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CLASSICAL SOLUTIONS TO THE SCALAR CONSERVATION LAW
WITH DISCONTINUOUS INITIAL DATA

BY

JĘDRZEJ JABŁOŃSKI (Warszawa)

Abstract. Sufficient and necessary conditions for the existence and uniqueness of
classical solutions to the Cauchy problem for the scalar conservation law are found in the
class of discontinuous initial data and non-convex flux function. Regularity of rarefaction
waves starting from discontinuous initial data and their dependence on the flux function
are investigated and illustrated in a few examples.

1. Introduction. This paper deals with sufficient and necessary condi-
tions for the existence and uniqueness of classical solutions to the Cauchy
problem for the scalar conservation law

(1.1)
{
ut + (f(u))x = 0 on Ω,
u = u0 on ∂Ω,

where Ω = R × (0,∞). In contrast to most works on this topic we make
no assumptions on the convexity of f or the entropy of u, but demand
only that f ∈ C2(R); moreover, we admit discontinuous initial data. As a
consequence, we find a new class of C1 regular rarefaction waves starting
from discontinuous initial data.

More precisely, by a classical solution we mean any function
u ∈ C1(Ω) ∩ C0(Ω ∪ (contu0 × (0,∞)))

satisfying (1.1), contu0 denoting the set of points where u0 is continuous.
We say a function v : R → R belongs to the class C1∞(R) if for every

x ∈ cont v and every sequence {xn}n∈N such that xn ∈ cont v and xn → x
the limit (possibly infinite)

lim
n→∞

v(x)− v(xn)

x− xn
,

denoted by v′(x), exists, the function v′ : cont v → R is continuous, and for
every x /∈ cont v,

lim
cont v3xn→x

|v′(xn)| =∞.
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The class of C1∞ functions is discussed in Examples 3.2 and 3.3.
The main result of this work reads as follows.

Theorem 1.1. Suppose that cl(contu0) = R and u0 has no removable
discontinuities. Equation (1.1) has a unique classical solution if and only if
the following conditions are satisfied:

(1) The superposition f ′ ◦ u0 is non-decreasing on contu0.
(2) For every x ∈ R the limits

lim
contu03xn→x−

u0(xn) and lim
contu03xn→x+

u0(xn),

denoted by u0(x−) and u0(x+) respectively, both exist.
(3) The function u0 does not jump through inflection points of f in the

following sense: if 0 ∈ f ′′([u0(x−), u0(x
+)]) then x ∈ contu0.

(4) u0 ∈ C1∞(R).
(5) If f ′′(u0(x)) = 0 for some x ∈ contu0 then u0 is differentiable at x.

Notice that, when f is strictly convex, conditions (3) and (5) are trivially
satisfied for all u0, and condition (1) reduces to u0 being a non-decreasing
function.

In [2], Smoller discusses classical rarefaction wave for the inviscid Burgers
equation (f(u) = u2/2), which solves the Riemann problem with initial data

u0(x) =

{
−1 if x < 0,
1 if x ≥ 0.

The solution is not determined on {(x, t) : |x| < t}, and cannot be C1

regularly extended to this region. However, there exists a solution u in C0(Ω)
given by

u(x, t) =


1 if x ∈ [t,∞),

x/t if x ∈ (−t, t),
−1 if x ∈ (−∞, t],

which is a locally Lipschitz function. In Example 3.5 we present C1∞-regula-
rization of this problem, while in Example 3.4 we discuss a C1 rarefaction
wave starting from the following discontinuous initial data

u0(x) =

{√
|x|+ 1 if x ≥ 0,

−(
√
|x|+ 1) if x < 0,

which satisfies (1)–(5).
Conservation laws with non-convex fluxes are discussed in [1]; however,

there are several differences between LeFloch’s results and those presented
in this paper. Firstly, and most importantly, LeFloch discusses weak entropy
solutions, while here C1 solutions are considered. Furthermore, in this paper
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a solution is constructed, whereas in [1] the existence is shown by conver-
gence methods. For technical reasons, LeFloch had to assume that the set of
inflection points of the flux function is finite; we do not need this assumption.

