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ON s-SETS IN SPACES OF HOMOGENEOUS TYPE

BY

MARILINA CARENA and MARISA TOSCHI (Santa Fe)

Abstract. Let (X, d, µ) be a space of homogeneous type. We study the relationship
between two types of s-sets: relative to a distance and relative to a measure. We find a
condition on a closed subset F of X under which F is an s-set relative to the measure
µ if and only if F is an s-set relative to δ. Here δ denotes the quasi-distance defined by
Macías and Segovia such that (X, δ, µ) is a normal space. In order to prove this result, we
prove a covering type lemma and a type of Hausdorff measure based criterion for a given
set to be an s-set relative to µ.

1. Introduction, notation and definitions. A quasi-metric on a set
X is a non-negative function d defined on X × X satisfying the following
properties:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) there exists a constant K ≥ 1 such that d(x, y) ≤ K(d(x, z)+d(z, y))

for all x, y, z ∈ X.

We will refer to K as the triangle constant for d. A quasi-distance d on X
induces a topology through the neighborhood system given by the family of
all subsets of X containing a d-ball B(x, r) = {y ∈ X : d(x, y) < r}, r > 0
(see [4]). In a quasi-metric space (X, d) the diameter of a subset E is defined
as

diam(E) = sup{d(x, y) : x, y ∈ E}.
Throughout this paper (X, d) will be a quasi-metric space such that all

d-balls are open sets. Also we shall assume that (X, d) has finite metric
dimension. This means that there exists a constant N ∈ N such that any
d-ball B(x, 2r) contains at most N points of any r-disperse subset of X.
A set U is said to be r-disperse if d(x, y) ≥ r for any x, y ∈ U , x 6= y. If a
quasi-metric space (X, d) has finite metric dimension, then every r-disperse
subset of X has at most Nm points in each d-ball of radius 2mr for all m ∈ N
and every r > 0 (see [4] and [3]). Also it is well known that every bounded
subset F of X is totally bounded, so that for every r > 0 there exists a finite
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maximal r-disperse subset of F , whose cardinality depends on diam(F ) and
on r.

We shall say that a closed subset F of X is an s-set in (X, d) with
associated measure ν if ν is a Borel measure supported on F such that

(1.1) c−1rs ≤ ν(B(x, r)) ≤ crs

for all x ∈ F and 0 < r < diam(F ), for some constant c ≥ 1. When the
above conditions hold for every 0 < r < r0, where r0 is a positive number less
than diam(F ), we say that F is locally an s-set in (X, d). In some references
related to problems of harmonic analysis and partial differential equations
(see for example [1]), such sets are called (locally) s-Ahlfors. In geometric
measure theory (see e.g. [7]), an s-set F is one for which 0 < H s(F ) < ∞
where H s is the Hausdorff measure of dimension s. However, following [11]
we shall use the term s-set for a set that supports a measure ν for which
ν(B(x, r)) behaves as rs for r small.

In [1] it is proved that the concepts of s-set and locally s-set coincide
when the set F is bounded and (X, d) has finite metric dimension.

We shall now recall the definitions of Hausdorff measure and Hausdorff
dimension of a set in a quasi-metric space (X, d). The basic background
related to these concepts can be found in [7]. For ρ > 0, we say that a
sequence {Bi = B(xi, ri)} of subsets of X is a ρ-cover by d-balls of a set F
if F ⊆

⋃
Bi and ri ≤ ρ for every i. Let F ⊆ X and s ≥ 0 be fixed. We define

H s
ρ (F ) = inf

{ ∞∑
i=1

rsi : {Bi} is a ρ-cover of F by d-balls
}
.

Clearly H s
ρ (F ) increases when ρ decreases, so that its limit when ρ tends

to 0 exists (although it may be infinite). We define

H s(F ) = lim
ρ→0

H s
ρ (F ) = sup

ρ>0
H s
ρ (F ).

