on the stability of the unit circle With minimal

 SELF-PERIMETER IN NORMED PLANESBY
HORST MARTINI (Chemnitz) and ANATOLY SHCHERBA (Cherkassy)

Abstract

We prove a stability result on the minimal self-perimeter $L(B)$ of the unit disk B of a normed plane: if $L(B)=6+\varepsilon$ for a sufficiently small ε, then there exists an affinely regular hexagon S such that $S \subset B \subset(1+6 \sqrt[3]{\varepsilon}) S$.

1. Basic notions and introduction. Let B be a convex figure centered at the origin O of the Euclidean plane \mathbb{R}^{2}. In what follows, we identify the points of \mathbb{R}^{2} with their position vectors. The convex figure B and its boundary ∂B are called the unit disk resp. unit circle of the normed (or Minkowski) plane M^{2} induced by B. In the literature, B is often also called the normalizing figure of the normed plane M^{2} (see [6, Definition 11.2]). We will use the distance function $|\cdot|$ of \mathbb{R}^{2} as an auxiliary metric for M^{2}. The Minkowskian distance function $g_{B}(x)$ of M^{2} is defined by

$$
g_{B}(x)=|x| /|\widehat{x}|>0
$$

where $x \in M^{2}, x \neq O$ and $\widehat{x}=[O, x) \cap \partial B$. Here $[O, x)$ is the ray with starting point O passing through x.

In a standard way (see [9]), the distance function $g_{B}(x)$ defines the distance between arbitrary points x and y of M^{2} by

$$
\begin{equation*}
\|x-y\|=g_{B}(y-x) \tag{1}
\end{equation*}
$$

Definition. For two distinct points a and b, the normalizing vector of the connecting segment $a b$ is defined to be the point $\widehat{b-a} \in \partial B$, that is,

$$
\begin{equation*}
\widehat{b-a}=\overline{a b} /\|\overline{a b}\| \quad \text { with } \quad \overline{a b}=b-a . \tag{2}
\end{equation*}
$$

Further on, we denote by $x y$ the segment and by $(x y)$ the straight line defined by the points $x \neq y$. The symbol $\triangle a b c$ is used for the triangle determined by non-collinear vertices a, b and c; writing only $a b c$, we mean the polygonal arc (broken line) from a to b. For more than three points, the context will clarify whether we mean a polygonal arc or an n-gon. By $\angle a b c$

2010 Mathematics Subject Classification: 46B20, 52A10, 52A21, 52A38.
Key words and phrases: convex distance function, Minkowski plane, normed plane, selfperimeter, stability result.
we mean the angle with apex b, and by $\angle(\overline{m n}, \overline{q r})$ the angle between the vectors $\overline{m n}=n-m$ and $\overline{q r}=r-q$.

Let $P \subset M^{2}$ be a convex bounded polygon. Denote by $l(P)$ the sum of the lengths of all its sides defined via (1). Denote by $\{P\}$ the set of all convex polygons located inside a compact convex figure K. The perimeter of the figure $K \subset M^{2}$ is defined by

$$
L(K)=\sup _{P \in\{P\}} l(P) .
$$

It is widely known (see [6, p. 110] and [15, p. 112]) that if Φ is a convex figure and $\Phi \subset K$, then

$$
\begin{equation*}
L(\Phi) \leq L(K) \tag{3}
\end{equation*}
$$

And clearly, if $P \subset M^{2}$ is a convex polygon, then $L(P)=l(P)$. The perimeter $L(B)$ of the unit disk B of M^{2} is called its self-perimeter. S . Gołąb (see [2] and also [3) proved that

$$
6 \leq L(B) \leq 8
$$

and, moreover, that $L(B)=6$ holds if B is an affinely regular hexagon, and $L(B)=8$ holds if B is a parallelogram. E.g., Yu. G. Reshetnyak [10] and D. Laugwitz [5] reproved the result of S. Gołąb.
J. J. Schäffer [11 proved that the affinely regular hexagon is the only normalizing figure with minimal value of $L(B)$ and that the parallelogram is the only normalizing figure with the maximal value of $L(B)$.

It is natural to investigate analogous problems also in d-dimensional normed (or Minkowski) spaces, where $d \geq 3$. The most important analogues of "circumference" are the surface area measures of Holmes-Thompson (see Chapter 6 of [15]) and of Busemann (cf. Chapter 7 of that book). The case of Holmes-Thompson self-surface-area of the unit ball B is presented in [15, §6.5]; the upper bound given there is only sharp for the planar case, and non-sharp lower bounds are also given (with special results for unit balls that are zonoids or their duals). For the Busemann self-surface-area of B, discussed in [15, §7.4], the sharp upper bound is given in Theorem 7.4.1 there and attained if and only if B is a d-parallelotope; lower bounds are presented in Theorems 7.4.4 and 7.4.6.

In the case of a non-symmetric convex distance function (or gauge) on M^{2} (i.e., $B \neq-B$) it is known that the oriented self-perimeters satisfy $L^{ \pm}(B) \geq 6$, and that equality is possible only if B is an affinely regular hexagon (see 4], [12], and [13). More results on the non-symmetric case can be found in [7] and [8]; see also the references given there.
2. The result. The stability of the unit disk B with respect to the value of its self-perimeter was first considered in [14. The following stabi-
lity theorem was proved there; it refers to the case when for $B=-B$ the self-perimeter is close to the maximal value.

Theorem A. If for a normed plane $L(B)=8(1-\varepsilon)(0 \leq \varepsilon \leq 0.04)$, then there exists a parallelogram P, symmetric with respect to the origin O, such that

$$
P \subset B \subset(1+18 \varepsilon) P
$$

In this paper we prove the following stability theorem related to the minimal value of $L(B)$, also with $B=-B$.

Theorem. Let the self-perimeter $L(B)$ of the unit disk B of a normed plane M^{2} satisfy the equality

$$
\begin{equation*}
L(B)=6+\varepsilon \quad(0 \leq \varepsilon \leq 0.001) \tag{4}
\end{equation*}
$$

Then there exists an affinely regular hexagon S centered at the origin O such that

$$
\begin{equation*}
S \subset B \subset(1+6 \sqrt[3]{\varepsilon}) S \tag{5}
\end{equation*}
$$

The authors do not know whether the dependence on ε in this theorem is best possible; this is a topic for further research.
3. Proof of the results. In the proof of our theorem we use some auxiliary statements. Without loss of generality, we consider a convex normalizing figure $B \subset M^{2}$ located in the Euclidean auxiliary plane \mathbb{R}^{2}. Following S. Gołąb, we inscribe an affinely regular hexagon A_{6} centered at the origin O into the unit circle ∂B (see [15, §4.1]). We use the auxiliary Euclidean metric in such a way that $A_{6} \subset \mathbb{R}^{2}$ becomes a regular hexagon $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$ with the vertices

$$
\begin{gathered}
a_{1}(-1 / 2 ; \sqrt{3} / 2), \quad a_{2}(1 / 2 ; \sqrt{3} / 2), \quad a_{3}(1 ; 0), \\
a_{4}(1 / 2 ;-\sqrt{3} / 2), \quad a_{5}(-1 / 2 ;-\sqrt{3} / 2), \\
a_{6}(-1 ; 0),
\end{gathered}
$$

in the Cartesian coordinate system $x O y$. We call A_{6} the regular unit hexagon. For certain reasons, we designate the vertices of each polygon considered clockwise. We denote by $\overparen{a b}$ the arc of the unit circle ∂B between a and b, oriented clockwise, and $L(\widehat{a b})$ means the arc length of $\widehat{a b}$ with respect to the metric of M^{2}.

REMARK 1. If $A_{6} \subset M^{2}$ is a regular unit hexagon inscribed in the unit circle ∂B with self-perimeter $L(B)$ satisfying (4), then the lengths $\widehat{a_{k} a_{k+1}} \subset$ ∂B satisfy

$$
\begin{equation*}
1 \leq L\left(\widehat{a_{k} a_{k+1}}\right) \leq 1+\varepsilon / 2, \quad k=1, \ldots, 6 \tag{6}
\end{equation*}
$$

Proof. Evidently, $\left\|a_{k} a_{k+1}\right\|=1, k=1, \ldots, 6$, where $a_{7}=a_{1}$. Due to $B=-B$ we have $L\left(\widehat{a_{k} a_{k+1}}\right)=L\left(\widehat{a_{k+3} a_{k+4}}\right), k=1,2,3$, and by (4),

$$
6+\varepsilon=L(B)=2\left(L\left(\widehat{a_{6} a_{1}}\right)+L\left(\widehat{a_{1} a_{2}}\right)+L\left(\widehat{a_{2} a_{3}}\right)\right) .
$$

Consider the convex figure A with boundary

$$
\partial A=a_{6} a_{1} \cup \widehat{a_{1} a_{2}} \cup a_{2} a_{3} \cup a_{3} a_{4} \cup \widehat{a_{4} a_{5}} \cup a_{5} a_{6} .
$$

The inclusions $A_{6} \subset A \subset B$ and inequality (3) imply

$$
6 \leq 4+2 L\left(\widehat{a_{1} a_{2}}\right) \leq 6+\varepsilon .
$$

Hence,

$$
1 \leq L\left(\widehat{a_{1} a_{2}}\right) \leq 1+\varepsilon / 2
$$

In an analogous way we get the same inequality for all $L\left(\widehat{a_{k} a_{k+1}}\right)$, which completes the proof of (6).

The Hausdorff distance $\rho\left(K_{1} ; K_{2}\right)$ between convex, compact sets K_{1} and K_{2} is defined by

$$
\rho\left(K_{1} ; K_{2}\right)=\max \left\{\sup _{x \in K_{1}} \inf _{y \in K_{2}}|x y|, \sup _{y \in K_{2}} \inf _{x \in K_{1}}|x y|\right\} .
$$

Since $A_{6} \subset B$, the Hausdorff distance between the unit disk B and its inscribed hexagon A_{6} is given by

$$
\rho\left(B ; A_{6}\right)=\max _{x \in B} \min _{y \in A_{6}}|x y| .
$$

To simplify the evaluation of $\rho\left(K_{1} ; K_{2}\right)$, we use the following fact (see [6, §14, Theorem 14.1]). Note that the support function $h_{K}(u)$ of a compact convex set $K \subset \mathbb{R}^{2}$ is defined by $h_{K}(u)=\max \{\langle x, u\rangle: x \in K\}$, where $\langle\cdot, \cdot\rangle$ denotes the usual scalar product and u is an arbitrary unit vector in the Euclidean background metric; see [6, §12].

Theorem B. If K_{1} and K_{2} are non-empty compact convex sets in \mathbb{R}^{2} with the corresponding support functions $h_{1}(u)$ and $h_{2}(u)$, then

$$
\begin{equation*}
\rho\left(K_{1} ; K_{2}\right)=\max _{|u|=1}\left|h_{2}(u)-h_{1}(u)\right| . \tag{7}
\end{equation*}
$$

Denote by ν one of the points on the unit circle ∂B for which the equality $\rho\left(\nu ; A_{6}\right)=\rho\left(B ; A_{6}\right)$ holds. To fix ideas, suppose $\nu \in \widehat{a_{1} a_{2}}$. For the straight lines $\left(a_{6} a_{1}\right)$ and $\left(a_{3} a_{2}\right)$, we consider $\left\{q_{1}\right\}=\left(a_{6} a_{1}\right) \cap\left(a_{3} a_{2}\right)$. The convexity of B implies $\widehat{a_{1} a_{2}} \subset \triangle a_{1} q_{1} a_{2}$. It is easy to see that $\rho\left(\nu ; a_{1} a_{2}\right)=\rho\left(B ; A_{6}\right)$. We set $t=\rho\left(\nu ; a_{1} a_{2}\right)$.