2. Existence and uniqueness. We write {Φ(x, t)} for {(x, t) : Φ(x, t)},
where Φ is a condition depending on x, t.

Remark 2.1. Note that the ordinary differential equation

ẋ =

[
f ′(u(x))

1

]
defines a family of characteristics, given by {x = f ′(u0(x0))t+ x0}.

Definition 2.2. Let x be a point of discontinuity of u0. Then the rar-
efaction cone Cx is defined as

Cx = {x+ f ′(u0(x
−))t < x < x+ f ′(u0(x

+))t}.
Analogously, the closed rarefaction cone Cx is defined as

Cx = {x+ f ′(u0(x
−))t ≤ x ≤ x+ f ′(u0(x

+))t}.

Definition 2.3. A function P : Ω → R is called a u0-projection if for
every x ∈ Ω the point (P (x), 0) ∈ ∂Ω is either a point of continuity of u0
such that x lies on the characteristic containing it, or a point of discontinuity
such that x is contained in its closed rarefaction cone.

Proposition 2.4. If cl(contu0) = R and f ′ ◦u0 is non-decreasing, then
there is a unique u0-projection P .

Proof. For any (x, t) ∈ Ω we can find real numbers a0 and b0 such that
the characteristic containing (a0, 0) lies to the left of (x, t), and the charac-
teristic containing (b0, 0) lies to the right of it.

Suppose we have already defined numbers a0 ≤ a1 ≤ · · · ≤ ai and bi ≤
· · · ≤ b1 ≤ b0. From cl(contu0) = R we see that the ball B

(
ai+bi

2 , bi−ai6

)
con-

tains a point of continuity of u0, say χ. Consider the characteristic containing
(χ, 0). If (x, t) lies to the right of it, we define ai+1 = χ and bi+1 = bi; other-
wise we set ai+1 = ai, bi+1 = χ. The intersection of the family ([ai, bi])i∈N is
a singleton {x}, for [ai, bi] ⊂ [ai−1, bi−1] and diam([ai, bi]) ≤ (2/3)i(b0− a0),
so limi→∞ diam([ai, bi]) = 0.

If x ∈ contu0 then (x, t) lies on the characteristic containing (x, 0), and
therefore P (x, t) is uniquely defined. Otherwise Cx contains (x, t) and as
the family {Cx}x/∈contu0

is disjoint it follows that P (x, t) is also uniquely
defined.

Lemma 2.5. If cl(contu0) = R and f ′◦u0 is non-decreasing then the val-
ues of u and f ′ ◦u are uniquely determined on, respectively, Ω \

⋃
x/∈contu0

Cx
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and
⋃

x/∈contu0
Cx. Moreover{

u(x0, t0) = u0(P (x0, t0)) if (x0, t0) ∈ Ω \
⋃

x/∈contu0
Cx,

f ′(u(x0, t0)) = x0−P (x0,t0)
t0

if (x0, t0) ∈
⋃

x/∈contu0
Cx.

Proof. Firstly, let x0 = P (x) for some x ∈ Ω, and suppose x0 ∈ contu0.
The point x lies on the characteristic containing (x0, 0), so u(x) = u0(x0).
The solution u is therefore determined on Ω \

⋃
x/∈contu0

Cx.

Let now x0 = P (x) for some x ∈
⋃

x/∈contu0
Cx. The point x lies between

the lines L− = {x = f ′(u0(x
−))t + x} and L+ = {x = f ′(u0(x

+))t + x}.
Suppose for a moment that the solution u is given on Γ = {t = t0} ∩ Cx.
For any γ ∈ Γ the characteristic containing it does not intersect the lines
L− and L+ in Ω—otherwise it would intersect a characteristic starting from
some point x̃ ∈ contu0 close to x. On the other hand, every characteristic
starting from Γ has to intersect ∂Cx = L−∪L+. Therefore all characteristics
intersect in the vertex

(
R2 \Ω

)
∩Cx = (x, 0) and f ′ ◦ u is linear with given

values on ∂Γ :

f ′(u(f ′(u0(x
−))t+ x, t)) = f ′(u0(x

−)),

f ′(u(f ′(u0(x
+))t+ x, t)) = f ′(u0(x

+)).

