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ON THE STABILITY OF THE UNIT CIRCLE WITH MINIMAL
SELF-PERIMETER IN NORMED PLANES

BY

HORST MARTINI (Chemnitz) and ANATOLY SHCHERBA (Cherkassy)

Abstract. We prove a stability result on the minimal self-perimeter L(B) of the unit
disk B of a normed plane: if L(B) = 6 + ε for a sufficiently small ε, then there exists an
affinely regular hexagon S such that S ⊂ B ⊂ (1 + 6 3

√
ε)S.

1. Basic notions and introduction. Let B be a convex figure centered
at the origin O of the Euclidean plane R2. In what follows, we identify
the points of R2 with their position vectors. The convex figure B and its
boundary ∂B are called the unit disk resp. unit circle of the normed (or
Minkowski) plane M2 induced by B. In the literature, B is often also called
the normalizing figure of the normed plane M2 (see [6, Definition 11.2]). We
will use the distance function | · | of R2 as an auxiliary metric for M2. The
Minkowskian distance function gB(x) of M2 is defined by

gB(x) = |x|/|x̂| > 0,

where x ∈ M2, x 6= O and x̂ = [O, x) ∩ ∂B. Here [O, x) is the ray with
starting point O passing through x.

In a standard way (see [9]), the distance function gB(x) defines the dis-
tance between arbitrary points x and y of M2 by

(1) ‖x− y‖ = gB(y − x).
Definition. For two distinct points a and b, the normalizing vector of

the connecting segment ab is defined to be the point ’b− a ∈ ∂B, that is,

(2) ’b− a = ab/‖ab‖ with ab = b− a.
Further on, we denote by xy the segment and by (xy) the straight line

defined by the points x 6= y. The symbol 4abc is used for the triangle
determined by non-collinear vertices a, b and c; writing only abc, we mean
the polygonal arc (broken line) from a to b. For more than three points, the
context will clarify whether we mean a polygonal arc or an n-gon. By ∠abc
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we mean the angle with apex b, and by ∠(mn, qr) the angle between the
vectors mn = n−m and qr = r − q.

Let P ⊂ M2 be a convex bounded polygon. Denote by l(P ) the sum
of the lengths of all its sides defined via (1). Denote by {P} the set of all
convex polygons located inside a compact convex figure K. The perimeter
of the figure K ⊂M2 is defined by

L(K) = sup
P∈{P}

l(P ).

It is widely known (see [6, p. 110] and [15, p. 112]) that if Φ is a convex
figure and Φ ⊂ K, then

(3) L(Φ) ≤ L(K).

And clearly, if P ⊂ M2 is a convex polygon, then L(P ) = l(P ). The
perimeter L(B) of the unit disk B ofM2 is called its self-perimeter. S. Gołąb
(see [2] and also [3]) proved that

6 ≤ L(B) ≤ 8

and, moreover, that L(B) = 6 holds if B is an affinely regular hexagon, and
L(B) = 8 holds if B is a parallelogram. E.g., Yu. G. Reshetnyak [10] and
D. Laugwitz [5] reproved the result of S. Gołąb.

J. J. Schäffer [11] proved that the affinely regular hexagon is the only
normalizing figure with minimal value of L(B) and that the parallelogram
is the only normalizing figure with the maximal value of L(B).

It is natural to investigate analogous problems also in d-dimensional
normed (or Minkowski) spaces, where d ≥ 3. The most important analogues
of “circumference” are the surface area measures of Holmes–Thompson (see
Chapter 6 of [15]) and of Busemann (cf. Chapter 7 of that book). The case
of Holmes–Thompson self-surface-area of the unit ball B is presented in
[15, §6.5]; the upper bound given there is only sharp for the planar case, and
non-sharp lower bounds are also given (with special results for unit balls
that are zonoids or their duals). For the Busemann self-surface-area of B,
discussed in [15, §7.4], the sharp upper bound is given in Theorem 7.4.1 there
and attained if and only if B is a d-parallelotope; lower bounds are presented
in Theorems 7.4.4 and 7.4.6.

In the case of a non-symmetric convex distance function (or gauge) onM2

(i.e., B 6= −B) it is known that the oriented self-perimeters satisfy
L±(B) ≥ 6, and that equality is possible only if B is an affinely regular
hexagon (see [4], [12], and [13]). More results on the non-symmetric case can
be found in [7] and [8]; see also the references given there.

2. The result. The stability of the unit disk B with respect to the
value of its self-perimeter was first considered in [14]. The following stabi-
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lity theorem was proved there; it refers to the case when for B = −B the
self-perimeter is close to the maximal value.

Theorem A. If for a normed plane L(B) = 8(1 − ε) (0 ≤ ε ≤ 0.04),
then there exists a parallelogram P , symmetric with respect to the origin O,
such that

P ⊂ B ⊂ (1 + 18ε)P.

In this paper we prove the following stability theorem related to the
minimal value of L(B), also with B = −B.

Theorem. Let the self-perimeter L(B) of the unit disk B of a normed
plane M2 satisfy the equality

(4) L(B) = 6 + ε (0 ≤ ε ≤ 0.001).

Then there exists an affinely regular hexagon S centered at the origin O such
that

(5) S ⊂ B ⊂ (1 + 6 3
√
ε)S.

The authors do not know whether the dependence on ε in this theorem
is best possible; this is a topic for further research.

3. Proof of the results. In the proof of our theorem we use some
auxiliary statements. Without loss of generality, we consider a convex nor-
malizing figure B ⊂ M2 located in the Euclidean auxiliary plane R2. Fol-
lowing S. Gołąb, we inscribe an affinely regular hexagon A6 centered at
the origin O into the unit circle ∂B (see [15, §4.1]). We use the auxiliary
Euclidean metric in such a way that A6 ⊂ R2 becomes a regular hexagon
a1a2a3a4a5a6 with the vertices

a1(−1/2;
√
3/2), a2(1/2;

√
3/2), a3(1; 0),

a4(1/2;−
√
3/2), a5(−1/2;−

√
3/2), a6(−1; 0),

in the Cartesian coordinate system xOy. We call A6 the regular unit hexagon.
For certain reasons, we designate the vertices of each polygon considered
clockwise. We denote by ıab the arc of the unit circle ∂B between a and b,
oriented clockwise, and L(ıab) means the arc length of ıab with respect to the
metric of M2.

Remark 1. If A6 ⊂ M2 is a regular unit hexagon inscribed in the unit
circle ∂B with self-perimeter L(B) satisfying (4), then the lengths ˚�akak+1 ⊂
∂B satisfy

(6) 1 ≤ L(˚�akak+1) ≤ 1 + ε/2, k = 1, . . . , 6.



