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ON E-S-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS

CHANGWEN LI (Xuzhou), XUEMEI ZHANG (Yancheng) and
XIAOLAN YI (Hanzhou)

Abstract. The major aim of the present paper is to strengthen a nice result of
Shemetkov and Skiba which gives some conditions under which every non-Frattini G-chief
factor of a normal subgroup E of a finite group G is cyclic. As applications, some recent
known results are generalized and unified.

1. Introduction. All groups considered in this paper will be finite.
Most of the notation is standard and can be found in [4] and [13]. G al-
ways denotes a group, |G| is the order of G, Oy(G) is the maximal normal
p-subgroup of G, and F*(G) is the generalized Fitting subgroup of G, i.e.,
the product of all normal quasinilpotent subgroups of G. The symbol U/
denotes the class of all supersoluble groups. Clearly, U is a saturated forma-
tion.

Two subgroups A and B of a group G are said to be permutable if
AB = BA. A subgroup H of G is said to be S-permutable or S-quasinormal
in G if H permutes with every Sylow subgroup of G (see [0]). There are many
interesting generalizations of S-permutability in the literature. For example,
Ballester-Bolinches and Pedraza-Aguilera [2] called H S-permutably embed-
ded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also
a Sylow p-subgroup of some S-permutable subgroup of G. Again, Skiba
[18] called H weakly S-permutable in G if there is a subnormal subgroup
T of G such that G = HT and HNT < H,;, where Hyg is the sub-
group of H generated by all those subgroups of H which are S-permutable
in G.

We introduce the following concept, which covers both weak S-permu-
tability and S-permutable embeddability.

DEFINITION 1.1. A subgroup H of a subgroup G is said to be FE-S-
supplemented in G if there exists a subnormal subgroup T of G such that
G = HT and HNT < H.g, where H. denotes the subgroup of H generated
by all those subgroups of H which are S-permutably embedded in G.
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EXAMPLE 1.2. Suppose that G = As, the alternating group of degree 5.
Then the Sylow 2-subgroups of G are E-S-supplemented in G, but not
weakly S-permutable in G.

ExaMPLE 1.3. Suppose that G = Sy, the symmetric group of degree 4.
Consider the subgroup H = ((3,4)). Then H is E-S-supplemented in G, but
not S-permutably embedded in G.

In [I7], Skiba improved [I5, Theorem 1.4] by replacing non-Frattini G-
chief factor with G-chief factor. In this paper, we further weaken the hy-
potheses of Skiba’s result from weak S-permutability to being E-S-supp-
lemented and get the following theorem.

THEOREM 1.4. Let E be a normal subgroup of a group G and X < E.
Suppose that for every noncyclic Sylow subgroup P of X, there is an integer
ny, such that 1 < n, < |P| and every subgroup H of P of order ny, as well
as every order 4 cyclic subgroup of P (when n, =2 and P is a nonabelian
2-group), is E-S-supplemented in G. If X = E or X = F*(E), then every
G-chief factor of E is cyclic.

We shall prove Theorem in Section 4. The following useful fact is an
important stage in that proof.

THEOREM 1.5. Let P be a Sylow p-subgroup of a group G, where p is a
prime diwisor of |G| with (|G|, p—1) = 1. Suppose that there is an integer n,
such that 1 < n, < |P| and every subgroup H of P of order n,, and every
cyclic subgroup of P of order 4 (if P is a nonabelian 2-group and n, = 2),
without a p-nilpotent supplement in G is E-S-supplemented in G. Then G
s p-nilpotent.

2. Preliminaries

LEMMA 2.1. Suppose that H is S-permutably embedded in a group G,
L <G and N <4G.

(1) If H < L, then H is S-permutably embedded in L.

(2) The subgroup HN is S-permutably embedded in G and HN/N is
S-permutably embedded in G/N.

(3) If H is a p-subgroup of G contained in Op(G), then H is S-per-
mutable in G.