REmark 2. If $t \leq 5 \sqrt{\varepsilon}(0 \leq \varepsilon \leq 0.001)$, then the inequality

$$
\left(\frac{\sqrt{3}}{2}+5 \sqrt{\varepsilon}\right): \frac{\sqrt{3}}{2} \leq 1+2 \sqrt[3]{\varepsilon}
$$

implies the inclusions $A_{6} \subset B \subset(1+2 \sqrt[3]{\varepsilon}) A_{6}$. Hence, to prove (5) it is sufficient to assume $S=A_{6}$. The case $\varepsilon=0$ corresponds to the case $L(B)=6$ and has already been studied in [11].

According to Remark 2 it is sufficient to consider $t>5 \sqrt{\varepsilon}, 0<\varepsilon \leq 0.001$. However, the corresponding case analysis uses some results which are true even for $t>4 \sqrt{\varepsilon}$.

We write $c_{2}=\widehat{\nu-a_{1}}$ and $c_{3}=\widehat{a_{2}-\nu}(c f .(2))$.
Proposition 1. If $t>4 \sqrt{\varepsilon}(0<\varepsilon \leq 0.001)$, then

$$
\begin{equation*}
\min \left\{\rho\left(c_{2} ; a_{2} a_{3}\right) ; \rho\left(c_{3} ; a_{3} a_{4}\right)\right\} \geq 0.9 t \tag{8}
\end{equation*}
$$

Proof. By construction $\triangle a_{1} \nu a_{2} \subset \triangle a_{1} q_{1} a_{2}$, where $\triangle a_{1} q_{1} a_{2}$ is a right triangle. The ray $\left[O c_{2}\right)$ for $c_{2} \in a_{2} a_{3}$ meets $a_{2} a_{3}$ at some point p_{1}, and the ray $\left[O c_{3}\right)$ for $c_{3} \in \widehat{a_{3} a_{4}}$ meets $a_{3} a_{4}$ at some point u_{1}.

We prove that $\rho\left(c_{3} ; a_{3} a_{4}\right) \geq 0.9 t$; the proof of $\rho\left(c_{2} ; a_{2} a_{3}\right) \geq 0.9 t$ is similar. Suppose $\rho\left(c_{3} ; a_{3} a_{4}\right)<0.9 t$. Keeping in mind (3) and (6), we estimate the lengths of the sides of $\triangle a_{1} \nu a_{2}$ by

$$
\begin{equation*}
1=\left\|a_{1} a_{2}\right\| \leq\left\|a_{1} \nu\right\|+\left\|\nu a_{2}\right\| \leq L\left(\widehat{a_{1} a_{2}}\right) \leq 1+\varepsilon / 2 \tag{9}
\end{equation*}
$$

If νw is the height of $\triangle a_{1} \nu a_{2}$ with endpoint ν, then $|\nu w|=t$. If $\angle \nu a_{1} w=\alpha$ and $\angle \nu a_{2} w=\beta$, then $\angle a_{3} O p_{1}=\alpha$ and $\angle a_{3} O u_{1}=\beta$. Denote by $p_{1} p_{0}$ and $u_{1} u_{0}$ the heights of $\triangle O p_{1} a_{3}$ and $\triangle O a_{3} u_{1}$ with endpoints p_{1} and u_{1}, respectively.

If we introduce $T=\left|p_{1} p_{0}\right|$ and $H=\left|u_{1} u_{0}\right|$, then the equalities $\angle O a_{3} p_{1}=$ $\angle O a_{3} u_{1}=\pi / 3$ imply $T(\cot \alpha+1 / \sqrt{3})=H(\cot \beta+1 / \sqrt{3})=1$. If we construct a homothety $\triangle O a_{2}^{\prime} a_{3}^{\prime} \approx \triangle O a_{2} a_{3}$ so that $c_{2} \in a_{2}^{\prime} a_{3}^{\prime}$, the ratio k of this homothety satisfies

$$
k=\left|O p_{1}\right| /\left|O c_{2}\right| \geq \sqrt{3} /(\sqrt{3}+2 t)
$$

since $\rho\left(c_{2} ; a_{2} a_{3}\right) \leq \rho\left(B ; A_{6}\right)=t$. The similarity $\triangle O p_{1} p_{0} \sim \triangle a_{1} \nu w$ implies $\left|a_{1} \nu\right| /\left|O p_{1}\right|=t / T$, and hence

$$
\left\|a_{1} \nu\right\|=\frac{\left|a_{1} \nu\right|}{\left|O c_{2}\right|}=\frac{\left|a_{1} \nu\right|}{\left|O p_{1}\right|} \cdot \frac{\left|O p_{1}\right|}{\left|O c_{2}\right|} \geq \frac{t}{T} \cdot \frac{\sqrt{3}}{\sqrt{3}+2 t}
$$

In a similar way, if we construct a homothety $\triangle O a_{3}^{\prime \prime} a_{4}^{\prime \prime} \approx \triangle O a_{3} a_{4}$ with $c_{3} \in a_{3}^{\prime \prime} a_{4}^{\prime \prime}$, since $\rho\left(c_{3} ; a_{3} a_{4}\right)<0.9 t$ the homothety ratio is

$$
\left|O u_{1}\right| /\left|O c_{3}\right| \geq \sqrt{3} /(\sqrt{3}+1.8 t)
$$

The similarity $\triangle a_{2} w \nu \sim \triangle O u_{0} u_{1}$ implies

$$
\left\|\nu a_{2}\right\|=\frac{\left|\nu a_{2}\right|}{\left|O c_{3}\right|}=\frac{\left|\nu a_{2}\right|}{\left|O u_{1}\right|} \cdot \frac{\left|O u_{1}\right|}{\left|O c_{3}\right|} \geq \frac{t}{H} \cdot \frac{\sqrt{3}}{\sqrt{3}+1.8 t} .
$$

As a consequence,

$$
\left\|a_{1} \nu\right\|+\left\|\nu a_{2}\right\| \geq \sqrt{3} t\left(\frac{\cot \alpha+1 / \sqrt{3}}{\sqrt{3}+2 t}+\frac{\cot \beta+1 / \sqrt{3}}{\sqrt{3}+1.8 t}\right)
$$

In $\triangle a_{1} \nu a_{2}$ we have $t(\cot \alpha+\cot \beta)=1$, and hence

$$
\begin{aligned}
\left\|a_{1} \nu\right\|+\left\|\nu a_{2}\right\| & \geq t \cdot \frac{3.8 \sqrt{3}+3 / t+3.8 t+0.2 \sqrt{3} t \cdot \cot \beta}{3.6 t^{2}+3.8 \sqrt{3} t+3} \\
& =1+\frac{0.2(\sqrt{3} \cot \beta+1)}{(\sqrt{3}+2 t)(\sqrt{3}+1.8 t)} \cdot t^{2}
\end{aligned}
$$

The inclusion $\triangle a_{1} \nu a_{2} \subset \triangle a_{1} q_{1} a_{2}$ implies $t \leq \sqrt{3} / 2$ and $\cot \beta \geq 1 / \sqrt{3}$. Then $\left\|a_{1} \nu\right\|+\left\|\nu a_{2}\right\| \geq 1+2 t^{2} / 57$. By (9) we have $t \leq \sqrt{57} \sqrt{\varepsilon} / 2<4 \sqrt{\varepsilon}$. This contradiction proves Proposition 1.

Corollary 1. The angle γ between the straight lines $\left(a_{3} c_{2}\right)$ and $\left(a_{3} c_{3}\right)$ satisfies

$$
\begin{equation*}
\sin \gamma \leq \frac{3 \varepsilon}{8 t} \tag{10}
\end{equation*}
$$

Proof. For $\triangle O c_{2} a_{3}$ we write $\varphi=\angle O a_{3} c_{2}$, and for $\triangle O a_{3} c_{3}$ analogously $\psi=\angle O a_{3} c_{3}$. Since $a_{2}, c_{2}, a_{3}, c_{3}, a_{4}$ lie on ∂B, we have $\pi / 3 \leq \varphi, \psi \leq 2 \pi / 3$ and $\varphi+\psi \leq \pi$. Let T_{1} and H_{1} be the lengths of the heights of $\triangle O c_{2} a_{3}$ and $\triangle O a_{3} c_{3}$, respectively, with respect to the common base $\left(O a_{3}\right)$. Evidently, $T_{1}(\cot \alpha+\cot \varphi)=H_{1}(\cot \beta+\cot \psi)=1=t(\cot \alpha+\cot \beta)$. Then

$$
\left\|a_{1} \nu\right\|+\left\|\nu a_{2}\right\|=\frac{\left|a_{1} \nu\right|}{\left|O c_{2}\right|}+\frac{\left|\nu a_{2}\right|}{\left|O c_{3}\right|}=\frac{t}{T_{1}}+\frac{t}{H_{1}}=t(\cot \varphi+\cot \psi)+1
$$

By (9) we have $0 \leq t(\cot \varphi+\cot \psi) \leq \varepsilon / 2$. Since $\gamma=\pi-(\varphi+\psi)$ and $0 \leq \gamma \leq \pi / 3$, we have $0 \leq \cot \varphi-\cot (\varphi+\gamma) \leq \varepsilon /(2 t)$ or $0 \leq$ $\sin \gamma /(\sin \varphi \cdot \sin (\varphi+\gamma)) \leq \varepsilon /(2 t)$. Since $\pi / 3 \leq \varphi+\gamma \leq 2 \pi / 3$, we have $\sin \varphi \geq \sqrt{3} / 2$ and $\sin (\varphi+\gamma) \geq \sqrt{3} / 2$. Hence 10 follows immediately, and Corollary 1 is proved.

Proposition 2. Let abnm be a convex quadrangle. If abnm $\subset \triangle a b f$, then

$$
\begin{equation*}
\rho(a b n m ; \triangle a b f) \leq \min \{|f n| ;|f m|\} . \tag{11}
\end{equation*}
$$

Proof. Let E denote the unit disk of the Euclidean plane \mathbb{R}^{2}. Then $f \in\{n\}+|f n| E \subset a b n m+|f n| E$. Thus, by convexity, $\triangle a b f \subset a b n m+|f n| E$, and so $\rho(\triangle a b f ; a b n m) \leq|f n|$. Similarly, $\rho(\triangle a b f ; a b n m) \leq|f m|$, and Proposition 2 is proved.

