1. It follows that p(x, u) ≤ p(x, z) +
p(z, u)− p(z, z)� p(x, z) + γ1 = p(x, x) + α, hence u ∈ B(x, α).

In the same way, we can show that there is γ2 � θ such that B(z, γ2) ⊆
B(y, β). Thus, there is γ � θ such that γ � γ1 and γ � γ2 from Lemma
2.6(6). Let v ∈ B(z, γ). Then p(z, v) � p(z, z) + γ � p(z, z) + γ1 and
p(z, v) � p(z, z) + γ � p(z, z) + γ2, so v ∈ B(z, γ1) ⊆ B(x, α) and v ∈
B(z, γ2) ⊆ B(y, β), and hence v ∈ B(x, α) ∩ B(y, β). This proves that z ∈
B(z, γ) ⊆ B(x, α) ∩ B(y, β). Consequently, B is a base for some topology
on X. In fact, T = {U ⊆ X : there is B′ ⊆ B such that U =

⋃
B′} is a

topology on X and B is a base for T .

In this paper, we always suppose that a partial tvs-cone metric space
(X, p) is a topological space with the topology T described in Proposi-
tion 3.4. We show that every partial tvs-cone metric space is a T0-space and
give an example to show that a partial tvs-cone metric space need not be a
T1-space.

Proposition 3.5. Let (X, p) be a partial tvs-cone metric space. Then
(X, p) is a T0-space.

Proof. Let x, y ∈ X and x 6= y. By Definition 3.1(3), p(x, y) − p(x, x)
≥ θ and p(x, y) − p(y, y) ≥ θ. Further, p(x, y) − p(x, x) > θ or p(x, y) −
p(y, y) > θ from Definition 3.1(1). Without loss of generality, we can assume
that p(x, y) − p(x, x) > θ. By Corollary 2.12, there is ε � θ such that
“p(x, y) − p(x, x) ≤ ε” does not hold, i.e., “p(x, y) ≤ p(x, x) + ε” does
not hold. Thus, “p(x, y) � p(x, x) + ε” does not hold from Remark 2.3(2).
Consequently, y 6∈ B(x, ε). This proves that (X, p) is a T0-space.

Example 3.6. Let (E,P ) be an ordered topological vector space and
let X = {x, y}. Pick α ∈ P ◦. Define p : X ×X → E as follows:

p(x, x) = p(x, y) = p(y, x) = α and p(y, y) = θ.
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It is easy to check that (X, p) is a partial tvs-cone metric space. For any
ε � θ, p(x, y) = α � α + ε = p(x, x) + ε, so y ∈ B(x, ε). This shows that
(X, p) is not a T1-space.

Now we give a relation between convergence of sequences in partial tvs-
cone metric spaces and convergence of sequences in ordered topological vec-
tor spaces.

Definition 3.7. Let (X, p) be a partial tvs-cone metric space. A se-
quence {xn} in X is said to be p-convergent to x ∈ X if {xn} converges to
x in (X, p), which is denoted by p-limn→∞ xn = x.

Proposition 3.8. Let (X, p) be a partial tvs-cone metric space, {xn} a
sequence in X, and x ∈ X. Then the following are equivalent:

(1) p-limn→∞ xn = x.

(2) l̂imn→∞ p(x, xn) = p(x, x).

Proof. (1)⇒(2): Assume that p-limn→∞ xn = x. Let ε� θ. Then there
is n0 ∈ N such that for every n > n0, xn ∈ B(x, ε), i.e., p(x, xn)� p(x, x)+ε.
Since p(x, x) − ε � p(x, x) ≤ p(x, xn), we have p(x, x) − ε � p(xn, x) �
p(x, x) + ε. So l̂imn→∞ p(x, xn) = p(x, x).

(2)⇒(1): Assume that l̂imn→∞ p(x, xn) = p(x, x). Let ε� θ. Then there
is n0 ∈ N such that p(x, x) − ε � p(x, xn) � p(x, x) + ε for all n > n0. It
follows that xn ∈ B(x, ε) for all n > n0. So p-limn→∞ xn = x.

4. The main results. The following definition comes from [10, 12].

Definition 4.1. Let (X, p) be a partial tvs-cone metric space. C(X)
denotes the collection of all non-empty closed subsets of X. A mapping
H : C(X) × C(X) → P is called a partial Hausdorff tvs-cone metric on
C(X) if for any A,B ∈ C(X) the following conditions are satisfied:

(1) If H(A,B) = θ, then A = B.
(2) H(A,B) = H(B,A).
(3) If ε� θ and x ∈ A, then p(x, y) ≤ H(A,B) + ε for some y ∈ B.
(4) One of the following is satisfied:

(i) If ε � θ, then there is x ∈ A such that H(A,B) ≤ p(x, y) + ε
for all y ∈ B.