Proof. (1) and (2) are from [2| Lemma 1]; (3) is [10, Lemma 2.4]. =

LEMMA 2.2. Suppose that H is E-S-supplemented in a group G.

(1) If H < L <@, then H is E-S-supplemented in L.

(2) If N<JG and N < H < G, then H/N is E-S-supplemented in G/N .

(3) If H is a w-subgroup and N is a normal 7' -subgroup of G, then
HN/N is E-S-supplemented in G/N.
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(4) Suppose H is a p-group for some prime p and H # Heg. Then G
has a normal subgroup M such that |G : M| =p and G = HM.
(5) If H < Ou(G) for some prime p, then H is weakly S-permutable
in G.
Proof. By the hypothesis, there exists a subnormal subgroup K of G
such that G = HK and H N K < H.g.
(1) We have

L=LNHK=H(LNK) and HN(LNK)=HNK < H.

Let Ui,...,Us be all the subgroups of H which are S-permutably embed-
ded in G. By Lemma 1), they are S-permutably embedded in L and
so Heg < Hgp. Obviously, L N K is subnormal in L. Hence H is E-S-
supplemented in L.

(2) We have

G/N =HK/N =H/N-NK/N
and
(H/INyN(KN/N)=(HNKN)/N=(HNK)N/N < HgN/N.

Let Uy, ..., Us be all the subgroups of H which are S-permutably embedded
in G. By Lemma [2.1(2), UyN/N,...,UN/N are S-permutably embedded
in G/N and so HegN/N < (H/N)c/ny- Obviously, KN/N is subnormal
in G/N. Hence H/N is E-S-supplemented in G/N.

(3) Since (|G : K|,|N|) =1, we have N < K. It is easy to see that

G/N =HN/N-KN/N =HN/N -K/N
and
(HN/N)N(K/N)=(HNNK)/N=(HNK)N/N < HgN/N
< (HN/N)e@/n)-

Obviously, K/N is subnormal in G/N. Hence HN/N is E-S-supplemented
in G/N.

(4) If K=G,then H=HNK < H.c < H, and so H = H.g, contrary
to the hypotheses. Consequently, K is a proper subgroup of GG. Hence, G
has a proper normal subgroup B such that K < B. Since G/B is a p-group,

G has a normal maximal subgroup M such that |G : M| =pand G = MH.
(5) This follows from Lemma [2.1[3). =

LEMMA 2.3 ([21, Lemma 2.2]). Let G be a group and p a prime dividing
|G| with (|G|,p—1) =1.

(1) If N is normal in G of order p, then N lies in Z(QG).

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.

(3) If M <G and |G : M| = p, then M <G.
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LEMMA 2.4. Let P be a noncyclic Sylow p-subgroup of a group G, where
p is a prime divisor of |G| with (|G|,p—1) = 1. If every mazimal subgroup
of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Proof. Let My Ty = G where T3 is p-nilpotent and M; is maximal in
P. We can assume that Ty = Ng(H;) for some Hall p’-subgroup Hp of G.
Clearly, P = M, (P NT1).

Suppose that PNTy # P. Then we can choose a maximal subgroup Mo
in P containing P NTy. By assumption, G = MsT5 where 75 is p-nilpotent.
Again, we can assume that To = Ng(Hz) for some Hall p/-subgroup H,
of G. If p = 2, then Hy and H» are conjugate in G by applying a deep
result of Gross. If p > 2, then G is a soluble group by the Feit-Thompson
Theorem and so H; and H> are also conjugate in G. Then we have H{ = H»
for some x € G. Therefore, G = M1} = MyTy = MYIY = MyT; and
P = My(PNTy) = Ms, a contradiction.

Hence P N1y = P, which implies the p-nilpotency of G. u

LeEmMMA 2.5 ([I5, Lemma 2.6]). Let V' be an S-permutable subgroup of
order 4 of a group G.

(1) If V.= A x B, where |A| = |B| = 2 and A is S-permutable in G,
then B is S-permutable in G.
(2) If V = (z) is cyclic, then (x?) is S-permutable in G.