72 H. MARTINI AND A. SHCHERBA

Proof. Evidently, ‖akak+1‖ = 1, k = 1, . . . , 6, where a7 = a1. Due to
B = −B we have L(˚�akak+1) = L(˛�ak+3ak+4), k = 1, 2, 3, and by (4),

6 + ε = L(B) = 2(L(ā6a1) + L(ā1a2) + L(ā2a3)).

Consider the convex figure A with boundary

∂A = a6a1 ∪ ā1a2 ∪ a2a3 ∪ a3a4 ∪ ∪ā4a5 ∪ a5a6.
The inclusions A6 ⊂ A ⊂ B and inequality (3) imply

6 ≤ 4 + 2L(ā1a2) ≤ 6 + ε.

Hence,
1 ≤ L(ā1a2) ≤ 1 + ε/2.

In an analogous way we get the same inequality for all L(˚�akak+1), which
completes the proof of (6).

The Hausdorff distance ρ(K1;K2) between convex, compact sets K1

and K2 is defined by

ρ(K1;K2) = max
{

sup
x∈K1

inf
y∈K2

|xy|, sup
y∈K2

inf
x∈K1

|xy|
}
.

Since A6 ⊂ B, the Hausdorff distance between the unit disk B and its
inscribed hexagon A6 is given by

ρ(B;A6) = max
x∈B

min
y∈A6

|xy|.

To simplify the evaluation of ρ(K1;K2), we use the following fact (see [6, §14,
Theorem 14.1]). Note that the support function hK(u) of a compact convex
set K ⊂ R2 is defined by hK(u) = max{〈x, u〉 : x ∈ K}, where 〈·, ·〉 denotes
the usual scalar product and u is an arbitrary unit vector in the Euclidean
background metric; see [6, §12].

Theorem B. If K1 and K2 are non-empty compact convex sets in R2

with the corresponding support functions h1(u) and h2(u), then

(7) ρ(K1;K2) = max
|u|=1

|h2(u)− h1(u)|.

Denote by ν one of the points on the unit circle ∂B for which the equality
ρ(ν;A6) = ρ(B;A6) holds. To fix ideas, suppose ν ∈ ā1a2. For the straight
lines (a6a1) and (a3a2), we consider {q1} = (a6a1) ∩ (a3a2). The convexity
of B implies ā1a2 ⊂ 4a1q1a2. It is easy to see that ρ(ν; a1a2) = ρ(B;A6).
We set t = ρ(ν; a1a2).

Remark 2. If t ≤ 5
√
ε (0 ≤ ε ≤ 0.001), then the inequalityÇ√
3

2
+ 5
√
ε

å
:

√
3

2
≤ 1 + 2 3

√
ε
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implies the inclusions A6 ⊂ B ⊂ (1 + 2 3
√
ε)A6. Hence, to prove (5) it is

sufficient to assume S = A6. The case ε = 0 corresponds to the case L(B) = 6
and has already been studied in [11].

According to Remark 2 it is sufficient to consider t > 5
√
ε, 0 < ε ≤ 0.001.

However, the corresponding case analysis uses some results which are true
even for t > 4

√
ε.

We write c2 = ◊�ν − a1 and c3 = ◊�a2 − ν (cf. (2)).

Proposition 1. If t > 4
√
ε (0 < ε ≤ 0.001), then

(8) min{ρ(c2; a2a3); ρ(c3; a3a4)} ≥ 0.9t.

Proof. By construction 4a1νa2 ⊂ 4a1q1a2, where 4a1q1a2 is a right
triangle. The ray [Oc2) for c2 ∈ ā2a3 meets a2a3 at some point p1, and the
ray [Oc3) for c3 ∈ ā3a4 meets a3a4 at some point u1.

We prove that ρ(c3; a3a4) ≥ 0.9t; the proof of ρ(c2; a2a3) ≥ 0.9t is similar.
Suppose ρ(c3; a3a4) < 0.9t. Keeping in mind (3) and (6), we estimate the
lengths of the sides of 4a1νa2 by

(9) 1 = ‖a1a2‖ ≤ ‖a1ν‖+ ‖νa2‖ ≤ L(ā1a2) ≤ 1 + ε/2.

If νw is the height of 4a1νa2 with endpoint ν, then |νw| = t. If ∠νa1w = α
and ∠νa2w = β, then ∠a3Op1 = α and ∠a3Ou1 = β. Denote by p1p0
and u1u0 the heights of 4Op1a3 and 4Oa3u1 with endpoints p1 and u1,
respectively.

If we introduce T = |p1p0| and H = |u1u0|, then the equalities ∠Oa3p1 =
∠Oa3u1 = π/3 imply T (cotα + 1/

√
3) = H(cotβ + 1/

√
3) = 1. If we con-

struct a homothety 4Oa′2a′3 ≈ 4Oa2a3 so that c2 ∈ a′2a′3, the ratio k of this
homothety satisfies

k = |Op1|/|Oc2| ≥
√
3/(
√
3 + 2t),

since ρ(c2; a2a3) ≤ ρ(B;A6) = t. The similarity 4Op1p0 ∼ 4a1νw implies
|a1ν|/|Op1| = t/T , and hence

‖a1ν‖ =
|a1ν|
|Oc2|

=
|a1ν|
|Op1|

· |Op1|
|Oc2|

≥ t

T
·
√
3√

3 + 2t
.

In a similar way, if we construct a homothety 4Oa′′3a′′4 ≈ 4Oa3a4 with
c3 ∈ a′′3a′′4, since ρ(c3; a3a4) < 0.9t the homothety ratio is

|Ou1|/|Oc3| ≥
√
3/(
√
3 + 1.8t).

The similarity 4a2wν ∼ 4Ou0u1 implies

‖νa2‖ =
|νa2|
|Oc3|

=
|νa2|
|Ou1|

· |Ou1|
|Oc3|

≥ t

H
·

√
3√

3 + 1.8t
.
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As a consequence,

‖a1ν‖+ ‖νa2‖ ≥
√
3 t

Ç
cotα+ 1/

√
3√

3 + 2t
+

cotβ + 1/
√
3√

3 + 1.8t

å
.

In 4a1νa2 we have t(cotα+ cotβ) = 1, and hence

‖a1ν‖+ ‖νa2‖ ≥ t ·
3.8
√
3 + 3/t+ 3.8t+ 0.2

√
3 t · cotβ

3.6t2 + 3.8
√
3 t+ 3

= 1 +
0.2(
√
3 cotβ + 1)

(
√
3 + 2t)(

√
3 + 1.8t)

· t2.

The inclusion 4a1νa2 ⊂ 4a1q1a2 implies t ≤
√
3/2 and cotβ ≥ 1/

√
3.