(ii) If ε � θ, then there is y ∈ B such that H(A,B) ≤ p(x, y) + ε
for all x ∈ A.

Let (X, p) be a partial tvs-cone metric space. For A ⊆ X and x ∈ X, set
p(x,A) = inf{p(x, a) : a ∈ A} and denote by A the closure of A in (X, p).

Lemma 4.2. Let (X, p) be a partial tvs-cone metric space, A ⊆ X and
a ∈ X. Then a ∈ A if and only if p(a,A) = p(a, a).
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Proof. Necessity: Let a ∈ A. For any ε � θ, B(a, ε) ∩ A 6= ∅. Pick b ∈
B(a, ε)∩A. Then b ∈ A and p(a, b) < p(a, a)+ε. Thus, p(a,A) = inf{p(a, x) :
x ∈ A} ≤ p(a, b) ≤ p(a, a) + ε. By Lemma 2.11(1), p(a,A) ≤ p(a, a). On the
other hand, for every x ∈ A, p(a, x) ≥ p(a, a), and so p(a,A) = inf{p(a, x) :
x ∈ A} ≥ p(a, a). Consequently, p(a,A) = p(a, a).

Sufficiency: Let p(a,A) = inf{p(a, x) : x ∈ A} = p(a, a). Then for any
ε � θ, there is b ∈ A such that p(a, b) < p(a, a) + ε/2 � p(a, a) + ε, hence
b ∈ B(a, ε), and so B(a, ε) ∩A 6= ∅. It follows that a ∈ A.

Lemma 4.3. Let (X, p) be a partial tvs-cone metric space. For A,B,C ∈
C(X), set δ(A,B) = sup{p(a,B) : a ∈ A}. Then:

(1) δ(A,A) = sup{p(a, a) : a ∈ A}.
(2) δ(A,A) ≤ δ(A,B).
(3) δ(A,B) = θ ⇒ A ⊆ B.
(4) δ(A,B) ≤ δ(A,C) + δ(C,B)− inf{p(c, c) : c ∈ C}.
Proof. (1) For every a ∈ A, p(a,A) = inf{p(a, x) : x ∈ A} = p(a, a). So

δ(A,A) = sup{p(a,A) : a ∈ A} = sup{p(a, a) : a ∈ A}.
(2) For every a ∈ A, p(a, a) ≤ p(a, b) for all b ∈ B, and so p(a, a) ≤

inf{p(a, b) : b ∈ B} = p(a,B) ≤ δ(A,B). By (1), δ(A,A) = sup{p(a, a) :
a ∈ A} ≤ δ(A,B).

(3) Suppose that δ(A,B) = θ. Let a ∈ A. Then p(a,B) = θ. Since
θ ≤ p(a, a) ≤ p(a,B) = θ from the proof of (2), we have p(a, a) = θ, and so
p(a,B) = p(a, a). By Lemma 4.2, a ∈ B. It follows that a ∈ B since B is
closed in X. This proves that A ⊆ B.

(4) If a ∈ A, b ∈ B and c ∈ C, then p(a, b) ≤ p(a, c) + p(c, b) − p(c, c),
hence p(a,B) ≤ p(a, c) +p(c,B)−p(c, c), and so p(a,B) +p(c, c) ≤ p(a, c) +
p(c,B) ≤ p(a, c) + δ(C,B). Thus, for every a ∈ A,

p(a,B) + inf{p(c, c) : c ∈ C} ≤ inf{p(a, c) : c ∈ C}+ δ(C,B)

= p(a,C) + δ(C,B).

It follows that δ(A,B) + inf{p(c, c) : c ∈ C} ≤ δ(A,C) + δ(C,B).

Lemma 4.4. Let (X, p) be a partial tvs-cone metric space. For A,B,C ∈
C(X), set H(A,B) = sup{δ(A,B), δ(B,A)}. Then:

(1) H(A,A) = δ(A,A).
(2) H(A,A) ≤ H(A,B).
(3) H(A,B) = H(B,A).
(4) H(A,B) ≤ H(A,C) +H(C,B)− inf{p(c, c) : c ∈ C}.
(5) H(A,B) = θ ⇒ A = B.

