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A NOTE ON THE HYERS–ULAM PROBLEM

BY

YUNBAI DONG (Wuhan)

Abstract. Let X,Y be real Banach spaces and ε > 0. Suppose that f : X → Y is a
surjective map satisfying |‖f(x)− f(y)‖ − ‖x− y‖| ≤ ε for all x, y ∈ X. Hyers and Ulam
asked whether there exists an isometry U and a constant K such that ‖f(x)−Ux‖ ≤ Kε
for all x ∈ X. It is well-known that the answer to the Hyers–Ulam problem is positive
and K = 2 is the best possible solution with assumption f(0) = U0 = 0. In this paper,
using the idea of Figiel’s theorem on nonsurjective isometries, we give a new proof of this
result.

1. Introduction. In 1945, Hyers and Ulam [6] introduced the following
notion of an approximate isometry between Banach spaces.

Definition 1.1. Let ε > 0 and let X and Y be Banach spaces. A map
f : X → Y is called an ε-isometry if

(1.1)
∣∣‖f(x)− f(y)‖ − ‖x− y‖

∣∣ ≤ ε for all x, y ∈ X.

They asked whether for any surjective ε-isometry there exists an isom-
etry which is close to this ε-isometry. The answer to this problem was first
proved to be affirmative by Gevirtz [4] in 1983, whose proof is based on a
partial result of Gruber [5]. The following sharp approximation result for
this problem is due to Omladič and Šemrl [8].

Theorem 1.2. If f : X → Y is a surjective ε-isometry between Banach
spaces with f(0) = 0, then there is a bijective linear isometry U : X → Y
such that

(1.2) ‖f(x)− Ux‖ ≤ 2ε for all x ∈ X.

The surjectivity assumption in Theorem 1.2 cannot be omitted. We refer
to the authoritative book [1] and the surveys [10, 12] for this topic and
related matters.

In 1932, Mazur and Ulam [7] proved that a surjective isometry between
two Banach spaces is necessarily affine. Indeed, Benyamini and Linden-
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strauss [1, p. 361] remarked that the spirit of the proof of Theorem 1.2
somewhat originates from the proof of the Mazur–Ulam theorem.

On the other hand, in 1968, Figiel [3] proved the following celebrated
theorem.

Theorem 1.3 (Figiel). Suppose that f : X → Y is an into isometry with
f(0) = 0. Then there exists a norm one linear operator T : span f(X)→ X
such that T ◦ f = I (the identity) on X.

It is clear that Figiel’s theorem is a generalization of the result of Mazur
and Ulam [7]. Hence Figiel indeed gave a different proof of the Mazur-Ulam
theorem. Inspired by Figiel’s theorem, nonsurjective ε-isometries have been
studied (see [2, 9, 11]). A natural question here is whether there is a proof
of Theorem 1.2 using the idea of Figiel’s theorem. Our purpose in this note
is to give a new proof of Theorem 1.2, which is somewhat inspired by the
idea of Figiel [3].

In this paper we use standard notation. The letter X will always stand
for a real Banach space, and X∗ its dual. We denote the unit sphere of X
by S(X) and the closed unit ball of X by B(X). The unique supporting
functional at a smooth point x ∈ X is denoted by j(x).

2. Main results. We start this section with the following lemma, the
idea of which is inspired by the proof of Figiel’s theorem [3].

Lemma 2.1. Let X and Y be Banach spaces. Suppose that f : X → Y is
an ε-isometry with f(0) = 0. Assume that Y1 is a finite-dimensional subspace
of Y such that Y1 ⊂ f(X). If z ∈ S(Y1) is a smooth point of B(Y1), then
there is a linear functional φ ∈ X∗ with ‖φ‖ = 1 such that

(2.1) |φ(x)− j(z) ◦ f(x)| ≤ 4ε

for all x ∈ X with f(x) ∈ Y1.

Proof. Since z is a smooth point of B(Y1), by the definition of Gâteaux
differentiability we easily obtain

(2.2) lim
t→∞

(‖tz + y‖ − t) = j(z)(y)

for all y ∈ Y1.
Since Y1 ⊂ f(X), for every t ∈ R there exists zt ∈ X such that f(zt) = tz

and so |t| − ε ≤ ‖zt‖ ≤ |t|+ ε.