Corollary 2. If $\triangle a b n \subset \triangle a b m$, then $\rho(\triangle a b m ; \triangle a b n)=|n m|$.
Proposition 3. Let $\triangle a b c$ be a right triangle with $|a b|=1$ and suppose $\triangle a b n \subset \triangle a b m \subset \triangle a b c$. If the height $n p$ of $\triangle a b n$ has length $|n p| \geq t / \sqrt{3}>0$,
$\angle n b m=\mu_{1} \leq \mu_{0}$ and $\angle m a n=\mu_{2} \leq \mu_{0}$, then

$$
\begin{equation*}
|n m| \leq \frac{\sqrt{3}}{t} \sin \mu_{0} \tag{12}
\end{equation*}
$$

Proof. For $n=m$, inequality $\sqrt{12}$ is trivial. Suppose $n \neq m$. Note that the straight line $(m n)$ meets the side $a b$.

Denote by φ_{1} the angle between the vectors $\overline{c a}$ and $\overline{m n}$, i.e., $\varphi_{1}=$ $\angle(\overline{c a}, \overline{m n})$. Construct the vector $\overline{c q}=\overline{m n}$. Observe that the ray $[c q)$ meets the straight line $(a b)$, and hence $-2 \pi / 3 \leq \varphi_{1} \leq \pi / 3$. Denote $\varphi_{2}=\angle(\overline{m n}, \overline{c b})$. For similar reasons, we have $-2 \pi / 3 \leq \varphi_{2} \leq \pi / 3$.

Consider $\varphi=\max \left\{\varphi_{1} ; \varphi_{2}\right\}$. If $\varphi=-\pi / 6$, then the vectors $\overline{m n}$ and $\overline{a b}$ are mutually orthogonal. The vectors $\overline{c a}$ and $\overline{c b}$ are symmetric with respect to the angle bisector of $\angle b c a$, and hence $\varphi \geq-\pi / 6$. Without loss of generality, we may assume $\varphi=\varphi_{1}$. With this assumption, we introduce $\left\{m_{1}\right\}=(b m) \cap c a$.

Considering the homothety $\triangle b m n \approx \triangle b m_{1} n_{1}$, we see that $|m n| \leq$ $\left|m_{1} n_{1}\right|$. In $\triangle b m_{1} n_{1}$, denote $\Re=\angle b m_{1} n_{1}$ and $\xi=\angle m_{1} n_{1} b$; moreover, set $\angle a b n_{1}=\alpha$. Then \Re depends on the position of m_{1} on $c a$, i.e., $\Re=\Re\left(m_{1}\right)$.

We intend to find the variation margins for $\Re\left(m_{1}\right)$ depending on the location of the starting point of the vector $\overline{m_{1} n_{1}}$ with fixed length $\left|m_{1} n_{1}\right|$. Observe that the constant angle $\angle\left(\overline{m_{1} n_{1}}, \overline{b a}\right)$ equals $\pi-\left(\Re+\angle a b m_{1}\right)$. Thus,

$$
\begin{aligned}
& \Re_{1}=\min _{m_{1}} \Re\left(m_{1}\right)=\Re(c) \geq \pi / 6 \\
& \Re_{2}=\max _{m_{1}} \Re\left(m_{1}\right) \leq \pi-\angle a b m_{1}=\pi-(\angle a b n+\angle n b m)=\pi-\left(\alpha+\mu_{1}\right)
\end{aligned}
$$

It follows that $\pi / 6+\mu_{1} \leq \Re+\mu_{1} \leq \pi-\alpha$, and hence $\xi=\angle m_{1} n_{1} b$ satisfies $0<\alpha \leq \xi \leq 5 \pi / 6-\mu_{1}$, where $0 \leq \mu_{1}<\pi / 3$. Then

$$
\sin \xi \geq \min \left\{\sin \alpha ; \sin \left(5 \pi / 6-\mu_{1}\right)\right\} \geq \min \{\sin \alpha ; 1 / 2\}
$$

By hypothesis, the height $n p$ of $\triangle a b n$ satisfies $|n p| \geq t / \sqrt{3}$. Hence, $\sin \alpha=$ $|n p| /|b n| \geq t / \sqrt{3}$. Considering $\triangle b m_{1} n_{1}$, we get

$$
|m n| \leq\left|m_{1} n_{1}\right|=\sin \mu_{1} \cdot \frac{\left|b m_{1}\right|}{\sin \xi} \leq \frac{\sqrt{3}}{\min \{t ; \sqrt{3} / 2\}} \sin \mu_{1} \leq \frac{\sqrt{3}}{t} \sin \mu_{0}
$$

and Proposition 3 is proved.
Proposition 4. Let $\triangle a b c$ and $\triangle b a f$ be right triangles with $|a b|=1$ and $c \neq f$. If $p \in b c, m n \subset p a$, and $\angle n f m=\mu$, then

$$
\begin{equation*}
|m n| \leq 2 \sqrt{3} \sin \mu \tag{13}
\end{equation*}
$$

Proof. Denote by q the point on $(p a)$ such that $f q \perp p a$. Write $s=$ $(m+n) / 2$ and $x=|s q|$. The angle function $\mu=\mu(x)$ is decreasing, and $\max \mu(x)=\mu(0)$. This means that for a fixed value of μ the quantity $|m n|$ attains its maximum either for $n=a$ or $p=m$ (we assume that $p m \subset p n \subset p a)$.

If $n=a$, then for $\triangle f m a$ we have $\angle a f m=\mu, \angle m a f=\pi / 3+\beta$, where $0 \leq$ $\beta \leq \pi / 3$. We have $|f m| \leq|f c|=\sqrt{3}$, and moreover $\pi / 3 \leq \pi / 3+\beta \leq 2 \pi / 3$. Then

$$
\begin{equation*}
|m n|=\sin \mu \cdot \frac{|f m|}{\sin (\pi / 3+\beta)} \leq \sin \mu \cdot \frac{\sqrt{3}}{\sin \pi / 3}=2 \sin \mu \tag{14}
\end{equation*}
$$

If $p=m$, then for $\triangle f p a$ we write $\angle f p a=\Re, \Re<\pi / 2$. Then \Re depends on the location of p on $b c$, i.e., $\Re=\Re(p)$. Observe that $\Re(b)=\pi / 3$ and $\Re(c)=\pi / 6$. Moreover

$$
\min _{p} \Re(p)=\min \{\Re(b) ; \Re(c)\}=\pi / 6
$$

and hence $\sin \Re \geq 1 / 2$. Considering $\triangle f p n$, we can estimate the length of $m n$ by

$$
\begin{equation*}
|m n|=\sin \mu \cdot \frac{|f n|}{\sin \Re} \leq \sin \mu \cdot \frac{\sqrt{3}}{\sin \pi / 6}=2 \sqrt{3} \sin \mu \tag{15}
\end{equation*}
$$

The relations (14) and (15) imply (13). Proposition 4 is proved.
According to Remark 2, we assume $t>5 \sqrt{\varepsilon}$. We remind the reader that in the proof of Proposition 1 the lengths of the sides of $\triangle a_{1} \nu a_{2}$ with respect to the metric of M^{2} were estimated with the help of the polygonal arc $c_{2} a_{3} c_{3}$.

To study the properties of $c_{2} a_{3} c_{3}$, we consider the following constructions. Inequality (8) implies $t_{1}=\rho\left(c_{2} ; a_{2} a_{3}\right) \geq 0.9 t>4 \sqrt{\varepsilon}$ and $t_{2}=\rho\left(c_{3} ; a_{3} a_{4}\right) \geq$ $0.9 t>4 \sqrt{\varepsilon}$. On the unit circle ∂B, we consider

$$
c_{4}=\widehat{c_{2}-a_{2}}, \quad c_{5}=\widehat{a_{3}-c_{2}}, \quad c_{6}=\widehat{c_{3}-a_{3}}, \quad c_{7}=\widehat{a_{4}-c_{3}}
$$

Using Proposition 1 and replacing consecutively ν by c_{2}, a_{1} by a_{2}, a_{2} by a_{3}, a_{3} by a_{4}, c_{2} by c_{4}, and c_{3} by c_{5}, we get

$$
\begin{equation*}
\rho\left(c_{4} ; a_{3} a_{4}\right) \geq 0.9 t_{1}>0.8 t>t / \sqrt{3}, \quad \rho\left(c_{5} ; a_{4} a_{5}\right)>0.8 t \tag{16}
\end{equation*}
$$

For c_{3}, by the replacement $\nu \rightarrow c_{3}$ and in view of 16 we have

$$
\begin{equation*}
\rho\left(c_{6} ; a_{4} a_{5}\right) \geq 0.8 t, \quad \rho\left(c_{7} ; a_{5} a_{6}\right) \geq 0.8 t \tag{17}
\end{equation*}
$$

In what follows, it is convenient to consider the triangle $\triangle a_{1} \nu a_{2}$ together with its uniquely defined collection of triangles $\triangle a_{2} c_{2} a_{3}, \triangle a_{3} c_{3} a_{4}$ and the polygonal $\operatorname{arcs} c_{4} a_{4} c_{5}, c_{6} a_{5} c_{7}$. Similarly, we will consider each of the triangles $\triangle a_{2} c_{2} a_{3}$ and $\triangle a_{3} c_{3} a_{4}$ together with the corresponding collection of triangles and broken lines.

We give a description of how to pass from $\triangle a_{1} \nu a_{2}$ to $\triangle a_{2} c_{2} a_{3}$, and from $\triangle a_{1} \nu a_{2}$ to $\triangle a_{3} c_{3} a_{4}$. Namely, we have the following transformations:

- the polygonal arcs: $c_{2} a_{3} c_{3} \rightarrow c_{4} a_{4} c_{5}$ and $c_{2} a_{3} c_{3} \rightarrow c_{6} a_{5} c_{7}$,
- the segments: $a_{2} c_{2} \rightarrow a_{3} c_{4}, c_{2} a_{3} \rightarrow c_{4} a_{4}$ and

$$
a_{3} c_{3} \rightarrow a_{4} c_{5}, c_{3} a_{4} \rightarrow c_{5} a_{5}
$$

- the points: $c_{4} \rightarrow c_{8}=\left(\widehat{c_{4}-a_{3}}\right), c_{5} \rightarrow c_{9}=\left(\widehat{a_{4}-c_{4}}\right)$ and

$$
c_{6} \rightarrow c_{10}=\left(\widehat{c_{5}-a_{4}}\right), c_{7} \rightarrow c_{11}=\left(\widehat{a_{5}-c_{5}}\right)
$$

- the angles: $\gamma_{1}=\angle\left(\overline{a_{4} c_{5}}, \overline{c_{4} a_{4}}\right) \rightarrow \gamma_{3}=\angle\left(\overline{a_{5} c_{9}}, \overline{c_{8} a_{5}}\right)$ and

$$
\gamma_{2}=\angle\left(\overline{a_{5} c_{7}}, \overline{c_{6} a_{5}}\right) \rightarrow \gamma_{4}=\angle\left(\overline{c_{11} a_{6}}, \overline{a_{6} c_{10}}\right)
$$

- and again the angles: $\angle c_{6} O c_{5}=\gamma$ and $\angle c_{10} O c_{9}=\gamma_{1}$.