Then ‖a1ν‖ + ‖νa2‖ ≥ 1 + 2t2/57. By (9) we have t ≤
√
57
√
ε/2 < 4

√
ε.

This contradiction proves Proposition 1.

Corollary 1. The angle γ between the straight lines (a3c2) and (a3c3)
satisfies

(10) sin γ ≤ 3ε

8t
.

Proof. For 4Oc2a3 we write ϕ = ∠Oa3c2, and for 4Oa3c3 analogously
ψ = ∠Oa3c3. Since a2, c2, a3, c3, a4 lie on ∂B, we have π/3 ≤ ϕ,ψ ≤ 2π/3
and ϕ+ ψ ≤ π. Let T1 and H1 be the lengths of the heights of 4Oc2a3 and
4Oa3c3, respectively, with respect to the common base (Oa3). Evidently,
T1(cotα+ cotϕ) = H1(cotβ + cotψ) = 1 = t(cotα+ cotβ). Then

‖a1ν‖+ ‖νa2‖ =
|a1ν|
|Oc2|

+
|νa2|
|Oc3|

=
t

T1
+

t

H1
= t(cotϕ+ cotψ) + 1.

By (9) we have 0 ≤ t(cotϕ + cotψ) ≤ ε/2. Since γ = π − (ϕ + ψ)
and 0 ≤ γ ≤ π/3, we have 0 ≤ cotϕ − cot(ϕ + γ) ≤ ε/(2t) or 0 ≤
sin γ/(sinϕ · sin(ϕ+ γ)) ≤ ε/(2t). Since π/3 ≤ ϕ + γ ≤ 2π/3, we have
sinϕ ≥

√
3/2 and sin(ϕ + γ) ≥

√
3/2. Hence (10) follows immediately, and

Corollary 1 is proved.

Proposition 2. Let abnm be a convex quadrangle. If abnm ⊂ 4abf ,
then

(11) ρ(abnm;4abf) ≤ min{|fn|; |fm|}.
Proof. Let E denote the unit disk of the Euclidean plane R2. Then

f ∈ {n}+|fn|E ⊂ abnm+|fn|E. Thus, by convexity,4abf ⊂ abnm+|fn|E,
and so ρ(4abf ; abnm) ≤ |fn|. Similarly, ρ(4abf ; abnm) ≤ |fm|, and Propo-
sition 2 is proved.

Corollary 2. If 4abn ⊂ 4abm, then ρ(4abm;4abn) = |nm|.
Proposition 3. Let 4abc be a right triangle with |ab| = 1 and suppose

4abn⊂4abm⊂4abc. If the height np of4abn has length |np| ≥ t/
√
3 > 0,
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∠nbm = µ1 ≤ µ0 and ∠man = µ2 ≤ µ0, then

(12) |nm| ≤
√
3

t
sinµ0.

Proof. For n = m, inequality (12) is trivial. Suppose n 6= m. Note that
the straight line (mn) meets the side ab.

Denote by ϕ1 the angle between the vectors ca and mn, i.e., ϕ1 =
∠(ca,mn). Construct the vector cq = mn. Observe that the ray [cq) meets
the straight line (ab), and hence −2π/3 ≤ ϕ1 ≤ π/3. Denote ϕ2 = ∠(mn, cb).
For similar reasons, we have −2π/3 ≤ ϕ2 ≤ π/3.

Consider ϕ = max{ϕ1;ϕ2}. If ϕ = −π/6, then the vectors mn and ab are
mutually orthogonal. The vectors ca and cb are symmetric with respect to the
angle bisector of ∠bca, and hence ϕ ≥ −π/6. Without loss of generality, we
may assume ϕ = ϕ1. With this assumption, we introduce {m1} = (bm)∩ ca.

Considering the homothety 4bmn ≈ 4bm1n1, we see that |mn| ≤
|m1n1|. In 4bm1n1, denote < = ∠bm1n1 and ξ = ∠m1n1b; moreover, set
∠abn1 = α. Then < depends on the position of m1 on ca, i.e., < = <(m1).

We intend to find the variation margins for <(m1) depending on the
location of the starting point of the vector m1n1 with fixed length |m1n1|.
Observe that the constant angle ∠(m1n1, ba) equals π− (<+∠abm1). Thus,

<1 = min
m1
<(m1) = <(c) ≥ π/6,

<2 = max
m1
<(m1) ≤ π − ∠abm1 = π − (∠abn+ ∠nbm) = π − (α+ µ1).

It follows that π/6 + µ1 ≤ <+ µ1 ≤ π − α, and hence ξ = ∠m1n1b satisfies
0 < α ≤ ξ ≤ 5π/6− µ1, where 0 ≤ µ1 < π/3. Then

sin ξ ≥ min{sinα; sin(5π/6− µ1)} ≥ min{sinα; 1/2}.
By hypothesis, the height np of 4abn satisfies |np| ≥ t/

√
3. Hence, sinα =

|np|/|bn| ≥ t/
√
3. Considering 4bm1n1, we get

|mn| ≤ |m1n1| = sinµ1 ·
|bm1|
sin ξ

≤
√
3

min{t;
√
3/2}

sinµ1 ≤
√
3

t
sinµ0,

and Proposition 3 is proved.

Proposition 4. Let 4abc and 4baf be right triangles with |ab| = 1 and
c 6= f . If p ∈ bc, mn ⊂ pa, and ∠nfm = µ, then

(13) |mn| ≤ 2
√
3 sinµ.

Proof. Denote by q the point on (pa) such that fq ⊥ pa. Write s =
(m + n)/2 and x = |sq|. The angle function µ = µ(x) is decreasing, and
maxµ(x) = µ(0). This means that for a fixed value of µ the quantity
|mn| attains its maximum either for n = a or p = m (we assume that
pm ⊂ pn ⊂ pa).
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If n = a, then for4fma we have ∠afm = µ, ∠maf = π/3+β, where 0 ≤
β ≤ π/3. We have |fm| ≤ |fc| =

√
3, and moreover π/3 ≤ π/3 + β ≤ 2π/3.

Then

(14) |mn| = sinµ · |fm|
sin(π/3 + β)

≤ sinµ ·
√
3

sinπ/3
= 2 sinµ.

If p = m, then for 4fpa we write ∠fpa = <, < < π/2. Then < depends
on the location of p on bc, i.e., < = <(p). Observe that <(b) = π/3 and
<(c) = π/6. Moreover

min
p
<(p) = min{<(b);<(c)} = π/6,

and hence sin< ≥ 1/2. Considering 4fpn, we can estimate the length of
mn by

(15) |mn| = sinµ · |fn|
sin<

≤ sinµ ·
√
3

sinπ/6
= 2
√
3 sinµ.

The relations (14) and (15) imply (13). Proposition 4 is proved.