LEMMA 2.6. Let G be a group and P a Sylow p-subgroup of G, where p
is a prime dividing |G| with (|G|,p — 1) = 1. If every cyclic subgroup of P
of prime order or of order 4 (when P is a nonabelian 2-group) without a p-
nilpotent supplement in G is E-S-supplemented in G, then G is p-nilpotent.

Proof. In view of Lemma[2.3(2), this easily follows from the proof of [7,
Theorem 3.3]. =

LEMMA 2.7. Let P be a Sylow p-subgroup of a group G, where p is a
prime divisor of |G| with (|G|,p — 1) = 1. If every maximal subgroup of P
without a p-nilpotent supplement in G is E-S-supplemented in G, then G is
p-nilpotent.

Proof. In view of Lemma[2.3(2), this easily follows from the proof of [7,
Theorem 3.2]. =

LeMMA 2.8 ([I4, Lemma Al). If P is an S-quasinormal p-subgroup of a
group G for some prime p, then Ng(P) > OP(G).

LEMMA 2.9 ([16, Theorem C]). Let E be a normal subgroup of a group G.
If every G-chief factor of F*(E) is cyclic, then every G-chief factor of E is
cyclic.
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LemMA 2.10 ([3, IV, 3.11]). If Fi and Fa are two saturated formations
such that Fy C Fa, then Zr, (G) < Zz,(G).

3. Proof of Theorem Suppose that the theorem is false and let
G be a counterexample of minimal order. We will derive a contradiction in
several steps.

(1) ny > p.

This follows from Lemma 2.6.

2) |Pl/ny > p.

This follows from Lemma

(3) G has no subgroup of index p.

Suppose that G has a subgroup M such that |G : M| = p. Then M
satisfies the hypotheses of the theorem by Step (2) and Lemma [2.2(1). The
choice of G guarantees that M is p-nilpotent. By Lemma 3), MJG. It
follows that G is p-nilpotent, a contradiction.

(4) If H is a subgroup of P with |H| = n,, then either H has a p-
nilpotent supplement in G, or H = Heg.

Let H < P with |H| = n,. Assume that H has no p-nilpotent supplement
in G. If H # H.g, then we may assume G has a normal subgroup M such
that |G : M| = p and G = HM by Lemma [2.2[4), contrary to Step (3).

(5) O (G) = 1.
If Oy(G) # 1, Lemma [2.2(3) guarantees that G/Oy(G) satisfies the

hypotheses of the theorem. Thus G/O,/(G) is p-nilpotent by the choice of G.
Then G is p-nilpotent, a contradiction.

(6) If H is a subgroup of P with |H| = n,, then either H has a p-
nilpotent supplement in G, or H is S-permutable in G.

Let H be a subgroup of P of order n, without a p-nilpotent supplement
in G. By Step (4), H = He. Let Uy, ..., Us be all the nontrivial subgroups
of H which are S-permutably embedded in G. For every i € {1,..., s}, there
is an S-permutable subgroup K; of G such that U; is a Sylow p-subgroup
of K;. Obviously, K; # G. Suppose that for some i € {1,...,s}, we have
G = PK;. Then |G : K;| is p-power. From the S-permutability of K;, we get
K; < <G. It follows that G has a normal subgroup of index p, contrary to
Step (3). Thus, for all ¢ € {1,..., s}, we have G > PK;. Then PK, satisfies
the hypotheses of the theorem by Lemma (1) From the choice of G, PK;
is p-nilpotent and so K; is p-nilpotent. Let Kj;, be a normal p-complement
of K;. By Step (5), K;y < Op(G) = 1, which shows that U; = K;, and so
H is S-permutable in G.
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(7) Suppose N is a minimal normal subgroup of G contained in P. Then
IN| < nyp.

