
COLLOQU IUM MATHEMAT ICUM
VOL. 138 2015 NO. 2

FUGLEDE–PUTNAM THEOREM FOR CLASS A OPERATORS

BY

SALAH MECHERI (Medina)

Abstract. Let A ∈ B(H) and B ∈ B(K). We say that A and B satisfy the Fuglede–
Putnam theorem if AX = XB for some X ∈ B(K,H) implies A∗X = XB∗. Patel et al.
(2006) showed that the Fuglede–Putnam theorem holds for class A(s, t) operators with
s+t < 1 and they mentioned that the case s = t = 1 is still an open problem. In the present
article we give a partial positive answer to this problem. We show that if A ∈ B(H) is a
class A operator with reducing kernel and B∗ ∈ B(K) is a class Y operator, and AX = XB
for some X ∈ B(K,H), then A∗X = XB∗.

1. Introduction. Let H,K be infinite-dimensional separable complex
Hilbert spaces and B(H), B(K) the algebras of all bounded linear operators
on H and K, respectively. An operator T ∈ B(H) is said to be p-hyponormal,
for p ∈ (0, 1], if (T ∗T )p ≥ (TT ∗)p [3]. A 1-hyponormal operator is hyponor-
mal and a 1

2 -hyponormal one is said to be semi-hyponormal. An invertible
operator T is said to be log-hyponormal if log |T | ≥ log |T ∗| [21]. An oper-
ator T is said to be paranormal if ‖T 2x‖ ≥ ‖Tx‖2. It is known [13] that
p-hyponormal and log-hyponormal operators are paranormal.

An operator T belongs to the class A(k) for k > 0 if

(T ∗|T |2kT )1/(k+1) ≥ |T |2.
When k = 1 we say that T belongs to the class A. Furuta et al. [10] showed
that every class A operator is paranormal.

As a further generalization of A(k), Fujii et al. [9] introduced the class
A(s, t): an operator T belongs to the class A(s, t) for s, t > 0 if

(|T ∗|t|T |2s|T ∗|t)1/(t+s) ≥ |T ∗|2t.
The class AI(s, t) is the class of all invertible class A(s, t) operators for
s, t > 0. Fujii et al. [9] showed several properties of A(s, t) and AI(s, t) as
extensions of the properties of A(k) shown in [9]. They also showed that T
is log-hyponormal if and only if T belongs to AI(s, t) for all s, t > 0. It is
known [24] that the class A(k, 1) equals A(k).
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Let T be an operator with polar decomposition T = U |T |, where |T | =
(T ∗T )1/2. For s, t > 0, the generalized Aluthge transformation T̃s,t of T is

T̃s,t = |T |sU |T |t.

If s = t = 1/2, then T̃s,t is called the Aluthge transformation of T , denoted

by T̃ [3]. The following equalities for s+ t = 1 are relations between T and
its transform T̃s,t:

T̃s,t|T |s = |T |sU |T |t|T |s = |T |sT,
U |T |tT̃s,t = U |T |t|T |sU |T |t = TU |T |t.

Aluthge and Wang [4] introduced ω-hyponormal operators defined as
follows: An operator T is said to be ω-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|.
Recall that the class A(1/2, 1/2) coincides with the class of ω-hyponormal
operators, and A(1, 1) coincides with the class A. An operator T ∈ B(H) is
said to be a class Yα operator for α ≥ 1 (or T ∈ Yα) if there exists a positive
number kα such that

|TT ∗ − T ∗T |α ≤ k2α(T − λI)∗(T − λI) for all λ ∈ C.

It is known that Yα ⊂ Yβ if 1 ≤ α ≤ β. Let Y =
⋃

1≤α Yα. We remark that
a class Y1 operator T is M -hyponormal, i.e., there exists a positive number
M such that

(T − λI)(T − λI)∗ ≤M2(T − λI)∗(T − λI) for all λ ∈ C,

and M -hyponormal operators are class Y2 operators (see [23]). T is said to
dominant if for any λ ∈ C there exists a positive number Mλ such that

(T − λI)(T − λI)∗ ≤M2
λ(T − λI)∗(T − λI).

It is obvious that dominant operators are M -hyponormal. But it is known
that there exists a dominant operator which is not a class Y1 operator, and
also there exists a class Y2 operator which is not dominant [23].

In the following results we recall Fuglede–Putnam’s theorem.

Theorem 1.1 (Fuglede). Let X,A be bounded linear operators on a
complex Hilbert space and assume that A is normal. If AX = XA, then
A∗X = XA∗.

