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WEAK PRECOMPACTNESS AND PROPERTY (V ∗)
IN SPACES OF COMPACT OPERATORS

BY

IOANA GHENCIU (River Falls, WI)

Abstract. We give sufficient conditions for subsets of compact operators to be weakly
precompact. Let Lw∗(E∗, F ) (resp. Kw∗(E∗, F )) denote the set of all w∗-w continuous
(resp. w∗-w continuous compact) operators from E∗ to F .

We prove that if H is a subset of Kw∗(E∗, F ) such that H(x∗) is relatively weakly
compact for each x∗ ∈ E∗ and H∗(y∗) is weakly precompact for each y∗ ∈ F ∗, then H is
weakly precompact. We also prove the following results:

If E has property (wV ∗) and F has property (V ∗), then Kw∗(E∗, F ) has property
(wV ∗).

Suppose that Lw∗(E∗, F ) = Kw∗(E∗, F ). Then Kw∗(E∗, F ) has property (V ∗) if and
only if E and F have property (V ∗).

1. Introduction. In this paper weak precompactness and relative weak
compactness in spaces of compact operators are used to investigate whether
the spaces Kw∗(E

∗, F ) and E ⊗ε F have property (wV ∗) (resp. (V ∗)) when
E and F have property (wV ∗) (resp. (V ∗)).

Our results are organized as follows. First we give sufficient conditions for
subsets of compact operators to be weakly precompact and relatively weakly
compact. These results are used to study whether the spacesKw∗(E

∗, F ) and
E⊗εF have property (wV ∗) (resp. (V ∗)), when E and F have the respective
property. Next we give some applications to the spaces `1⊗εE, (N1(E,F ))

∗,
and L1(µ) ⊗ε E. Finally, we prove that in some cases, if Kw∗(E

∗, F ) has
property (V ∗), then Lw∗(E∗, F ) = Kw∗(E

∗, F ). Our results generalize some
results from [17] and [25].

2. Definitions and notation. Throughout this paper, X, Y , E, and F
will denote Banach spaces. The unit ball of X will be denoted by BX , and
X∗ will stand for the continuous linear dual of X. The closed linear span
of a sequence (xn) in X will be written [xn]. The space X embeds in Y (in
symbols X ↪→ Y ) if X is isomorphic to a closed subspace of Y . An operator
T : X → Y will be a continuous and linear function. The operator T : X → Y
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is completely continuous (or Dunford–Pettis) if it maps weakly convergent
sequences to convergent sequences. The set of all operators, weakly compact
operators, and compact operators from X to Y will be denoted by L(X,Y ),
W (X,Y ), and K(X,Y ). The set of all w∗-w continuous (resp. w∗-w continu-
ous compact) operators from X∗ to Y will be denoted by Lw∗(X∗, Y ) (resp.
Kw∗(X

∗, Y )). The injective (resp. projective) tensor product of two Banach
spaces X and Y will be denoted by X⊗εY (resp. X⊗πY ). The space X⊗εY
can be embedded into the space Kw∗(X

∗, Y ), by identifying x⊗ y with the
rank one operator x∗ 7→ 〈x∗, x〉 y, and X ⊗ε Y = Kw∗(X

∗, Y ) if X or Y has
the approximation property. We recall the following well-known isometries
[34, p. 60]:

(1) Lw∗(E∗, F ) ' Lw∗(F ∗, E) andKw∗(E
∗, F ) ' Kw∗(F

∗, E) (T 7→ T ∗).
(2) W (E,F ) ' Lw∗(E∗∗, F ) and K(E,F ) ' Kw∗(E

∗∗, F ) (T 7→ T ∗∗).

The reader should consult [14] and [35] for further details of these tensor
products.

For 1 < p <∞, let p′ denote the conjugate of p.
A Banach space X has the approximation property if for each norm com-

pact subset M of X and ε > 0, there is a finite rank operator T : X → X
such that ‖T (x)− x‖ < ε for all x ∈M . If in addition T can be found with
‖T‖ ≤ 1, then X is said to have the metric approximation property. C(K)
spaces, c0, `p, 1 ≤ p < ∞, Lp(µ) (µ any measure), 1 ≤ p < ∞, and their
duals have the metric approximation property [14], [35].

A subset S of X is said to be weakly precompact provided that every
bounded sequence from S has a weakly Cauchy subsequence [3]. The operator
T : X → Y is weakly precompact (or almost weakly compact) if T (BX) is
weakly precompact.

A series
∑
xn in X is said to be weakly unconditionally convergent (wuc)

if for every x∗ ∈ X∗, the series
∑
|x∗(xn)| is convergent. Equivalently,

∑
xn

is wuc if {
∑

n∈A xn : A ⊆ N, A finite} is bounded. An operator T : X → Y
is unconditionally converging if it maps weakly unconditionally convergent
series to unconditionally convergent ones.