Hence,

f ′(u(f ′(u0(x
−))t+ x+ p, t)) = f ′(u0(x

−)) + p/t

for any p ∈ [0, f ′(u0(x
+))t − f ′(u0(x−))t]. By putting x0 = f ′(u0(x

−))t0 +
x+ p we obtain p = x0 − x− f ′(u0(x−))t0, and therefore

f ′(u(x0, t0)) =
x0 − x
t0

.

Lemma 2.6. If u is a solution to the scalar conservation law with initial
data u0 (either in the classical sense, or in terms of Lemma 2.5), and if
cl(contu0) = R and x ∈ contu0, then

ux(f ′(u0(x))t+ x, t) =
1

f ′′(u0(x))t+
(

limcontu03xn→x
u0(x)−u0(xn)

x−xn

)−1 ,
ut(f

′(u0(x))t+ x, t) =
−f ′(u0(x))

f ′′(u0(x))t+
(

limcontu03xn→x
u0(x)−u0(xn)

x−xn

)−1 .
Proof. Let xn ∈ contu0 be a sequence of points such that xn → x. The

partial derivative of u in direction x at (f ′(u0(x))t+ x, t) is given by
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ux(f ′(u0(x))t+ x, t) = lim
n→∞

u(f ′(u0(x))t+ x, t)− u(f ′(u0(xn))t+ xn, t)

[f ′(u0(x))t+ x]− [f ′(u0(xn))t+ xn]

= lim
n→∞

u0(x)− u0(xn)

(f ′ ◦ u0(x)− f ′ ◦ u0(xn))t+ (x− xn)

=
1

f ′′(u0(x))t+
(

limn→∞
u0(x)−u0(xn)

x−xn

)−1 .
Similarly,

ut(f
′(u0(x))t+ x, t) = lim

xn→x

u(f ′(u0(x))t+ x, t)− u(f ′(u0(xn))tn + xn, tn)

t− tn
for f ′(u0(xn))tn + xn = f ′(u0(x))t+ x. Thus,

ut(f
′(u0(x))t+ x, t) = lim

xn→x

f ′(u0(xn))(u0(x)− u0(xn))

f ′(u0(xn))t− f ′(u0(x))t− (x− xn)

=
−f ′(u0(x))

f ′′(u0(x))t+
(

limn→∞
u0(x)−u0(xn)

x−xn

)−1 .
Lemma 2.7. If cl(contu0) = R and conditions (1)–(3) hold, then for

every open interval U such that x ∈ U ∩ contu0 ⇒ f ′′(u0(x)) < 0 (resp.
f ′′(u0(x)) > 0) the function u0|U∩contu0 is non-decreasing (resp. non-
increasing).

Proof. The case of f ′′(u0(x0)) < 0 can be handled analogously to
f ′′(u0(x0)) > 0, so we can consider only the latter case. Suppose, to the
contrary, that there exist points a0 < b0 such that u0(a0) > u0(b0). The
interval [a0, b0] can then be divided by a point χ ∈ B

(
a0+b0

2 , b0−a06

)
so that

χ ∈ contu0 and u0(a0) > u0(χ) or u0(χ) > u(b0). In the former case we
put a1 := a0, b1 := χ, in the latter a1 := χ, b1 := b0. We continue con-
structing the points {ai}i∈N, and {bi}i∈N with the same algorithm. Note
that u0(ai) > u0(bi) for every i, and {[ai,bi]}i∈N is a descending family of
sets. Let {x} =

⋂
i∈N[ai, bi].

If x ∈ contu0 then the continuity of f ′′ implies that there exists a neigh-
borhood Vε = {ũ : |ũ − u0(x)| < ε} of u0(x) such that f ′′(ũ) > 0 for all
ũ ∈ Vε, and a neighborhood Ux 3 x such that u0(Ux) ⊆ Vε. For sufficiently
large n we have an, bn ∈ Ux, which contradicts condition (1).