Proof. (1) Obvious.
(2) By (1) and Lemma 4.3(2), H(A,A) = δ(A,A) ≤ δ(A,B) ≤ H(A,B).
(3) Obvious.
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(4) By Lemma 4.3(4),

H(A,B) = sup{δ(A,B), δ(B,A)}
≤ sup

{
δ(A,C) + δ(C,B)− inf{p(c, c) : c ∈ C},

δ(B,C) + δ(C,A)− inf{p(c, c) : c ∈ C}
}

= sup{δ(A,C) + δ(C,B), δ(B,C) + δ(C,A)} − inf{p(c, c) : c ∈ C}
≤ sup{δ(A,C) + δ(C,A)}+ sup{δ(B,C) + δ(C,B)} − inf{p(c, c) : c ∈ C}
= H(A,C) +H(C,B)− inf{p(c, c) : c ∈ C}.

(5) Let H(A,B) = θ. Then δ(A,B) = θ and δ(B,A) = θ. By Lemma
4.3(3), A ⊆ B and B ⊆ A. It follows that A = B.

Lemma 4.5. Let (X, p) be a partial tvs-cone metric space, A,B ∈ F (X)
and h > 1. Then, for every a ∈ A, there is b ∈ B such that p(a, b) ≤
hH(A,B).

Proof. Let a ∈ A. Then H(A,B) ≥ δ(A,B) = sup{p(x,B) : x ∈ A} ≥
p(a,B).

If H(A,B) = θ, then A = B from Lemma 4.4(5). So H(A,B) ≥ p(a,B)
= p(a,A) = inf{p(a, b) : b ∈ A} = p(a, a). It follows that p(a, b) ≤ hH(A,B)
for b = a ∈ A = B.

If H(A,B) > 0, then (h − 1)H(A,B) > 0. Since p(a,B) = inf{p(a, y) :
y ∈ B}, there is b ∈ B such that p(a,B)+(h−1)H(A,B) ≥ p(a, b). It follows
that p(a, b) ≤ p(a,B) + (h − 1)H(A,B) ≤ H(A,B) + (h − 1)H(A,B) =
hH(A,B).

We give the definitions of Cauchy sequences in partial tvs-cone metric
spaces and complete partial tvs-cone metric spaces.

Definition 4.6 ([2, 5]). Let (X, p) be a partial tvs-cone metric space
and {xn} be a sequence in X.

(1) {xn} is called a Cauchy sequence in (X, p) if

l̂im
n,m→∞

p(xn, xm) = α for some α ∈ E.

(2) (X, p) is said to be complete if for every Cauchy sequence {xn} there
is x ∈ X such that

p(x, x) = l̂im
n→∞

p(x, xn) = l̂im
n,m→∞

p(xn, xm).

Definition 4.7. Let (X, p) be a partial tvs-cone metric space and T :
X → C(X) be a set-valued mapping. Then T is called a contraction of
Nadler type if there exists k ∈ (0, 1) such that H(Tx, Ty) ≤ kp(x, y) for all
x, y ∈ X.
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Definition 4.8. Let (X, p) be a partial tvs-cone metric space and T :
X → C(X) be a set-valued mapping. Then x ∈ X is called a fixed point for
T if x ∈ Tx.

Now we give the main result of this paper.

Theorem 4.9. Let (X, p) be a complete partial tvs-cone metric space,
and let T : X → C(X) be a contraction of Nadler type. Then T has a fixed
point x ∈ X with p(x, x) = θ.

Proof. Let x0 ∈ X be arbitrary and fixed, and let x1 = Tx0. Since
1/
√
k > 1, there is x2 ∈ Tx1 such that

p(x1, x2) ≤
1√
k
H(Tx0, Tx1)

from Lemma 4.5. Since H(Tx0, Tx1) ≤ kp(x0, x1),

p(x1, x2) ≤
1√
k
H(Tx0, Tx1) ≤

√
k p(x0, x1).

Similarly, for x2 ∈ Tx1, there is x3 ∈ Tx2 such that

p(x2, x3) ≤
1√
k
H(Tx1, Tx2) ≤

√
k p(x1, x2).

By induction, we obtain a sequence {xn} in X such that for every n ∈ N,
xn ∈ Txn−1 and p(xn, xn+1) ≤

√
k p(xn−1, xn), and hence p(xn, xn+1) ≤

(
√
k)np(x0, x1).

