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ON THE STABILITY OF THE UNIT CIRCLE WITH MINIMAL
SELF-PERIMETER IN NORMED PLANES

BY

HORST MARTINI (Chemnitz) and ANATOLY SHCHERBA (Cherkassy)

Abstract. We prove a stability result on the minimal self-perimeter L(B) of the unit
disk B of a normed plane: if L(B) = 6 + ¢ for a sufficiently small &, then there exists an
affinely regular hexagon S such that S C B C (1 +6/¢)S.

1. Basic notions and introduction. Let B be a convex figure centered
at the origin O of the Euclidean plane R?. In what follows, we identify
the points of R? with their position vectors. The convex figure B and its
boundary OB are called the unit disk resp. unit circle of the normed (or
Minkowski) plane M? induced by B. In the literature, B is often also called
the normalizing figure of the normed plane M? (see [6, Definition 11.2]). We
will use the distance function | - | of R? as an auxiliary metric for M?2. The
Minkowskian distance function gg(x) of M? is defined by

gp(x) = [z[/[z] >0,
where 2 € M2, 2 # O and 7 = [O,x) N OB. Here [0, z) is the ray with
starting point O passing through x.

In a standard way (see [9]), the distance function gp(x) defines the dis-
tance between arbitrary points x and y of M? by

(1) |z =yl = g8y — ).
DEFINITION. For two distinct points a and b, the normalizing vector of
the connecting segment ab is defined to be the point b — a € B, that is,

(2) b—a=ab/||ab]| with ab="b—a.

Further on, we denote by xy the segment and by (zy) the straight line
defined by the points z # y. The symbol Aabc is used for the triangle
determined by non-collinear vertices a, b and c¢; writing only abc, we mean
the polygonal arc (broken line) from a to b. For more than three points, the
context will clarify whether we mean a polygonal arc or an n-gon. By Zabc
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we mean the angle with apex b, and by Z(mmn,qr) the angle between the
vectors mn =n —m and g7 = r — q.

Let P C M? be a convex bounded polygon. Denote by I(P) the sum
of the lengths of all its sides defined via (1). Denote by {P} the set of all
convex polygons located inside a compact convex figure K. The perimeter
of the figure K C M? is defined by

L(K) = sup I(P).
Pe{P}

It is widely known (see [6, p. 110] and [15] p. 112]) that if & is a convex

figure and @ C K, then

(3) L(®) < L(K).

And clearly, if P C M? is a convex polygon, then L(P) = I(P). The
perimeter L(B) of the unit disk B of M? is called its self-perimeter. S. Golab
(see [2] and also [3]) proved that

6 < L(B) <8

and, moreover, that L(B) = 6 holds if B is an affinely regular hexagon, and
L(B) = 8 holds if B is a parallelogram. E.g., Yu. G. Reshetnyak [10] and
D. Laugwitz [5] reproved the result of S. Gotlab.

J. J. Schéffer [11] proved that the affinely regular hexagon is the only
normalizing figure with minimal value of L(B) and that the parallelogram
is the only normalizing figure with the maximal value of L(B).

It is natural to investigate analogous problems also in d-dimensional
normed (or Minkowski) spaces, where d > 3. The most important analogues
of “circumference” are the surface area measures of Holmes—Thompson (see
Chapter 6 of [15]) and of Busemann (cf. Chapter 7 of that book). The case
of Holmes—Thompson self-surface-area of the unit ball B is presented in
[15] §6.5]; the upper bound given there is only sharp for the planar case, and
non-sharp lower bounds are also given (with special results for unit balls
that are zonoids or their duals). For the Busemann self-surface-area of B,
discussed in [I5], §7.4], the sharp upper bound is given in Theorem 7.4.1 there
and attained if and only if B is a d-parallelotope; lower bounds are presented
in Theorems 7.4.4 and 7.4.6.

In the case of a non-symmetric convex distance function (or gauge) on M?
(iie., B # —B) it is known that the oriented self-perimeters satisfy
L*(B) > 6, and that equality is possible only if B is an affinely regular
hexagon (see [4], [12], and [13]). More results on the non-symmetric case can
be found in [7] and [8]; see also the references given there.

2. The result. The stability of the unit disk B with respect to the
value of its self-perimeter was first considered in [I4]. The following stabi-
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lity theorem was proved there; it refers to the case when for B = —B the
self-perimeter is close to the mazimal value.

THEOREM A. If for a normed plane L(B) = 8(1 —¢) (0 < e < 0.04),
then there exists a parallelogram P, symmetric with respect to the origin O,
such that

PcCBC(1+18)P.

In this paper we prove the following stability theorem related to the
minimal value of L(B), also with B = —B.

THEOREM. Let the self-perimeter L(B) of the unit disk B of a normed
plane M? satisfy the equality

(4) L(B)=6+4+¢ (0<e<0.001).

Then there exists an affinely reqular hexagon S centered at the origin O such
that

(5) ScBcC(1+6y¢)S.

The authors do not know whether the dependence on ¢ in this theorem
is best possible; this is a topic for further research.