We shall refer to H s(F ) as the Hausdorff measure of F . The corresponding
Hausdorff dimension of F is defined as dimH (F ) = inf{s > 0 : H s(F ) = 0}.
It is easy to see that every s-set F in (X, d) has dimH (F ) = s (see [11]).

We point out that if (F, d) is (locally) an s-set, then there exists es-
sentially only one Borel measure ν satisfying the condition required in the
definition. This fact is known in the Euclidean setting (see for instance [12]),
and was proved for general quasi-metric spaces in [1]. More precisely, it is
proved that if (X, d) has finite metric dimension and F is (locally) an s-set
in (X, d) with measure ν, then F is (locally) an s-set in (X, d) with the
restriction of H s to F .

A sufficient condition for a quasi-metric space (X, d) to have finite metric
dimension is that X supports a doubling measure (see [4]). A Borel measure
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µ defined on d-balls is said to be doubling if for some constant A ≥ 1,

0 < µ(B(x, 2r)) ≤ Aµ(B(x, r)) <∞
for all x ∈ X and r > 0. We say that a point x in (X, d, µ) is an atom if
µ({x}) > 0. When µ({x}) = 0 for every x ∈ X, we say that µ is non-atomic.
Macías and Segovia [9] proved that a point is an atom if and only if it is
topologically isolated, and that the set of such points is at most countable.
Throughout this paper we shall say that (X, d, µ) is a space of homogeneous
type if µ is a non-atomic doubling measure on the quasi-metric space (X, d).

Given a space of homogeneous type (X, d, µ), the Hausdorff measure and
the Hausdorff dimension relative to µ are considered in [11]. Precisely, the
Hausdorff measure relative to µ is defined as Hs(F ) := limρ→0H

s
ρ(F ), where

Hs
ρ(F ) = inf

{ ∞∑
i=1

µs(Bi) : F ⊆
⋃
i

Bi and µ(Bi) ≤ ρ
}
,

where the Bi are d-balls on X. The Hausdorff dimension relative to µ is
defined by

dimH(F ) = inf{s > 0 : Hs(F ) = 0}.
These concepts lead to a definition of an s-set relative to the measure µ,

compatible with Hs. Given a space of homogeneous type (X, d, µ), we shall
say that a closed subset F of X is an s-set in (X, d, µ) with associated
measure m if m is a Borel measure supported on F such that

(1.2) c−1µ(B(x, r))s ≤ m(B(x, r)) ≤ cµ(B(x, r))s

for all x ∈ F and 0 < r < diam(F ), for some constant c ≥ 1. As before,
if (1.2) holds for every 0 < r < r0, where r0 < diam(F ), we say that F is
locally an s-set in (X, d, µ).

It is now easy to see that each s-set F in (X, d, µ) satisfies dimH(F ) = s.
Given a space of homogeneous type (X, d, µ), in [11] there are also con-

sidered the concepts of s-sets, Hausdorff measure and Hausdorff dimension
relative to a particular quasi-metric δ related to (X, d, µ). This quasi-metric
was constructed by Macías and Segovia [9] in such a way that the new struc-
ture (X, δ, µ) becomes a normal space (in the sense that every δ-ball in X
has µ-measure equivalent to its radius), and the topologies induced on X by
d and δ coincide. This quasi-metric is defined by

δ(x, y) = inf{µ(B) : B is a d-ball with x, y ∈ B}
if x 6= y, and δ(x, y) = 0 if x = y. It will also be useful to notice that in the
proof of the above mentioned result of Macías and Segovia it is proved that

Bδ(x, r) =
⋃
{B : B is a d-ball with x ∈ B and µ(B) < r}

for all x ∈ X and r > 0, where Bδ(x, r) := {y ∈ X : δ(x, y) < r} denotes the
ball inX relative to δ. Throughout this paper, δ will denote this quasi-metric.
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Furthermore, we can consider the concepts of s-set in (X, δ), of the Haus-
dorff measure relative to δ and of the corresponding Hausdorff dimension.
More precisely, we shall denote Gs(F ) := limρ→0G

s
ρ(F ), where

Gsρ(F ) = inf
{ ∞∑
i=1

rsi : F ⊆
⋃
i

Bδ(xi, ri) and ri ≤ ρ
}

and
dimG(F ) = inf{s > 0 : Gs(F ) = 0}.