Suppose x /∈ contu0. Let xn ∈ contu0 be a sequence converging to x
from the left. From f ′′(u0(xn)) > 0 it follows that f ′′(u0(x−)) > 0 (see
condition (3)). The function f ′ is therefore increasing on some open interval
containing [u0(x

−), u0(x
+)]. The inequality u0(x−) > u0(x

+) cannot hold as
f ′ ◦ u0 is non-decreasing. The inequality u0(x−) < u0(x

+) implies existence
of n such that u0(an) < u0(bn), which is a contradiction. Thus we must
have u0(x−) = u0(x

+), and we can assume x ∈ contu0 by putting u0(x) =
u0(x

+).
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Proof of Theorem 1.1. First we show that conditions (1)–(5) are nec-
essary. Suppose cl(contu0) = R and u is a classical solution to the scalar
conservation law with initial data u0. Moreover u0 has no removable discon-
tinuities (which implies Cx 6= ∅ for every x /∈ contu0).

Claim 0. The function x 7→ f ′(u(x, t)) is non-decreasing on contu(·, t)
for every t ≥ 0.

Suppose, to the contrary, that there exist t0 ≥ 0, x0, x1 ∈ contu(·, t0)
such that x0 < x1 and f ′ (u(x0, t0)) > f ′ (u(x1, t0)). The characteristics
containing the points (x0, t0) and (x1, t0) are given by

x0(s) = (f ′(u(x0, t0))(s− t0) + x0, s),

x1(s) = (f ′(u(x1, t0))(s− t0) + x1, s).

Set

t1 =
x1 − x0

f ′ (u(x0, t0))− f ′ (u(x1, t0))
+ t0.

The inequalities on t0, x1, x2 imply t1 > 0. Thus,

x0(t1) = x1(t1) =

(
f ′(u(x0, t0))x1 − f ′(u(x1, t0))x0
f ′(u(x0, t0))− f ′(u(x1, t0))

, t1

)
.

Since u(x0, t0) 6= u(x1, t0) the function u cannot be defined at x0(t1).

Claim 1. The limits u0(x−) and u0(x+) exist for every x /∈ contu0.

The limits f ′(u0(x−)) and f ′(u0(x+)) exist, as f ′ ◦ u is non-decreasing.
Let xn be a sequence of points in contu0 converging to x from one side (it
exists as cl(contu0) = R). For every t > 0 the limit of f ′(u0(xn))t+xn exists.
Hence, the continuity of u implies the existence of the limit

lim
xn→x

u(f ′(u0(xn))t+ xn, t) = lim
xn→x

u0(xn).

For given x /∈ contu0 there is no θ ∈ [u0(x
−), u0(x

+)] such that f ′′(θ) = 0.
Consider f ′ ◦ u on Γ = Cx ∩ {t = t0}. As u(·, t0) is continuous and

u(f ′(u0(x
−))t0 + x, t0) = u0(x

−), u(f ′(u0(x
+))t0 + x, t0) = u0(x

+), every
value from [u0(x

−), u0(x
+)] is in the image of Γ under u. If there existed θ

in this interval such that f ′′(θ) = 0, then also

d

dx
f ′ ◦ u(η, t0) = f ′′(u(η, t)) · ux(η, t) = 0

for θ = u(η, t0). However, from Lemma 2.5 we obtain d
dxf
′ ◦ u(x, t) = 1/t0

on Γ , which contradicts f ′′(θ) = 0.

Claim 2. The function u0 belongs to C1∞(R).
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By Lemma 2.6, for every sequence xn ∈ contu0 converging to x ∈ contu0,
we have

ux(f ′(u0(x))t+ x, t) =
1

f ′′(u0(x))t+
(

limxn→x
u0(x)−u0(xn)

x−xn

)−1 .
The limit in the denominator must exist for the value to be well defined. If
we denote it by u′0(x), then u′0 is a function from R to R. For every t > 0,

(2.1) u′0(x) =
ux(f ′(u0(x))t+ x, t)

1− f ′′(u0(x)) · ux(f ′(u0(x))t+ x, t) · t
.

Thus contu′0 ⊇ D, where

D =

{
x ∈ R : ux(f ′(u0(x))t+ x, t) 6= 1

f ′′(u0(x)) · t

}
.

On every sequence xn converging to a point x ∈ contu0 \ D the function
(u′0)

−1 converges to 0. If x ∈ contu0 \ D, then f ′′(u0(x)) 6= 0, and by
Lemma 2.7 there exists a neighborhood Uε 3 x on which u0 is monotone.
Therefore the derivative u′0 has a constant sign on Uε, and so u′0(xn) must
converge to either +∞ or −∞. Thus, contu′0 = contu0.