3. Weakly precompact subsets of spaces of compact operators.
We begin by giving sufficient conditions for a subset of Kw∗(E

∗, F ) to be
weakly precompact and relatively weakly compact. Let wot denote the weak
operator topology on L(E,F ): we have (Tn) → T (wot) provided that
〈Tn(x), y∗〉 7→ 〈T (x), y∗〉 for all x ∈ E and y∗ ∈ F ∗.

If H is a subset of Lw∗(E∗, F ), x∗ ∈ E∗, and y∗ ∈ F ∗, then let
H(x∗) = {T (x∗) : T ∈ H} and H∗(y∗) = {T ∗(y∗) : T ∈ H}. We set off
with the following lemma, similar to results in [24].
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Lemma 3.1 ([21, Lemma 4.7]). Let (Tn) be a sequence of w∗-w continuous
compact operators such that (Tn) → T (wot), where T is w∗-w continuous
and compact. Then (Tn)→ T weakly.

Theorem 1.3 of [25] shows that if H is a subset of E ⊗ε F satisfying the
hypotheses (i) and (ii) in the next theorem, then H is weakly precompact.
The following theorem generalizes this result.

Theorem 3.2. Let H be a subset of Kw∗(E
∗, F ) such that either

(i) H(x∗) is relatively weakly compact for each x∗ ∈ E∗, and
(ii) H∗(y∗) is weakly precompact for each y∗ ∈ F ∗,

or

(i)′ H(x∗) is weakly precompact for each x∗ ∈ E∗, and
(ii)′ H∗(y∗) is relatively weakly compact for each y∗ ∈ F ∗.

Then H is weakly precompact.

Proof. Suppose H satisfies (i) and (ii). Let (Tn) be a sequence in H,
and let S be the closed linear span of {Tn(x∗) : x∗ ∈ E∗, n ∈ N}. The
compactness of each Tn implies that S is a separable subspace of F . Therefore
(BS∗ , w

∗) is a compact metric space. Let A = (y∗n) be a w∗-dense sequence
in S∗. By hypotheses, {T ∗n(y∗k) : n ∈ N} is weakly precompact for each k.
By diagonalization, we may assume that (Tni) is a subsequence of (Tn) so
that (T ∗ni

(y∗k))
∞
i=1 is weakly Cauchy for each k. Without loss of generality, we

assume that (T ∗n(y∗)) is weakly Cauchy for each y∗ ∈ A.
For fixed x∗ ∈ E∗, the sequence (Tn(x∗)) must have a weakly convergent

subsequence. Suppose that y1 and y2 are weak sequential cluster points of this
sequence. Then y1, y2 ∈ S. Suppose that (Tk(n)(x∗))

w→ y1, (Tp(n)(x∗))
w→ y2,

and y∗ ∈ A. Now
〈y1, y∗〉 = lim

n
〈Tk(n)(x∗), y∗〉 = lim

n
〈x∗, T ∗k(n)(y

∗)〉 = lim
n
〈x∗, T ∗n(y∗)〉

= lim
n
〈x∗, T ∗p(n)(y

∗)〉 = lim
n
〈Tp(n)(x∗), y∗〉 = 〈y2, y∗〉,

and y1 = y2 since A is w∗-dense in S∗. Therefore for all x∗ ∈ E∗, (Tn(x∗))
is weakly convergent in S, and so in F . Thus (Tn) is Cauchy in the wot
of Kw∗(E

∗, F ). Hence for any two subsequences (An) and (Bn) of (Tn),
(An − Bn) → 0 (wot). By Lemma 3.1, (An − Bn) → 0 weakly; thus (Tn) is
weakly Cauchy in Kw∗(E

∗, F ).
Now suppose that H satisfies (i)′ and (ii)′. Consider the subset H∗ =

{T ∗ : T ∈ H} of Kw∗(F
∗, E). The previous argument shows that the set H∗

is weakly precompact. Let (Tn) be a sequence in H. Without loss of gener-
ality, we can assume that (T ∗n) is weakly Cauchy. Hence limn〈T ∗n(y∗), x∗〉 =
limn〈Tn(x∗), y∗〉 exists for all x∗ ∈ E∗, y∗ ∈ F ∗. Therefore (Tn) is Cauchy in
the wot of Kw∗(E

∗, F ), and thus weakly Cauchy (as above).
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Corollary 3.3 ([11, Theorem 1.14]). If E does not contain a copy of
`1 and F ∗ has the Radon–Nikodym property, in particular if F is reflexive,
then Kw∗(E

∗, F ) does not contain a copy of `1.

Proof. Let (Tn) be a sequence in Kw∗(E
∗, F ), ‖Tn‖ ≤ 1. Let S be defined

as in the proof of Theorem 3.2. The compactness of each Tn implies that S
is a separable subspace of F . Since F ∗ has the Radon–Nikodym property,
S∗ is separable, by [14, Theorem 6, p. 195]. Let A = (y∗n) be a (norm) dense
sequence in S∗.