We write $c_{12}=\widehat{c_{6}-a_{4}}, c_{13}=\widehat{a_{5}-c_{6}}, c_{14}=\widehat{c_{7}-a_{5}}$ and $c_{15}=\widehat{a_{6}-c_{7}}$. Then $\angle c_{14} O c_{13}=\gamma_{2}$, and we write $\gamma_{5}=\angle\left(\overline{c_{12} a_{6}}, \overline{a_{6} c_{13}}\right)$ and $\gamma_{6}=\angle\left(\overline{c_{15} a_{1}}, \overline{a_{1} c_{14}}\right)$.

By Proposition 1, the inequalities (16), (17), and (8) imply

$$
\rho\left(c_{9} ; a_{5} a_{6}\right) \geq 0.9 \rho\left(c_{5} ; a_{4} a_{5}\right)>0.72 t>t / \sqrt{3}
$$

Similar estimates are valid for all $c_{k}, k=8,9, \ldots, 15$, i.e.,

$$
\begin{equation*}
\min \left\{\rho\left(c_{8} ; a_{4} a_{5}\right), \rho\left(c_{9,10,12} ; a_{5} a_{6}\right), \rho\left(c_{11,13,14} ; a_{6} a_{1}\right), \rho\left(c_{15} ; a_{1} a_{2}\right)\right\}>0.72 t \tag{18}
\end{equation*}
$$

Due to inequality from Corollary 1 , the angles $\gamma_{k} k=1, \ldots, 6$, satisfy

$$
\left\{\begin{array}{l}
\sin \gamma_{1,2} \leq \frac{5}{12} \varepsilon / t \tag{19}\\
\sin \gamma_{k} \leq \frac{25}{59} \varepsilon / t, \quad k=3,4,5,6
\end{array}\right.
$$

Write

$$
\begin{equation*}
\gamma_{0}=\max _{1 \leq k \leq 6}\left\{\gamma ; \gamma_{k}\right\} \tag{20}
\end{equation*}
$$

then, evidently,

$$
\begin{equation*}
\sin \gamma_{0} \leq \frac{25}{59} \varepsilon / t \tag{21}
\end{equation*}
$$

Proposition 5. If $t=\rho\left(B ; A_{6}\right)>5 \sqrt{\varepsilon}(0<\varepsilon \leq 0.001)$, then there exists a hexagon $B_{6}=b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$ with the properties:
(i) $B_{6}=-B_{6}$, i.e. B_{6} is symmetric with respect to the origin O.
(ii) B_{6} is circumscribed about B in such a way that $a_{k+1} \in b_{k} b_{k+1}$, $k=1, \ldots, 6$, where $b_{7}=b_{1}, a_{7}=a_{1}$.
(iii) The distances from b_{k} to the sides $a_{k} a_{k+1}$ are such that

$$
\begin{equation*}
\rho\left(b_{k} ; a_{k} a_{k+1}\right) \geq 0.9 t, \quad k=\{1, \ldots, 6\} . \tag{22}
\end{equation*}
$$

(iv) The distance from B_{6} to the unit circle B satisfies

$$
\begin{equation*}
\rho\left(B ; B_{6}\right) \leq(\sqrt{3} / t+2 \sqrt{3}) \sin \gamma_{0} \tag{23}
\end{equation*}
$$

where γ_{0} is given by (20).
Proof. Denote by l_{k} the straight lines drawn through a_{k} such that
(a) $l_{k}, k=1, \ldots, 6$, are the supporting lines for B;
(b) $l_{k} \| l_{k+3}, k=1,2,3$.

Write $\left\{b_{k}\right\}=l_{k} \cap l_{k+1}, k=1, \ldots, 6$, where $l_{7}=l_{1}$. The convex hexagon $B_{6}=$ $b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$ just constructed, symmetric with respect to O, is inscribed in B
in accordance to (b). We have $c_{3} \in \partial B$. The inclusion $B \subset B_{6}$ implies $c_{3} \in$ $\triangle a_{3} b_{3} a_{4}$. Similarly, $c_{2} \in \triangle a_{2} b_{2} a_{3}$ and $\nu \in \triangle a_{1} b_{1} a_{2}$. Then (8) implies (22).

To prove (23), we simplify notations. Put $a_{6}=a_{0}, a_{7}=a_{1}, a_{8}=a_{2}$, and write $\left\{q_{k}\right\}=\left(a_{k-1} a_{k}\right) \cap\left(a_{k+2} a_{k+1}\right), k=1, \ldots, 6$. The convexity of B implies

$$
A_{6} \subset B \subset B_{6} \subset a_{1} q_{1} a_{2} q_{2} a_{3} q_{3} a_{4} q_{4} a_{5} q_{5} a_{6} q_{6} .
$$

Consider the right triangle $\triangle a_{4} q_{4} a_{5}$, where $\left|a_{4} a_{5}\right|=1$. Observe that for any $x \in \triangle a_{4} q_{4} a_{5}$ we have

$$
\rho\left(x ; \triangle a_{3} q_{3} a_{4}\right)=\left|x a_{4}\right|, \quad \rho\left(x ; \triangle a_{5} q_{5} a_{6}\right)=\left|x a_{5}\right| .
$$

Therefore,

$$
\begin{equation*}
\rho\left(B_{6} ; B\right)=\max _{1 \leq k \leq 6} \rho\left(\triangle a_{k} b_{k} a_{k+1} ; B \cap \triangle a_{k} q_{k} a_{k+1}\right) . \tag{24}
\end{equation*}
$$

1°. Estimating from above the distance $\rho\left(\triangle a_{4} b_{4} a_{5} ; B \cap \triangle a_{4} q_{4} a_{5}\right)$. Write $\left\{n_{1}\right\}=\left(a_{4} c_{5}\right) \cap\left(a_{5} c_{6}\right)$ and $\left\{m_{1}\right\}=\left(c_{4} a_{4}\right) \cap\left(c_{7} a_{5}\right)$. Since $c_{2} \in \triangle a_{2} q_{2} a_{3}$ and $c_{3} \in \triangle a_{3} q_{3} a_{4}$, we have $\angle c_{6} O c_{5} \subset \angle a_{5} O a_{4}$. The points $c_{4}, a_{4}, c_{5}, c_{6}, a_{5}$ are cyclically located on the boundary ∂B of the convex figure B and the arc $\widehat{a_{4} a_{5}}$ is inside the pentagon $a_{4} m_{1} a_{5} c_{6} c_{5}$. By construction, $\left\{b_{4}\right\}=l_{4} \cap l_{5}$, and $l_{4,5}$ are the supporting lines to B at $a_{4,5}$. Hence b_{4} is inside $a_{4} m_{1} a_{5} n_{1}$, i.e., $b_{4} \in a_{4} m_{1} a_{5} n_{1} \subset a_{4} m_{1} a_{5} c_{6} c_{5}$. The quadrangle $a_{4} c_{5} c_{6} a_{5}$ lies in $\triangle a_{4} m_{1} a_{5}$, and hence by (11) we have

$$
\begin{equation*}
\rho\left(\triangle a_{4} m_{1} a_{5} ; a_{4} c_{5} c_{6} a_{5}\right) \leq \min \left\{\left|m_{1} c_{5}\right| ;\left|m_{1} c_{6}\right|\right\} \leq\left|m_{1} c_{5}\right| . \tag{25}
\end{equation*}
$$

Denote by $h_{1}(u), h_{2}(u), h_{3}(u)$ and $h_{4}(u)$ the support functions for the quadrangle $a_{4} c_{5} c_{6} a_{5}$, the triangles $\triangle a_{4} b_{4} a_{5}$ and $\triangle a_{4} m_{1} a_{5}$, and $B \cap \triangle a_{4} q_{4} a_{5}$, respectively. It is easy to see that $a_{4} c_{5} c_{6} a_{5} \subset\left\{B \cap \triangle a_{4} q_{4} a_{5}\right\} \subset \triangle a_{4} b_{4} a_{5} \subset$ $\triangle a_{4} m_{1} a_{5}$. Using known properties of support functions of convex figures (see [1.) §4.15]), we deduce for $|u|=1$ that

$$
h_{1}(u) \leq h_{4}(u) \leq h_{2}(u) \leq h_{3}(u) .
$$

Then $h_{2}(u)-h_{4}(u) \leq h_{3}(u)-h_{1}(u)$. By (7) and (25) we have

$$
\begin{equation*}
\rho\left(\triangle a_{4} b_{4} a_{5} ; B \cap \triangle a_{4} q_{4} a_{5}\right) \leq\left|m_{1} c_{5}\right| . \tag{26}
\end{equation*}
$$

From (16) it follows that the height of $\triangle a_{4} n_{1} a_{5}$ with endpoint n_{1} satisfies

$$
\rho\left(n_{1} ; a_{4} a_{5}\right) \geq \rho\left(c_{5} ; a_{4} a_{5}\right) \geq 0.8 t
$$

Remember that $\gamma_{1}=\angle c_{5} a_{4} m_{1}$ and $\gamma_{2}=\angle m_{1} a_{5} c_{6}$ satisfy (19). Via Corollary 2 and Proposition 3, from (12) and (20) we conclude that

$$
\begin{equation*}
\rho\left(\triangle a_{4} m_{1} a_{5} ; \triangle a_{4} n_{1} a_{5}\right)=\left|n_{1} m_{1}\right| \leq \frac{\sqrt{3}}{t} \sin \gamma_{0} . \tag{27}
\end{equation*}
$$

By construction, for A_{6} in Proposition 5 we have $\angle c_{6} O c_{5}=\angle\left(\overline{a_{3} c_{3}}, \overline{c_{2} a_{3}}\right)=$ $\gamma \leq \gamma_{0}$, satisfying (10). Taking into account Proposition 4, we have

$$
\begin{equation*}
\left|n_{1} c_{5}\right| \leq 2 \sqrt{3} \sin \gamma_{0} . \tag{28}
\end{equation*}
$$

By the triangle inequality, $\left|m_{1} c_{5}\right| \leq\left|n_{1} m_{1}\right|+\left|n_{1} c_{5}\right|$. Hence, by (27) and (28) we have $\left|m_{1} c_{5}\right| \leq(\sqrt{3} / t+2 \sqrt{3}) \sin \gamma_{0}$. Together with (26), the latter inequality implies

$$
\begin{equation*}
\rho\left(\triangle a_{4} b_{4} a_{5} ; B \cap \triangle a_{4} q_{4} a_{5}\right) \leq(\sqrt{3} / t+2 \sqrt{3}) \sin \gamma_{0} \tag{29}
\end{equation*}
$$

2°. Estimating from above the distance $\rho\left(\triangle a_{5} b_{5} a_{6} ; B \cap \triangle a_{5} q_{5} a_{6}\right)$ and the distance $\rho\left(\triangle a_{6} b_{6} a_{1} ; B \cap \triangle a_{6} q_{6} a_{1}\right)$. By Remark 2, we have $t>5 \sqrt{\varepsilon}, 0<\varepsilon$ ≤ 0.001. By Proposition 1, if $t>4 \sqrt{\varepsilon}$, then $t_{1}=\rho\left(c_{2} ; a_{2} a_{3}\right) \geq 0.9 t>4.5 \sqrt{\varepsilon}$ and $t_{2}=\rho\left(c_{3} ; a_{3} a_{4}\right)>4.5 \sqrt{\varepsilon}$. In view of 18 we have

$$
\left\{\begin{array}{l}
\min \left(\rho\left(c_{9} ; a_{5} a_{6}\right), \rho\left(c_{10} ; a_{5} a_{6}\right)\right)>0.72 t>t / \sqrt{3} \\
\min \left(\rho\left(c_{13} ; a_{6} a_{1}\right), \rho\left(c_{14} ; a_{6} a_{1}\right)\right)>0.72 t>t / \sqrt{3}
\end{array}\right.
$$