Let m ∈ N. Then

θ ≤ p(xn, xn+m)

≤ p(xn, xn+1) + p(xn+1, xn+2) + · · ·+ p(xn+m−1, xn+m)

≤ (
√
k)np(x0, x1) + (

√
k)n+1p(x0, x1) + · · ·+ (

√
k)n+m−1p(x0, x1)

= ((
√
k)n + (

√
k)n+1 + · · ·+ (

√
k)n+m−1)p(x0, x1)

=
(
√
k)n

1−
√
k
p(x0, x1).

Since 0 < k < 1, we have limn→∞
(
√
k)n

1−
√
k

= 0, and hence

lim
n→∞

(
√
k)n

1−
√
k
p(x0, x1) = θ.

By Lemmas 2.12 and 2.8, l̂imn,m→∞ p(xn, xm) = θ. So {xn} is a Cauchy
sequence in (X, p). Since (X, p) is complete,

p(x, x) = l̂im
n→∞

p(x, xn) = l̂im
n→∞

p(xn, xn) = θ.

Since xn+1 ∈ Txn,

θ ≤ p(xn+1, Tx) ≤ δ(Txn, Tx) ≤ H(Txn, Tx) ≤ kp(xn, x).
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It follows that l̂imn→∞ p(xn+1, Tx) = θ from Lemma 2.11(2). It is easy to
see that p(x, Tx) ≤ p(x, xn+1) + p(xn+1, Tx) − p(xn+1, xn+1). By Lemmas
2.10 and 2.11(2), p(x, Tx) = θ. It follows that p(x, Tx) = θ = p(x, x). By
Lemma 4.2, x ∈ Tx = Tx.

By Theorem 4.9, and the diagram in Section 1, the following corollaries
are obtained immediately, which are the main results of D. Wardowski [12],
S. Radenović et al. [10] and H. Aydi et al. [1].

Corollary 4.10 ([12]). Let (X, d) be a complete cone metric space and
T : X → C(X) be a contraction of Nadler type. Then T has a fixed point.

Corollary 4.11 ([10]). Let (X, d) be a complete tvs-cone metric space
and T : X → C(X) be a contraction of Nadler type. Then T has a fixed
point.

Corollary 4.12 ([1]). Let (X, p) be a complete partial metric space and
T : X → CB(X) be a contraction of Nadler type. Then T has a fixed point.

The following example illustrates Theorem 4.9.

Example 4.13. Let (X, p) be the partial tvs-cone metric space described
in Example 3.2(1). Define T : X → C(X) by Tx = {x/3} for each x ∈ X.

(1) (X, p) is complete. Let {xn} be a Cauchy sequence in (X, p). Then

l̂imn,m→∞ p(xn, xm) = x for some x ∈ X. It follows that

p(x, x) = sup{x, x} = x = l̂im
n,m→∞

p(xn, xm).

To prove (X, p) is complete, it suffices to prove that l̂imn→∞ p(x, xn) =

p(x, x). Note that l̂imn→∞ xn=l̂imn→∞ sup{xn, xn}=l̂imn→∞ p(xn, xn)=x.
So, whenever ε � θ, there is n0 ∈ N such that for all n > n0, x − ε �
xn � x + ε, hence p(x, xn) = sup{x, xn} � x + ε = p(x, x) + ε, and
then xn ∈ B(x, ε). This proves that p-limn→∞ xn = x. By Proposition 3.8,

l̂imn→∞ p(x, xn) = p(x, x).

(2) T is a contraction of Nadler type. Let x, y ∈ X. Then

H(Tx, Ty) = H({x/3}, {y/3}) = p(x/3, y/3) = sup{x/3, y/3}
= 1

3 sup{x, y} ≤ 1
2 sup{x, y} = 1

2p(x, y).

(3) T has a fixed point x ∈ X with p(x, x) = θ. In fact, θ ∈ X and
Tθ = {θ/3} = {θ}. So θ ∈ Tθ, and p(θ, θ) = sup{θ, θ} = θ.

5. Some open questions around convergent sequences. Let (X, p)
be a partial tvs-cone metric space. In this section, we raise some questions
around convergent sequences in (X, p) and (X, d), where (X, d) is a tvs-cone
metric space described in the following proposition.
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Proposition 5.1. Let (X, p) be a partial tvs-cone metric space. For
x, y ∈ X, set d(x, y) = 2p(x, y)− p(x, x)− p(y, y). Then d : X ×X → E is
a tvs-cone metric on X and (X, d) is a tvs-cone metric space.