According to Remark 2, we assume t > 5
√
ε. We remind the reader that

in the proof of Proposition 1 the lengths of the sides of 4a1νa2 with respect
to the metric ofM2 were estimated with the help of the polygonal arc c2a3c3.

To study the properties of c2a3c3, we consider the following constructions.
Inequality (8) implies t1 = ρ(c2; a2a3) ≥ 0.9t > 4

√
ε and t2 = ρ(c3; a3a4) ≥

0.9t > 4
√
ε. On the unit circle ∂B, we consider

c4 = ◊�c2 − a2, c5 = ◊�a3 − c2, c6 = ◊�c3 − a3, c7 = ◊�a4 − c3.
Using Proposition 1 and replacing consecutively ν by c2, a1 by a2, a2 by a3,
a3 by a4, c2 by c4, and c3 by c5, we get

(16) ρ(c4; a3a4) ≥ 0.9t1 > 0.8t > t/
√
3, ρ(c5; a4a5) > 0.8t.

For c3, by the replacement ν → c3 and in view of (16) we have

(17) ρ(c6; a4a5) ≥ 0.8t, ρ(c7; a5a6) ≥ 0.8t.

In what follows, it is convenient to consider the triangle 4a1νa2 together
with its uniquely defined collection of triangles 4a2c2a3, 4a3c3a4 and the
polygonal arcs c4a4c5, c6a5c7. Similarly, we will consider each of the triangles
4a2c2a3 and4a3c3a4 together with the corresponding collection of triangles
and broken lines.

We give a description of how to pass from 4a1νa2 to 4a2c2a3, and from
4a1νa2 to 4a3c3a4. Namely, we have the following transformations:

• the polygonal arcs: c2a3c3 → c4a4c5 and c2a3c3 → c6a5c7,
• the segments: a2c2 → a3c4, c2a3 → c4a4 and

a3c3 → a4c5, c3a4 → c5a5,
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• the points: c4 → c8 = ( ◊�c4 − a3), c5 → c9 = ( ◊�a4 − c4) and
c6 → c10 = ( ◊�c5 − a4), c7 → c11 = ( ◊�a5 − c5),

• the angles: γ1 = ∠(a4c5, c4a4)→ γ3 = ∠(a5c9, c8a5) and
γ2 = ∠(a5c7, c6a5)→ γ4 = ∠(c11a6, a6c10),

• and again the angles: ∠ c6Oc5 = γ and ∠c10Oc9 = γ1.

We write c12 = ◊�c6 − a4, c13 = ◊�a5 − c6, c14 = ◊�c7 − a5 and c15 = ◊�a6 − c7. Then
∠c14Oc13 = γ2, and we write γ5 = ∠(c12a6, a6c13) and γ6 = ∠(c15a1, a1c14).

By Proposition 1, the inequalities (16), (17), and (8) imply

ρ(c9; a5a6) ≥ 0.9ρ(c5; a4a5) > 0.72t > t/
√
3.

Similar estimates are valid for all ck, k = 8, 9, . . . , 15, i.e.,

min{ρ(c8; a4a5), ρ(c9,10,12; a5a6), ρ(c11,13,14; a6a1), ρ(c15; a1a2)} > 0.72t.
(18)

Due to inequality (10) from Corollary 1, the angles γk k = 1, . . . , 6, satisfy

(19)
®
sin γ1,2 ≤ 5

12ε/t,

sin γk ≤ 25
59ε/t, k = 3, 4, 5, 6.

Write

(20) γ0 = max
1≤k≤6

{γ; γk};

then, evidently,

(21) sin γ0 ≤ 25
59ε/t.

Proposition 5. If t = ρ(B;A6) > 5
√
ε (0 < ε ≤ 0.001), then there

exists a hexagon B6 = b1b2b3b4b5b6 with the properties:

(i) B6 = −B6, i.e. B6 is symmetric with respect to the origin O.
(ii) B6 is circumscribed about B in such a way that ak+1 ∈ bkbk+1,

k = 1, . . . , 6, where b7 = b1, a7 = a1.
(iii) The distances from bk to the sides akak+1 are such that

(22) ρ(bk; akak+1) ≥ 0.9t, k = {1, . . . , 6}.
(iv) The distance from B6 to the unit circle B satisfies

(23) ρ(B;B6) ≤ (
√
3/t+ 2

√
3) sin γ0,

where γ0 is given by (20).

Proof. Denote by lk the straight lines drawn through ak such that

(a) lk, k = 1, . . . , 6, are the supporting lines for B;
(b) lk ‖ lk+3, k = 1, 2, 3.

Write {bk} = lk∩lk+1, k = 1, . . . , 6, where l7 = l1. The convex hexagon B6 =
b1b2b3b4b5b6 just constructed, symmetric with respect to O, is inscribed in B
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in accordance to (b). We have c3 ∈ ∂B. The inclusion B ⊂ B6 implies c3 ∈
4a3b3a4. Similarly, c2 ∈ 4a2b2a3 and ν ∈ 4a1b1a2. Then (8) implies (22).

To prove (23), we simplify notations. Put a6 = a0, a7 = a1, a8 = a2, and
write {qk} = (ak−1ak)∩(ak+2ak+1), k = 1, . . . , 6. The convexity of B implies

A6 ⊂ B ⊂ B6 ⊂ a1q1a2q2a3q3a4q4a5q5a6q6.
Consider the right triangle 4a4q4a5, where |a4a5| = 1. Observe that for any
x ∈ 4a4q4a5 we have

ρ(x;4a3q3a4) = |xa4|, ρ(x;4a5q5a6) = |xa5|.
Therefore,

(24) ρ(B6;B) = max
1≤k≤6

ρ(4akbkak+1;B ∩4akqkak+1).

1◦. Estimating from above the distance ρ(4a4b4a5;B ∩4a4q4a5). Write
{n1} = (a4c5) ∩ (a5c6) and {m1} = (c4a4) ∩ (c7a5). Since c2 ∈ 4a2q2a3 and
c3 ∈ 4a3q3a4, we have ∠c6Oc5 ⊂ ∠a5Oa4. The points c4, a4, c5, c6, a5 are
cyclically located on the boundary ∂B of the convex figure B and the arc
ā4a5 is inside the pentagon a4m1a5c6c5. By construction, {b4} = l4 ∩ l5, and
l4,5 are the supporting lines to B at a4,5. Hence b4 is inside a4m1a5n1, i.e.,
b4 ∈ a4m1a5n1 ⊂ a4m1a5c6c5. The quadrangle a4c5c6a5 lies in 4a4m1a5,
and hence by (11) we have

(25) ρ(4a4m1a5; a4c5c6a5) ≤ min{|m1c5|; |m1c6|} ≤ |m1c5|.
Denote by h1(u), h2(u), h3(u) and h4(u) the support functions for the quadr-
angle a4c5c6a5, the triangles 4a4b4a5 and 4a4m1a5, and B ∩ 4a4q4a5, re-
spectively. It is easy to see that a4c5c6a5 ⊂ {B ∩ 4a4q4a5} ⊂ 4a4b4a5 ⊂
4a4m1a5. Using known properties of support functions of convex figures (see
[1, §4.15]), we deduce for |u| = 1 that

h1(u) ≤ h4(u) ≤ h2(u) ≤ h3(u).
Then h2(u)− h4(u) ≤ h3(u)− h1(u). By (7) and (25) we have

(26) ρ(4a4b4a5;B ∩4a4q4a5) ≤ |m1c5|.
From (16) it follows that the height of 4a4n1a5 with endpoint n1 satisfies

ρ(n1; a4a5) ≥ ρ(c5; a4a5) ≥ 0.8t.