3. Proof of the results. In the proof of our theorem we use some
auxiliary statements. Without loss of generality, we consider a convex nor-
malizing figure B C M? located in the Euclidean auxiliary plane R?. Fol-
lowing S. Gotab, we inscribe an affinely regular hexagon Ag centered at
the origin O into the unit circle 9B (see |15, §4.1]). We use the auxiliary
Euclidean metric in such a way that Ag C R? becomes a regular hexagon
arasa3a4asa¢ with the vertices

CL1(—1/2;\/§/2)7 a2(1/2; \/5/2)7 a3(1;0)7
as(1/2;-V3/2), as(=1/2;—V3/2), as(—1;0),
in the Cartesian coordinate system zOy. We call Ag the regular unit hexagon.
For certain reasons, we designate the vertices of each polygon considered
clockwise. We denote by ab the arc of the unit circle 9B between a and b,

oriented clockwise, and L(a,Ab) means the arc length of ab with respect to the
metric of M?2.

REMARK 1. If Ag C M? is a reqular unit hexagon inscribed in the unit

circle OB with self-perimeter L(B) satisfying , then the lengths agag+1 C
OB satisfy

(6) lgL(akak+1)§1+5/2, k=1,...,6.
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Proof. Evidently, ||axar+1]| = 1, K = 1,...,6, where a; = a;. Due to
B =—B we have L(agari1) = L(aps3axs4), k = 1,2,3, and by (@),
6+ = L(B) = 2(L(aga1) + L(aaz) + L(azaz)).
Consider the convex figure A with boundary
0A = aga1 U (;1—61\2 U asas U azays U Uc;4—a\5 U asag.
The inclusions Ag C A C B and inequality imply
6 <4+ 2L(ayaz) <6 +e¢.

Hence,
1 < L(araz) <1+¢/2.

In an analogous way we get the same inequality for all L(agag1), which
completes the proof of (@

The Hausdorff distance p(Ki;K2) between convex, compact sets Kj
and K is defined by

Ki; K9) =max4 sup inf |zy|, sup inf |xy|;.

(1 Ko) = max{ sup  inf |ay], sup inf Joy}

Since Ag C B, the Hausdorfl distance between the unit disk B and its
inscribed hexagon Ag is given by

B; Ag) =
p(B; Ag) = max min [zy].

To simplify the evaluation of p(K7; K2), we use the following fact (see [6], §14,
Theorem 14.1]). Note that the support function hy(u) of a compact convex
set K C R? is defined by hy(u) = max{(z,u) : # € K}, where (-,-) denotes
the usual scalar product and « is an arbitrary unit vector in the Euclidean
background metric; see [6l §12].

THEOREM B. If K| and Ko are non-empty compact convex sets in R>
with the corresponding support functions hy(u) and ha(u), then

(7) p(K1; Ka) = |ma>1(|h2() hi(u)].

=

Denote by v one of the points on the unit circle 9B for which the equality
p(v; Ag) = p(B; Ag) holds. To fix ideas, suppose v € c?l—a\g. For the straight
lines (aga1) and (agasz), we consider {q1} = (aga1) N (azaz). The convexity
of B implies a/rag C Aaiqiaz. 1t is easy to see that p(v;ajas) = p(B; Ap).
We set t = p(v;a1az).

REMARK 2. If t <5,/ (0 <e <0.001), then the inequality

(f+5f> f§1+2f
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implies the inclusions A C B C (1 + 2¥/c)As. Hence, to prove it is
sufficient to assume S = Ag. The case ¢ = 0 corresponds to the case L(B) = 6
and has already been studied in [IT].

According to Remarkit is sufficient to consider ¢ > 5/, 0 < ¢ < 0.001.
However, the corresponding case analysis uses some results which are true
even for t > 4/e.

We write ¢a = v — a; and ¢3 = ag — v (cf. (2)).

PROPOSITION 1. If t > 4,/ (0 < e <0.001), then
(8) min{p(ce; azas); p(cs; asaq)} > 0.9¢.

Proof. By construction Aajvas C Aajiqias, where Aajgias is a right
triangle. The ray [Ocg) for co € @, meets asag at some point p1, and the
ray [Ocs) for c3 € CL/g))E; meets agayq at some point ug.

We prove that p(cs; asaq) > 0.9¢; the proof of p(ca; agag) > 0.9¢ is similar.
Suppose p(cs;aszaq) < 0.9¢. Keeping in mind and @, we estimate the
lengths of the sides of Aajvas by

(9) 1= |z < [larv] + |lvas| < L(araz) < 1+2/2.

If vw is the height of Aajvas with endpoint v, then |vw| = t. If Zvajw = «
and Zvasw = (B, then ZasOp; = «a and ZasOuy = (. Denote by pipo
and ujug the heights of AOpjas and AOasu; with endpoints p; and wyq,
respectively.

If we introduce T' = |p1po| and H = |ujug|, then the equalities ZOasp; =
/Oagu; = /3 imply T(cota + 1/v/3) = H(cot B + 1/v/3) = 1. If we con-
struct a homothety AOabal ~ AOazas so that co € ahah, the ratio k of this
homothety satisfies

k =10p1|/|0c2| = V3/(V3 +21),

since p(co;aza3) < p(B; Ag) = t. The similarity AOp1pg ~ Aajvw implies
la1v|/|Op1| = t/T, and hence

o] _ Jav] [Op| _ t V3
|Oca|  |Op1] |Oco] =T /342t

In a similar way, if we construct a homothety AOdaja] ~ AOaszas with
c3 € a4ay, since p(cs; agaq) < 0.9t the homothety ratio is

|Ouy|/|Ocs| > V3/(V/3 4 1.8t).
The similarity Aaswr ~ AOuguy implies

lvas| _ [vas| |Ou >i. V3
[Ocs|  |Oui| [Ocs| = H /34 1.8t

larv]] =

lvas|| =



74 H. MARTINI AND A. SHCHERBA

As a consequence,

larw ] + vas] > Jﬁt(

cota+1/V3 cotB+1/V3
V3 +2t * V3 4+ 1.8t >
In Aajvas we have t(cot a + cot ) = 1, and hence
3.8v/3 4 3/t + 3.8t +0.2V/3t - cot 8
3.6t2 +3.8v/3t+3
- 02(V3cot f+1)