Proof. By Definition 1.2, items (1)–(4) below give the complete proof.

(1) For all x, y ∈ X, p(x, x) ≤ p(x, y) and p(y, y) ≤ p(x, y) from Defini-
tion 3.1(3), so d(x, y) = 2p(x, y) − p(x, x) − p(y, y) = (p(x, y) − p(x, x)) +
(p(x, y)− p(y, y)) ≥ θ, i.e., d(x, y) ∈ P .

(2) For every x ∈ X, d(x, x) = 2p(x, x) − p(x, x) − p(x, x) = θ. On the
other hand, if d(x, y) = θ for x, y ∈ X, i.e., (p(x, y) − p(x, x)) + (p(x, y) −
p(y, y)) = θ. By Definition 3.1(3), p(x, y)−p(x, x) ≥ θ and p(x, y)−p(y, y) ≥
θ, and therefore p(x, y)− p(x, x) = θ and p(x, y)− p(y, y) = θ, i.e., p(x, x) =
p(y, y) = p(x, y). It follows that x = y from Definition 3.1(1).

(3) For all x, y ∈ X, d(x, y) = 2p(x, y) − p(x, x) − p(y, y) = 2p(y, x) −
p(y, y)− p(x, x) = d(y, x).

(4) For all x, y, z ∈ X,

d(x, z) = 2p(x, z)− p(x, x)− p(z, z)
≤ 2(p(x, y) + p(y, z)− p(y, y))− p(x, x)− p(z, z)
= (2p(x, y)− p(x, x)− p(y, y)) + (2p(y, z)− p(y, y)− p(z, z))
= d(x, y) + d(y, z).

Definition 5.2. Let (X, p) be a partial tvs-cone metric space and (X, d)
be a tvs-cone metric on X described in Proposition 5.1.

(1) (X, d) is said to be induced by (X, p).
(2) A sequence {xn} in X is said to converge to x ∈ X in (X, d) if for

any ε� θ, there is n0 ∈ N such that d(x, xn)� ε for all n > n0.

In the above sections, we use p-limn→∞ xn = x to denote that the se-
quence {xn} converges to x in (X, p). To avoid confusion, we use a different
notation for convergent sequences in (X, d).

Definition 5.3. Let (X, d) be a tvs-cone metric space. A sequence {xn}
in X is said to be d-convergent to x ∈ X if {xn} converges to x in (X, d),
which is denoted by d-limn→∞ xn = x.

Proposition 5.4. Let (X, p) be a partial tvs-cone metric space and
(X, d) be the tvs-cone metric space induced by (X, p). Assume that {xn}
is a sequence in X and x ∈ X. If d-limn→∞ xn = x, then p-limn→∞ xn = x.

Proof. Let d-limn→∞ xn = x. Whenever ε � θ, there is n0 ∈ N such
that d(x, xn) � ε for all n > n0. Let n > n0. Then 2p(x, xn) − p(x, x) −
p(xn, xn) � ε, i.e., p(x, xn) ≤ p(x, x) + ε − (p(x, xn) − p(xn, xn)). Noting
that p(x, xn) − p(xn, xn) ≥ θ, it follows that p(x, xn) � p(x, x) + ε. So
xn ∈ B(x, ε). This proves that p-limn→∞ xn = x.
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Proposition 5.5. Let (X, p) be a partial tvs-cone metric space and
(X, d) be the tvs-cone metric space induced by (X, p). Assume that {xn}
is a sequence in X. Then the following are equivalent.

(1) d-limn→∞ xn = x.

(2) l̂imn→∞ d(x, xn) = θ.

(3) l̂imn→∞ p(xn, xn) = l̂imn→∞ p(xn, x) = p(x, x).

Proof. (1)⇒(2): Assume that d-limn→∞ xn = x. Whenever ε� θ, there
is n0 ∈ N such that d(x, xn) � ε for all n > n0, It follows that θ − ε �
d(x, xn) ≤ θ + ε for all n > n0. So l̂imn→∞ d(x, xn) = θ.

(2)⇒(1): Assume that l̂imn→∞ d(x, xn) = θ. Whenever ε � θ, there is
n0 ∈ N such that θ − ε � d(x, xn) � θ + ε for all n > n0. It follows that
d(x, xn)� ε for all n > n0. So d-limn→∞ xn = x.