Remember that the angles $\gamma_{3}, \gamma_{4}, \gamma_{1}=\angle c_{10} O c_{9}$ and $\gamma_{5}, \gamma_{6}, \gamma_{2}=\angle c_{14} O c_{13}$ satisfy (19) and 20). For each of the triangles $\triangle a_{5} q_{5} a_{6}$ and $\triangle a_{6} q_{6} a_{1}$ we consider constructions similar to the constructions for $\triangle a_{4} q_{4} a_{5}$ in the proof of 1°. Using an analogous reasoning to that from (24) to 29 , we conclude that

$$
\left\{\begin{aligned}
\rho\left(\triangle a_{5} b_{5} a_{6} ; B \cap \triangle a_{5} q_{5} a_{6}\right) \leq(\sqrt{3} / t+2 \sqrt{3}) \sin \gamma_{0} \\
\rho\left(\triangle a_{6} b_{6} a_{1} ; B \cap \triangle a_{6} q_{6} a_{1}\right) \leq(\sqrt{3} / t+2 \sqrt{3}) \sin \gamma_{0}
\end{aligned}\right.
$$

This system, together with 29 and (24), yields 23), and thus Proposition 5 is proved.

REmark 3. The hexagon B_{6} with the properties (i) and (ii) from Proposition 5 has at least four sides of Euclidean length not smaller than 1/2.

Proof. We use the central symmetry $B_{6}=-B_{6}$ and only consider the sides $b_{1} b_{2}, b_{2} b_{3}, b_{3} b_{4}$. By construction, for A_{6} in Proposition 5 we have $A_{6} \subset B_{6},\left|a_{k} a_{k+1}\right|=1$, and $\triangle a_{k} q_{k} a_{k+1}$ is a right triangle. Evidently, $\sum_{k=1}^{6}\left|b_{k} b_{k+1}\right| \geq \sum_{k=1}^{6}\left|a_{k} a_{k+1}\right|=6$, and hence $\left|b_{1} b_{2}\right|+\left|b_{2} b_{3}\right|+\left|b_{3} b_{4}\right| \geq 3$. One of the sides has length at least 1. Assume $\left|b_{1} b_{2}\right| \geq 1$. If $\left|b_{3} b_{4}\right| \leq 1 / 2$, then $\left|b_{1} b_{2}\right|+\left|b_{2} b_{3}\right| \geq 5 / 2$. The inclusions $b_{1} a_{2} \subset \triangle a_{1} q_{1} a_{2}$ and $a_{2} b_{2} \subset$ $\triangle a_{2} q_{2} a_{3}$ imply $\left|b_{1} b_{2}\right|=\left|b_{1} a_{2}\right|+\left|a_{2} b_{2}\right| \leq 2$. Therefore, $\left|b_{2} b_{3}\right| \geq 1 / 2$, i.e., $\min \left\{\left|b_{1} b_{2}\right| ;\left|b_{2} b_{3}\right|\right\} \geq 1 / 2$.

Proposition 6. If $t \geq 2 \sqrt[3]{\varepsilon}(0<\varepsilon \leq 0.001)$, then each side of the hexagon B_{6} from Proposition 5 has length at least $1 / 2$, i.e.,

$$
\begin{equation*}
l=\min _{k}\left|b_{k} b_{k+1}\right| \geq 1 / 2 \tag{30}
\end{equation*}
$$

Proof. Without loss of generality, assume $l=\left|b_{1} b_{6}\right|=\left|b_{3} b_{4}\right|$. By (22) we have $\min \left\{\left|a_{1} b_{1}\right| ;\left|a_{1} b_{6}\right|\right\}>0$. Consider the polygonal arc $a_{1} b_{1} b_{2} b_{3} a_{4}$ and observe that $\left|a_{1} b_{1}\right|+\left|b_{3} a_{4}\right|=l$.

Suppose that (30) fails, i.e., that $l<1 / 2$. With $x=\left|a_{4} b_{3}\right|$ we have $\left|a_{1} b_{1}\right|=l-x>0$. In what follows, we use the subscript "old" to denote lengths of segments and perimeters with respect to the metric generated by
the 'old' normalizing figure B, for example $\|a b\|=\|a b\|_{\text {old }}, L(B)=L_{\text {old }}(B)$. The subscript "new" indicates lengths and perimeters with respect to the new normalizing figure B_{6} of M^{2}.

We intend to estimate the self-perimeter $L_{\text {new }}\left(B_{6}\right)$ from below. Following the proof of Proposition 5, we write $\left\{q_{k}\right\}=\left(a_{k-1} a_{k}\right) \cap\left(a_{k+2} a_{k+1}\right)$.

By construction, $b_{1} \in \triangle a_{1} q_{1} a_{2}$ and hence $g_{1}=\widehat{b_{1}-b_{6}} \in \widehat{a_{2} a_{3}} \subset \partial B$. The ray $\left[O g_{1}\right.$) meets the polygonal arc $a_{2} b_{2} a_{3}$ at $g_{2} \in \triangle a_{2} q_{2} a_{3}$, and we have $\left|O g_{2}\right| \leq \sqrt{3}$. In view of $\sqrt{1} \mid$, we get

$$
\begin{equation*}
\left\|b_{6} b_{1}\right\|_{\text {new }}=\frac{l}{\left|O g_{2}\right|} \geq \frac{l}{\sqrt{3}} \tag{31}
\end{equation*}
$$

We consider the points f_{i} satisfying the conditions

$$
\begin{aligned}
& f_{1} \in a_{1} a_{2}, \quad\left|a_{1} f_{1}\right|=\left|f_{1} a_{2}\right| ; \\
& f_{2} \in a_{1} q_{1},\left|a_{1} f_{2}\right|=\left|f_{2} q_{1}\right| ; \\
& f_{3} \in a_{2} q_{2},\left|a_{2} f_{3}\right|=\left|f_{3} q_{2}\right| ; \\
&\left\{f_{4}\right\}=a_{3} q_{2} \cap\left(f_{2} a_{2}\right) ; \quad\left\{f_{5}\right\}=a_{4} q_{3} \cap\left(f_{3} a_{3}\right) ; \\
&\left\{f_{6}\right\}=a_{3} a_{4} \cap O q_{3} ; \quad\left\{f_{7}\right\}=a_{3} f_{5} \cap O q_{3} .
\end{aligned}
$$

Moreover, take $e_{2} \in a_{1} f_{2}$ and $b_{1}^{\prime \prime} \in a_{1} f_{1}$ such that

$$
\begin{equation*}
\left|a_{1} e_{2}\right|=\left|a_{1} b_{1}^{\prime \prime}\right|=\left|a_{1} b_{1}\right|=l-x<1 / 2, \tag{32}
\end{equation*}
$$

and $e_{4} \in a_{4} f_{5}$ and $b_{3}^{\prime \prime} \in a_{4} f_{6}$ such that

$$
\begin{equation*}
\left|a_{4} e_{4}\right|=\left|a_{4} b_{3}^{\prime \prime}\right|=\left|a_{4} b_{3}\right|=x<1 / 2 . \tag{33}
\end{equation*}
$$

Write $g_{3}=\left(\widehat{b_{2}-b_{1}}\right)_{\text {new }}$ and $g_{4}=\left(\widehat{a_{2}-e_{2}}\right)_{\text {new }}$, where $g_{3}, g_{4} \in \partial B_{6}$, and $\left\{g_{3}^{\prime}\right\}=a_{3} e_{4} \cap O g_{3}$ and $\left\{g_{4}^{\prime}\right\}=a_{3} e_{4} \cap O g_{4}$. We have the evident inclusions

$$
\begin{aligned}
& \triangle a_{1} b_{1} a_{2} \subset \triangle a_{1} e_{2} a_{2}, \quad \triangle a_{3} b_{3} a_{4} \subset \triangle a_{3} e_{4} a_{4}, \\
& \triangle a_{3} g_{3} O \subset \triangle a_{3} g_{3}^{\prime} O \subset \triangle a_{3} g_{4}^{\prime} O \subset \triangle a_{3} f_{7} O
\end{aligned}
$$

We consider $\left\{e_{3}\right\}=\left(e_{2} a_{2}\right) \cap\left(e_{4} a_{3}\right)$ and $\left\{b_{2}^{\prime}\right\}=\left(e_{4} a_{3}\right) \cap b_{1} b_{2}$. On the straight line ($e_{2} a_{2}$), take e_{5} such that $b_{1}^{\prime \prime} e_{5} \| e_{4} a_{3}$. Since $\angle f_{5} e_{4} a_{3}=\angle f_{1} b_{1}^{\prime \prime} e_{5}<\pi / 2$, we have $e_{5} \in e_{2} a_{2}$. Write $\left\{b_{1}^{\prime}\right\}=b_{1} a_{2} \cap b_{1}^{\prime \prime} e_{5}$ and $\left\{e_{3}^{\prime}\right\}=\left(e_{4} a_{3}\right) \cap a_{2} q_{2}$. It is important that

$$
g_{3}=\left(\widehat{b_{2}-b_{1}}\right)_{\text {new }}=\left(\widehat{b_{2}^{\prime}-b_{1}^{\prime}}\right)_{\text {new }} \quad \text { and } \quad g_{4}=\left(\widehat{a_{2}-e_{2}}\right)_{\text {new }}=\left(\widehat{a_{2}-e_{5}}\right)_{\text {new }} .
$$

Taking into account the similarities $\triangle g_{3}^{\prime} O g_{4}^{\prime} \sim \triangle b_{2}^{\prime} a_{2} e_{3} \sim \triangle b_{1}^{\prime} a_{2} e_{5}$ and (1), we get

$$
\begin{equation*}
\left\|b_{1} b_{2}\right\|_{\text {new }}=\frac{\left|b_{1} b_{2}\right|}{\left|O g_{3}\right|} \geq \frac{\left|b_{1}^{\prime} b_{2}^{\prime}\right|}{\left|O g_{3}^{\prime}\right|}=\frac{\left|e_{5} e_{3}\right|}{\left|O g_{4}^{\prime}\right|} . \tag{34}
\end{equation*}
$$

Since $\triangle O a_{3} g_{4}^{\prime} \sim \triangle a_{2} e_{3}^{\prime} e_{3} \sim \triangle a_{2} b_{1}^{\prime \prime} e_{5}, \triangle a_{3} e_{4} a_{4}=\triangle a_{3} e_{3}^{\prime} q_{2}$ and $\left|a_{1} a_{2}\right|=$
$\left|a_{2} q_{2}\right|=\left|O a_{3}\right|=1,(32)-(34)$ imply

$$
\left\|b_{1} b_{2}\right\|_{\text {new }} \geq \frac{\left|b_{1}^{\prime \prime} e_{3}^{\prime}\right|}{\left|O a_{3}\right|}=2-\left|a_{1} b_{1}^{\prime \prime}\right|-\left|a_{4} e_{4}\right|=2-l
$$