Suppose that |[N| > n,. Since N < O,(G), N is elementary abelian.
If a subgroup H of N of order n, has a p-nilpotent supplement T in G,
then G = HT = NT. Hence N N'T < G. By the minimality of N, either
NNT=1lor NNT=N.IfNNT =1,then N=NNHT =H(NNT)=H,
a contradiction. Thus N NT = N and G = NT =T, also a contradiction.
Hence we may chose a subgroup H of N of order n, such that H < P. In
view of Lemma H < POP(G) = G, contrary to the minimality of N.

(8) Suppose that p = 2, |P|/n, > 2 and some subgroup H of P of
order 4 has a 2-nilpotent supplement T in G. Then H is not cyclic,
G/Tq = Ay, no subgroup of H of order 2 is S-permutable in G, and
To 1s a 2-group.

In view of Step (3), |G : T| = 4. By considering the permutation rep-
resentation of G/T¢ on the right cosets of T'/T¢ one can see that G/T¢ is
isomorphic to some subgroup of the symmetric group S4. But since G does
not have a subgroup M with |G : M| = 2 by Step (3), we have G/Tg = A4. It
follows that H = HTq /T is not cyclic. Since Oy (G) = 1 by Step (5), we de-
duce that Oy (T) = 1. Hence T is a 2-group. Suppose that some subgroup
V of H of order 2 is S-permutable in G and let @) be a Sylow 3-subgroup
of T. Then V' < Ng(Q). On the other hand, since T is 2-nilpotent and
|T| = 2"3, we have T' < Ng(Q). Hence |G : Ng(Q)| = 2, a contradiction.

(9) If P is a nonabelian 2-group and |P|/n, > 2, then n, > 4.

Since P is a nonabelian 2-group, it has a cyclic subgroup H = (x) of
order 4. Suppose that n, = 4. Then from Step (6) and |P|/n, > 2 we
know that every subgroup of P of order 4 without a 2-nilpotent supplement
in G is S-permutable in G. Hence in view of Step (8), H is S-permutable
in G. Then by Lemma (2)7 (z%) is S-permutable in G. Now note that
if G has a subgroup V = A x B of order 4, where |A] = 2 and A is S-
permutable in G, then V and B are S-permutable in G by Step (8) and
Lemma [2.5(1). Therefore some subgroup Z of Z(P) with |Z] = 2 is S-
permutable in GG. Hence every subgroup of P of order 2 is S-permutable
in GG, which contradicts Step (1).

(10) If N is an abelian minimal normal subgroup of G contained in P,
then the hypotheses of Theorem 1.5 are still true for G/N.

If either p > 2 and |[N| < np, or p = 2 and 2|N| < np, this is clear.
So let p > 2 and |N| = np, or p = 2 and |N| € {ny,n,/2}. By Step (6)
every subgroup H of P of order n, without a p-nilpotent supplement in G
is S-permutable in G. Moreover, in view of Step (1), n, > p. Suppose that
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|N| = np. Then N is noncyclic and hence every subgroup of G containing
N is noncyclic. Let N < K < P, where |K : N| = p. Since K is noncyclic,
it has a maximal subgroup L # N. If L or N has a p-nilpotent supplement
in G, then K does. Otherwise, K = LN is S-permutable in G, as it is the
product of two subgroups S-permutable in G. Thus if either p > 2 or P/N
is abelian, the hypotheses of the theorem are true for G/N by Lemma

Next suppose that P/N is a nonabelian 2-group. Then P is nonabelian,
so n, >4 by Step (9). Let N < K <V where |V : N|=4and |V : K| =2.
Let K7 be a maximal subgroup of V' such that V = K; K. Suppose that K;
is cyclic. Then N ¢ Ky, so V = KN, which implies |[N| = 4. But then
n, = 4, which contradicts Step (9). Hence K is noncyclic and hence as
above one can show that K either is S-permutable in G or has a 2-nilpotent
supplement in G. Therefore every subgroup of P/N of order 2 or 4 without
a p-nilpotent supplement in G/N is S-permutable in G/N.