(V3 +2t)(v3+1.8t)

The inclusion Aajvas C Aaiqias implies ¢t < v/3/2 and cot f > 1/4/3.
Then |la1v| + |vas| > 1+ 2t2/57. By (9) we have t < VB7/E/2 < 4,/
This contradiction proves Proposition 1.

larv || + [[vazs|| > ¢

COROLLARY 1. The angle 7y between the straight lines (agc) and (agcs)

satisfies
. 3e

(10) siny < e

Proof. For AOcsas we write ¢ = ZQOasco, and for AOascs analogously
Y = ZQOagcs. Since ag, c2, a3, c3, a4 lie on OB, we have 7/3 < ¢, ¢ < 271/3
and ¢ + 1 < 7. Let T7 and Hp be the lengths of the heights of AOcsa3 and
AOascs, respectively, with respect to the common base (Oag). Evidently,
Ti(cot o + cot ) = Hy(cot B+ cot ) = 1 = t(cot a + cot 3). Then
lawv| | vag| t t
|OCQ| |063| T1 H1

By (@) we have 0 < t(coty + coty)) < £/2. Since v = 7 — (¢ + ¥)
and 0 < v < 7/3, we have 0 < cotp — cot(p +v) < ¢/(2t) or 0 <
siny/(siny - sin(p +7)) < ¢/(2t). Since 7/3 < ¢ + v < 27/3, we have
sing > /3/2 and sin(¢ +7) > v/3/2. Hence follows immediately, and
Corollary 1 is proved.

llarv| + |lvaz|| = = t(cot ¢ + cot ) + 1.

PROPOSITION 2. Let abnm be a conver quadrangle. If abnm C Aabf,
then
(11) p(abnm; Aabf) < min{|fn|; | fm|}.

Proof. Let E denote the unit disk of the Euclidean plane R?. Then
f € {n}+|fn|E C abnm+|fn|E. Thus, by convexity, Aabf C abnm+|fn|E,
and so p(Aabf;abnm) < |fn|. Similarly, p(Aabf; abnm) < |fm|, and Propo-
sition 2 is proved.

COROLLARY 2. If Aabn C Aabm, then p(Aabm; Aabn) = |nm)|.

PROPOSITION 3. Let Aabe be a right triangle with |ab| = 1 and suppose
Aabn C Aabm C Aabe. If the height np of Aabn has length |np| > t/v/3 > 0,
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Znbm = p1 < po and Lman = py < po, then
3
(12) |nm| < \t[sin,uo.

Proof. For n = m, inequality is trivial. Suppose n # m. Note that
the straight line (mn) meets the side ab.

Denote by ¢ the angle between the vectors ¢a and mn, i.e., ¢ =
Z(ca,mm). Construct the vector ¢g = mn. Observe that the ray [cq) meets
the straight line (ab), and hence —27/3 < 1 < 7/3. Denote o = Z(mm, cb).
For similar reasons, we have —27/3 < p9 < 7/3.

Consider ¢ = max{p1; p2}. If ¢ = —7/6, then the vectors mm and ab are
mutually orthogonal. The vectors éa and cb are symmetric with respect to the
angle bisector of Zbca, and hence ¢ > —m /6. Without loss of generality, we
may assume ¢ = 1. With this assumption, we introduce {m;} = (bm)Nca.

Considering the homothety Abmn ~ Abmini, we see that |mn| <
|ming. In Abmini, denote ® = Zbminy and £ = Zmynib; moreover, set
Zabny = a. Then R depends on the position of my on ca, i.e., ® = R(mq).

We intend to find the variation margins for f(m;) depending on the
location of the starting point of the vector miny with fixed length |min;|.
Observe that the constant angle Z(miny, ba) equals ™ — (R + Zabmy). Thus,

R1 = minR(m1) = R(c) > 7/6,
mi
Ry = maxR(my) < m — Labmy = 7 — (Labn + Znbm) = 7 — (o + p1).
mi
It follows that /6 + 1 <R+ p1 < 7 — «, and hence £ = Zmin;b satisfies
0<a<&<5m/6— u, where 0 < p; < 7/3. Then
sin & > min{sin ;sin(57/6 — 1)} > min{sin o; 1/2}.
By hypothesis, the height np of Aabn satisfies [np| > t/+/3. Hence, sina =
Inp|/|bn| > t/v/3. Considering Abming, we get

\bm1| < \/g sin < —3$in

|mn| < |mini| =sinp; -

and Proposition 3 is proved.

PROPOSITION 4. Let Aabc and Abaf be right triangles with |abl = 1 and
c# f. If p € be, mn C pa, and Znfm = u, then

(13) lmn| < 2v/3sin .