By Rosenthal’s `1 theorem, (T ∗n(y∗k)) has a weakly Cauchy subsequence
in E for each k. By diagonalization, we may assume that (Tni) is a subse-
quence of (Tn) so that (T ∗ni

(y∗k))
∞
i=1 is weakly Cauchy for each k. Without

loss of generality, we assume that (T ∗n(y∗)) is weakly Cauchy for each y∗ ∈ A.
Then lim 〈T ∗n(y∗), x∗〉 = lim 〈Tn(x∗), y∗〉 exists for all x∗ ∈ E∗, y∗ ∈ A. Since
A is dense in S∗, (Tn(x∗)) is weakly Cauchy in S, and thus in F , for all
x∗ ∈ E∗. Then (Tn) is Cauchy in the wot of Kw∗(E

∗, F ). As in the proof of
Theorem 3.2, (Tn) is weakly Cauchy in Kw∗(E

∗, F ). By Rosenthal’s `1 the-
orem, Kw∗(E

∗, F ) does not contain a copy of `1.
We note that if F is reflexive, then F ∗ has the Radon–Nikodym property,

by [14, Corollary 4, p. 82].

The following result (first obtained in [21]) gives an extension of Corol-
lary 2 of [24], where E and F are assumed to be reflexive. We present a
different proof based on Theorem 3.2.

Theorem 3.4 ([21, Theorem 4.8]). Suppose Lw∗(E∗, F ) = Kw∗(E
∗, F ).

Let H be a subset of Kw∗(E
∗, F ) such that

(i) H(x∗) is relatively weakly compact for each x∗ ∈ E∗, and
(ii) H∗(y∗) is relatively weakly compact for each y∗ ∈ F ∗.

Then H is relatively weakly compact.

Proof. Let (Tn) be a sequence in H. By Theorem 3.2, H is weakly pre-
compact. Without loss of generality, assume that (Tn) is weakly Cauchy. For
each x∗ ∈ E∗, the sequence (Tn(x∗)) is relatively weakly compact and weakly
Cauchy in F , hence weakly convergent. Define T : E∗ → F by

T (x∗) = w-limTn(x
∗)

for x∗ ∈ E∗. Let y∗ ∈ F ∗ and consider T ∗(y∗). The sequence (T ∗n(y
∗)) is

relatively weakly compact and weakly Cauchy in E, and hence weakly con-
vergent. Suppose that (T ∗n(y∗))

w→ x ∈ E, and let x∗ ∈ E∗. Then 〈T (x∗), y∗〉
= limn〈Tn(x∗), y∗〉 = limn〈x∗, T ∗n(y∗)〉 = 〈x∗, x〉. Therefore T ∗(y∗) = x,
T ∗(F ∗) ⊆ E, and T is w∗-w continuous. Then T is compact by assumption.
By Lemma 3.1, (Tn)→ T weakly.
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Remark. If Lw∗(E∗, F ) = Kw∗(E
∗, F ), then a subset H of Kw∗(E

∗, F )
is relatively weakly compact if and only if conditions (i) and (ii) of the
previous theorem hold.

4. Properties (V ∗) and (wV ∗) in tensor products. A bounded sub-
set A of X (resp. of X∗) is called a V ∗-subset of X (resp. a V -subset of X∗)
provided that

lim
n
(sup{|x∗n(x)| : x ∈ A}) = 0

(resp. lim
n
(sup{|x∗(xn)| : x∗ ∈ A}) = 0)

for each wuc series
∑
x∗n in X∗ (resp. wuc series

∑
xn in X).

In his fundamental paper [29], Pełczyński introduced property (V ) and
property (V ∗). The Banach space X has property (V ) (resp. (V ∗)) if every
V -subset of X∗ (resp. V ∗-subset of X) is relatively weakly compact. The fol-
lowing results were also established in [29]: C(K) spaces have property (V );
L1-spaces have property (V ∗); reflexive Banach spaces have both properties
(V ) and (V ∗); the Banach space X has property (V ) if and only if every
unconditionally converging operator T from X to any Banach space Y is
weakly compact; every closed subspace of a Banach space with property
(V ∗) has property (V ∗); if X has property (V ∗), then X is weakly sequen-
tially complete. We note that property (V ∗) is stable under isomorphisms.

The Banach space X has property weak (V ∗) (wV ∗) if every V ∗-subset
of X is weakly precompact [5]. The Banach space X has property (V ∗) if X
is weakly sequentially complete and X has property (wV ∗). If X does not
contain a copy of `1, then X has property (wV ∗), by Rosenthal’s theorem
[12, Ch. XI]. In particular, c0 has property (wV ∗), but it does not have
property (V ∗). The Banach space X has property (wV ∗) (resp. (V ∗)) if and
only if every operator T : Y → X with unconditionally converging adjoint
is weakly precompact (resp. weakly compact) [21, Theorem 3.10].

