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`2-HOMOLOGY AND PLANAR GRAPHS
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TIMOTHY A. SCHROEDER (Murray, KY)

Abstract. In his 1930 paper, Kuratowski proves that a finite graph Γ is planar if and
only if it does not contain a subgraph that is homeomorphic to K5, the complete graph
on five vertices, or K3,3, the complete bipartite graph on six vertices. This result is also
attributed to Pontryagin. In this paper we present an `2-homological method for detecting
non-planar graphs. More specifically, we view a graph Γ as the nerve of a related Coxeter
system and construct the associated Davis complex, ΣΓ . We then use a result of the au-
thor regarding the (reduced) `2-homology of Coxeter groups to prove that if Γ is planar,
then the orbihedral Euler characteristic of ΣΓ /WΓ is non-positive. This method not only
implies as subcases the classical inequalities relating the number of vertices V and edges
E of a planar graph (that is, E ≤ 3V − 6 or E ≤ 2V − 4 for triangle-free graphs), but it is
stronger in that it detects non-planar graphs in instances the classical inequalities do not.

1. Introduction. Let S be a finite set of generators. A Coxeter matrix
on S is a symmetric S × S matrix M = (mst) with entries in N ∪ {∞} such
that each diagonal entry is 1 and each off-diagonal entry is ≥ 2. The matrix
M gives a presentation of an associated Coxeter group W :
(1.1) W = 〈S | (st)mst = 1 for each pair (s, t) with mst 6=∞〉.
The pair (W,S) is called a Coxeter system. Denote by L the nerve of (W,S).
It is a simplicial complex with vertex set S; the precise definition will be
given in Section 2. In several papers (e.g., [1], [2], and [3]), M. Davis describes
a construction which associates to any Coxeter system (W,S) a simplicial
complex Σ(W,S), or simply Σ when the Coxeter system is clear, on which
W acts properly and cocompactly. The two salient features of Σ are that
(1) it is contractible, and (2) it admits a cellulation under which the nerve
of each vertex is L. It follows that if L is a triangulation of Sn−1, then Σ is
an aspherical n-manifold. Hence, there is a variation of Singer’s Conjecture,
originally regarding the (reduced) `2-homology of aspherical manifolds, for
such Coxeter groups.

Conjecture 1.1 (Singer’s Conjecture for Coxeter groups). Let (W,S)
be a Coxeter group such that its nerve, L, is a triangulation of Sn−1. Then
Hi(ΣL) = 0 for all i 6= n/2.
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For details on `2-homology theory, see [3], [4] and [5]. Conjecture 1.1 holds
for elementary reasons in dimensions 1 and 2. In [8], Lott and Lück prove
that the general statement of Singer’s Conjecture holds for those aspherical
3-manifolds for which Thurston’s Geometrization Conjecture is true. (Hence,
by Perelman, for all aspherical 3-manifolds.) Thurston proved in [11] that
the Geometrization Conjecture holds for Haken 3-manifolds; and in [4], Davis
and Okun show that when (W,S) is right-angled (this means that generators
either commute, or have no relation), Davis’ construction yields examples of
Haken 3-manifolds. Thus, they show that Thurston’s Geometrization Con-
jecture holds for closed aspherical 3-manifolds arising as quotient spaces
of right-angled Davis complexes. Also in [4], Davis and Okun prove that
if Conjecture 1.1 holds for right-angled Coxeter systems in some odd di-
mension n, then it also holds in dimension n + 1. They prove directly that
Conjecture 1.1 holds for right-angled systems in dimension 3, and thus by
the previous statement, also in dimension 4. In [10], the author proves that
Conjecture 1.1 holds for arbitrary Coxeter systems with nerve S2, and in [9],
that Conjecture 1.1 holds for n = 4 if (W,S) is even (that is, for s 6= t, mst

is either even or infinite) and if the nerve is a flag triangulation of S3.
Much of [4] is devoted to variations of Conjecture 1.1, including the

following generalization.

Lemma 1.2 ([4, Lemma 9.2.3]). Suppose (W,S) is a right-angled Coxeter
system with nerve L, a flag triangulation of S2. Let A be a full subcomplex
of L. Then

Hi(WΣA) = 0 for i > 1.

Here,ΣA is the Davis complex associated to the Coxeter system (WA,A
0),

where WA is the subgroup of W generated by vertices in A, with nerve A. It
is a subcomplex of Σ. Finally, WΣA is the collection of all the W -translates
of ΣA in Σ.

Lemma 1.2 is the key to what Davis and Okun call “a complicated proof
of the classical fact that K3,3 is not planar,” where K3,3 denotes the complete
bipartite graph on six vertices (See Section 11.4.1 of [4]). We outline that
argument in Section 3. The key observation there is thatK3,3 can correspond
to the nerve of a right-angled Coxeter system. We generalize this to non-
right-angled systems by labeling the edges of a graph Γ with integers ≥ 2
in such a way that (the labeled) Γ defines, and is the nerve of, a Coxeter
system with generators corresponding to the vertices of Γ . We call such a
labeling metric flag. (See Sections 2 and 4.) The purpose of this paper is
to use `2-homological methods to prove the following classification of planar
graphs.

Corollary 1.3 (see Corollary 4.8). Let Γ be a simple, connected graph,
with V > 2 vertices. If Γ admits a metric flag labeling where ne (an inte-
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ger ≥ 2) is the label on the edge e with

1− V

2
+

( ∑
edges e

1

ne

)
1

2
> 0,

then Γ is not planar.

The key step for us is proving a result analogous to Lemma 1.2, but for
subcomplexes of arbitrary Coxeter systems.