In [11, Prop. 1.5] it is proved that Hs(F ) and Gs(F ) are equivalent, and
hence dimH(F ) = dimG(F ) for any subset F of X. In this note we explore
the relationship between the concepts of s-set in (X, d, µ) and in (X, δ). This
natural question completes the analysis of the concepts referring to δ and µ.
It is also related to the theory of Muckenhoupt weights. The results in [2] give
us a sufficient condition on a closed set F in a general space of homogeneous
type (X, d, µ) for µ(B(x, d(x, F )))β to become a Muckenhoupt weight for
suitable values of β: that F be an s-set in (X, δ) (see [2, Thms. 1 and 9]).
In this note we find a class of sets for which this condition is guaranteed
if Hs(F ∩ B(x, r)) ' rs for all x ∈ F and r > 0 (see Theorem 2.5 and
Proposition 2.6).

The paper is organized as follows. Section 2 contains the main results.
Theorem 2.1 states that under certain typical conditions, being an s-set in
(X, δ) is stronger than being an s-set in (X, d, µ). A sufficient condition for
every s-set in (X, d, µ) to be an s-set in (X, δ) is given in Theorem 2.5. We
show that every bounded set satisfies this condition, and we give examples of
unbounded sets satisfying it. In Proposition 2.6 we obtain a criterion to check
the s-set condition relative to µ based on the Hausdorff measure. Section 3
is devoted to the proof of Proposition 2.6; for this we prove a lemma on
covering a bounded set by balls with small measure and controlled overlap
(see Lemma 3.1).

2. Main results. Let (X, d, µ) be a given space of homogeneous type,
and δ the quasi-metric defined in the previous section. We shall first prove
that, under a certain condition, being an s-set in (X, δ) is stronger than
being an s-set in (X, d, µ).

Theorem 2.1.

(1) If F is an s-set in (X, δ) with associated measure ν and diam(F )
=∞, then F is an s-set in (X, d, µ) with the same measure ν.

(2) If F is locally an s-set in (X, δ) with associated measure ν and
µ(F )=0, then F is locally an s-set in (X, d, µ) with the same mea-
sure ν.
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Proof. By hypothesis, there exist c ≥ 1 and r0 > 0 such that
c−1rs ≤ ν(Bδ(x, r)) ≤ crs

for all x ∈ F and 0 < r < r0, where ν is a Borel measure supported in F ,
and r0 =∞ in case (1).

Fix x ∈ F and r > 0. By definition of δ, we have
B(x, r) ⊆ Bδ(x, 2µ(B(x, r))).

Then
ν(B(x, r)) ≤ ν(Bδ(x, 2µ(B(x, r)))) ≤ c2sµs(B(x, r))

provided that µ(B(x, r)) < r0/2. On the other hand, fix ` such 3K2 ≤ 2`

where K denotes the triangle constant for d. Following [9, p. 262], we shall
see now that Bδ(x,A−`µ(B(x, r))) ⊆ B(x, r), where A is the constant from
the doubling condition for µ. Indeed, for y ∈ Bδ(x,A−`µ(B(x, r))), y 6= x,
there exists a ball B(z, s) containing x and y and such that µ(B(z, s)) <
A−`µ(B(x, r)). It is easy to show that y ∈ B(x, 2Ks) ⊆ B(z, 3K2s). There-
fore,

µ(B(x, 2Ks)) ≤ µ(B(z, 3K2s)) ≤ A`µ(B(z, s)) < µ(B(x, r)).