Proof. Denote by ¢ the point on (pa) such that fq L pa. Write s =
(m+n)/2 and = = |sq|. The angle function p = p(z) is decreasing, and
max p(x) = p(0). This means that for a fixed value of p the quantity
|mn| attains its maximum either for n = a or p = m (we assume that
pm C pn C pa).
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If n = a, then for A fma we have Zafm = p, Zmaf = 7/3+ 3, where 0 <
B < /3. We have |fm| < |fc| = v/3, and moreover 7/3 < 7/3 + 3 < 27/3.
Then

& < Sln/l/ .
sin(n/3+ ) ~
If p = m, then for Afpa we write Zfpa = R, ® < w/2. Then R depends

on the location of p on be, i.e., R = R(p). Observe that R(b) = 7/3 and
R(c) = /6. Moreover

mpin R(p) = min{R(b); R(c)} = /6,

(14) |mn| = sin y - = 2sin p.

sinm/3

and hence sin® > 1/2. Considering A fpn, we can estimate the length of
mn by

bl <sinp- V3
sin¥t — sinm/6

The relations and imply . Proposition 4 is proved.

According to Remark [2, we assume t > 5y/c. We remind the reader that
in the proof of Proposition [I] the lengths of the sides of Aajvas with respect
to the metric of M? were estimated with the help of the polygonal arc caascs.

(15) |mn| = sin p - = 2v/3sin .

To study the properties of coascs, we consider the following constructions.
Inequality implies t; = p(c2;azaz) > 0.9t > 4./c and ty = p(c3;asaq) >
0.9t > 44/c. On the unit circle 0B, we consider

—

Cq4 = C2 — G2, Cs = a3z — C2, Ce = C3 — ag, C7r = a4 — C3.

Using Proposition [1| and replacing consecutively v by co, a1 by agz, as by as,
a3 by ay4, co by c4, and c3 by c5, we get

(16) plcs;azag) > 0.9t > 0.8t > t/V/3,  p(cs; asas) > 0.8t.
For c3, by the replacement v — ¢3 and in view of we have
(17) p(ce; asas) > 0.8t,  p(cr;asag) > 0.8t.

In what follows, it is convenient to consider the triangle Aajvas together
with its uniquely defined collection of triangles Aascoas, Aascsays and the
polygonal arcs cqaqcs, cgascy. Similarly, we will consider each of the triangles
Aascsas and Aagcezay together with the corresponding collection of triangles
and broken lines.

We give a description of how to pass from Aajvas to Aascsas, and from
Aajvas to Aascsay. Namely, we have the following transformations:

e the polygonal arcs: coaszcs — cqaqcs and caascs — cgascry,

e the Segments: ao2Cy — A3C4, C2a3 — C404 and
a3C3 —> A4Cs, €304 — C505,
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e the points: ¢4 — cg = (¢4 — a3), 5 = c9g = (ﬁ) and
c6 — c10 = (¢5 — aa), c7 — c11 = (a5 — ¢c5),

e the angles: v = Z(as¢5,¢qa1) — 3 = Z(@sc9, czas5) and
Y2 = Z(a5c7,Ceas) — Y4 = £(C110s, G6C10),

e and again the angles: £ c¢gOcs = v and Zc100cg = 7.

We write ¢19 = ¢g — a4, €13 = a5 — ¢g, ¢14 = ¢7 — a5 and c15 = cﬁ. Then
Zc140c13 = 72, and we write 5 = Z(¢12ag, asc13) and v = Z(¢5a1, a1¢14)-
By Proposition [1}, the inequalities , , and imply
plcg; asag) > 0.9p(cs; agas) > 0.72t > t/+/3.
Similar estimates are valid for all ¢, £ =8,9,...,15, i.e.,
(18)
min{p(cs; asas), p(co,10,12; asa6), p(C11,13,14; a6a1), p(ci5; araz)} > 0.72¢.
Due to inequality from Corollary |1}, the angles v k = 1,...,6, satisfy

(19) sin’yl,g S %E/t,

sinyg < %6/75, k=3,4,5,6.
Write
(20) Yo = max {v;V};

1<k<6
then, evidently,
(21) sinyg < 2e/t.

PROPOSITION 5. If t = p(B;Ag) > 5v/e (0 < ¢ < 0.001), then there
exists a hexagon Bg = b1babsbybsbg with the properties:

(i) Bg = —Bg, i.e. Bg is symmetric with respect to the origin O.
(ii) Bg is circumscribed about B in such a way that agy1 € brbriq,
k=1,...,6, where by = b1, a7 = a1.

(iii) The distances from by to the sides agapi1 are such that

(22) p(bk;akak-‘rl) > 0.9¢, k= {17a6}
(iv) The distance from Bg to the unit circle B satisfies
(23) p(B; Bs) < (V3/t+2V/3) sing,

where o is given by (20).
Proof. Denote by [, the straight lines drawn through a; such that

(a) lg, k=1,...,6, are the supporting lines for B;
(b) lk H lk+37 k= 17273’

Write {by} = lxNlg+1, kK =1,...,6, where Iy = l1. The convex hexagon Bs =
b1b2bsbabsbg just constructed, symmetric with respect to O, is inscribed in B
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in accordance to (b). We have ¢3 € dB. The inclusion B C Bg implies ¢3 €
Aasbsay. Similarly, co € Aagbsas and v € Aajbias. Then implies .

To prove , we simplify notations. Put ag = ag, a7 = a1, ag = ag, and
write {qr} = (ag—1ax) N (agr20k+1), kK = 1,...,6. The convexity of B implies

Ag C B C Bg C a14102G20a3G304G405G50646-
Consider the right triangle Aagqqas, where |agas| = 1. Observe that for any
x € Aagqqas we have
p(x; Aaszqzas) = |vas|, p(x; Aasgsae) = |zas|.