Remember that γ1 = ∠c5a4m1 and γ2 = ∠m1a5c6 satisfy (19). Via Corol-
lary 2 and Proposition 3, from (12) and (20) we conclude that

(27) ρ(4a4m1a5;4a4n1a5) = |n1m1| ≤
√
3

t
sin γ0.

By construction, for A6 in Proposition 5 we have ∠c6Oc5 = ∠(a3c3, c2a3) =
γ ≤ γ0, satisfying (10). Taking into account Proposition 4, we have

(28) |n1c5| ≤ 2
√
3 sin γ0.
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By the triangle inequality, |m1c5| ≤ |n1m1|+ |n1c5|. Hence, by (27) and (28)
we have |m1c5| ≤ (

√
3/t+2

√
3) sin γ0. Together with (26), the latter inequal-

ity implies

(29) ρ(4a4b4a5;B ∩4a4q4a5) ≤ (
√
3/t+ 2

√
3) sin γ0.

2◦. Estimating from above the distance ρ(4a5b5a6;B ∩4a5q5a6) and the
distance ρ(4a6b6a1;B ∩ 4a6q6a1). By Remark 2, we have t > 5

√
ε, 0 < ε

≤ 0.001. By Proposition 1, if t > 4
√
ε, then t1 = ρ(c2; a2a3) ≥ 0.9t > 4.5

√
ε

and t2 = ρ(c3; a3a4) > 4.5
√
ε. In view of (18) we have®

min(ρ(c9; a5a6), ρ(c10; a5a6)) > 0.72t > t/
√
3,

min(ρ(c13; a6a1), ρ(c14; a6a1)) > 0.72t > t/
√
3.

Remember that the angles γ3, γ4, γ1 = ∠c10Oc9 and γ5, γ6, γ2 = ∠c14Oc13
satisfy (19) and (20). For each of the triangles 4a5q5a6 and 4a6q6a1 we
consider constructions similar to the constructions for 4a4q4a5 in the proof
of 1◦. Using an analogous reasoning to that from (24) to (29), we conclude
that ®

ρ(4a5b5a6;B ∩4a5q5a6) ≤ (
√
3/t+ 2

√
3) sin γ0,

ρ(4a6b6a1;B ∩4a6q6a1) ≤ (
√
3/t+ 2

√
3) sin γ0.

This system, together with (29) and (24), yields (23), and thus Proposition 5
is proved.

Remark 3. The hexagon B6 with the properties (i) and (ii) from Proposi-
tion 5 has at least four sides of Euclidean length not smaller than 1/2.

Proof. We use the central symmetry B6 = −B6 and only consider the
sides b1b2, b2b3, b3b4. By construction, for A6 in Proposition 5 we have
A6 ⊂ B6, |akak+1| = 1, and 4akqkak+1 is a right triangle. Evidently,∑6
k=1 |bkbk+1| ≥

∑6
k=1 |akak+1| = 6, and hence |b1b2| + |b2b3| + |b3b4| ≥ 3.

One of the sides has length at least 1. Assume |b1b2| ≥ 1. If |b3b4| ≤ 1/2,
then |b1b2| + |b2b3| ≥ 5/2. The inclusions b1a2 ⊂ 4a1q1a2 and a2b2 ⊂
4a2q2a3 imply |b1b2| = |b1a2| + |a2b2| ≤ 2. Therefore, |b2b3| ≥ 1/2, i.e.,
min{|b1b2|; |b2b3|} ≥ 1/2.

Proposition 6. If t ≥ 2 3
√
ε (0 < ε ≤ 0.001), then each side of the

hexagon B6 from Proposition 5 has length at least 1/2, i.e.,

(30) l = min
k
|bkbk+1| ≥ 1/2.

Proof. Without loss of generality, assume l = |b1b6| = |b3b4|. By (22)
we have min{|a1b1|; |a1b6|} > 0. Consider the polygonal arc a1b1b2b3a4 and
observe that |a1b1|+ |b3a4| = l.

Suppose that (30) fails, i.e., that l < 1/2. With x = |a4b3| we have
|a1b1| = l − x > 0. In what follows, we use the subscript “old” to denote
lengths of segments and perimeters with respect to the metric generated by
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the ‘old’ normalizing figure B, for example ‖ab‖ = ‖ab‖old, L(B) = Lold(B).
The subscript “new” indicates lengths and perimeters with respect to the
new normalizing figure B6 of M2.

We intend to estimate the self-perimeter Lnew(B6) from below. Following
the proof of Proposition 5, we write {qk} = (ak−1ak) ∩ (ak+2ak+1).

By construction, b1 ∈ 4a1q1a2 and hence g1 = ◊�b1 − b6 ∈ ā2a3 ⊂ ∂B.
The ray [Og1) meets the polygonal arc a2b2a3 at g2 ∈ 4a2q2a3, and we have
|Og2| ≤

√
3. In view of (1), we get

(31) ‖b6b1‖new =
l

|Og2|
≥ l√

3
.

We consider the points fi satisfying the conditions

f1 ∈ a1a2, |a1f1| = |f1a2|;
f2 ∈ a1q1, |a1f2| = |f2q1|;
f3 ∈ a2q2, |a2f3| = |f3q2|;

{f4} = a3q2 ∩ (f2a2); {f5} = a4q3 ∩ (f3a3);

{f6} = a3a4 ∩Oq3; {f7} = a3f5 ∩Oq3.

Moreover, take e2 ∈ a1f2 and b′′1 ∈ a1f1 such that

(32) |a1e2| = |a1b′′1| = |a1b1| = l − x < 1/2,

and e4 ∈ a4f5 and b′′3 ∈ a4f6 such that

(33) |a4e4| = |a4b′′3| = |a4b3| = x < 1/2.