In this section we consider properties (V ∗) and (wV ∗) in spaces of com-
pact operators. First, we study these properties in the space Kw∗(E

∗, F ).
We note that there are examples of Banach spaces E and F such that
Kw∗(E

∗, F ) has property (V ∗) (resp. (wV ∗)). If 1 ≤ q < p < ∞, then
L(`p, `q) = K(`p, `q) (by a result of Pitt [32]), and this space is reflexive if
moreover q > 1 (see [24]). Hence K(`p, `q) ' Kw∗(`

∗∗
p , `q) = Lw∗(`

∗∗
p , `q) has

property (V ∗), and the spaces E = `∗p and F = `q are as desired. Further,
if E does not contain a copy of `1 and F is reflexive, then Kw∗(E

∗, F ) does
not contain a copy of `1 (by Corollary 3.3), hence Kw∗(E

∗, F ) has property
(wV ∗) (by Rosenthal’s `1 theorem).

If Kw∗(E
∗, F ) has property (V ∗) (resp. (wV ∗)), then E and F have it

too, since property (V ∗) (resp. (wV ∗)) is inherited by closed subspaces. We
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also note that if Kw∗(E
∗, F ) has property (V ∗), then c0 X↪→ Kw∗(E

∗, F ),
since c0 does not have property (V ∗). The space Kw∗(`2, `2) = `2 ⊗ε `2 does
not have property (V ∗) even though `2 has it, since c0 ↪→ Kw∗(`2, `2) (by [20,
Theorem 20]). Similarly, for 1 ≤ r < ∞ and 1 ≤ s < ∞, Lr[0, 1] ⊗ε Ls[0, 1]
does not have property (V ∗), since it contains `2 ⊗ε `2 as a closed subspace.
See a generalization of these results in Theorem 4.10 and its consequences.
This is in contrast with the setting of the following Theorem 4.1(ii) and
Theorem 4.3.

Theorem 4.1 ([17]).

(i) If E has property (wV ∗) and F has property (V ∗), or if E has prop-
erty (V ∗) and F has property (wV ∗), then Kw∗(E

∗, F ), in particular
E ⊗ε F , has property (wV ∗). If moreover E or F contains a copy
of `1, then Kw∗(E

∗, F ) contains a complemented copy of `1.
(ii) Kw∗(E

∗, F ) has property (V ∗) if and only if it is weakly sequentially
complete and E and F have property (V ∗).

Proof. (i) Suppose E has property (wV ∗) and F has property (V ∗). Let
H be a V ∗-subset of Kw∗(E

∗, F ). For fixed x∗ ∈ E∗, the map T 7→ T (x∗)
is a bounded operator from Kw∗(E

∗, F ) into F . It is easily verified that
continuous linear images of V ∗-sets are V ∗-sets. Then H(x∗) is a V ∗-subset
of F , hence relatively weakly compact. For fixed y∗ ∈ F ∗, the map T 7→
T ∗(y∗) is a bounded operator from Kw∗(E

∗, F ) into E. Then H∗(y∗) is a
V ∗-subset of E, hence weakly precompact. By Theorem 3.2, H is weakly
precompact.

Suppose E has property (V ∗) and F has property (wV ∗). By the previ-
ous argument and the isometry Kw∗(E

∗, F ) ' Kw∗(F
∗, E), Kw∗(E

∗, F ) has
property (wV ∗).

Since a closed subspace of a space with property (wV ∗) has the same
property, E ⊗ε F has property (wV ∗).

If `1 ↪→ E or `1 ↪→ F , then `1 ↪→ Kw∗(E
∗, F ) (since E and F embed

in the rank one operators from E∗ to F , and thus in Kw∗(E
∗, F )). Then

`1
c
↪→ Kw∗(E

∗, F ), by [5, Corollary 1.6].
(ii) Suppose Kw∗(E

∗, F ) has property (V ∗). Then Kw∗(E
∗, F ) is weakly

sequentially complete [29], and E and F have property (V ∗).
Conversely, suppose E and F have property (V ∗). Let H be a V ∗-subset

of Kw∗(E
∗, F ). By (i), H is weakly precompact. If moreover Kw∗(E

∗, F ) is
weakly sequentially complete, then H is relatively weakly compact.

Example 4.2. The following example shows that there are Banach spaces
E and F such that Kw∗(E

∗, F ) has property (wV ∗) and does not have prop-
erty (V ∗). The space F = c0 has property (wV ∗) and does not have prop-
erty (V ∗). More generally, let K be an infinite compact Hausdorff space
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which is scattered, and let F = C(K). A topological space S is called scat-
tered (or dispersed) if every nonempty closed subset of S has an isolated point
[38]. Then `1 X↪→ C(K) (see [30]), C(K) has property (wV ∗) and does not
have property (V ∗) (since c0 ↪→ C(K); see [10]). Let E have property (V ∗).
Then Kw∗(E

∗, C(K)) ' C(K,E) has property (wV ∗) (by Theorem 4.1(i))
and does not have property (V ∗) (since C(K) does not have property (V ∗)).