Colloquially, the theorem claims that commutativity between operators
is transitive under the given assumptions. The claim does not hold in general
if N is not normal. A simple counterexample is provided by letting N be the
unilateral shift and X = N . Also, when X is self-adjoint, the claim is triv-
ial regardless of whether N is normal: XN∗ = (NX)∗ = (XN)∗ = N∗X.
In the following theorem Putnam obtained Fuglede’s result as a special
case.
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Theorem 1.2 (Putnam). Let A,B,X be bounded linear operators on a
complex Hilbert space and assume that A,B are normal operators. If AX =
XB, then A∗X = XB∗.

This theorem was originally proved in [8] under the assumption that
A = B. As stated, the theorem was proved in [19]. In [1] Berberian observed
that Putnam’s version can be derived from Fuglede’s original theorem by
the following matrix trick. Let

L =

(
A 0

0 B

)
, Y =

(
0 X

0 0

)
.

Then L is normal on H ⊕H and LX = XL. Hence L∗X = XL∗, and this
gives Putnam’s version.

In the past several years, many authors have extended this theorem
to several classes of nonnormal operators. In [16, 15], it was shown that
Fuglede–Putnam’s theorem holds for A p-hyponormal and B∗ class A, and
for A log-hyponormal and B∗ class Y. Recently, Bachir [5] extended the
Fuglede–Putnam theorem to ω-hyponormal operators. In [18], Patel et al.
extended the Fuglede–Putnam theorem to the class A(s, t) with s + t < 1
and they mentioned that the case s = t = 1 was an open problem.

Here we give a partial positive answer to this problem. We will extend the
Fuglede–Putnam theorem to class A operators. In [17] the authors extended
the Fuglede–Putnam theorem to class A operators in the case where A and
B∗ are class A operators and X is a Hilbert–Schmidt operator. Here we
extend that result to all X ∈ B(H).

2. Preliminaries. Recall that every operator A ∈ B(H) has a direct
sum decomposition A = A1 ⊕A2, where A1 and A2 are the normal and the
pure parts, respectively. Of course in the sum decomposition, either A1 or
A2 may be absent. We begin with the following well known lemmas which
will be used in what follows.

Lemma 2.1 (Hansen’s inequality [12]). If A,B ∈ B(H) satisfy A ≥ 0
and ‖B‖ ≤ 1, then

(B∗AB)δ ≥ B∗AδB for all δ ∈ (0, 1].

Lemma 2.2 ([20]). Let A,B ∈ B(H). Then the following assertions are
equivalent:

(i) The pair (A,B) satisfies the Fuglede–Putnam theorem.
(ii) If AX = XB, then ranX reduces A, (kerX)⊥ reduces B, and

A|ranX , B|(kerX)⊥ are unitarily equivalent normal operators.

Lemma 2.3 ([11]). Let A ∈ B(H) be a class A operator. If M is an
invariant subspace for A, then the restriction A|M is also a class A operator.
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Lemma 2.4 ([13, Remark 3.3]). Let A ∈ B(H) be a class A operator.
Then the generalized Aluthge transform Ã1,1 = |A|U |A| is 1

2 -hyponormal,

that is, Ã1,1 is semi-hyponormal.

Lemma 2.5 ([6, Theorem 2.1]). Let A = U |A| ∈ B(H). If A is of class A,
then Â1,1 = WU |A2|1/2 is hyponormal.

3. Main results. Recall that an operator T is of class A if |T |2 ≤ |T 2|.
We begin by proving a basic property of class A operators.

Lemma 3.1. Let A ∈ B(H) be a class A operator. If M is an invariant
subspace of A, and A|M is an injective normal operator, then M reduces A.

Proof. Decompose

A =

(
A1 A2

0 A3

)
on H = M +M⊥

and suppose A1 = A|M is an injective normal operator. Let P be the or-
thogonal projection of H onto M . Since kerA1 = kerA∗1 = {0}, we have
M = ranA1 ⊂ ranA. Then(

|A1|2 0

0 0

)
= P |A|2P ≤ P |A2|P ≤ (P |A2|2P )1/2

≤
(
|A2

1| 0

0 0

)
by Lemma 2.1. Since A1 is normal, we can write

|A2| =
(
|A2

1| C

C∗ D

)
.

Then(
|A1|4 0

0 0

)
= PA∗A∗AAP = P |A2| |A2|P =

(
|A1|4 + CC∗ 0

0 0

)
and C = 0. Hence(
|A1|4 0

0 D2

)
= |A2|2 = A∗A∗AA

=

(
A∗1A

∗
1A1A1 A∗1A

∗
1(A1A2 +A2A3)

(A∗2A
∗
1 +A∗3A

∗
2)A1A1 (A∗2A

∗
1 +A∗3A

∗
2)(A1A2 +A2A3) +A∗3A

∗
3A3A3

)
.
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Since A1 is an injective normal operator, A1A2 + A2A3 = 0 and D = |A2
3|.