In a similar way we get $\left\|b_{2} b_{3}\right\|_{\text {new }} \geq 2-l$. From this and (31) we deduce that

$$
L_{\text {new }}\left(B_{6}\right) \geq 2(2(2-l)+l / \sqrt{3})=8-(4-2 / \sqrt{3}) l .
$$

Therefore, if $l<1 / 2$, then

$$
\begin{equation*}
L_{\text {new }}\left(B_{6}\right) \geq 6+1 / \sqrt{3}>6.57 \tag{35}
\end{equation*}
$$

Now we prove that under the hypothesis of Proposition 6 the inequality (35) fails for $t \geq 2 \sqrt[3]{\varepsilon}(0<\sqrt[3]{\varepsilon} \leq 0.1)$. By (23), 20) and (21),
$\tau=\rho\left(B ; B_{6}\right) \leq\left(\frac{\sqrt{3}}{t}+2 \sqrt{3}\right) \cdot \frac{25}{59} \cdot \frac{\varepsilon}{t} \leq \frac{25}{108} \cdot \sqrt[3]{\varepsilon}\left(\frac{\sqrt{3}}{2}+2 \sqrt{3} \cdot \sqrt[3]{\varepsilon}\right)<0.03$.
We use the formula for the Hausdorff distance which is equivalent to 7 (see, e.g., (246) in [6]) with respect to B and B_{6}, i.e.,

$$
\rho\left(B ; B_{6}\right)=\min \left\{\lambda \geq 0: B \subset B_{6}+\lambda E, B_{6} \subset B+\lambda E\right\}
$$

where E is the unit disk of the Euclidean plane \mathbb{R}^{2}. Then $B \subset B_{6}+\tau E$ and $B_{6} \subset B+\tau E$. According to our constructions, we have $(\sqrt{3} / 2) E \subset A_{6} \subset B_{6}$, and hence $E \subset(2 / \sqrt{3}) B_{6}$. Therefore,

$$
B \subset B_{6}+\tau \cdot \frac{2}{\sqrt{3}} B_{6}=\left(1+\frac{2}{\sqrt{3}} \tau\right) B_{6}
$$

Denote by $(a b)_{O}$ the straight line passing through the origin O which is parallel to $a b$, i.e., $(a b)_{O} \| a b$. The Euclidean length of the intersection of B and $(a b)_{O}$ satisfies

$$
\left|B \cap(a b)_{O}\right| \leq\left(1+\frac{2}{\sqrt{3}} \tau\right) \cdot\left|B_{6} \cap(a b)_{O}\right|
$$

From the latter inequality and (1) it follows that for any segment $a b$ in M^{2},

$$
\|a b\|_{\text {new }} \leq\left(1+\frac{2}{\sqrt{3}} \tau\right) \cdot\|a b\|_{\text {old }}
$$

and hence the self-perimeter of B_{6} satisfies

$$
\begin{equation*}
L_{\mathrm{new}}\left(B_{6}\right) \leq\left(1+\frac{2}{\sqrt{3}} \tau\right) L_{\mathrm{old}}\left(B_{6}\right)=\left(1+\frac{2}{\sqrt{3}} \tau\right) L\left(B_{6}\right) \tag{37}
\end{equation*}
$$

Since $(\sqrt{3} / 2) E \subset A_{6} \subset B$, we have $B_{6} \subset(1+(2 / \sqrt{3}) \tau) B$. By (37) and (3),

$$
L_{\mathrm{new}}\left(B_{6}\right) \leq\left(1+\frac{2}{\sqrt{3}} \tau\right) L\left(\left(1+\frac{2}{\sqrt{3}} \tau\right) B\right)=\left(1+\frac{2}{\sqrt{3}} \tau\right)^{2} L(B)
$$

From (36) and (4) we conclude that

$$
L_{\text {new }}\left(B_{6}\right)<\left(1+\frac{2}{\sqrt{3}} \cdot 0.03\right)^{2} \cdot 6.001<6.43
$$

contradicting 35. Thus, 30 is correct, and Proposition 6 is proved.
We continue with the construction of the hexagon S using the properties of B_{6} stated in Propositions 5 and 6 .

Recall that $c_{k} \in \partial B$ and $c_{2}=\widehat{\nu-a_{1}}, c_{3}=\widehat{a_{2}-\nu}, c_{4}=\widehat{c_{2}-a_{2}}, c_{5}=$ $\widehat{a_{3}-c_{2}}, c_{6}=\widehat{c_{3}-a_{3}}, c_{7}=\widehat{a_{4}-c_{3}}$.

Draw the straight line $l_{3}(O)$ through O in such a way that $l_{3}(O)\left\|b_{2} b_{3}\right\|$ $b_{5} b_{6}$. The definition of B_{6} implies that $l_{3}(O)$ splits $\angle c_{6} O c_{5}$. Consider the $\operatorname{arcs} \widehat{a_{4} b_{4} a_{5}} \subset \partial B_{6}$ and $\widehat{a_{1} b_{1} a_{2}} \in \partial B_{6}$, and $\left\{s_{4}\right\}=l_{3}(O) \cap \widehat{a_{4} b_{4} a_{5}}$ as well as $\left\{s_{1}\right\}=l_{3}(O) \cap \widehat{a_{1} b_{1} a_{2}}$, where $s_{4}=-s_{1}$.

REmARK 4. It suffices to consider in detail the case $s_{4} \in a_{5} b_{4}$. The case $s_{4} \in b_{4} a_{4}$ is similar.

Write $\left\{b_{3}^{\prime}\right\}=\left(s_{4} a_{4}\right) \cap\left(b_{2} b_{3}\right)$ and $\left\{r_{4}\right\}=\left(a_{4} b_{4}\right) \cap\left(O s_{4}\right)$. In view of Remark 2, it is sufficient to consider $t>5 \sqrt{\varepsilon} \quad(0<\varepsilon \leq 0.001)$. Then (21) implies $\sin \gamma_{0} \leq \frac{5}{59} \sqrt{\varepsilon}<0.01$. Moreover, $0 \leq \gamma_{0}<\pi / 18$. Consider the case $\gamma_{0}=0$. Then (23) implies $B=B_{6}$. The polygonal arc $c_{2} a_{3} c_{3}$ degenerates to the segment $c_{2} c_{3} \subset b_{2} b_{3}$. By Proposition 1 from [9] we have $\left\|a_{1} b_{1}\right\|+\left\|b_{1} a_{2}\right\|=1$, and hence $L(B)=6$. In [11] and [13] it was proved that in this case B is an affinely regular hexagon. Therefore, we assume $\gamma_{0} \in(0 ; \pi / 18)$.

Proposition 7. If $t=\rho\left(B ; A_{6}\right)>5 \sqrt{\varepsilon}(0<\varepsilon \leq 0.001)$ and $\gamma_{0}>0$, then

$$
\begin{equation*}
\max \left\{\left|s_{4} b_{4}\right| ;\left|b_{3} b_{3}^{\prime}\right|\right\} \leq \frac{35 \sqrt{3}}{2 t} \sin \gamma_{0} \tag{38}
\end{equation*}
$$

Proof. First, we estimate $\left|s_{4} b_{4}\right|$ from above. As in Proposition5, consider $\left\{n_{1}\right\}=\left(a_{4} c_{5}\right) \cap\left(a_{5} c_{6}\right)$, yielding $\angle n_{1} a_{4} b_{4}<\gamma_{1}$ and $\angle b_{4} a_{5} n_{1}<\gamma_{2}$. Consider $\left\{w_{1}\right\}=\left(a_{4} n_{1}\right) \cap a_{5} b_{4}$. If $w_{1} \in a_{5} s_{4}$, then $\left|s_{4} b_{4}\right| \leq\left|w_{1} b_{4}\right|$. Since $c_{5} \in n_{1} a_{4} \subset$ $w_{1} a_{4}$, from (16) it follows that $\rho\left(w_{1} ; a_{4} a_{5}\right) \geq 0.8 t$. Observe that $\triangle a_{5} a_{4} w_{1} \subset$ $\triangle a_{5} a_{4} b_{4} \subset \triangle a_{5} a_{4} q_{4}, \angle w_{1} a_{5} b_{4}=0, \angle w_{1} a_{4} b_{4}<\gamma_{1}$. Using Proposition 3, (12) and (20), we get

$$
\begin{equation*}
\left|s_{4} b_{4}\right| \leq\left|w_{1} b_{4}\right| \leq \frac{\sqrt{3}}{t} \sin \gamma_{0} \tag{39}
\end{equation*}
$$

If $s_{4} \in a_{5} w_{1}$, then $\left|s_{4} b_{4}\right| \leq\left|s_{4} n_{1}\right|+\left|n_{1} b_{4}\right|$. Using Corollary 2 from (12) and 20 we deduce that

$$
\begin{equation*}
\rho\left(\triangle a_{4} b_{4} a_{5} ; \triangle a_{4} n_{1} a_{5}\right)=\left|n_{1} b_{4}\right| \leq \frac{\sqrt{3}}{t} \sin \gamma_{0} \tag{40}
\end{equation*}
$$

With $\left\{w_{2}\right\}=\left(a_{4} w_{1}\right) \cap\left(O s_{4}\right)$ and $\left\{w_{3}\right\}=\left(a_{5} b_{4}\right) \cap\left(O c_{5}\right)$ we have $w_{1} n_{1} \subset$ $w_{2} c_{5} \subset\left(n_{1} a_{4}\right), \angle w_{2} O c_{5}<\gamma$, and hence $\angle w_{1} O n_{1}<\gamma$. By (13) and (20),

$$
\begin{equation*}
\left|n_{1} w_{1}\right| \leq 2 \sqrt{3} \sin \gamma_{0} . \tag{41}
\end{equation*}
$$

Similarly, $s_{4} w_{1} \subset s_{4} w_{3} \subset\left(a_{5} b_{4}\right), \angle s_{4} O w_{1} \leq \angle s_{4} O w_{3}<\gamma$, and hence

$$
\begin{equation*}
\left|s_{4} w_{1}\right| \leq 2 \sqrt{3} \sin \gamma_{0} . \tag{42}
\end{equation*}
$$

Using (41) and (42), we conclude that

$$
\left|n_{1} s_{4}\right| \leq\left|n_{1} w_{1}\right|+\left|w_{1} s_{4}\right| \leq 4 \sqrt{3} \sin \gamma_{0}
$$

From the latter inequality and 40 we get

$$
\begin{equation*}
\left|s_{4} b_{4}\right| \leq \sqrt{3}(1 / t+4) \sin \gamma_{0} \tag{4}
\end{equation*}
$$

Comparing (39) and (43), we see that the latter is more general.
By Remark 4. we assume $s_{4} \in a_{5} b_{4}$ and hence $b_{4} \in r_{4} a_{4}, b_{3} \in b_{2} b_{3}^{\prime}$ and $\triangle a_{4} b_{3} b_{3}^{\prime} \approx \triangle a_{4} r_{4} s_{4}$. To estimate $\left|b_{3} b_{3}^{\prime}\right|$ from above, we use $\left|s_{4} r_{4}\right|$.