Theorem 4.3. Suppose Lw∗(E∗, F ) = Kw∗(E
∗, F ). The following state-

ments are equivalent:

(i) E and F have property (V ∗).
(ii) Kw∗(E

∗, F ) has property (V ∗).
(iii) E ⊗ε F has property (V ∗).

Proof. Suppose E and F have property (V ∗). Let H be a V ∗-subset of
Kw∗(E

∗, F ). By Theorem 3.4 and the proof of Theorem 4.1(i),H is relatively
weakly compact. ThenKw∗(E

∗, F ), and thus E⊗εF , has property (V ∗). That
(iii) implies (i) is clear.

Remark. In [22, Theorem 3.10] it is proved that if E and F are weakly
sequentially complete and Lw∗(E

∗, F ) = Kw∗(E
∗, F ), then Kw∗(E

∗, F ) is
weakly sequentially complete. We note that Theorem 4.3 can be proved using
this result and Theorem 4.1(ii).

Example 4.4. The space L1(µ), where µ is a finite measure, has prop-
erty (V ∗) (see [29]). Suppose that E has property (wV ∗). It is known that
L1(µ) ⊗ε E ' Kw∗(E

∗, L1(µ)) ([25], [14, Theorem 5, p. 224], [35]). This
space has property (wV ∗) by Theorem 4.1(i). By Theorem 4.3 it also has
property (V ∗) if moreover E has property (V ∗) and if Lw∗(E∗, L1(µ)) =
Kw∗(E

∗, L1(µ)). These two conditions are satisfied if E is a quotient of `p,
1 < p < 2, by [33, Theorem A.2, p. 206]. The last equality holds if either E
or L1(µ) has the Schur property (we recall that L1(µ) has the Schur property
if and only if the measure µ is purely atomic [9]).

Corollary 4.5. Suppose that E has property (V ∗) and F is an infinite-
dimensional space with property (V ∗) and the Schur property. Then
Lw∗(E

∗, F ) = Kw∗(E
∗, F ) has property (V ∗) and it contains a complemented

copy of `1. If moreover E has the Schur property, then Lw∗(E
∗, F ) has the

Schur property.

Proof. By definition, Lw∗(E∗, F ) = Ww∗(E
∗, F ), and Ww∗(E

∗, F ) =
Kw∗(E

∗, F ) since F has the Schur property. Further, `1 ↪→ F . The first
assertion of the theorem follows from Theorem 4.3 and the end of Theo-
rem 4.1(i). The last assertion follows from [27], [36].

Example 4.6. Since `1 has the Schur property and property (V ∗), `1⊗εE
has property (V ∗) if and only if E has property (V ∗) (by the first part of
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Corollary 4.5). Recall that `1⊗εE ' `1[E] is the Banach space of all uncon-
ditionally convergent series in E with the norm ‖(xn)‖ = sup{

∑
|x∗(xn)| :

x∗ ∈ BE∗} (see [35]).

Observation 1. If E∗ has property (V ∗) and F has property (V ∗) (resp.
(wV ∗)), then every operator T : E → F is weakly compact (resp. weakly pre-
compact). To see this, let T : E → F be an operator. Since E∗ has property
(V ∗), E∗ does not contain a copy of c0. Then T ∗ : F ∗ → E∗ is uncondition-
ally converging ([4], [12, p. 54]). Since F has property (V ∗) (resp. (wV ∗)),
T is weakly compact (resp. weakly precompact), by [21, Theorem 3.10].

We will need the following version of Corollary 4.5, replacing F by F ∗
and E by E∗.

Corollary 4.7. Suppose E∗ has property (V ∗) and F is an infinite-
dimensional space such that F ∗ has property (V ∗) and the Schur property.
Then L(E,F ∗) = K(E,F ∗) has property (V ∗) and it contains a comple-
mented copy of `1. If moreover E∗ has the Schur property, then L(E,F ∗)
has the Schur property.

Proof. By Observation 1, we have L(E,F ∗) = W (E,F ∗). Taking into
account the isometries (2) from Section 2, the first statements follow from
Corollary 4.5 applied to E∗ instead of E, and F ∗ instead of F .

A Banach spaceX has the Dunford–Pettis property (DPP) if every weakly
compact operator T with domain X is completely continuous. Schur spaces,
C(K) spaces, and L1(µ) spaces have the DPP. The reader can check [12],
[13], [14], and [2] for a guide to the extensive classical literature dealing with
the DPP. We recall [13] that F ∗ has the Schur property as soon as F has the
DPP and does not contain `1. For the definition of L∞-spaces and L1-spaces
we refer the reader to [6].

Example 4.8. A. Pełczyński [29] showed that if E has property (V ),
then E∗ has property (V ∗), and he asked if the converse is true. Let Y be
the Bourgain–Delbaen space so that Y is a separable L∞-space, Y is some-
what reflexive, c0 X↪→ Y , and Y ∗ ' `1 (see [7]). Then Y does not have prop-
erty (V ), since c0 X↪→ Y and Y is not reflexive (by [29, Proposition 8]), and Y ∗
has property (V ∗). Hence Y provides a first counterexample to Pełczyński’s
question.