Finally, suppose that n, = 2|N|. If [N| > 2, then as above one can show
that every subgroup of P/N of order 2 or 4 (if P/N is nonabelian) without
a 2-nilpotent supplement in G/N is S-permutable in G/N. Now, suppose
that |N| = 2 and P/N is nonabelian. Then P is nonabelian and n, = 4,
which contradicts Step (9).

(11) Op(G) = 1.

If O,(G) # 1, then G/O,(G) is p-nilpotent by Step (10). This means
that G has a subgroup of index p, contrary to Step (3).

(12) If L is a minimal normal subgroup of G, then L is not p-nilpotent.

Assume that L is p-nilpotent. Let L,y be the normal p-complement of L.
Since L, char L < G, we have L,y <4 G and so Ly < Oy(G) = 1 by
Step (5). It follows that L is a p-group and so L < O,(G) =1 by Step (11),
a contradiction.

(13) If L is a minimal normal subgroup of G, then G = LP.

Obviously, LP satisfies the hypotheses of the theorem. If LP < G, then
the choice of G implies that LP is p-nilpotent. It follows that L is p-nilpotent,
contrary to Step (12).

(14) G is a nonabelian simple group.

Take a minimal normal subgroup L of G. If L < G, then by Step (13),
G = LP. Then G has a subgroup of index p, contrary to Step (3). Thus
G = L is simple.

(15) The final contradiction.

If every subgroup H of P of order n, has a p-nilpotent supplement in G,
then every maximal subgroup of P has a p-nilpotent supplement in G. It
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follows that G is p-nilpotent by Lemma 2.4] a contradiction. Thus, there is
a subgroup R of P of order n, that is S-permutable in G by Step (6). The
subnormality of R implies that G is not simple, contrary to Step (14).

4. Proof of Theorem [1.4]

CASE I: X = E. Suppose that the theorem is false and consider a coun-
terexample (G, E) for which |G| |E| is minimal. Let P be a Sylow p-subgroup
of E, where p is the smallest prime dividing |E|.

(1) If K is a Hall subgroup of E, the hypotheses of Theorem 1.4 are still
true for (K, K). Moreover, if K is normal in G, then the hypotheses
also hold for (G, K) and for (G/K,E/K).

This follows directly from Lemma [2.2
(2) If K is a nonidentity normal Hall subgroup of E, then K = E.

Since K is a characteristic subgroup of FE, it is normal in G and by
Step (1) the hypotheses are still true for (G/K, E/K) and (G, K).If K # E,
the minimal choice of (G, E) implies that E/K < Z(G/K) and K < Zy/(G).
Hence E < Z;(G), a contradiction.

(3) If E # P, then E is not p-nilpotent.

Indeed, if E is p-nilpotent, then by Step (2), p does not divide |F|,
contrary to the choice of p.

(4) P is not cyclic.

This follows from Step (3) and Lemma [2.3|(2).

(5) E = P.

By Lemma (1)7 every subgroup H of P of order n,, as well as every
order 4 cyclic subgroup of P (when n, = 2 and P is a nonabelian 2-group),
is E-S-supplemented in E. By Theorem E is p-nilpotent. By Step (3),
E=P.

(6) Ewvery subgroup H of P of order n,, as well as every order 4 cyclic
subgroup of P (when n, = 2 and P is a nonabelian 2-group), is
weakly S-permutable in E.

This follows from Lemma [2.2/(5).
(7) The final contradiction.

By the Theorem in [I7], each G-chief factor below E is cyclic, a contra-
diction.

CAsE II: X = F*(E). The proof in the case X = F shows that F*(E) <
Z11(G), which implies that E < Z;;(G) by Lemma
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5. Some applications. From Theorem [I.5] we obtain the following
statement.

THEOREM 5.1. Let P be a Sylow p-subgroup of a group G, where p is
the smallest prime diwvisor of |G|. Suppose that there is an integer n, such
that 1 < n, < |P| and every subgroup H of P of order n,, and every
cyclic subgroup of P of order 4 (if P is a nonabelian 2-group and n, = 2),
without a p-nilpotent supplement in G is E-S-supplemented in G. Then G
is p-nilpotent.