Consequently, 2Ks < r. Thus y ∈ B(x, 2Ks) ⊆ B(x, r), and the inclusion is
proved. Hence

ν(B(x, r)) ≥ ν(Bδ(A−`µ(B(x, r)))) ≥ c−1A−`sµs(B(x, r)),

provided that µ(B(x, r)) < A`r0.
Since every d-ball has finite µ-measure, (1) is proved. On the other hand,

we obtain (2) if we can choose r1 in such a way that 0 < r < r1 implies
µ(B(x, r)) < min{r0/2, A`r0} = r0/2 for every x ∈ F . But this is possible
from the hypothesis µ(F ) = 0.

We point out that the assumption µ(F ) = 0 is natural in many prob-
lems related to partial differential equations, where F plays the role of the
boundary of a domain in a metric measure space (X, d, µ) (see for example
[6] or [5]).

To obtain a sufficient condition for every locally s-set in (X, d, µ) to be
locally an s-set in (X, δ), we shall give the following definition.

Definition 2.2. Let F be a closed subset of X. We shall say that F is
consistent with µ if there exists a positive number R such that

inf
x∈F

µ(B(x,R)) > 0.

Note that if F is consistent with µ, then infx∈F µ(B(x, r)) > 0 for every
r > 0. In fact, the inequality is trivial for r ≥ R. On the other hand, for a
fixed 0 < r < R, for every x ∈ F we have

µ(B(x, r)) = µ

(
x,
r

R
R

)
≥ 1

Am
µ(B(x,R)),
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wherem is a positive integer such that 2m ≥ R/r and A denotes the doubling
constant for µ.

We also point out that every bounded subset of X is consistent with µ.
In fact, set R = 2K diam(F ) with K the triangle constant for d, and
fix x0 ∈ F . Hence B(x0,diam(F )) ⊆ B(x,R) for every x ∈ F . Hence
infx∈F µ(B(x,R)) ≥ µ(B(x0,diam(F ))) > 0, since µ is doubling.

However, there also exist unbounded sets satisfying this condition.

Example 2.3. Consider X = R2 equipped with the usual distance d
and the Lebesgue measure λ. Fix a > 0 and set F = {(t, 0) : t ≥ a}. Then
λ(B(x, r)) is equivalent to r2 for every x ∈ F , so F is consistent with λ.

Recall that a quasi-metric measure space is said to be an α-Ahlfors
space if there exists a constant c ≥ 1 such that c−1rα ≤ µ(B(x, r)) ≤ crα for
all x ∈ X and r > 0. The most classical example of an n-Ahlfors space is the
Euclidean space Rn equipped with the usual distance and the Lebesgue mea-
sure. So in the above example, the underlying space (R2, d, λ) is 2-Ahlfors.
Notice that if (X, d, µ) is an α-Ahlfors space, then every subset F ofX is con-
sistent with µ. In the following example we shall consider another measure
µ defined on (R2, d) such that (R2, d, µ) is not an Ahlfors space.

Example 2.4. Let X be R2 equipped with the usual distance d, and
consider the measure µ defined by

µ(E) =
�

E

|y|β dy

for a fixed β > −2. Then (X, d, µ) is a space of homogeneous type since |x|β
is a Muckenhoupt weight (see [10] or [8]). For the set F considered in the
above example, it is easy to see that µ(B(x, r)) is equivalent to r2|x|β for
x ∈ F and 0 < r ≤ a/2. So F is consistent with µ if and only if β ≥ 0.

With this terminology, we have the following result.

Theorem 2.5.

(1) If F is an s-set in (X, d, µ) with diam(F ) = ∞, then F is an s-set
in (X, δ).

(2) If F is locally an s-set in (X, d, µ) which is consistent with µ, then
F is locally an s-set in (X, δ).