Since A is a class A operator, we have

0 ≤ |A2| − |A|2 =

(
0 −A∗1A2

−A2A1 |A2
3| − |A3|2 − |A2|2

)
.

Thus A2 = 0.

Theorem 3.2. Let A be a class A operator with reducing kernel and
suppose the adjoint B∗ of B is a class Y operator. If there exists an operator
C such that AC = CB, then A∗C = CB∗.

Proof. Let A = A1 ⊕ A2 and B1 ⊕ B2 where A1, B1 and A2, B2 are the
normal and the pure parts respectively. Let

C =

(
X Y

Z W

)
.

Then

1. A1X = XB1,

2. A1Y = Y B2,

3. A2Z = ZB1, and

4. A2W = WB2.

Since A1 is normal and B∗2 is a class Y operator, the relation A1Y = Y B2

implies A∗1Y = Y B∗2 [16, Theorem 7]. Moreover ranY ∗ reduces B2 and
B2| ranY ∗ is normal. This contradicts the fact that B2 is pure. Therefore
Y = 0. Next in the equation A2Z = ZB1, A2 is of class A(1, 1) and B1

is normal, we have A∗2Z = ZB∗1 and ranZ reduces A2 and A2| ranZ is
normal [18], which is a contradiction.

Finally, we show that the equation A2W = WB2 implies W = 0. Let
A = U |A| be the polar decomposition of A and define its generalized Aluthge
transform by Ã = |A|U |A|. Then Ã is semi-hyponormal by Lemma 2.4. Now
arguing as in [16] and using Lemmas 2.4 and 2.5, we get

|A2|W (B2B
∗
2 −B∗2B2) = 0.

Now the condition kerA ⊆ kerA∗ and A2 is pure implies A2 must be injec-
tive. Hence

(∗) W (B2B
∗
2 −B∗2B2) = 0.

Since A2W = WB2, ranW and (kerW )⊥ are invariant subspaces of A2 and
B∗2 respectively. Therefore

A2 =

(
A11 T

0 A22

)
on H = ranW ⊕ (ranW )⊥,
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B2 =

(
B11 0

B21 B22

)
on H = (kerW )⊥ ⊕ kerW

and

W =

(
W1 0

0 0

)
on (kerW )⊥ ⊕ kerW 7→ ranW ⊕ (ranW )⊥.

From (∗), it will follow that B∗11 is hyponormal. Since A2W = WB2, we
find A11W1 = W1B11. Again by [18, Theorem 4.8], ranW1 reduces A11 and
A11| ranW1 is normal, a contradiction. Therefore W1 and hence W is zero.
Now the equation A1X = XB1 implies A∗1X = XB∗1 , and hence the result
follows.

Let C2 denote the Hilbert–Schmidt class. Let T ∈ C2 and assume that
{en} is an orthonormal basis for H. We define the Hilbert–Schmidt norm to
be

‖T‖2 =
( ∞∑
n=1

‖Ten‖2
)1/2

.

This is independent of the choice of basis [7]. If ‖T‖2 < ∞, then T is said
to be a Hilbert–Schmidt operator.

Let A,B ∈ B(H). The operator Γ defined on C2 by ΓX = AXB has
been studied in [2]. It is easy to see that ‖Γ‖ ≤ ‖A‖ ‖B‖ and the adjoint of
Γ is given by Γ ∗X = A∗XB∗. Indeed,

〈Γ ∗X,Y 〉 = 〈X,ΓY 〉
= 〈X,AY B〉 = tr((AY B)∗X) = tr(XB∗Y ∗A∗)

= tr(A∗XB∗Y ∗) = 〈A∗XB∗, Y 〉.
If A,B ≥ 0, then Γ ≥ 0 and

Γ 1/2X = A1/2XB1/2.

Indeed,

〈AXB,X〉 = tr(AXBX∗) = tr(A1/2XBX∗A1/2)

= tr(A1/2XB1/2(A1/2XB1/2)∗) ≥ 0.