COROLLARY 5.2 ([11, Theorem 3.2]). Let p be a prime dividing the order
of a group G with (|G|,p — 1) = 1. If there exists a Sylow p-subgroup P of
G such that every mazximal subgroup of P is weakly s-permutable in G, then
G is p-nilpotent.

COROLLARY 5.3 ([2, Theorem 1]). Let P be a Sylow p-subgroup of a
group G, where p is the smallest prime divisor of |G|. If every mazimal
subgroup of P is S-permutably embedded in G, then G is p-nilpotent.

From [19], we know that a subgroup H of a group G is c-normal in G if
G has a normal subgroup 7" such that G = HT and HNT < Hg.

COROLLARY 5.4 ([5, Theorem 3.4]). Let P be a Sylow p-subgroup of a
group G, where p is the smallest prime divisor of |G|. If every mazimal
subgroup of P is c-normal in G, then G is p-nilpotent.

COROLLARY 5.5 ([8, Theorem 3.1]). Let P be a Sylow p-subgroup of a
group G, where p is the smallest prime divisor of |G|. If every mazimal
subgroup of P is weakly S-permutably embedded in G, then G is p-nilpotent.

THEOREM 5.6. Let F be a saturated formation containing all supersol-
uble groups and let X < E be a normal subgroup of a group G such that
G/E € F. Suppose that for every noncyclic Sylow subgroup P of X, there
is an integer n, such that 1 < n, < |P| and every subgroup H of P of
order ny, as well as every order 4 cyclic subgroup of P (when n, = 2 and
P is a nonabelian 2-group), is E-S-supplemented in G. If X is either E or
F*(E), then G € F.

Proof. Since E < Zy(G) by Theorem and Zy(G) < Zr(G) by
Lemma we have £ < Zx(G) and so G/Zr(G) = (G/E)/(Zr(G)/E)
€ F. It follows that G € F. =

COROLLARY 5.7 ([12, Theorem 3.3]). Let F be a saturated formation
containing U. If there is a normal subgroup H of a group G such that
G/H € F and every mazimal subgroup of any Sylow subgroup of H is
c-normal in G, then G € F.
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COROLLARY 5.8 ([12, Theorem 3.9]). Let F be a saturated formation
containing U. Then G € F if and only if there is a normal subgroup H of
G such that G/H € F and all subgroups of H of prime order or of order 4
are c-normal in G.

COROLLARY 5.9 ([22] Theorem 3.1]). Let F be a saturated formation
containing U. Suppose that G is a group with a normal subgroup H such
that G/H € F. If all maximal subgroups of any Sylow subgroup of F*(H)
are c-normal in G, then G € F.

COROLLARY 5.10 (J20, Theorem 1]). Let F be a saturated formation
containing U. Suppose that G is a group with a solvable normal subgroup
H such that G/H € F. If all mazimal subgroups of all Sylow subgroups of
F(H) are c-normal in G, then G € F.

COROLLARY 5.11 ([9, Theorem 1.1]). Let F be a saturated formation
containing U and let G be a group. If there is a mormal subgroup H such
that G/H € F and all maximal subgroups of any Sylow subgroup of F*(H)
are S-permutably embedded in G, then G € F.

COROLLARY 5.12 ([9, Theorem 1.2]). Let F be a saturated formation
containing U and let G be a group. If there is a mormal subgroup H such
that G/H € F and all subgroups of F*(H) of prime order or of order 4 are
S-permutably embedded in G, then G € F.

COROLLARY 5.13 ([I, Theorem 3.3]). Let F be a saturated formation
containing U and let G be a group. If there is a mormal subgroup H such
that G/H € F and all mazimal subgroups of all Sylow subgroups of H are
S-quasinormally embedded in G, then G € F.
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