Write g3 = (◊�b2 − b1)new and g4 = ( ◊�a2 − e2)new, where g3, g4 ∈ ∂B6, and
{g′3} = a3e4 ∩Og3 and {g′4} = a3e4 ∩Og4. We have the evident inclusions

4a1b1a2 ⊂ 4a1e2a2, 4a3b3a4 ⊂ 4a3e4a4,
4a3g3O ⊂ 4a3g′3O ⊂ 4a3g′4O ⊂ 4a3f7O.

We consider {e3} = (e2a2)∩ (e4a3) and {b′2} = (e4a3)∩ b1b2. On the straight
line (e2a2), take e5 such that b′′1e5 ‖ e4a3. Since ∠f5e4a3 = ∠f1b′′1e5 < π/2,
we have e5 ∈ e2a2. Write {b′1} = b1a2 ∩ b′′1e5 and {e′3} = (e4a3) ∩ a2q2. It is
important that

g3 = (◊�b2 − b1)new = (◊�b′2 − b′1)new and g4 = ( ◊�a2 − e2)new = ( ◊�a2 − e5)new.
Taking into account the similarities 4g′3Og′4 ∼ 4b′2a2e3 ∼ 4b′1a2e5 and (1),
we get

(34) ‖b1b2‖new =
|b1b2|
|Og3|

≥ |b
′
1b
′
2|

|Og′3|
=
|e5e3|
|Og′4|

.

Since 4Oa3g′4 ∼ 4a2e′3e3 ∼ 4a2b′′1e5, 4a3e4a4 = 4a3e′3q2 and |a1a2| =
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|a2q2| = |Oa3| = 1, (32)–(34) imply

‖b1b2‖new ≥
|b′′1e′3|
|Oa3|

= 2− |a1b′′1| − |a4e4| = 2− l.

In a similar way we get ‖b2b3‖new ≥ 2 − l. From this and (31) we deduce
that

Lnew(B6) ≥ 2(2(2− l) + l/
√
3) = 8− (4− 2/

√
3)l.

Therefore, if l < 1/2, then

(35) Lnew(B6) ≥ 6 + 1/
√
3 > 6.57.

Now we prove that under the hypothesis of Proposition 6 the inequal-
ity (35) fails for t ≥ 2 3

√
ε (0 < 3

√
ε ≤ 0.1). By (23), (20) and (21),

(36)

τ = ρ(B;B6) ≤
Ç√

3

t
+ 2
√
3

å
· 25
59
· ε
t
≤ 25

108
· 3
√
ε

Ç√
3

2
+ 2
√
3 · 3
√
ε

å
< 0.03.

We use the formula for the Hausdorff distance which is equivalent to (7) (see,
e.g., (246) in [6]) with respect to B and B6, i.e.,

ρ(B;B6) = min{λ ≥ 0 : B ⊂ B6 + λE, B6 ⊂ B + λE},
where E is the unit disk of the Euclidean plane R2. Then B ⊂ B6 + τE and
B6 ⊂ B+τE. According to our constructions, we have (

√
3/2)E ⊂ A6 ⊂ B6,

and hence E ⊂ (2/
√
3)B6. Therefore,

B ⊂ B6 + τ · 2√
3
B6 =

Ç
1 +

2√
3
τ

å
B6.

Denote by (ab)O the straight line passing through the origin O which is
parallel to ab, i.e., (ab)O ‖ ab. The Euclidean length of the intersection of B
and (ab)O satisfies

|B ∩ (ab)O| ≤
Ç
1 +

2√
3
τ

å
· |B6 ∩ (ab)O|.

From the latter inequality and (1) it follows that for any segment ab in M2,

‖ab‖new ≤
Ç
1 +

2√
3
τ

å
· ‖ab‖old,

and hence the self-perimeter of B6 satisfies

(37) Lnew(B6) ≤
Ç
1 +

2√
3
τ

å
Lold(B6) =

Ç
1 +

2√
3
τ

å
L(B6).

Since (
√
3/2)E ⊂ A6 ⊂ B, we have B6 ⊂ (1 + (2/

√
3)τ)B. By (37) and (3),

Lnew(B6) ≤
Ç
1 +

2√
3
τ

å
L

ÇÇ
1 +

2√
3
τ

å
B

å
=

Ç
1 +

2√
3
τ

å2

L(B).
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From (36) and (4) we conclude that

Lnew(B6) <

Ç
1 +

2√
3
· 0.03

å2

· 6.001 < 6.43,

contradicting (35). Thus, (30) is correct, and Proposition 6 is proved.

We continue with the construction of the hexagon S using the properties
of B6 stated in Propositions 5 and 6.

Recall that ck ∈ ∂B and c2 = ◊�ν − a1, c3 = ◊�a2 − ν, c4 = ◊�c2 − a2, c5 =◊�a3 − c2, c6 = ◊�c3 − a3, c7 = ◊�a4 − c3.
Draw the straight line l3(O) through O in such a way that l3(O) ‖ b2b3 ‖

b5b6. The definition of B6 implies that l3(O) splits ∠c6Oc5. Consider the
arcs ˚�a4b4a5 ⊂ ∂B6 and ˚�a1b1a2 ∈ ∂B6, and {s4} = l3(O) ∩ ˚�a4b4a5 as well as
{s1} = l3(O) ∩ ˚�a1b1a2, where s4 = −s1.

Remark 4. It suffices to consider in detail the case s4 ∈ a5b4. The case
s4 ∈ b4a4 is similar.

Write {b′3} = (s4a4) ∩ (b2b3) and {r4} = (a4b4) ∩ (Os4). In view of
Remark 2, it is sufficient to consider t > 5

√
ε (0 < ε ≤ 0.001). Then

(21) implies sin γ0 ≤ 5
59

√
ε < 0.01. Moreover, 0 ≤ γ0 < π/18. Consider

the case γ0 = 0. Then (23) implies B = B6. The polygonal arc c2a3c3
degenerates to the segment c2c3 ⊂ b2b3. By Proposition 1 from [9] we have
‖a1b1‖ + ‖b1a2‖ = 1, and hence L(B) = 6. In [11] and [13] it was proved
that in this case B is an affinely regular hexagon. Therefore, we assume
γ0 ∈ (0;π/18).

Proposition 7. If t = ρ(B;A6) > 5
√
ε (0 < ε ≤ 0.001) and γ0 > 0,

then

(38) max{|s4b4|; |b3b′3|} ≤
35
√
3

2t
sin γ0.