We consider two cases:
1°. If $s_{4} \in w_{1} b_{4}$, then $\left|r_{4} s_{4}\right| \leq\left|r_{4} w_{2}\right|$.
2°. If $w_{1} \in s_{4} b_{4}$, then

$$
\begin{equation*}
\left|r_{4} s_{4}\right|=\left|r_{4} w_{2}\right|+\left|w_{2} s_{4}\right| . \tag{44}
\end{equation*}
$$

1°. In this case $w_{2} \in \triangle a_{5} a_{4} q_{4}$. Then $\left|w_{2} r_{4}\right|$ (with $w_{2} r_{4} \subset\left(O s_{4}\right)$) attains its maximum provided $\angle w_{2} a_{4} r_{4}=\psi \leq \gamma_{0}$, if $w_{2} \in \partial \triangle a_{5} a_{4} q_{4}$. If $w_{2} \in a_{4} a_{5}$, then $\Re=\angle r_{4} w_{2} a_{4}$ satisfies $\pi / 3 \leq \Re \leq 2 \pi / 3$. Consequently, $\pi / 3<\Re+\psi \leq$ $\Re+\gamma_{0} \leq 5 \pi / 6,\left|w_{2} a_{4}\right| \leq 1$, and by the law of sines

$$
\begin{equation*}
\left|r_{4} w_{2}\right|=\frac{\left|a_{4} w_{2}\right|}{\sin (\Re+\psi)} \sin \psi \leq 2 \sin \gamma_{0} . \tag{45}
\end{equation*}
$$

If $w_{2} \in a_{4} q_{4}$ and $\left|a_{4} w_{2}\right| \leq 1$, then $\eta=\angle a_{4} w_{2} O$ satisfies $\pi / 6 \leq \eta \leq \pi / 3$. Then $\varphi=\angle a_{4} r_{4} w_{2}$ satisfies $\pi / 6-\pi / 18 \leq \eta-\gamma_{0} \leq \eta-\psi=\varphi \leq \pi / 3$, and hence $\sin \varphi \geq \frac{1}{3} \sin \frac{\pi}{3}$. In view of $\triangle a_{4} r_{4} w_{2}$ we see that

$$
\begin{equation*}
\left|r_{4} w_{2}\right|=\frac{\left|a_{4} w_{2}\right|}{\sin \varphi} \sin \psi \leq 2 \sqrt{3} \sin \gamma_{0} . \tag{46}
\end{equation*}
$$

If $w_{2} \in q_{4} a_{5}$, then again $\left|a_{4} w_{2}\right| \leq 1, \sin \varphi \geq \sqrt{3} / 6$ and hence (46) remains correct. Comparing (45) and (46), we get $\left|r_{4} s_{4}\right| \leq\left|r_{4} w_{2}\right| \leq 2 \sqrt{3 \sin } \gamma_{0}$.
2°. In this case it is possible that $w_{2} \notin \triangle a_{5} a_{4} q_{4}$. Since $w_{1} \in s_{4} b_{4}$, the segment $w_{1} w_{2}$ is in $\angle s_{4} O c_{5}<\gamma, w_{1} \in \triangle a_{4} q_{4} a_{5}$, and $w_{1} w_{2} \subset\left(a_{4} n_{1}\right)$. Using the same arguments as in the proof of Proposition 4, we estimate $\left|w_{1} w_{2}\right|$ in analogy with the derivation of (14) and (15). Namely, if $w_{1}=a_{4}$ and $\sin \gamma<0.01$, then $w_{2} \in \triangle a_{4} q_{4} a_{5}$, and hence $\left|w_{1} w_{2}\right| \leq 2 \sqrt{3} \sin \gamma_{0}$. If $w_{1} \in q_{4} a_{5}$, then $\Re=\angle a_{4} w_{1} O$ satisfies $\pi / 6 \leq \Re \leq \pi / 3$, and $\psi=\angle w_{2} O w_{1} \leq \gamma_{0}<\pi / 18$. Then $\varphi=\angle w_{1} w_{2} O=\Re-\psi \geq \Re-\gamma_{0}$ and $\sin \varphi \geq \sin \left(\pi / 6-\gamma_{0}\right) \geq \sqrt{3} / 6$. In
$\triangle w_{1} w_{2} O$ we have $\left|O w_{1}\right| \leq \sqrt{3}$, and hence

$$
\left|w_{1} w_{2}\right| \leq \frac{\left|O w_{1}\right|}{\sin \varphi} \sin \gamma \leq 6 \sin \gamma_{0}
$$

From this and (42) we conclude that

$$
\begin{equation*}
\left|s_{4} w_{2}\right| \leq\left|s_{4} w_{1}\right|+\left|w_{1} w_{2}\right| \leq 10 \sin \gamma_{0} . \tag{47}
\end{equation*}
$$

We now estimate $\left|r_{4} w_{2}\right|$ from above. Choose a_{4}^{\prime} and a_{5}^{\prime} on the straight lines $\left(O a_{4}\right)$ and $\left(O a_{5}\right)$ such that $a_{4} \in O a_{4}^{\prime}, a_{5} \in O a_{5}^{\prime}$ and $\left|O a_{4}^{\prime}\right|=\left|O a_{5}^{\prime}\right|=$ $1+10 \sin \gamma_{0}$.

Construct the right triangle $\triangle a_{4}^{\prime} q_{4}^{\prime} a_{5}^{\prime}$, where $a_{4}^{\prime} q_{4}^{\prime} \| a_{4} q_{4}$ and $q_{4}^{\prime} a_{5}^{\prime} \| q_{4} a_{5}$. Then $w_{2} \in\left[O s_{4}\right)$, and by (47) we have $w_{2} \in a_{4} a_{4}^{\prime} q_{4}^{\prime} a_{5}^{\prime} a_{5}$. By the same arguments as in 1°, it follows that $\left|w_{2} r_{4}\right|$ attains its maximum provided that $\angle w_{2} a_{4} r_{4}=\psi<\gamma_{0}$ if either $w_{2} \in a_{4} a_{5}$ or w_{2} is on the polygonal arc $a_{4}^{\prime} q_{4}^{\prime} a_{5}^{\prime}$, i.e., $w_{2} \in \widehat{a_{4}^{\prime} q_{4}^{\prime} a_{5}^{\prime}}$. If $w_{2} \in a_{4} a_{5}$, then (45) holds. If $w_{2} \in \widehat{a_{4}^{\prime} q_{4}^{\prime} a_{5}^{\prime}}$, then, using the same arguments as in the proof of (46), we see that

$$
\left|w_{2} r_{4}\right| \leq \frac{1+10 \sin \gamma_{0}}{\sin \varphi} \sin \gamma_{0} \leq 4 \sin \gamma_{0}
$$

Comparing the latter inequality with (44) and 47), we get the general estimate

$$
\begin{equation*}
\left|r_{4} s_{4}\right| \leq 14 \sin \gamma_{0} \tag{48}
\end{equation*}
$$

We compare $\left|b_{3} b_{3}^{\prime}\right|$ and $\left|r_{4} s_{4}\right|$. Through $c_{5} \in \triangle a_{4} b_{4} a_{5}$ we draw the straight line $l\left(c_{5}\right)\left\|O s_{4}\right\| b_{2} b_{3}$, and we consider $\left\{v_{1}\right\}=\left(O s_{4}\right) \cap a_{4} a_{5},\left\{v_{2}\right\}=$ $\left(O s_{4}\right) \cap\left(a_{4} q_{4}\right),\left\{v_{3}\right\}=l\left(c_{5}\right) \cap a_{4} a_{5},\left\{v_{4}\right\}=l\left(c_{5}\right) \cap\left(a_{4} q_{4}\right)$, and $\left\{v_{5}\right\}=$ $\left(a_{4} a_{5}\right) \cap\left(b_{2} b_{3}\right)$. Since $\left(O s_{4}\right)$ splits $\angle c_{6} O c_{5}$, we have the inclusions $\triangle a_{4} v_{3} v_{4} \subset$ $\triangle a_{4} v_{1} v_{2}$ and $v_{3} a_{4} \subset v_{1} a_{4} \subset v_{1} v_{5}$. Denote by z_{1}, z_{2}, z_{3} the corresponding bases of the perpendiculars on $\left(a_{4} a_{5}\right)$ from s_{4}, c_{5}, and b_{3}^{\prime}, respectively. By construction, $z_{3} \in a_{4} q_{3}, z_{1} \in a_{4} a_{5}$, and hence $\left|a_{4} z_{3}\right| \leq 1$ and $\left|a_{4} z_{1}\right| \leq 1$. In the right triangle $\triangle a_{4} z_{2} c_{5}$ we have $\left|c_{5} z_{2}\right|=\rho\left(c_{5} ; a_{4} a_{5}\right) \geq 0.8 t, \angle z_{2} a_{4} c_{5}$ $\leq \pi / 3$, and hence $\left|a_{4} z_{2}\right| \geq 4 t \sqrt{3} / 15$. The similarity ratio between $\triangle a_{4} b_{3} b_{3}^{\prime}$ and $\triangle a_{4} r_{4} s_{4}$ is

$$
k=\frac{\left|b_{3} b_{3}^{\prime}\right|}{\left|s_{4} r_{4}\right|}=\frac{\left|a_{4} z_{3}\right|}{\left|a_{4} z_{1}\right|} \leq \frac{1}{\left|a_{4} z_{2}\right|} \leq \frac{5 \sqrt{3}}{4 t} .
$$

From this and (48) it follows that

$$
\left|b_{3} b_{3}^{\prime}\right| \leq \frac{5 \sqrt{3}}{4 t}\left|s_{4} r_{4}\right| \leq \frac{35 \sqrt{3}}{2 t} \sin \gamma_{0}
$$

Recall that in our constructions we assume $5 \sqrt{\varepsilon}<t \leq \sqrt{3} / 2(0<\varepsilon$ ≤ 0.001). The imposed restrictions and (43) imply the final inequality

$$
\max \left\{\left|s_{4} b_{4}\right| ;\left|b_{3} b_{3}^{\prime}\right|\right\} \leq \max \left\{\frac{\sqrt{3}(1+4 t)}{t} ; \frac{35 \sqrt{3}}{2 t}\right\} \sin \gamma_{0}=\frac{35 \sqrt{3}}{2 t} \sin \gamma_{0}
$$

and Proposition 7 is proved.

Proof of the Theorem. The proof is divided into three steps and will be conducted according to the scheme $B_{6} \rightarrow B_{6}^{\prime} \rightarrow G \rightarrow S$, where B_{6}^{\prime} and G are some special hexagons.