Therefore,

(24) p(Bg; B) = max p(Aagbragi1; BN Aakqrags)-

1°. Estimating from above the distance p(Aagbsas; BN Aagqas). Write
{n1} = (aacs) N (asce) and {my} = (caaq) N (cras). Since c2 € Aaggaaz and
c3 € Nagqsayg, we have LegOcs C ZLasOay. The points cy, aq, c5, cg, a5 are
cyclically located on the boundary 9B of the convex figure B and the arc
a/4\a5 is inside the pentagon asmiascges. By construction, {bs} = 14 N5, and
ly5 are the supporting lines to B at as5. Hence by is inside agmiasny, i.e.,
by € agmiasny C agmiascgcs. The quadrangle ascscgas lies in Aagmias,
and hence by we have
(25) p(ANagmyas; agesceas) < min{|mycs|; |mics|} < |macs).

Denote by hi(u), he(u), hg(u) and hg(u) the support functions for the quadr-
angle aqcscgas, the triangles Aagbsas and Aagmias, and B N Aagqqas, re-
spectively. It is easy to see that ascscgas C {B N Aagquas} C Aagbgas C
Aagmias. Using known properties of support functions of convex figures (see
[1, §4.15]), we deduce for |u| =1 that

hi(u) < ha(u) < ha(u) < hg(u).
Then ha(u) — ha(u) < hg(u) — hi(u). By (7)) and we have
(26) p(Aagbsas; BN Aasqaas) < |mics|.
From it follows that the height of Aaynias with endpoint n satisfies
p(ni;agas) > p(cs; agas) > 0.8t.
Remember that v; = Zesagmy and v9 = Zmyascg satisfy . Via Corol-
lary |2| and Proposition |3 from and we conclude that
V3
(27) p(Aagmias; Aagnias) = [nimy| < 4 sino.

By construction, for Ag in Proposition 5 we have ZcgOcs = Z(azcs, czaz) =
v < 79, satisfying . Taking into account Proposition 4} we have

(28) Inics| < 2v/3sinp.
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By the triangle inequality, |mics| < |[nimi|+ |nics|. Hence, by and
we have [mycs| < (v/3/t+2v/3) sinyo. Together with (26)), the latter inequal-
ity implies
(29) p(Dasbsas; BN Aasgaas) < (V3/t+2V/3) sin .

2°. Estimating from above the distance p(Aasbsag; BN Aasqsag) and the
distance p(ANagbgar; BN Aaggear). By Remark 2| we have t > 5/, 0 < ¢
< 0.001. By Proposition [1} if ¢ > 4./¢, then t; = p(c2;azas) > 0.9t > 4.5,/¢
and to = p(c3;agaqs) > 4.5¢/c. In view of we have

{min(p(CQ; asag), p(cio; asag)) > 0.72t > t/+/3,
min(p(c13; agay), p(cia; agar)) > 0.72t > t//3.

Remember that the angles v3,v4,71 = Zc100c¢g and 3,76, 72 = Zc140ci3
satisfy and . For each of the triangles Aasgsag and Aaggga; we
consider constructions similar to the constructions for Aasgsas in the proof

of 1°. Using an analogous reasoning to that from to , we conclude

that
{P(A%bgya@; BN Aasgsag) < (V3/t+24/3) sin,

p(Nagbgar; BN Aaggear) < (V3/t 4+ 24/3) sin .
This system, together with and , yields , and thus Proposition

is proved.

REMARK 3. The hexagon Bg with the properties (1) and (ii) from Proposi-
tion || has at least four sides of Euclidean length not smaller than 1/2.

Proof. We use the central symmetry Bg = —Bg and only consider the
sides b1bg, bobs, b3by. By construction, for Ag in Proposition 5 we have
A¢ C Bg, lagags1| = 1, and Aaggragyi is a right triangle. Evidently,

22:1 |bkbk+1‘ > 22:1 |akak+1\ = 6, and hence |ble| + ’bgbg’ + ‘b3b4‘ > 3.
One of the sides has length at least 1. Assume |b1ba| > 1. If |b3bs| < 1/2,
then |biba| + |b2b3| > 5/2. The inclusions bjas C Aaiqiaz and asby C
Aasgeas imply |biba| = |bras| + |agba] < 2. Therefore, |bobs| > 1/2, ie.,
min{|b1ba|; |bobs|} > 1/2.

PROPOSITION 6. If t > 2/ (0 < & < 0.001), then each side of the
hexagon Bg from Proposition has length at least 1/2, i.e.,

Proof. Without loss of generality, assume | = |bibg| = |b3bs|. By
we have min{|a1b;|;|a1bg|} > 0. Consider the polygonal arc a;b;bebsay and
observe that |a1b1| + |bzas| = L.

Suppose that fails, i.e., that [ < 1/2. With = = |a4bs| we have
la1bi| = 1 — 2z > 0. In what follows, we use the subscript “old” to denote
lengths of segments and perimeters with respect to the metric generated by
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the ‘old’ normalizing figure B, for example ||ab|| = ||ab||oa, L(B) = Loa(B).
The subscript “new” indicates lengths and perimeters with respect to the
new normalizing figure Bg of M?2.