Proof. First, we estimate |s4b4| from above. As in Proposition 5, consider
{n1} = (a4c5) ∩ (a5c6), yielding ∠n1a4b4 < γ1 and ∠b4a5n1 < γ2. Consider
{w1} = (a4n1) ∩ a5b4. If w1 ∈ a5s4, then |s4b4| ≤ |w1b4|. Since c5 ∈ n1a4 ⊂
w1a4, from (16) it follows that ρ(w1; a4a5) ≥ 0.8t. Observe that 4a5a4w1 ⊂
4a5a4b4 ⊂ 4a5a4q4, ∠w1a5b4 = 0, ∠w1a4b4 < γ1. Using Proposition 3, (12)
and (20), we get

(39) |s4b4| ≤ |w1b4| ≤
√
3

t
sin γ0.

If s4 ∈ a5w1, then |s4b4| ≤ |s4n1| + |n1b4|. Using Corollary 2, from (12)
and (20) we deduce that

(40) ρ(4a4b4a5;4a4n1a5) = |n1b4| ≤
√
3

t
sin γ0.
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With {w2} = (a4w1)∩ (Os4) and {w3} = (a5b4)∩ (Oc5) we have w1n1 ⊂
w2c5 ⊂ (n1a4), ∠w2Oc5 < γ, and hence ∠w1On1 < γ. By (13) and (20),

(41) |n1w1| ≤ 2
√
3 sin γ0.

Similarly, s4w1 ⊂ s4w3 ⊂ (a5b4), ∠s4Ow1 ≤ ∠s4Ow3 < γ, and hence

(42) |s4w1| ≤ 2
√
3 sin γ0.

Using (41) and (42), we conclude that

|n1s4| ≤ |n1w1|+ |w1s4| ≤ 4
√
3 sin γ0.

From the latter inequality and (40) we get

(43) |s4b4| ≤
√
3(1/t+ 4) sin γ0.

Comparing (39) and (43), we see that the latter is more general.
By Remark 4, we assume s4 ∈ a5b4 and hence b4 ∈ r4a4, b3 ∈ b2b′3 and

4a4b3b′3 ≈ 4a4r4s4. To estimate |b3b′3| from above, we use |s4r4|.
We consider two cases:

1◦. If s4 ∈ w1b4, then |r4s4| ≤ |r4w2|.
2◦. If w1 ∈ s4b4, then

(44) |r4s4| = |r4w2|+ |w2s4|.

1◦. In this case w2 ∈ 4a5a4q4. Then |w2r4| (with w2r4 ⊂ (Os4)) attains
its maximum provided ∠w2a4r4 = ψ ≤ γ0, if w2 ∈ ∂4a5a4q4. If w2 ∈ a4a5,
then < = ∠r4w2a4 satisfies π/3 ≤ < ≤ 2π/3. Consequently, π/3 < <+ ψ ≤
<+ γ0 ≤ 5π/6, |w2a4| ≤ 1, and by the law of sines

(45) |r4w2| =
|a4w2|

sin(<+ ψ)
sinψ ≤ 2 sin γ0.

If w2 ∈ a4q4 and |a4w2| ≤ 1, then η = ∠a4w2O satisfies π/6 ≤ η ≤ π/3.
Then ϕ = ∠a4r4w2 satisfies π/6 − π/18 ≤ η − γ0 ≤ η − ψ = ϕ ≤ π/3, and
hence sinϕ ≥ 1

3 sin
π
3 . In view of 4a4r4w2 we see that

(46) |r4w2| =
|a4w2|
sinϕ

sinψ ≤ 2
√
3 sin γ0.

If w2 ∈ q4a5, then again |a4w2| ≤ 1, sinϕ ≥
√
3/6 and hence (46) remains

correct. Comparing (45) and (46), we get |r4s4| ≤ |r4w2| ≤ 2
√
3 sin γ0.

2◦. In this case it is possible that w2 /∈ 4a5a4q4. Since w1 ∈ s4b4, the seg-
ment w1w2 is in ∠s4Oc5 < γ, w1 ∈ 4a4q4a5, and w1w2 ⊂ (a4n1). Using the
same arguments as in the proof of Proposition 4, we estimate |w1w2| in anal-
ogy with the derivation of (14) and (15). Namely, if w1 = a4 and sin γ < 0.01,
then w2 ∈ 4a4q4a5, and hence |w1w2| ≤ 2

√
3 sin γ0. If w1 ∈ q4a5, then

< = ∠a4w1O satisfies π/6 ≤ < ≤ π/3, and ψ = ∠w2Ow1 ≤ γ0 < π/18.
Then ϕ = ∠w1w2O = <−ψ ≥ <− γ0 and sinϕ ≥ sin(π/6− γ0) ≥

√
3/6. In
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4w1w2O we have |Ow1| ≤
√
3, and hence

|w1w2| ≤
|Ow1|
sinϕ

sin γ ≤ 6 sin γ0.

From this and (42) we conclude that
(47) |s4w2| ≤ |s4w1|+ |w1w2| ≤ 10 sin γ0.

We now estimate |r4w2| from above. Choose a′4 and a′5 on the straight
lines (Oa4) and (Oa5) such that a4 ∈ Oa′4, a5 ∈ Oa′5 and |Oa′4| = |Oa′5| =
1 + 10 sin γ0.

Construct the right triangle 4a′4q′4a′5, where a′4q′4 ‖ a4q4 and q′4a′5 ‖ q4a5.
Then w2 ∈ [Os4), and by (47) we have w2 ∈ a4a

′
4q
′
4a
′
5a5. By the same

arguments as in 1◦, it follows that |w2r4| attains its maximum provided that
∠w2a4r4 = ψ < γ0 if either w2 ∈ a4a5 or w2 is on the polygonal arc a′4q′4a′5,
i.e., w2 ∈ ˚�a′4q′4a′5. If w2 ∈ a4a5, then (45) holds. If w2 ∈ ˚�a′4q′4a′5, then, using
the same arguments as in the proof of (46), we see that

|w2r4| ≤
1 + 10 sin γ0

sinϕ
sin γ0 ≤ 4 sin γ0.

Comparing the latter inequality with (44) and (47), we get the general esti-
mate
(48) |r4s4| ≤ 14 sin γ0.

We compare |b3b′3| and |r4s4|. Through c5 ∈ 4a4b4a5 we draw the straight
line l(c5) ‖ Os4 ‖ b2b3, and we consider {v1} = (Os4) ∩ a4a5, {v2} =
(Os4) ∩ (a4q4), {v3} = l(c5) ∩ a4a5, {v4} = l(c5) ∩ (a4q4), and {v5} =
(a4a5)∩(b2b3). Since (Os4) splits ∠c6Oc5, we have the inclusions 4a4v3v4 ⊂
4a4v1v2 and v3a4 ⊂ v1a4 ⊂ v1v5. Denote by z1, z2, z3 the corresponding
bases of the perpendiculars on (a4a5) from s4 ,c5, and b′3, respectively. By
construction, z3 ∈ a4q3, z1 ∈ a4a5, and hence |a4z3| ≤ 1 and |a4z1| ≤ 1.
In the right triangle 4a4z2c5 we have |c5z2| = ρ(c5; a4a5) ≥ 0.8t, ∠z2a4c5
≤ π/3, and hence |a4z2| ≥ 4t

√
3/15. The similarity ratio between 4a4b3b′3

and 4a4r4s4 is

k =
|b3b′3|
|s4r4|

=
|a4z3|
|a4z1|

≤ 1

|a4z2|
≤ 5
√
3

4t
.