Let x /∈ contu0. From Lemma 2.5 it follows that for every (x, t) ∈ Cx,

d

dx
f ′ ◦ u(x, t) = f ′′(u(x, t)) · ux(x, t) =

1

t
.

Let now xn be a sequence converging to x such that xn ∈ contu0. Then

f ′′(u(u0(xn)t+ xn, t))ux(f ′(u0(xn)t+ xn, t)→
1

t
.

On account of Lemma 2.6 we obtain

lim
n→∞

f ′′(u0(xn))

f ′′(u0(xn))t+ (u′0(xn))−1
=

1

t

for every t. Thus, |u′0(xn)| → ∞.

Claim 3. If x ∈ contu0 and f ′′(u0(x)) = 0 then u0 is differentiable at x.

Iff ′′(u0(x)) = 0 then from (2.1) we get |u′0(x)|= |ux(f ′(u0(x))t+x, t)|<∞.
This completes the proof of the necessity of conditions (1)–(5). Now we

shall show that these conditions imply the existence of a classical solution
and its uniqueness in C0(Ω ∪ contu0).

Step 4. Set

(2.2) u(x) =


u0 (P (x)) if x ∈ Ω \

⋃
x/∈contu0

Cx,

(f ′)−1
(
x− P (x)

t

)
if x = (x, t) ∈

⋃
x/∈contu0

Cx.
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The function (f ′)−1 is well defined, because conditions (2) and (3) guarantee
that f ′ : [u0(x

−), u0(x
+)] → [f ′(u0(x

−)), f ′(u0(x
+))] is a diffeomorphism

and condition (1) implies that the u0-projection P is well defined.

Claim 5. We have u ∈ C1(
⋃

x/∈contu0
Cx) ∩ C0(Ω \

⋃
x/∈contu0

Cx).

Let (x0, t0) ∈ Ω\
⋃

x/∈contu0
Cx and (xn, tn)→ (x0, t0). Obviously P (x0, t0)

∈ contu0, and therefore P (xn, tn)→P (x0, t0). Indeed, for sufficiently small δ,
we have B2((x0, t0), δ) ⊂ P−1(B1(P (x0, t0), δ)).

From now on, let (x̃n, t̃n) be the subsequence of (xn, tn) that contains
all elements satisfying (xn, tn) ∈ Ω \

⋃
x/∈contu0

Cx, and let (xn, tn) be the
remaining subsequence. Thus,

u(x̃n, t̃n) = u0(P (x̃n, t̃n))→ u0(P (x0, t0)) = u(x0, t0)

and

u(xn, tn) = (f ′)−1
(
xn − P (xn, tn)

tn

)
.

Condition (2) implies that

lim
n→∞

u0(P (xn, tn)−) = lim
n→∞

u0(P (xn, tn)+) = u(x0, t0),

hence
lim
n→∞

(xn − P (xn, tn)) = f ′(u0(x0, t0))t0,

and therefore u(xn, tn)→ u(x0, t0).
Regularity of (f ′)−1 implies C1-regularity of u on

⋃
x/∈contu0

Cx.

Claim 6. If v ∈ C0(Ω ∪ contu0) is constant along characteristics and
u|{t=0} ≡ v|{t=0} then u ≡ v.

On account of Lemma 2.5 we only need to show that there is a unique
ũ ∈ C0(Cx ∩ {t = t0}) such that

f ′(ũ(x, t0)) = (x− x)/t0 on Cx ∩ {t = t0},
ũ(f ′(u0(x

−))t+ x, t0) = u0(x
−),

ũ(f ′(u0(x
+))t+ x, t0) = u0(x

+).

From the Darboux theorem, [u0(x
−), u0(x

+)] ⊆ ũ
(
Cx ∩ {t = t0}

)
. Suppose,

to the contrary, that there exists (θ, t0) ∈ Cx ∩ {t = t0} such that ũ(θ) /∈
[u0(x

−), u0(x
+)]. Then there exist a < θ < b in Cx ∩ {t = t0} which satisfy

ũ(a, t0) = ũ(b, t0).