(2) ⇒ (3): Let l̂imn→∞ d(x, xn) = θ, i.e., l̂imn→∞(2p(x, xn) − p(x, x) −
p(xn, xn)) = θ. By (2)⇒(1) and Proposition 5.4, p-limn→∞ xn = x. It follows

that l̂imn→∞ p(x, xn) = p(x, x) from Proposition 3.8. By Lemma 2.10,

l̂im
n→∞

p(xn, xn) = l̂im
n→∞

(2p(x, xn)− p(x, x)) = l̂im
n→∞

2p(x, xn)− l̂im
n→∞

p(x, x)

= 2p(x, x)− p(x, x) = p(x, x).

(3)⇒(2): Let l̂imn→∞ p(xn, xn) = l̂imn→∞ p(xn, x) = p(x, x). By Lemma
2.10,

l̂im
n→∞

d(x, xn) = l̂im
n→∞

(2p(x, xn)− p(x, x)− p(xn, xn))

= l̂im
n→∞

2p(x, xn)− l̂im
n→∞

p(x, x)− l̂im
n→∞

p(xn, xn)

= 2p(x, x)− p(x, x)− p(x, x) = θ.

However, we do not know whether Proposition 5.4 can be reversed (see
Question 5.10(3)). Now we discuss completeness of (X, p) and (X, d).

Definition 5.6 ([3]). Let (X, d) be a tvs-cone metric space and {xn}
be a sequence in X.

(1) {xn} is called a Cauchy sequence in (X, d) if l̂imn,m→∞ d(xn, xm) = θ
i.e., whenever ε � θ, there is n0 ∈ N such that d(xn, xm) � ε for all
n,m > n0.

(2) (X, d) is said to be complete if every Cauchy sequence in (X, d) is
convergent in (X, d).

It is easy to see that every convergent sequence in a tvs-cone metric
space (X, d) is a Cauchy sequence in (X, d). However, the following question
is still open.

Question 5.7. Let (X, p) be a partial tvs-cone metric (resp. partial metric)
space. Is every convergent sequence in (X, p) a Cauchy sequence in (X, p)?
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For completeness of partial metric spaces, the following is known.

Proposition 5.8 ([1, 5]). Let (X, p) be a partial metric space and (X, d)
be the metric space induced by (X, p).

(1) A sequence {xn} is a Cauchy sequence in (X, p) if and only if {xn}
is a Cauchy sequence in (X, d).

(2) (X, p) is complete if and only if (X, d) is complete.

However, we have only the following results for completeness of partial
tvs-cone metric spaces.

Proposition 5.9. Let (X, p) be a partial tvs-cone metric space and
(X, d) be the tvs-cone metric space induced by (X, p).

(1) If {xn} is a Cauchy sequence in (X, p), then {xn} is a Cauchy se-
quence in (X, d).

(2) If (X, d) is complete, then (X, p) is complete.

Proof. (1) Let {xn} be a Cauchy sequence in (X, p). Then

l̂im
n,m→∞

p(xn, xm) = α for some α ∈ E.

It follows that

l̂im
n,m→∞

d(xn, xm) = l̂im
n,m→∞

(2p(xn, xm)− p(xn, xn)− p(xm, xm))

= 2α− α− α = θ.

So {xn} is a Cauchy sequence in (X, d).
(2) Let (X, d) is complete. If {xn} is a Cauchy sequence in (X, p), then

it is a Cauchy sequence in (X, d) by (1). Since (X, d) is complete, {xn} is
a convergent sequence in (X, d). By Proposition 5.4, {xn} is a convergent
sequence in (X, p). So (X, p) is complete.

In view of Proposition 5.9, we raise the following question.

Question 5.10. Let (X, p) be a partial tvs-cone metric space and (X, d)
be the tvs-cone metric space induced by (X, p).

(1) Is every Cauchy sequence in (X, d) a Cauchy sequence in (X, p)?
(2) Does completeness of (X, p) imply completeness of (X, d)?

(3) Can “p(x, x) = l̂imn→∞ p(x, xn) = l̂imn,m→∞ p(xn, xm)” in Defini-

tion 4.6(2) be replaced by “p(x, x) = l̂imn→∞ p(x, xn)” or “p(x, x) =

l̂imn,m→∞ p(xn, xm)”?

It is easy to see that the fixed point is unique for a single valued contrac-
tion on a complete partial tvs-cone metric space. So we raise the following
question to end this paper.

Question 5.11. Is the fixed point in Theorem 4.9 unique?
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