Suppose E∗ has property (V ∗). Then E⊗π Y does not have property (V )
(since Y does not have property (V )) and L(E, Y ∗) ' (E ⊗π Y )∗ has prop-
erty (V ∗) (by Corollary 4.7 applied to F = Y ). Hence E ⊗π Y is another
counterexample to Pełczyński’s question.

Besides Y ∗, there are dual spaces Z∗ which have both property (V ∗)
and the Schur property but are not isomorphic to `1: take for Z the spaces
constructed by Hagler [23] and Talagrand [39].
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Corollary 4.9. Suppose that W (E∗, F ∗) = K(E∗, F ∗) and both E∗∗,
F ∗ have property (V ∗). Then L(E∗, F ∗) = K(E∗, F ∗) and this space has
property (V ∗). The dual of the space of all nuclear operators N1(E,F ) also
has property (V ∗), hence it does not contain `∞; consequently, `1 is not
complemented in N1(E,F ).

Proof. By the isometries (2) in Section 2, K(E∗, F ∗) ' Kw∗(E
∗∗∗, F ∗)

and W (E∗, F ∗) ' Lw∗(E
∗∗∗, F ∗). By Theorem 4.3 applied to E∗∗ instead

of E and to F ∗ instead of F , K(E∗, F ∗) has property (V ∗). By Observation 1
applied to E∗ instead of E and to F ∗ instead of F , L(E∗, F ∗) =W (E∗, F ∗);
hence by assumption L(E∗, F ∗) = K(E∗, F ∗). Note that L(E∗, F ∗) '
(E∗ ⊗π F )∗. It is known that N1(E,F ) is a quotient of E∗ ⊗π F [35, p. 41].
Hence the dual of N1(E,F ) is a closed subspace of (E∗⊗π F )∗, so it inherits
property (V ∗) from (E∗ ⊗π F )∗ ' K(E∗, F ∗).

Recall that N1(E,F ) = E∗ ⊗π F if E∗ or F has the approximation
property.

One can find numerous references to papers which study the embedability
of c0 in spaces of operators in [15], [16], [18], [26], [24], [19], and [20]. Specif-
ically, we note that [15], [16], and [26] point out that if the Banach space E
has an unconditional finite-dimensional decomposition, then c0 ↪→ K(E,E).

A bounded subset A of E is called a limited subset of E if each w∗-null
sequence in E∗ tends to 0 uniformly on A. Furthermore, a Banach space
E has the Gelfand–Phillips property if any limited subset of E is relatively
compact. See [8] and [37] for discussions of limited sets.

The following theorem and its corollaries are essentially contained in [20].
Theorem 20 of [20] can be rephrased in terms of property (V ∗); the assump-
tion there that either (R(gi)) or (S(g∗i )) is a basic sequence can be removed.
Theorem 4.10 below generalizes the example showing that `2 ⊗ε `2 does not
have property (V ∗) given just before Theorem 4.1.

Theorem 4.10. Let E and F be Banach spaces satisfying the following
assumption: there exists a Banach space G with an unconditional basis (gn)
and biorthogonal coefficients (g∗n), and two operators R : G → F and S :
G∗ → E such that (R(gi)) and (S(g∗i )) are seminormalized sequences. Then
c0 embeds in E ⊗ε F . Thus E ⊗ε F does not have property (V ∗).

Moreover, if (R(gi)) is basic and F has the Gelfand–Phillips property (or
(S(g∗i )) is basic and E has the Gelfand–Phillips property), then Kw∗(E

∗, F )
contains a complemented copy of c0.

Proof. Suppose that p ≤ ‖R(gn)‖ ≤ q and p ≤ ‖S(g∗n)‖ ≤ q for all n.
Let S(g∗n) ⊗ R(gn) ∈ Kw∗(E

∗, F ), 〈S(g∗n) ⊗ R(gn), x
∗〉 = x∗(S(g∗n))R(gn),

x∗ ∈ E∗. Let H = E ⊗ε F .
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If g ∈ G, then
∑
g∗n(g)gn converges unconditionally to g. By the Uniform

Boundedness Principle, {
∑

n∈A g
∗
n ⊗ gn : A ⊆ N, A finite} is bounded in

L(G,G). Then
∑
g∗n ⊗ gn is wuc. On the other hand, S and R induce an

operator S ⊗ε R : G∗ ⊗ε G → E ⊗ε F , which maps (g∗n ⊗ gn) into (S(g∗n) ⊗
R(gn)) [14, Chapter VIII]. Then

∑
S(g∗n) ⊗ R(gn) is wuc in E ⊗ε F . Now,

inf ‖S(g∗n)⊗R(gn)‖ ≥ p2. Since (S(g∗n)⊗R(gn)) is weakly null and not norm
null, by the Bessaga–Pełczyński principle ([4], [12]) we can assume without
loss of generality that (S(g∗n)⊗R(gn)) is basic. Let (en) denote the canonical
unit vector basis of c0. By a result of Bessaga and Pełczyński ([4, Lemma 3,
p. 160], [12, p. 45]), we have (S(g∗n)⊗R(gn)) ∼ (en), and thus c0 ↪→ H.