Fix n ∈ N. The Hahn–Banach theorem implies that there is a linear
functional φn ∈ X∗ with ‖φn‖ = 1 such that

φn(zn − z−n) = ‖zn − z−n‖.
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Remembering that f is an ε-isometry we have

φn(zn) = ‖zn − z−n‖+ φn(z−n)

≥ ‖f(zn)− f(z−n)‖ − ε− n− ε
= ‖nz − (−nz)‖ − ε− n− ε = n− 2ε.

For every t ∈ [0, n],

φn(zt) = φn(zn)− φn(zn − zt) ≥ (n− 2ε)− (n− t+ ε) = t− 3ε.

Hence

t− 3ε ≤ φn(zt) ≤ t+ ε for all t ∈ [0, n].

Similarly, we get

t− ε ≤ φn(zt) ≤ t+ 3ε for all t ∈ [−n, 0].

Note that ‖φn‖ = 1 for all n. Alaoglu’s theorem implies that the sequence
{φn} has a w∗-cluster point φ ∈ B(Y ∗). Then

(2.3) t− 3ε ≤ φ(zt) ≤ t+ 3ε for all t ∈ R,

and clearly ‖φ‖ = 1. We will prove that φ is the desired functional.

Fix x ∈ X such that f(x) ∈ Y1. Now, (2.3) yields

t− 3ε− φ(x) ≤ φ(zt)− φ(x) ≤ ‖zt − x‖ ≤ ‖tz − f(x)‖+ ε.

Therefore,

‖tz − f(x)‖ − t+ φ(x) ≥ −4ε.

Letting t→∞, (2.2) yields

(2.4) j(z) ◦ f(x)− φ(x) ≤ 4ε.

On the other hand, we get

t− 3ε+ φ(x) ≤ −φ(z−t) + φ(x) ≤ ‖z−t − x‖
≤ ‖tz + f(x)‖+ ε,

which leads to

‖tz + f(x)‖ − t− φ(x) ≥ −4ε.

Letting t tend to ∞ in the inequality above, (2.2) again implies that

(2.5) j(z) ◦ f(x)− φ(x) ≥ −4ε.

Hence (2.1) follows from (2.4) and (2.5).

Lemma 2.2. Let X be a separable Banach space, and let sm(X) denote
the set of smooth points in S(X). Then

‖x‖ = sup
z∈sm(X)

|j(z)(x)| for all x ∈ X.
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Proof. Since j(z) is a unique supporting functional at a smooth point z,
we have ‖j(z)‖ = 1 and j(z)(z) = 1. Hence

(2.6) ‖x‖ ≥ sup
z∈sm(X)

|j(z)(x)|.

On the other hand, since X is separable, sm(X) is dense in the unit
sphere S(X) (see, for example, [1, Theorem 4.17]). Therefore, for any ε > 0
we can find z0 ∈ sm(X) such that ‖x/‖x‖ − z0‖ < ε. Now∣∣∣∣j(z0)( x

‖x‖

)∣∣∣∣ =

∣∣∣∣j(z0)( x

‖x‖
− z0

)
+ j(z0)(z0)

∣∣∣∣
≥ |j(z0)(z0)| −

∣∣∣∣j(z0)( x

‖x‖
− z0

)∣∣∣∣
≥ 1−

∥∥∥∥ x

‖x‖
− z0

∥∥∥∥ ≥ 1− ε.

Since ε is arbitrary, we have

sup
z∈sm(X)

∣∣∣∣j(z)( x

‖x‖

)∣∣∣∣ ≥ 1.

Hence

(2.7) sup
z∈sm(X)

|j(z)(x)| ≥ ‖x‖.

Thus the equality follows from (2.6) and (2.7).

Now, we are ready to give a new proof of Theorem 1.2.

Proof of Theorem 1.2. Fix m,n ∈ N and x ∈ X. Let

Y1 = span(f(mx), f(nx)).