However, the equality f ′(ũ(a, t0)) = f ′(ũ(b, t0)) contradicts f ′(ũ(x, t0)) =
(x− x)t−10 . Thus, [u0(x

−), u0(x
+)] = ũ(Cx ∩ {t = t0}) and hence ũ(x, t0) =

(f ′)−1((x− x)t−10 ).

Claim 7. For every x /∈ contu0 and (x0, t0)∈ ∂Cx we have ∇u(xn, tn)→
∇u(x0, t0) whenever (xn, tn)→ (x0, t0).
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Let us consider the case (x0, t0) ∈ {x = f ′(u0(x
−))t+ x}. By (2.2), for a

subsequence of (xn, tn) contained in Cx, we have

∇u(xnk
, tnk

)→
[

1

f ′′(u0(x−))t0
,
−f ′(u0(x−))

f ′′(u0(x−))t0

]
.

Let now x̃n = (x̃n, t̃n) and let xn = (xn, tn) be composed of only those
elements that are not in Cx. From Lemma 2.6 it follows that

ux(x̃n, t̃n) = [f ′′(u0(P (x̃n, t̃n))t+ u′0(P (x̃n, t̃n))−1]−1,

ut(x̃n, t̃n) = −f ′(u0(P (x̃n, t̃n))[f ′′(u0(P (x̃n, t̃n))t+ u′0(P (x̃n, t̃n))−1]−1.

Condition (4) guarantees u′0(P (x̃n, t̃n))−1 → 0, so the desired convergence
holds on (x̃n, t̃n). On the other hand, from (2.2), we get

∇u(xn, tn) =

[
1

f ′′(u(xn, tn))tn
,− xn − P (xn, tn)

f ′′(u(xn, tn))t
2
n

]
,

and limn→∞ xn − P (xn, tn) = f ′(u0(x
−))t0.

Claim 8. For every (x0, t0) ∈ Ω \
⋃

x/∈contu0
Cx we have ∇u(xn, tn) →

∇u(x0, t0) whenever (xn, tn)→ (x0, t0).

Lemma 2.6 gives a formula for ∇u(x0, t0), but it does not guarantee
that the denominators are non-zero. Condition (5) implies that the values
f ′′(u0(P (x, t))) and u′0(P (x, t))−1 cannot both be 0. From Lemma 2.7 it
follows that the values must be of the same sign. Hence,

∇u(x, t)

=

[
1

f ′′(u0(P (x, t)))t+ u′0(P (x, t))−1
,

−f ′(u0(P (x, t)))

f ′′(u0(P (x, t)))t+ u′0(P (x, t))−1

]
is well defined for all points (x, t) such that P (x, t) ∈ contu0. The fact that
P (x̃n, t̃n)→ P (x0, t0) implies ∇u(x̃n, t̃n)→ ∇u(x0, t0).

If |u′0(P (x0, t0))| <∞ then xn cannot converge to (x0, t0). Indeed, other-
wise, from condition (4), we could find a sequence of points of continuity x̌n

converging to (x0, t0) such that |u′0(x̌n)| → ∞. If |u′0(P (x0, t0))| = ∞ then
trivially ∇u(xn, tn)→ ∇u(x0, t0). This completes the proof.

Definition 2.8. We define an operator R by

R(u0)(x) =

{
lim

x→x−
u0(x) if lim

x→x−
u0(x) = lim

x→x+
u0(x),

u(x) else.

Lemma 2.9. Suppose that cl(contu0) = R. There exists a unique solution
v to equation (1.1) with initial data Ru0 if and only if there exists a unique
solution u to equation (1.1) with initial data u0, and moreover u ≡ v on Ω.
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Proof. It has been proved in Lemma 2.5 that the solution u is uniquely
determined on Ω \

⋃
x/∈contu0

Cx. As u must be continuous, we can determine
its values on the closure of this set, that is, on Ω \

⋃
x/∈contu0

Cx.
Let x be a point of removable discontinuity of u0. Then Cx = ∅ and

u(x) = u0(x
+) = u0(x

−) on {x = f ′(u0(x
+))t+ x}. The solution would not

change on Ω if we put u0(x) = u0(x
−). Analogously, if we change the value

of Ru0 at a point of continuity x, the region where the solution changes is
Cx = ∅.

Corollary 2.10. Suppose that cl(contu0) = R and f is linear. There
exists a unique classical solution to equation (1.1) if and only if Ru0 ∈ C1(R).