To prove the last part of the theorem, suppose that F has the Gelfand–
Phillips property and (R(gn)) is basic. If (R(gn)) is limited, then (R(gn))→ 0
since (R(gn)) is relatively compact and the only weak limit of a basic se-
quence is zero [12, p. 42]. Therefore (R(gn)) is not limited. Without loss of
generality we can choose a w∗-null sequence (y∗n) in F ∗ so that 〈y∗n, R(gn)〉=1
for all n. Let (x∗n) be a sequence in E∗ of norm one such that 〈x∗n, S(g∗n)〉
= ‖S(g∗n)‖ for all n. For each T ∈ Kw∗(E

∗, F ), we have ‖T ∗(y∗n)‖ → 0, since
T ∗ is compact. Hence

〈x∗n ⊗ y∗n, T 〉 = 〈T (x∗n), y∗n〉 ≤ ‖T ∗(y∗n)‖ → 0.

Then (x∗n⊗y∗n) is a w∗-null sequence in (Kw∗(E
∗, F ))∗. Also, we have 〈x∗n⊗y∗n,

S(g∗n) ⊗ R(gn)〉 = ‖S(g∗n)‖; thus (S(g∗n) ⊗ R(gn)) is not limited. By [37,
Theorem 1.3.2], c0 is complemented in Kw∗(E

∗, F ).

Corollary 4.11. Suppose Lw∗(E∗, F ) = Kw∗(E
∗, F ). If E and F have

property (V ∗), then either `p X↪→ E or `q X↪→ F , for 1 < p′ ≤ q <∞ (where p
and p′ are conjugate).

Proof. Suppose the contrary. By Theorem 4.10 applied to G = `q, c0
embeds in E ⊗ε F , which contradicts Theorem 4.3.

Corollary 4.12. Suppose that W (E,F ) = K(E,F ). If E∗ and F have
property (V ∗), then either `1 X↪→ E or `2 X↪→ F . If moreover F is a dual
space X∗, the condition `2 X↪→ F implies `1 X↪→ X.

Proof. IfW (E,F ) = K(E,F ) and E∗ and F have property (V ∗), then by
the isometries (2) in Section 2, the assumptions of Theorem 4.3 applied to E∗
instead of E are satisfied. Thus, by Theorem 4.3,K(E,F ) has property (V ∗).
Now suppose `1 ↪→ E and `2 ↪→ F . Then L1 ↪→ E∗ (see [28]), hence `2 ↪→ E∗.
Then c0 embeds in K(E,F ). This contradiction proves the first assertion.
The last assertion follows again from [28].

The following theorem shows that the assumption that Lw∗(E∗, F ) =
Kw∗(E

∗, F ) considered in Theorem 4.3 is in some cases even necessary.
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Theorem 4.13. Suppose that Kw∗(E
∗, F ) has property (V ∗), and E, F

are infinite-dimensional Banach spaces satisfying one of the assumptions:

(i) If T is an operator in Lw∗(E
∗, F ), then there is a sequence of op-

erators (Tn) in Kw∗(E
∗, F ) such that for each x∗ ∈ E∗, the series∑

Tn(x
∗) converges unconditionally to T (x∗).

(ii) Either E or F has the metric approximation property.

Then Lw∗(E∗, F ) = Kw∗(E
∗, F ).

Proof. Suppose Kw∗(E
∗, F ) has property (V ∗).

(i) In this case, Lw∗(E∗, F ) 6= Kw∗(E
∗, F ) implies that c0 embeds in

Kw∗(E
∗, F ) by [20, Theorem 14], a contradiction.

(ii) Since Kw∗(E
∗, F ) has property (V ∗), it is weakly sequentially com-

plete [29]. Then E, F , and E ⊗ε F are weakly sequentially complete, since
subspaces of weakly sequentially complete spaces are weakly sequentially
complete. Under assumption (ii), Theorem 2.1 of [25] implies Lw∗(E∗, F ) =
Kw∗(E

∗, F ). Note that Kw∗(E
∗, F ) = E⊗ε F , since E or F has the approx-

imation property [34, p. 60].

Assumption (i) of the previous theorem is satisfied, for instance, in the
following cases:

(1) E (or F ) has an (u.c.e.i.), that is, there is a sequence (An) of compact
operators from E to E such that

∑
An(x) converges unconditionally

to x for all x ∈ E (see [19]).
(2) F is complemented in a Banach space Z which has an unconditional

Schauder decomposition (Zn) and Lw∗(E
∗, Zn) = Kw∗(E

∗, Zn) for
each n.