STEP 1. Construct the centrally symmetric hexagon $B_{6}^{\prime}=s_{4} b_{5} b_{6}^{\prime} s_{1} b_{2} b_{3}^{\prime}$ (where $b_{6}^{\prime}=-b_{3}^{\prime}$ and $s_{1}=-s_{4}$) which is circumscribed about A_{6}. Due to Corollary 2 and inequality (38), we have

$$
\begin{equation*}
\rho\left(B_{6} ; B_{6}^{\prime}\right) \leq \frac{35 \sqrt{3}}{2 t} \sin \gamma_{0} . \tag{49}
\end{equation*}
$$

Observe that in B_{6}^{\prime} the diagonal $s_{1} s_{4}$ satisfies $s_{1} s_{4}\left\|b_{2} b_{3}^{\prime}\right\| b_{5} b_{6}^{\prime}$. Moreover, $a_{2} \in s_{1} b_{2}, a_{4} \in s_{4} b_{3}^{\prime}, a_{3} \in b_{2} b_{3} \subset b_{2} b_{3}^{\prime}$ (under the assumption that $s_{4} \in a_{5} b_{4}$). Since $l_{3}(O) \| b_{2} b_{3}$ and $\left\{r_{4}\right\}=l_{3}(O) \cap\left(a_{4} b_{4}\right)$, from (43) and (48) we get

$$
\begin{equation*}
\left|r_{4} b_{4}\right| \leq\left|s_{4} b_{4}\right|+\left|s_{4} r_{4}\right| \leq(\sqrt{3} / t+21) \sin \gamma_{0} . \tag{50}
\end{equation*}
$$

Draw through the origin O the straight line $l_{2}(O)\left\|s_{1} b_{2}\right\| s_{4} b_{5}$. Considering $\left\{r_{3}\right\}=l_{2}(O) \cap\left(a_{3} b_{3}\right)$, it is easy to see that $\left|b_{2} r_{3}\right|=\left|s_{1} O\right|=\left|O s_{4}\right|$. In the constructed hexagon B_{6}^{\prime} then $s_{1} \in b_{1} b_{2}$. Analogously to the proof of (43) and (48), but replacing $\triangle a_{5} a_{4} q_{4}$ by $\triangle a_{4} a_{3} q_{3}, b_{4}$ by b_{3}, and r_{4} by r_{3}, we come to an inequality analogous to (50), namely

$$
\begin{equation*}
\left|b_{3} r_{3}\right| \leq(\sqrt{3} / t+21) \sin \gamma_{0} \tag{51}
\end{equation*}
$$

STEP 2. Construct the affinely regular hexagon $G=g_{1} g_{2} g_{3} g_{4} g_{5} g_{6}$ which is centered at O, where $g_{1}=s_{1}, g_{2}=b_{2}, g_{3}=r_{3}, g_{4}=s_{4}, g_{5}=b_{5}, g_{6}=-r_{3}$; moreover it is possible that $B_{6} \not \subset G$ and $G \not \subset B_{6}$. According to (38) and (51),

$$
\begin{equation*}
\left|b_{3}^{\prime} g_{3}\right|=\left|b_{3}^{\prime} r_{3}\right| \leq\left|b_{3}^{\prime} b_{3}\right|+\left|b_{3} r_{3}\right| \leq\left(\frac{37 \sqrt{3}}{2 t}+21\right) \sin \gamma_{0} . \tag{52}
\end{equation*}
$$

Since A_{6} is inscribed into B_{6}^{\prime}, we have

$$
\begin{equation*}
\rho\left(A_{6} \cap G ; A_{6}\right) \leq\left|b_{3}^{\prime} g_{3}\right| . \tag{53}
\end{equation*}
$$

Without loss of generality, assume $t>5 \sqrt[3]{\varepsilon}(0<\varepsilon \leq 0.001)$. For completeness we conduct explicitly the reasoning analogous to Remark 2. Namely, since $(\sqrt{3} / 2+5 \sqrt[3]{\varepsilon}) \cdot 2 / \sqrt{3} \leq 1+6 \sqrt[3]{\varepsilon}$ provided $\rho\left(B ; A_{6}\right)=t \leq 5 \sqrt[3]{\varepsilon}$ $(0<\varepsilon \leq 0.001)$, the inclusions $A_{6} \subset B \subset(1+6 \sqrt[3]{\varepsilon}) A_{6}$ hold, and the required hexagon S is A_{6}.

Since $t>5 \sqrt[3]{\varepsilon}$ and the inequalities (21) and (30) hold (in particular, $\left|b_{2} b_{3}\right| \geq 0.5$), either $B_{6}^{\prime} \subset G$ or $G \subset B_{6}^{\prime}$. Then, by (52),

$$
\rho\left(G ; B_{6}^{\prime}\right) \leq\left|b_{3}^{\prime} g_{3}\right| \leq\left(\frac{37 \sqrt{3}}{2 t}+21\right) \sin \gamma_{0} .
$$

Together with (49) and (23), the latter inequality yields

$$
\rho(B ; G) \leq \rho\left(B ; B_{6}\right)+\rho\left(B_{6} ; B_{6}^{\prime}\right)+\rho\left(B_{6}^{\prime} ; G\right) \leq(37 \sqrt{3} / t+24.5) \sin \gamma_{0} .
$$

If $t>5 \sqrt[3]{\varepsilon}(0<\varepsilon \leq 0.001)$, then from the inequality above and (21) we get

$$
\begin{equation*}
\rho(B ; G) \leq\left(\frac{37 \sqrt{3}}{5 \sqrt[3]{\varepsilon}}+24.5\right) \cdot \frac{5}{59} \sqrt[3]{\varepsilon^{2}} \leq 1.3 \sqrt[3]{\varepsilon} \tag{54}
\end{equation*}
$$

STEP 3. Applying (53) and (52), provided that $t>5 \sqrt[3]{\varepsilon}$, we get

$$
\begin{align*}
\rho\left(A_{6} \cap G ; A_{6}\right) & \leq\left(\frac{37 \sqrt{3}}{2 t}+21\right) \cdot \sin \gamma_{0} \tag{55}\\
& \leq(3.7 \sqrt{3}+2.1) \frac{5}{59} \sqrt[3]{\varepsilon} \leq 0.73 \sqrt[3]{\varepsilon}
\end{align*}
$$

Denote by $h_{B}(u), h_{G}(u), h_{A}(u)$ and $h_{A \cap G}(u)$ the support functions of the unit ball B on M^{2}, the affinely regular hexagon G, the regular unit hexagon A_{6}, and $A_{6} \cap G$, respectively.

By Theorem B, for $|u|=1$ the relations (7), (54) and (55) imply

$$
\left\{\begin{array}{l}
\left|h_{B}(u)-h_{G}(u)\right| \leq 1.3 \sqrt[3]{\varepsilon} \\
0 \leq h_{A}(u)-h_{A \cap G}(u) \leq 0.73 \sqrt[3]{\varepsilon}
\end{array}\right.
$$

By construction, the regular hexagon A_{6} is inscribed in B. Comparing the inequalities of this system, we get (for $|u|=1$)

$$
\begin{aligned}
h_{A}(u)-2.03 \sqrt[3]{\varepsilon} & \leq h_{A \cap G}(u)-1.3 \sqrt[3]{\varepsilon} \leq h_{G}(u)-1.3 \sqrt[3]{\varepsilon} \\
& \leq h_{B}(u) \leq h_{G}(u)+1.3 \sqrt[3]{\varepsilon}
\end{aligned}
$$

Moreover,

$$
\left(1-\frac{1.3}{h_{G}(u)} \sqrt[3]{\varepsilon}\right) h_{G}(u) \leq h_{B}(u) \leq\left(1+\frac{1.3}{h_{G}(u)} \sqrt[3]{\varepsilon}\right) h_{G}(u)
$$

and

$$
h_{G}(u) \geq h_{A}(u)-0.73 \sqrt[3]{\varepsilon} \geq \sqrt{3} / 2-0.73 \sqrt[3]{\varepsilon}
$$

Writing

$$
q=\frac{1.3}{\sqrt{3} / 2-0.73 \sqrt[3]{\varepsilon}} \sqrt[3]{\varepsilon} \geq \frac{1.3}{h_{G}(u)} \sqrt[3]{\varepsilon}
$$

we obtain

$$
(1-q) h_{G}(u) \leq h_{B}(u) \leq(1+q) h_{G}(u) .
$$

Therefore,

$$
\frac{1+q}{1-q}=1+\frac{2.6 \sqrt[3]{\varepsilon}}{\sqrt{3} / 2-2.03 \sqrt[3]{\varepsilon}} \leq 1+\frac{5.2}{\sqrt{3}-0.406} \sqrt[3]{\varepsilon} \leq 1+6 \sqrt[3]{\varepsilon}
$$

Define the required hexagon by $S=(1-q) G$. The inequalities $h_{S}(u) \leq$ $h_{B}(u) \leq(1+6 \sqrt[3]{\varepsilon}) h_{S}(u)$ evidently imply the inclusions (5). The Theorem is proved.

REFERENCES

[1] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934.
[2] S. Gołąb, Some metric problems in the geometry of Minkowski, Prace Akademii Górniczej w Krakowie 6 (1932), 1-79 (in Polish, French summary).
[3] S. Gołąb, Sur la longueur de l'indicatrice dans la géométrie plane de Minkowski, Colloq. Math. 15 (1966), 141-144.
[4] B. Grünbaum, The perimeter of Minkowski unit discs, Colloq. Math. 15 (1966), 135-139.
[5] D. Laugwitz, Konvexe Mittelpunktsbereiche und normierte Räume, Math. Z. 61 (1954), 235-244.
[6] K. Leichtweiss, Konvexe Mengen, Deutscher Verlag der Wiss., Berlin, 1980.
[7] H. Martini and A. I. Shcherba, On the self-perimeter of quandrangles for gauges, Beiträge Algebra Geom. 52 (2011), 191-203.
[8] H. Martini and A. I. Shcherba, On the self-perimeter of pentagonal gauges, Aequationes Math. 84 (2012), 157-183.
[9] H. Martini, K. J. Swanepoel and G. Weiss, The geometry of Minkowski spacesa survey, Part I, Expositiones Math. 19 (2001), 97-142.
[10] Yu. G. Reshetnyak, An extremum problem from the theory of convex curves, Uspekhi Mat. Nauk 8 (1953), no. 6, 125-126 (in Russian).
[11] J. J. Schäffer, Inner diameter, perimeter, and girth of spheres, Math. Ann. 173 (1967), 59-79.
[12] A. I. Shcherba, On estimates for the self-perimeter of the unit circle of a Minkowski plane, Tr. Rubtsovsk. Ind. Inst. 12 (2003), 96-107.
[13] A. I. Shcherba, Unit disk of smallest self-perimeter in a Minkowski plane, Mat. Zametki 81 (2006), 125-135 (in Russian), English transl: Math. Notes 81 (2007), 108-116.
[14] A. I. Shcherba, On the stability of a unit ball in Minkowski space with respect to self-area, J. Math. Phys. Anal. Geom. 7 (2011), 158-175.
[15] A. C. Thompson, Minkowski Geometry, Cambridge Univ. Press, Cambridge, 1996.

Horst Martini
Faculty of Mathematics University of Technology
09107 Chemnitz, Germany
E-mail: martini@mathematik.tu-chemnitz.de

Anatoly Shcherba
Department of Industrial Computer Technologies Cherkassy State Technological University Shevchenko Blvd. 460
Cherkassy 18006, Ukraine
E-mail: shcherba_anatoly@mail.ru