Corollary 2.11. Suppose that cl(contu0) = R and f is strictly convex.
There exists a unique classical solution to equation (1.1) if and only if Ru0 ∈
C1∞(R) is non-decreasing on contu0.

3. Examples

Remark 3.1. The inclusion C1(R) ⊂ C1∞(R) holds, but it is not true
that either C1∞(R) ⊆ C1(R) or even C1∞(R) ∩ C0(R) ⊆ C1(R).

Example 3.2. Functions that are in C1∞(R):

1. Any function discontinuous at every point is trivially in C1∞(R).
2. An example of a C1∞ ∩ C0 function which is not in C1(R):

v(x) = (sgnx) ·
√
|x|.

3. An example of a C1∞ function which is continuous almost everywhere:

v(x) = (sgnx) · (
√
|x|+ 1),

v(x) =
1

x
.

Example 3.3. Functions that are not in C1∞(R):

1. Any non-constant simple function. For example,

v(x) =

{
0 if x < 0,

1 if x ≥ 0.
2. Any function with infinite limits of both signs of the derivative near a

point of discontinuity. For example

v(x) = |x|−n.
Example 3.4. Let us consider the inviscid Burgers equation with initial

data given by

(3.1) u0(x) =

{√
|x|+ 1 if x ≥ 0,

−(
√
|x|+ 1) if x < 0.
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The solution, given by the closed-form formula

u(x, t) =


√
x− t+ 1

2 t
2 − 1

2 t
√
t2 + 4(x− t) + 1 if x > t,

−
√
−x− t+ 1

2 t
2 − 1

2 t
√
t2 − 4(x+ t)− 1 if −t > x,

x/t if −t ≤ x ≤ t,
is presented in Figure 1.

-0.25

 0

 0.25

 0

 0.1

 0.2

-1

 0

 1

u
(x

,t
)

x
t

Fig. 1. Solution to the inviscid Burgers equation with initial data (3.1)

The functions f and u0 satisfy conditions (1)–(5), so we expect u to be
C1(Ω). Indeed, we can compute

d

dx

(√
x− t+ 1

2 t
2− 1

2 t
√
t2+4(x− t)+1

)
=

1

2

1− t√
t2+4(x−t)√

x− t+ 1
2 t

2− 1
2 t
√
t2+4(x− t)

.

If we define a = x− t and let a→ 0, we obtain

lim
a→0+

d

dx
u(a+ t, t)a = lim

a→0+

√
t2 + 4a−

√
t2√

(t2 + 4a)(4a+ 2t2 − 2t
√
t2 + 4a)

= lim
a→0+

√
2t2 + 4a− 2t

√
t2 + 4a√

(t2 + 4a)(4a+ 2t2 − 2t
√
t2 + 4a)

= lim
a→0+

1√
t2 + 4a

=
1

t
.

It can be similarly shown that ut(x, t)→ −1/t2 when x→ t.
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Example 3.5. Let us consider the inviscid Burgers equation which cor-
responds to the Riemann problem with initial data

u0(x) =

{
−1 if x < 0,

1 if x ≥ 0.

We can find a sequence {uε0} of C1 regularizations that converges almost ev-
erywhere to this initial data, but no such sequence converges in L∞(R). The
main profit of introducing such regularizations (which is obtaining classical
solutions close to a Lipschitz solution of the original problem) can also be
achieved by C1∞ regularizations. Let us define

vε0(x) =


−1 if x < −ε,
−(
√
ε2 − (ε− |x|)2 + (1− ε)) if x ∈ (−ε, 0),√

ε2 − (ε− |x|)2 + (1− ε) if x ∈ (0, ε),

1 if ε < x.
It is easy to check that vε0 satisfies conditions (1)–(5), and moreover
‖u0 − vε0‖L∞(R) = ε.

Let us denote the solution for initial data vε0 by vε. Then
• u = vε on {|x| ∈ [0, t− εt] ∪ [t+ ε,∞)},
• |u− vε| < ε on {(1− ε)t < |x| < t+ ε}, as u(x, t), v(x, t) ∈ (1− ε, 1).

Thus, from Theorem 1.1 it follows that C1(Ω) 3 vε ⇒ u.
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