We intend to estimate the self-perimeter Lyeyw (Bg) from below. Following
the proof of Proposition , we write {gx} = (ax—1ar) N (ag420k+1)-

By construction, by € Aajqias and hence g1 = by — bg € (1/233 C 0B.
The ray [Og;) meets the polygonal arc agboas at go € Aaggoas, and we have
|0g2| < V3. In view of (T)), we get

l S l
[Oga] = V3

We consider the points f; satisfying the conditions

(31) ||b6b1Hnew =

fr € araz,  laifi| = [frazl;
feearqr, |aifo| = [foql;
f3 € azqe, |azfs| = [f3qol;
{fa} = azq2 N (faa2);  {fs} = asqs N (f3a3);
{fe} = azas N Ogs; {f7} = a3 fs N Ogs.
Moreover, take es € ay fo and bf € ay fi such that
(32) lares| = |aib]| = |arbi| =1 — 2 < 1/2,
and e4 € aqfs and by € ayfs such that
(33) lages| = |agbi| = |agbs| = z < 1/2.
Write g3 = (l;_\bl)new and g4 = ((ﬁ)new, where g3,94 € 0Bg, and
{95} = ases N Ogs and {g}} = ages N Ogy. We have the evident inclusions
Aaibias C Aaresas, Aagbsay C Nagegay,
Naszg30 C Aa;;géO C AazgyO C Nasf-0.

We consider {e3} = (eaaz2) N (eqas) and {b} = (eqaz) Nbiby. On the straight
line (ezaz), take es such that bfes || eqas. Since Zfseqas = ZLfibles < 7/2,
we have e5 € ezag. Write {b]} = bjag Nbes and {5} = (esas) Nazqe. It is
important that

g3 = (b2 - bl)new = (bIQ - bll)new and g4 = (C;\_eQ)new = (61/2/\_65)new-
Taking into account the similarities AgOg) ~ Abhyases ~ Abjazes and (I,
we get

biba| _ |10 |eses]
34 b1ba|lpew = > = .
(34) 1orballoes = 1501 2 [0gh] = 1044

Since AOasg) ~ Aagehes ~ Nagbles, Nasesas = Nagehqa and |ajas| =
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laz2ga| = |Oas| = 1, (32)-(34) imply
b} €3|
|Oa|
In a similar way we get ||b2bs|/new > 2 — I. From this and we deduce
that

—2—‘ 1b”]—]a4e4|—2—l

HbIbQHHeW el

Lnew(Bs) > 2(2(2 — 1) +1/V3) =8 — (4 — 2/V3)L.
Therefore, if | < 1/2, then
(35) Lnew(Bg) > 64 1/V/3 > 6.57.
Now we prove that under the hypothesis of Proposition [6] the inequal-
ity fails for t > 2/ (0 < ¥/ <0.1). By (23), and (21)),
(36)

T:p(B;BG)S(\f—i-Q\f) gg i_% %(?+2\/§-€/§><0-03-

We use the formula for the Hausdorff distance which is equivalent to (see,
g., (246) in [6]) with respect to B and Bg, i.e.,

p(B; Bg) =min{\ > 0: B C Bs+ AE, Bs C B+ AE},

where F is the unit disk of the Euclidean plane R2. Then B C Bg+ 7E and
Bg C B+7E. According to our constructions, we have (v/3/2)E C Ag C Bg,
and hence E C (2/v/3)Bg. Therefore,

2 2
BCBsg+7 - —Bg=|14+ —7|Bs.
AV ( ﬁ) ‘

Denote by (ab)o the straight line passing through the origin O which is
parallel to ab, i.e., (ab)o || ab. The Euclidean length of the intersection of B
and (ab)o satisfies

1B N (ab)o| < (1 + \%7> -|Bs N (ab)ol.

From the latter inequality and it follows that for any segment ab in M?,

2
abllnew < | 1+ —7 | - ||ab]|oid,
e ( ﬁ)u ™

and hence the self-perimeter of Bg satisfies

2 2
37 Lpew(Bg) < | 1+ —=7 | Lowa(Bg) = | 1 + —=7 | L(Bs).
( ) ( 6) < \/g ) Old( 6) < \/g ) ( 6)

Since (V3/2)E C Ag C B, we have Bs C (1+ (2/V/3)7)B. By (37) and (),

Loen(B) < (14 )2 (14 57 )B) = (14 537)2“3).
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From and we conclude that

2
2
Lnew(Bs) < 1+ —=-0.03) -6.001 < 6.43,

contradicting . Thus, is correct, and Proposition 6 is proved.

We continue with the construction of the hexagon S using the properties
of Bg stated in Propositions 5] and [6]

Recall that ¢, € 0B and ¢y = ;71, c3 = E;f\u, Cc4 = Co— a9, C5 =
az — €z, Cg = €3 — a3, C7 = G4 — C3.
Draw the straight line /3(O) through O in such a way that [3(O) || babs ||

bsbs. The definition of Bg implies that I3(O) splits ZcegOcs. Consider the
arcs asbgay C 0Bg and ajbias € 0Bg, and {s4} = I3(O) N agbsas as well as
{s1} = 13(0) Najbiay, where s4 = —s1.

REMARK 4. It suffices to consider in detail the case s4 € asbs. The case
S4 € byay is similar.

Write {b5} = (sqa4) N (beb3) and {ry} = (asbs) N (Os4). In view of
Remark [2| it is sufficient to consider ¢ > 5/ (0 < ¢ < 0.001). Then
implies sinyy < 24/ < 0.01. Moreover, 0 < 7 < 7/18. Consider
the case 79 = 0. Then implies B = Bg. The polygonal arc csascs
degenerates to the segment cocg C bobs. By Proposition 1 from [9] we have
lla1b1]| + ||braz|] = 1, and hence L(B) = 6. In [II] and [I3] it was proved
that in this case B is an affinely regular hexagon. Therefore, we assume
Y0 € (0;7/18).