To prove the above theorem, we shall use three auxiliary results.
The first one states that, as in the case of s-sets relative to a distance,

when F is an s-set relative to the measure µ, there exists essentially only one
Borel measure ν satisfying the required condition. More precisely, we state
the following result that we shall prove in Section 3.



s-SETS IN SPACES OF HOMOGENEOUS TYPE 199

Proposition 2.6. If F is (locally) an s-set in (X, d, µ) with associated
measure m, then F is (locally) an s-set in (X, d, µ) with the restriction of Hs

to F , where Hs denotes the s-dimensional Hausdorff measure relative to µ.

The following statement provides a characterization of a set F consistent
with a given measure: if the measure of a d-ball with center in F is sufficiently
small, then so is its radius.

Lemma 2.7. F is consistent with µ if and only if given r0 > 0, there
exists C such that if x ∈ F and µ(B(x, t)) ≤ C, then t < r0.

Proof. Suppose first that F is consistent with µ but the above property is
false. Then there exists r0 > 0 such that for every natural number n we can
find xn ∈ F and tn ≥ r0 with µ(B(xn, tn)) ≤ 1/n. So µ(B(xn, r0)) ≤ 1/n
for every natural n, which implies that infx∈F µ(B(x, r0)) = 0. But this is a
contradiction, since F is consistent with µ.

Conversely, assume that F is not consistent with µ. Then, for every r0 > 0
we have infx∈F µ(B(x, r0)) = 0. So for every natural n there exists xn ∈ F
such that µ(B(xn, r0)) < 1/n. Hence, given C > 0 we can choose n such
that 1/n ≤ C and obtain µ(B(xn, r0)) < C, but r0 ≮ r0.

The last result that we shall need is a technical lemma, proved in [11].

Lemma 2.8. Given x ∈ X and 0< r < 2µ(X), there exist 0<a ≤ b <∞
such that

B(x, a) ⊆ Bδ(x, r) ⊆ B(x, b)

and
C1r ≤ µ(B(x, a)) ≤ µ(B(x, b)) ≤ C2r,

where C1 and C2 only depend on X.

Proof of Theorem 2.5. From Proposition 2.6, there exist c ≥ 1 and r0 > 0
such that

c−1µ(B(x, r))s ≤ Hs(B(x, r) ∩ F ) ≤ cµ(B(x, r))s

for all x ∈ F and 0 < r < r0, where r0 =∞ in case (1).
Fix x ∈ F and 0 < r < 2µ(X), and let a and b be as in Lemma 2.8.

Then, if a, b < r0, we have

Hs(Bδ(x, r) ∩ F ) ≤ Hs(B(x, b) ∩ F ) ≤ cµs(B(x, b)) ≤ cCs2rs,
Hs(Bδ(x, r) ∩ F ) ≥ Hs(B(x, a) ∩ F ) ≥ c−1µs(B(x, a)) ≥ c−1Cs1rs.

Thus (1) is proved. Moreover, (2) will be showed if we can choose r1 ≤
2µ(X) such that r < r1 implies a, b < r0. To do this, let C be such that
if x ∈ F and µ(B(x, t)) ≤ C, then t < r0 (see Lemma 2.7). Define r1 =
min{2µ(X), C/C2} with C2 the constant of Lemma 2.8. Then µ(B(x, a))
and µ(B(x, b)) are both bounded above by C, so that a, b < r0.
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Remark 2.9. We point out that only in the case of a locally s-set F in
(X, d, µ) with diam(F ) =∞ and such that (X, d, µ) is not an Ahlfors space,
we shall need to check if F is consistent with µ to conclude that F is locally
an s-set in (X, δ).

In the remaining cases, being (locally) an s-set in (X, d, µ) implies being
(locally) an s-set in (X, δ). Indeed, the concepts of s-set and locally s-set in
(X, d, µ) coincide when F is bounded, and every bounded set is consistent
with µ, just as every subset of an Ahlfors space.

3. Proof of Proposition 2.6. To prove Proposition 2.6, we shall use
the following covering type lemma that we shall prove at the end of this
section.