The space X has (Rademacher) cotype q for some 2 ≤ q ≤ ∞ if there is
a constant C such that for every n and any x1, . . . , xn in X,( n∑

i=1

‖xi‖q
)1/q

≤ C
( 1�

0

‖ri(t)xi‖q dt
)1/q

,

where (rn) are the Rademacher functions. A Hilbert space has cotype 2. The
dual of C(K), M(K), has cotype 2 (see [1]).

In the next corollary, (i) and (ii) are versions of Theorem 4.13.

Corollary 4.14. Suppose that K(E,F ) has property (V ∗), and E, F
are infinite-dimensional Banach spaces satisfying one of the assumptions:

(i) If T : E → F is a weakly compact operator, then there is a sequence
(Tn) in K(E,F ) such that for each x ∈ X, the series

∑
Tn(x) con-

verges unconditionally to T (x).
(ii) Either E∗ or F has the metric approximation property.
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(iii) E is an L∞-space and F is a closed subspace of an L1-space.
(iv) E = C[0, 1] and F is a space with cotype 2.

Then L(E,F ) = K(E,F ).

Proof. Suppose K(E,F ) has property (V ∗). Then E∗ and F have prop-
erty (V ∗), and L(E,F ) =W (E,F ) (by Observation 1).

(i) Suppose W (E,F ) 6= K(E,F ). Let T : E → F be a weakly compact
and noncompact operator. Let (Tn) be a sequence as in the hypothesis. By
the Uniform Boundedness Principle, {

∑
n∈A Tn : A ⊆ N, A finite} is bounded

in K(E,F ). Then
∑
Tn is wuc and not unconditionally convergent (since T

is noncompact). By a result of Bessaga and Pełczyński [4], c0 ↪→ K(E,F ).
This contradiction shows that W (E,F ) = K(E,F ).

(ii) By Theorem 4.13(ii) and the isometries (2) in Section 2, we have
W (E,F ) = K(E,F ). Therefore L(E,F ) = K(E,F ).

Suppose (iii) or (iv) holds. It is known that any operator T : E → F
is 2-absolutely summing ([31], [12]), hence it factorizes through a Hilbert
space. If L(E,F ) 6= K(E,F ), then c0 ↪→ K(E,F ), by [18, Remark 3] (or
[15, Theorem 4]), and we have a contradiction.

Assumption (i) of the previous corollary is satisfied, for instance, in the
following cases:

(1) Either E∗ or F has an (u.c.e.i.).
(2) F is complemented in a Banach space Z which has an unconditional

Schauder decomposition (Zn) and W (E,Zn) = K(E,Zn) for each n.
(3) E has an unconditional and seminormalized shrinking basis; in par-

ticular this holds if E is a reflexive space with an unconditional and
seminormalized basis.

We recall that the basis (xi) of E is shrinking if the associated sequence
of coordinate functionals (x∗i ) is a basis for E∗. The unit vector bases of c0
and `p, 1 < p < ∞, are shrinking, and the unit vector basis of `1 is not
shrinking.

Example 4.15. For 1 ≤ p < q < ∞, the natural inclusion map i :
`p → `q is weakly compact and not compact. Then c0 ↪→ K(`p, `q) (by [20,
Theorem 14]), and K(`p, `q) does not have property (V ∗).

Theorem 4.16. Assume that K(E,F ∗) has property (V ∗) and that one
of the following assumptions holds:

(i) E has the DPP and `1 ↪→ F .
(ii) E and F have the DPP.

Then L(E,F ∗) = K(E,F ∗).
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Proof. SupposeK(E,F ∗) has property (V ∗). Then E∗ and F ∗ have prop-
erty (V ∗). By Observation 1, L(E,F ∗) =W (E,F ∗).

(i) Since K(E,F ∗) has property (V ∗), c0 X↪→ K(E,F ∗). Hence, by the
second part of the proof of Corollary 4.12, either `1 X↪→ E or `2 X↪→ F ∗.
By the last assumption of Corollary 4.12 and the assumption `1 ↪→ F , we
obtain `1 X↪→ E. Since moreover E has the DPP, E∗ has the Schur property
by [13] or [12, p. 212]. Let T : E → F ∗ be a weakly compact operator.
Then T ∗ : F ∗∗ → E∗ is weakly compact, thus compact, since E∗ has the
Schur property. Therefore T is compact. ThusW (E,F ∗) = K(E,F ∗), which
proves the result.

(ii) Assume E and F have the DPP. Then W (E,F ∗) = K(E,F ∗) either
by (i) if `1 ↪→ F , or because F ∗ has the Schur property [13] if `1 X↪→ F .

The previous proof shows that if E and F satisfy one of the hypothe-
ses (i), (ii) and if K(E,F ∗) does not contain c0 (as a closed subspace), then
W (E,F ∗) = K(E,F ∗).
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