PROPOSITION 7. If t = p(B;Ag) > 5y/e (0 < e < 0.001) and vo > 0,
then
35v/3

2t

Proof. First, we estimate |s4by| from above. As in Proposition consider
{n1} = (a4cs) N (asce), yielding Lnjashby < 1 and Lbgasng < 2. Consider
{wl} = (a4n1) Nasby. If wi € assy, then ‘84b4| < |w1b4|. Since c5 € njayg C
w1 a4, from it follows that p(w1;agas) > 0.8t. Observe that Aasasw; C
Aa5a4b4 C Aa5a4q4, 4w1a5b4 = 0, Zwiagby < Y1- Using Proposition
and , we get

39 Sabsa| < |wibsg| < ﬁsin 0-
(39 | 5 din,

(38) max{|ssbya|; |b3bs|} < sin7p.

If s4 € aswy, then |sgby| < |sqni| + |n1byg|. Using Corollary 2, from
and we deduce that

3
(40) p(Aagbsas; Aasnias) = [niby| < {SiIWo.
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With {ws} = (asw;1) N (Osy) and {ws} = (asbs) N (Ocs) we have wing C
wacs C (n1ay), ZweOcs < 7y, and hence Zw10n; < . By and ,

(41) Inqw;| < 2v/3sin .
Similarly, sqw; C sqws C (asby), £540w1 < £Ls4Ows < 7, and hence
(42) |sqw1| < 2V/3sin .

Using and , we conclude that

In1s4] < [nqwy| + [wiss| < 4v3sing.
From the latter inequality and we get
(43) |s4bs| < V3(1/t + 4) sinyo.

Comparing and , we see that the latter is more general.

By Remark [4] we assume s4 € asbs and hence by € ryaq, by € babsy and
ANagbsbly = Aayrysys. To estimate |bgbs| from above, we use |sq74].

We consider two cases:

1°. If s4 € wyby, then |rysq| < |rqwql.
20 If w1 € S4b4, then
(44) [T454] = |rawa| + [wasy.

1°. In this case wy € Aasasqy. Then |wory| (with wory C (Osy)) attains
its maximum provided Zwoasry = ¥ < 7, if wy € 0Aasasqy. If wo € agas,
then ® = Zrqwaay satisfies 7/3 < R < 27/3. Consequently, 7/3 < R+ ¢ <
R+ v < 57/6, |lwaas| < 1, and by the law of sines

|agws|
sin(R + )
If wy € asqs and |agwz| < 1, then n = Zasw20 satisfies 7/6 < n < 7/3.
Then ¢ = Zayrqw,y satisfies 7/6 — /18 <n—v <n—1 = p < 7/3, and
hence sin ¢ > %sin 5. In view of Aagrjws we see that

(45) |rqws| = sin ) < 2sin .

(46) Irsws| = lasws|
sin ¢

sin) < 2v/3sin .
If wy € quas, then again |aqws| < 1, sing > 1/3/6 and henc remains
correct. Comparing and , we get |r4s4] < |rawe| < 24/3sin .

2°. In this case it is possible that we ¢ Aasasqs. Since wy € s4by, the seg-
ment wyws is in £s40¢5 < v, wy € Aagqaas, and wiwy C (agny). Using the
same arguments as in the proof of Proposition 4, we estimate |wjws| in anal-
ogy with the derivation of and . Namely, if w1 = a4 and siny < 0.01,
then we € Aagqeas, and hence |wjws| < 2\/§sin'yo. If wy € quas, then
R = Zasqw;0 satisfies 7/6 < R < 7/3, and ¢ = LwOwy < vy < 7w/18.
Then ¢ = Zwiwy0 = R —1p > N — 70 and sin ¢ > sin(7/6 — o) > V/3/6. In
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Awywz0 we have |Ow;| < /3, and hence
|Ow1\

|wiws| < siny < 6sin~p.

From this and we conclude that
(47) |sqwa| < |sqwi] + |wiws| < 10sin~p.

We now estimate |rqwe| from above. Choose a)y and af on the straight
lines (Oay) and (Oas) such that ay € Odly, a5 € Oaf and |Od)y| = |Oaf| =
1+ 10sinp.

Construct the right triangle Aajq)ak, where ayq} || asaqs and ¢jaf || qaas.
Then we € [Osy), and by we have we € asajqjasas. By the same
arguments as in 1°, it follows that |war4| attains its maximum provided that
Zwaayry = 1P < 7 if either we € agas or wy is on the polygonal arc a)yqyaf,
ie., wy € ajgyal. If wy € aqas, then holds. If wy € aj¢jaf, then, using
the same arguments as in the proof of , we see that

1+ 10sinvyy .

|warg| < sinvp < 4sin~yg.

sin ¢
Comparing the latter inequality with and , we get the general esti-
mate

(48) |ras4] < 14 sin .