Lemma 3.1. Let G be a bounded subset of X. For a given ρ > 0, there
exists a finite covering {B(xi, ri) : i = 1, . . . , Iρ} of G by d-balls with xi ∈ G
and µ(B(xi, ri)) < ρ. Also, each y ∈ X belongs to at most Λ such balls,
where Λ is a geometric constant which depends only on X.

Remark 3.2. Notice that if ρ ≤ µ(G), then ri ≤ diam(G) for every i.
In fact, assume that ri > diam(G) for some i. Then G ⊆ B(xi, ri), so that
µ(G) ≤ µ(B(xi, ri)) < ρ ≤ µ(G), which is absurd.

Proof of Proposition 2.6. By hypothesis there exist r0 > 0, a constant
c ≥ 1 and a Borel measure m supported on F such that

c−1µ(B(x, r))s ≤ m(B(x, r)) ≤ cµ(B(x, r))s

for all x ∈ F and 0 < r < r0. Here r0 is infinite if F is an unbounded s-set
in (X, d, µ), and is finite otherwise.

Fix x ∈ F , 0 < r < r0 and ε > 0. For each ρ > 0, there exists a covering
{Bi = B(xi, ri)} of B(x, r) ∩ F by balls such that µ(Bi) < ρ and∑

i≥1
µs(Bi) < Hs

ρ(B(x, r) ∩ F ) + ε ≤ Hs(B(x, r) ∩ F ) + ε.

Choosing an appropriate value of ρ, we can also obtain ri < r0 for every i.
In fact, take ρ = µ(B(x, r))/A` with ` an integer such that 2` ≥ 3K2. Then,
since we can assume that each B(xi, ri) intersects B(x, r), if ri ≥ r0 then
B(x, r) ⊆ B(xi, 3K

2ri). Hence µ(B(x, r)) ≤ A`µ(Bi) < µ(B(x, r)), which is
absurd. Thus we can assume ri < r0 for every i, and hence

c−1µ(B(x, r))s ≤ m(B(x, r)) ≤
∑
i

m(Bi) ≤ c
∑
i

µ(Bi)
s.

Hence, c−1µ(B(x, r))s < cHs(B(x, r)∩F )+cε for every ε > 0, which proves

Hs(B(x, r) ∩ F ) ≥ c−2µ(B(x, r))s.
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To obtain an upper bound for Hs(B(x, r) ∩ F ), first assume that r <
r0/(4K

2) and fix 0 < ρ < µ(B(x, r) ∩ F ). From Lemma 3.1, there exists
a finite covering {B(xi, ri) : i = 1, . . . , Iρ} of B(x, r) ∩ F by d-balls with
µ(B(xi, ri)) < ρ, xi ∈ F and ri ≤ 2Kr. Also, each y ∈ X belongs to at most
Λ such balls, where Λ is a geometric constant which does not depend on ρ,
r or x. So, we have

Hs
ρ(B(x, r) ∩ F ) ≤

Iρ∑
i=1

µ(B(xi, ri))
s ≤ c

Iρ∑
i=1

m(B(xi, ri))

≤ cΛm
( Iρ⋃
i=1

B(xi, ri)
)
≤ cΛm(B(x, 4K2r))

≤ c2Λµ(B(x, 4K2r))s = C̃µ(B(x, r))s

with C̃ = c2ΛAj , where j is a positive integer such that 2j−2 ≥ K2. Taking
ρ→ 0 we obtain the desired result for this case.

Finally, if r0 is finite, we shall consider the case r0/(4K2) ≤ r < r0. In
this case, since B(x, r) is bounded, there exists a finite r0(8K2)−1-disperse
maximal set in B(x, r), say U = {x1, . . . , xI} with I ≤ N2+log2K . Then
B(x, r) ∩ F ⊆

⋃I
i=1B(xi, r0/(8K

2)), and applying the previous case we ob-
tain

Hs(B(x, r) ∩ F ) ≤
I∑
i=1

Hs

(
B

(
xi,

r0
8K2

)
∩ F

)
≤ C̃Iµ(B(x, 2Kr))s,

and the result follows from the doubling property of µ.