Since f is surjective, Lemma 2.1 implies that for every z ∈ sm(Y1) there is
a linear functional φz ∈ X∗ with ‖φz‖ = 1 such that

|φz(u)− j(z) ◦ f(u)| ≤ 4ε

for all u ∈ X satisfying f(u) ∈ Y1. Since Y1 is finite-dimensional, Lemma 2.2
implies that∥∥∥∥nf(mx)

m+ n
− mf(nx)

m+ n

∥∥∥∥
= sup

z∈sm(Y1)

∣∣∣∣j(z)(nf(mx)

m+ n
− mf(nx)

m+ n

)∣∣∣∣
= sup

z∈sm(Y1)

∣∣∣∣j(z)(nf(mx)

m+ n
− mf(nx)

m+ n

)
− φz

(
mnx

m+ n
− mnx

m+ n

)∣∣∣∣
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= sup
z∈sm(Y1)

∣∣∣∣(j(z)(nf(mx)

m+ n

)
− φz

(
mnx

m+ n

))
−

(
j(z)

(
mf(nx)

m+ n

)
− φz

(
mnx

m+ n

))∣∣∣∣
= sup

z∈sm(Y1)

∣∣∣∣n(j(z) ◦ f(mx)− φz(mx))

m+ n
− m(j(z) ◦ f(nx)− φz(nx))

m+ n

∣∣∣∣
≤ sup

z∈sm(Y1)

(
n|j(z) ◦ f(mx)− φz(mx)|

m+ n
+
m|j(z) ◦ f(nx)− φz(nx)|

m+ n

)
≤ 4ε.

Hence

(2.8)

∥∥∥∥f(mx)

m
− f(nx)

n

∥∥∥∥ ≤ m+ n

mn
4ε =

(
1

n
+

1

m

)
4ε.

It follows that {f(nx)/n}∞n=1 is a Cauchy sequence, and hence the limit

Ux := lim
n→∞

f(nx)

n

exists for every x ∈ X. Inequality (1.1) implies that U is an isometry. Sub-
stituting m = 1 in (2.8) we get∥∥∥∥f(x)− f(nx)

n

∥∥∥∥ ≤ 1 + n

n
4ε.

Letting n→∞, we obtain

(2.9) ‖f(x)− Ux‖ ≤ 4ε.

Fix w ∈ Y . For any n ∈ N choose xn ∈ X such that f(xn) = nw. Inequality
(2.9) implies that ∥∥∥∥w − Uxn

n

∥∥∥∥ =
1

n
‖f(xn)− Uxn‖ ≤

4ε

n
.

Since U is an isometry, its range is closed and hence contains w. This gives
surjectivity of U . Moreover, because f(0) = 0 we have U0 = 0 by the defi-
nition of U . Now the Mazur–Ulam theorem [7] implies that U is a bijective
linear isometry between X and Y .

We define g = U−1 ◦ f : X → X. Then g is an ε-isometry with g(0) = 0,
and (2.9) implies that ‖g(x) − x‖ ≤ 4ε for all x ∈ X. Let x ∈ X, and put
u = x− g(x). To prove (1.2), we only need to show that ‖u‖ ≤ 2ε. In order
to achieve this goal, we modify the proof of [11, Theorem 3.2]. Set

α = lim sup
m→∞

(
‖g(x+mu)‖ − ‖g(x+mu)− g(x)‖

)
.
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Let n < m. Then

(2.10) ‖g(x+mu)‖ − ‖g(x+mu)− g(x)‖

≤
∥∥∥∥g(x+mu)− g(x)− n

m
(g(x+mu)− g(x))

∥∥∥∥
+

∥∥∥∥g(x) +
n

m
(g(x+mu)− g(x))

∥∥∥∥− ‖g(x+mu)− g(x)‖

=

∥∥∥∥g(x) +
n

m
(g(x+mu)− g(x))

∥∥∥∥− n

m
‖g(x+mu)− g(x)‖.

Since ‖g(x+mu)− (x+mu)‖ ≤ 4ε, we have limm→∞ g(x+mu)/m = u. As
m→∞, (2.10) implies that

α ≤ ‖g(x) + nu‖ − ‖nu‖ = ‖x+ (n− 1)u‖ − ‖x+ (n− 1)u− x‖ − ‖u‖
≤ ‖g(x+ (n− 1)u)‖ − ‖g(x+ (n− 1)u)− g(x)‖ − ‖u‖+ 2ε.

Letting n→∞ yields ‖u‖ ≤ 2ε.

Remark 2.3. The proof of improving the estimate in (2.9) from 4ε to 2ε
is essentially the same as the proof of Šemrl and Väisälä in [11, Theorem 3.2].
We give some details here for completeness and the reader’s convenience.
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[12] J. Väisälä, A survey of nearisometries, Report. Univ. Jyväskylä 83 (2001), 305–315.
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