In order to generalize the class of ω-hyponormal operators, Ito [13] intro-
duced the class ωA(s, t). An operator T belongs to the class ωA(s, t) for
s, t > 0 if

(|T ∗|t|T |2s|T ∗|t)1/(s+t) ≥ |T ∗|2t,(3.1)

|T |2s ≥ (|T |s|T ∗|2t|T |s)s/(s+t).(3.2)

Ito [13] showed that ωA(s, t) can be expressed via the generalized Aluthge
transformation as follows:
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An operator T belongs to the class ωA(s, t) for s, t > 0 if and only if

(3.3) |T̃s,t|2t/(s+t) ≥ |T |2t and |T |2s ≥ |T̃ ∗|2s/(s+t).
An operator T is said to be of class ωF (s, t, q) for s, t > 0 and q ≥ 1 if

(|T ∗|t|T |2s|T ∗|t)1/q ≥ |T ∗|2(s+t)/q,
|T |2(s+t)(1−1/q) ≥ (|T |s|T ∗|2t|T |s)1−1/q.

Because q and (1− q−1)−1 with q > 1 are a couple of conjugate exponents,
it is clear that the class ωA(s, t) equals ωF (s, t, (s+ t)/t).

In the following lemma we exhibit some properties of the operator Γ .

Lemma 3.3. Let p, r > 0 and q ≥ 1. Let A and B∗ be of class ωF (p, r.q).
If X is a Hilbert–Schmidt operator, then the operator Γ : C2 → C2 defined
by ΓX = AXB is also of class ωF (p, r, q).

Proof. We have

(|Γ ∗|r|Γ |2p|Γ ∗|r)X = |A∗|r|A|2p|A∗|rX|B|r|B∗|2p|B|r,
(|Γ ∗|p|Γ |2r|Γ ∗|p)X = |A∗|p|A|2r|A∗|pX|B|p|B∗|2r|B|p

and

|Γ ∗|2(p+r)/q)X = |A∗|2(p+r)/qX|B|2(p+r)/q,
|Γ |2(p+r)(1−1/q)X = |A|2(p+r)(1−1/q)X|B∗|2(p+r)(1−1/q),

for any X ∈ C2. Then

(|Γ ∗|r|Γ |2p|Γ ∗|r)1/q = (|A∗|r|A|2p|A∗|r)1/qX(|B|r|B∗|2p|B|r)1/q

and

(|Γ |p|Γ ∗|2r|Γ |p)1−1/qX = (|A|p|A∗|2r|A|p)1−1/qX(|B∗|p|B|2r|B∗|p)1−1/q.
Since A,B∗ are of class ωF (p, r, q), we get

((|Γ ∗|r|Γ |2p|Γ ∗|r)1−1/q − |Γ ∗|2(p+r)/q)X
= ((|A∗|r|A|2p|A∗|r)1/q − |A∗|2(p+r)/q)X(|B|r|B∗|2p|B|r)1/q

+ |A∗|2(p+r)/qX((|B|r|B∗|2p|B|r)1/q − |B|2(p+r)/q) ≥ 0

and

(|Γ |2(p+r)(1−1/q))− (|Γ |p|Γ ∗|2r|Γ |p)1−1/qX
= |A|2(p+r)(1−1/q) − (|A|p|A∗|2r|A|p)1−1/qX|B∗|2(p+r)(1−1/q)

+ (|A|p|A∗|2r|A|p)1−1/qX(|B∗|p)2(p+r)(1−1/q) − (|B∗|p|B|2r|B∗|p)1−1/q) ≥ 0.

Thus

(|Γ ∗|r|Γ |2p|Γ ∗|r)1/q ≥ |Γ ∗|2(p+r)/q
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and

|Γ |2(p+r)(1−1/q) ≥ (|Γ |p|Γ ∗|2r|Γ |p)1−1/q.

Lemma 3.4 ([25]). Let T be a class ωF (p, r, q) operator for 0 < p+r ≤ 1
and q ≥ 1. If Tx = λx with λ 6= 0, then T ∗x = λx, i.e., the non-zero
eigenvalues of T are normal eigenvalues.

Lemma 3.5 ([25]). If T is an invertible class ωF (p, r, q) operator, where
p, r > 0 and q > 1, then T−1 is ωF (p, r, q′), where 1/q + 1/q′ = 1.

Theorem 3.6. Let T be a class ωF (p, r, q) operator, where 0 < p +
r ≤ 1 and q ≥ 1, and S∗ an invertible class ωF (p, r, q′) operator, where
1/p + 1/q′ = 1. If TX = XS for some Hilbert–Schmidt operator X, then
T ∗X = XS∗.

Proof. Let Γ be the Hilbert–Schmidt operator defined by ΓX = TXS−1

for all X ∈ C2. Since (S∗)−1 = (S−1)∗ is of class ωF (q, r, q′), where 1/q +
1/q′ = 1, Lemma 2.3 implies that Γ is of class ωF (q, r, q′). The rest follows
as in [14].
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