For the proof of Lemma 3.1, we shall use the next result about the be-
havior of the δ-diameter diamδ(E) := sup{δ(y, w) : y, w ∈ E} of a bounded
set E.

Lemma 3.3. Let E be a bounded subset of X. For B = B(x,diam(E))
and x ∈ E we have

A−`µ(B) ≤ diamδ(E) ≤ Aµ(B),

where A is the doubling constant for µ, and ` is a positive integer satisfying
` ≥ log2(8K

3), with K the triangle constant for d.

Proof. Fix x ∈ E, and let y and w be any two points in E. Since
y, w ∈ B(x, 2 diam(E)), from the definition of δ it follows that δ(y, w) ≤
µ(Bd(x, 2 diam(E)))≤Aµ(B). Taking the supremum yields the upper bound
for diamδ(E).

For the lower bound, let y0, w0 ∈ E be such that diam(E) < 2d(y0, w0).
For a given ε > 0, let B(x0, r0) be a ball containing y0 and w0 such that
µ(B(x0, r0)) < δ(y0, w0) + ε. We claim that B ⊆ B(x0, 8K

3r0). Assuming
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this is true, we have

diamδ(F ) ≥ δ(y0, w0) > µ(B(x0, r0))− ε ≥ A−`µ(B)− ε.
By letting ε tend to zero we obtain the result.

It remains to prove the claim. Fix z ∈ B. Then

d(z, x0) ≤ K2[d(x, x) + d(x,w0) + d(w0, x0)]

< K2[2 diam(E) + r0] < K2[4d(y0, w0) + r0]

< K2[4K(d(y0, x0) + d(x0, w0)) + r0] < 8K3r0,

and the lemma is proved.

Proof of Lemma 3.1. Let K̃ be the triangle constant for δ, and Ñ the
constant for the finite metric dimension of (X, δ, µ). Given ρ > 0, let t =
ρ/(4K̃A`+1), with ` as in Lemma 3.3. Set U = {x1, . . . , xIt} a finite t-disperse
maximal set in G with respect to the quasi-metric δ. So {Bδ(xi, t)} is a
covering of G. Define Bi = B(xi, ri) with ri = 2diam(Bδ(xi, t)).

Let us first check that {Bi} is a covering of G. In fact, if y ∈ G then
there exists i such that y ∈ Bδ(xi, t). Then

d(xi, y) ≤ diam(Bδ(xi, t)) < 2 diam(Bδ(xi, t))

so that y ∈ Bi.
To estimate the measure of each Bi, using Lemma 3.3 with E = Bδ(xi, t)

we obtain

µ(Bi) ≤ Aµ(B(xi,diam(Bδ(xi, t)))) ≤ A`+1 diamδ(Bδ(xi, t)) ≤ A`+12K̃t.

From the choice of t, we have µ(Bi) < ρ. So it remains to prove that we
can control the overlapping of these balls by a geometric constant Λ. In
fact, for a fixed y ∈ X, if y ∈ B(xi, ri), then B(y, ri) ⊆ B(xi, 2Kri). So
µ(B(y, ri)) ≤ Apρ with p an integer such that 2p−1 ≥ K, and thus

xi ∈ B(y, ri) ⊆ Bδ(y, 2µ(B(y, ri))) ⊆ Bδ(y, 2Apρ) = Bδ(y, 8K̃A
`+p+1t).

Hence, the number of balls B(xi, ri) to which y belongs is less than or equal
to the cardinality of U ∩ Bδ(y, 2mt), with m a natural number such that
2m ≥ 8K̃A`+p+1. Since U is t-disperse with respect to δ, we find that Λ ≤ Ñm

and the lemma is proved.
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