We compare |b3bs| and |rgs4|. Through cs € Aaysbgas we draw the straight
line I(c5) || Osyq || bobs, and we consider {v1} = (Os4) N agas, {v2} =
(Os4) N (asqa), {vs} = l(cs) Nasas, {va} = l(c5) N (aaqq), and {v5} =
(agas) N (bebs). Since (Osy) splits ZegOcs, we have the inclusions Aagvgvy C
Aaygvive and vsay C viag C vivs. Denote by 21, 22, z3 the corresponding
bases of the perpendiculars on (asas) from sy ,c5, and b5, respectively. By
construction, z3 € asqs, 21 € asqas, and hence |agzs| < 1 and |agz1| < 1.
In the right triangle Aagzocs we have |c522| = p(cs;aqas) > 0.8t, Lzoa4cs
< 7/3, and hence |agz2| > 4ty/3/15. The similarity ratio between Aaybsb
and Aayrssy is

_ lbsbs] _ aazs| - 1 < 5\/3_
’84?”4’ |a421| |a42’2‘ 4t
From this and it follows that
5v/3

3 35v/3
|bgbly] < T!&Lm\ < V3

sin vp.

Recall that in our constructions we assume 5y < t < v/3/2 (0 < ¢
< 0.001). The imposed restrictions and imply the final inequality

V3(1 + 4t) 35\/3} . 35v/3
; sinyy =

sin o,

max{|saby|; |bsbs|} < max { ; — 5

and Proposition 7 is proved.
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Proof of the Theorem. The proof is divided into three steps and will be
conducted according to the scheme Bs — By — G — S, where By and G
are some special hexagons.

STEP 1. Construct the centrally symmetric hexagon Bj = s4bsbgs1b2b5
(where by, = —b5 and s; = —sy4) which is circumscribed about Ag. Due to
Corollary [2[ and inequality , we have

35v/3
(19) o B < V% s,

Observe that in Bj the diagonal s1s4 satisfies s1s4 || bebf || bsbi. Moreover,
ag € s1ba, ay € s4bl, as € babs C babh (under the assumption that s4 € asby).
Since I3(O) || bebs and {r4} = I3(0) N (asdy), from and we get

(50) |7"4b4‘ < ‘84()4‘ + ‘847“4‘ < (\/g/t + 21) sin yp.

Draw through the origin O the straight line I2(O) || s1b2 || s4b5. Considering
{r3} = 12(0) N (asbs), it is easy to see that |bars| = [s10] = |Os4l. In the
constructed hexagon Bj then s; € biby. Analogously to the proof of (43)
and , but replacing Aasasqs by Aagasqs, by by bs, and r4 by r3, we
come to an inequality analogous to , namely

(51) |bars| < (V3/t +21) sinno.

STEP 2. Construct the affinely regular hexagon G' = ¢19293949596 which
is centered at O, where g1 = s1, g2 = b2, g3 = 13, g4 = S4, g5 = b5, g6 = —73;
moreover it is possible that Bg ¢ G and G ¢ Bg. According to and ,

37
(52) w@a—wyﬂsbwa+wygs<Vﬁ+zQsmm.

Since Ag is inscribed into By, we have
(53) p(As N G; Ag) < |bsgs].

Without loss of generality, assume ¢t > 5/ (0 < e < 0.001). For comple-
teness we conduct explicitly the reasoning analogous to Remark [2] Namely,
since (v3/2 4+ 5¢/€) - 2/v/3 < 1 + 6/ provided p(B;Ag) = t < 5
(0 < £ <0.001), the inclusions Ag C B C (1 + 6+/¢)Ag hold, and the re-
quired hexagon S is Ag.

Since t > 5/¢ and the inequalities and hold (in particular,
|babs| > 0.5), either By C G or G C Bg. Then, by (52),

p(G; Bg) < |bsgs| < (W +21) sin .

Together with and , the latter inequality yields
p(B; G) < p(B; Bs) + p(Bs; Bg) + p(Bg; G) < (37V/3/t + 24.5) sin .



86 H. MARTINI AND A. SHCHERBA

If t > 5y (0 <e<0.001), then from the inequality above and we get

37V3 5 3
4 B; < b)) =ve2 <1.3e.
54 6y < (T2 4 015) - BV < 109
STEP 3. Applying (53) and (52)), provided that ¢t > 5/e, we get
37
(55) p(As N G; Ag) < <\[ + 21) - sin o

< (3.7V3+ 2.1)@% < 0.739e.

Denote by hp(u), hg(u), ha(u) and hang(u) the support functions of
the unit ball B on M?, the affinely regular hexagon G, the regular unit
hexagon Ag, and Ag N G, respectively.

By Theorem B, for |u| = 1 the relations (7)), and imply
{|hB(u) — ha(u)| < 1.3/,
0< hA(u) — hAmg(u) < 0.73\3/5.

By construction, the regular hexagon Ag is inscribed in B. Comparing the
inequalities of this system, we get (for |u| = 1)

hau) — 20392 < hana(u) — 13YE < ho(u) - 13Ye
< hp(u) < he(u) + 1.3 9.

Moreover,
1.3 1.3
1— ¥z | h <h < (14 -——¥e)h
(1 s et < o) < (14 122 0t
and
ha(u) > ha(u) — 0.73Ye > v/3/2 — 0.73/c.
Writing
1.3 5 1.3
= £> ———/e,
1 V3/2 — 0.73\3/5\[ ~ hg(u) Ve
we obtain
(I = @ha(u) < hp(u) < (1+ q)ha(w).
Therefore,
1 2. .2
ﬂzl 6\[ <1+57%§1+6%.

1-¢q V3/2 —2.03ye ~ V3 — 0.406
Define the required hexagon by S = (1 — ¢)G. The inequalities hg(u) <
hp(u) < (1+62)hs(u) evidently imply the inclusions (). The Theorem is
proved.
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