From this and (48) it follows that

|b3b′3| ≤
5
√
3

4t
|s4r4| ≤

35
√
3

2t
sin γ0.

Recall that in our constructions we assume 5
√
ε < t ≤

√
3/2 (0 < ε

≤ 0.001). The imposed restrictions and (43) imply the final inequality

max{|s4b4|; |b3b′3|} ≤ max

®√
3(1 + 4t)

t
;
35
√
3

2t

´
sin γ0 =

35
√
3

2t
sin γ0,

and Proposition 7 is proved.
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Proof of the Theorem. The proof is divided into three steps and will be
conducted according to the scheme B6 → B′6 → G → S, where B′6 and G
are some special hexagons.

Step 1. Construct the centrally symmetric hexagon B′6 = s4b5b
′
6s1b2b

′
3

(where b′6 = −b′3 and s1 = −s4) which is circumscribed about A6. Due to
Corollary 2 and inequality (38), we have

(49) ρ(B6;B
′
6) ≤

35
√
3

2t
sin γ0.

Observe that in B′6 the diagonal s1s4 satisfies s1s4 ‖ b2b′3 ‖ b5b′6. Moreover,
a2 ∈ s1b2, a4 ∈ s4b′3, a3 ∈ b2b3 ⊂ b2b′3 (under the assumption that s4 ∈ a5b4).
Since l3(O) ‖ b2b3 and {r4} = l3(O) ∩ (a4b4), from (43) and (48) we get

(50) |r4b4| ≤ |s4b4|+ |s4r4| ≤ (
√
3/t+ 21) sin γ0.

Draw through the origin O the straight line l2(O) ‖ s1b2 ‖ s4b5. Considering
{r3} = l2(O) ∩ (a3b3), it is easy to see that |b2r3| = |s1O| = |Os4|. In the
constructed hexagon B′6 then s1 ∈ b1b2. Analogously to the proof of (43)
and (48), but replacing 4a5a4q4 by 4a4a3q3, b4 by b3, and r4 by r3, we
come to an inequality analogous to (50), namely

(51) |b3r3| ≤ (
√
3/t+ 21) sin γ0.

Step 2. Construct the affinely regular hexagon G = g1g2g3g4g5g6 which
is centered at O, where g1 = s1, g2 = b2, g3 = r3, g4 = s4, g5 = b5, g6 = −r3;
moreover it is possible that B6 6⊂ G and G 6⊂ B6. According to (38) and (51),

(52) |b′3g3| = |b′3r3| ≤ |b′3b3|+ |b3r3| ≤
Ç
37
√
3

2t
+ 21

å
sin γ0.

Since A6 is inscribed into B′6, we have

(53) ρ(A6 ∩G;A6) ≤ |b′3g3|.
Without loss of generality, assume t > 5 3

√
ε (0 < ε ≤ 0.001). For comple-

teness we conduct explicitly the reasoning analogous to Remark 2. Namely,
since (

√
3/2 + 5 3

√
ε) · 2/

√
3 ≤ 1 + 6 3

√
ε provided ρ(B;A6) = t ≤ 5 3

√
ε

(0 < ε ≤ 0.001), the inclusions A6 ⊂ B ⊂ (1 + 6 3
√
ε)A6 hold, and the re-

quired hexagon S is A6.
Since t > 5 3

√
ε and the inequalities (21) and (30) hold (in particular,

|b2b3| ≥ 0.5), either B′6 ⊂ G or G ⊂ B′6. Then, by (52),

ρ(G;B′6) ≤ |b′3g3| ≤
Ç
37
√
3

2t
+ 21

å
sin γ0.

Together with (49) and (23), the latter inequality yields

ρ(B;G) ≤ ρ(B;B6) + ρ(B6;B
′
6) + ρ(B′6;G) ≤ (37

√
3/t+ 24.5) sin γ0.
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If t > 5 3
√
ε (0 < ε ≤ 0.001), then from the inequality above and (21) we get

(54) ρ(B;G) ≤
Ç
37
√
3

5 3
√
ε

+ 24.5

å
· 5
59

3
√
ε2 ≤ 1.3 3

√
ε.

Step 3. Applying (53) and (52), provided that t > 5 3
√
ε, we get

ρ(A6 ∩G;A6) ≤
Ç
37
√
3

2t
+ 21

å
· sin γ0(55)

≤ (3.7
√
3 + 2.1)

5

59
3
√
ε ≤ 0.73 3

√
ε.

Denote by hB(u), hG(u), hA(u) and hA∩G(u) the support functions of
the unit ball B on M2, the affinely regular hexagon G, the regular unit
hexagon A6, and A6 ∩G, respectively.

By Theorem B, for |u| = 1 the relations (7), (54) and (55) imply® |hB(u)− hG(u)| ≤ 1.3 3
√
ε,

0 ≤ hA(u)− hA∩G(u) ≤ 0.73 3
√
ε.

By construction, the regular hexagon A6 is inscribed in B. Comparing the
inequalities of this system, we get (for |u| = 1)

hA(u)− 2.03 3
√
ε ≤ hA∩G(u)− 1.3 3

√
ε ≤ hG(u)− 1.3 3

√
ε

≤ hB(u) ≤ hG(u) + 1.3 3
√
ε.

Moreover,Ç
1− 1.3

hG(u)
3
√
ε

å
hG(u) ≤ hB(u) ≤

Ç
1 +

1.3

hG(u)
3
√
ε

å
hG(u)

and
hG(u) ≥ hA(u)− 0.73 3

√
ε ≥
√
3/2− 0.73 3

√
ε.

Writing

q =
1.3√

3/2− 0.73 3
√
ε

3
√
ε ≥ 1.3

hG(u)
3
√
ε,

we obtain
(1− q)hG(u) ≤ hB(u) ≤ (1 + q)hG(u).

Therefore,

1 + q

1− q
= 1 +

2.6 3
√
ε√

3/2− 2.03 3
√
ε
≤ 1 +

5.2√
3− 0.406

3
√
ε ≤ 1 + 6 3

√
ε.

Define the required hexagon by S = (1 − q)G. The inequalities hS(u) ≤
hB(u) ≤ (1+6 3

√
ε)hS(u) evidently imply the inclusions (5). The Theorem is

proved.
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