Main Theorem (see Theorem 4.5). Let (W,S) be a Coxeter system
with nerve L, a triangulation of S2. Let A be a full subcomplex of L with
right-angled complement. Then

Hi(WΣA) = 0 for i > 1.

The subcomplex A having a “right-angled complement” means that for
generators s and t, the Coxeter relation mst 6= 2 nor ∞ implies that the
vertices corresponding to s and t are both in A.

2. The Davis complex. Let (W,S) be a Coxeter system. Given a sub-
set U of S, define WU to be the subgroup of W generated by the elements
of U . A subset T of S is spherical if WT is a finite subgroup of W . In this
case, we will also say that the subgroup WT is spherical. Denote by S the
poset of spherical subsets of S, partially ordered by inclusion. Given a sub-
set V of S, let S≥V := {T ∈ S | V ⊆ T}. Similar definitions exist for <,>,≤.
For any w ∈W and T ∈ S, we call the coset wWT a spherical coset. We will
denote by WS the poset of all spherical cosets.

Let K = |S|, the geometric realization of the poset S. It is a finite
simplicial complex. Denote by Σ(W,S), or simply Σ when the system is
clear, the geometric realization of the poset WS. This is the Davis complex .
The natural action ofW onWS induces a simplicial action ofW on Σ which
is proper and cocompact. Observe that K includes naturally into Σ via the
map induced by T → WT . So we view K as a subcomplex of Σ, and note
that K is a strict fundamental domain for the action of W on Σ.

The poset S>∅ is an abstract simplicial complex. This simply means that
if T ∈ S>∅ and T ′ is a non-empty subset of T , then T ′ ∈ S>∅. Denote this
simplicial complex by L and call it the nerve of (W,S). The vertex set of L
is S and a non-empty subset of vertices T spans a simplex of L if and only
if T is spherical.

Define a labeling on the edges of L by the map m : Edge(L)→ {2, 3, . . .},
where {s, t} 7→ mst. This labeling accomplishes two things: (1) the Coxeter
system (W,S) can be recovered (up to isomorphism) from L, and (2) the
1-skeleton of L inherits a natural piecewise spherical structure in which the
edge {s, t} has length π − π/mst. The complex L is then a metric flag sim-
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plicial complex (see [2, Definition I.7.1]). This means that any finite set of
vertices, which are pairwise connected by edges, spans a simplex of L if
and only if it is possible to find some spherical simplex with the given edge
lengths. In other words, L is “metrically determined by its 1-skeleton”.

Recall that a simplicial complex L is flag if every non-empty, finite set
of vertices that are pairwise connected by edges spans a simplex of L. Thus,
it is clear that any flag simplicial complex can correspond to the nerve of
a right-angled Coxeter system. For the purpose of this paper, we will say
that labeled (with integers ≥ 2) simplicial complexes are metric flag if they
correspond to the labeled nerve of some Coxeter system. We then treat
vertices of metric flag simplicial complexes as generators of a corresponding
Coxeter system. Moreover, for a metric flag simplicial complex L, we write
ΣL to denote the associated Davis complex.

A cellulation of Σ by Coxeter cells. The complexΣ has a coarser cell
structure: its cellulation by “Coxeter cells”. (References include [2] and [4].)
The features of the Coxeter cellulation are summarized by [2, Proposi-
tion 7.3.4]. We point out that under this cellulation the link of each vertex
is L. It follows that if L is a triangulation of Sn−1, then Σ is a topological
n-manifold.

Full subcomplexes. Suppose A is a full subcomplex of L. Then A is
the nerve for the subgroup generated by the vertex set of A. We will denote
this subgroup by WA. (This notation is natural since the vertex set of A
corresponds to a subset of the generating set S.) Let SA denote the poset
of the spherical subsets of WA and let ΣA denote the Davis complex associ-
ated to (WA, A

0), with fundamental domain KA. The inclusion WA ↪→WL

induces an inclusion of posets WASA ↪→WLSL and thus an inclusion of ΣA
as a subcomplex of ΣL. Note thatWA acts on ΣA and that if w ∈WL−WA,
then ΣA and wΣA are disjoint copies of ΣA in ΣL. Denote by WLΣA the
union of all translates of ΣA in ΣL.

3. Previous results in `2-homology. Let L be a metric flag simplicial
complex, and let A be a full subcomplex of L. The following notation will
be used throughout.

hi(L) := Hi(ΣL),(3.1)
hi(A) := Hi(WLΣA),(3.2)
βi(A) := dimWL

(hi(A)).(3.3)

Here dimWL
(hi(A)) is the von Neumann dimension of the HilbertWL-module

WLΣA and βi(A) is the ith `2-Betti number ofWLΣA. The notation in (3.2)
and (3.3) will not lead to confusion since dimWL

(WLΣA) = dimWA
(ΣA).

(see [4] and [5]).
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0-dimensional homology. Let ΣA be the Davis complex constructed
from a Coxeter system with nerve A, so WA acts geometrically on ΣA. The
reduced `2-homology groups of ΣA can be identified with the subspace of
harmonic i-cycles (see [5] or [4]). That is, x ∈ hi(A) is an i-cycle and i-
cocycle. 0-dimensional cocycles of ΣA must be constant on all vertices of ΣA.
It follows that ifWA is infinite, and therefore the 0-skeleton of ΣA is infinite,
then β0(A) = 0.

Singer’s Conjecture in dimensions 1 and 2. As mentioned in Sec-
tion 1, Conjecture 1.1 is true in dimensions 1 and 2. Indeed, let L be S0 or S1,
the nerve of a Coxeter system (W,S). Then W is infinite and so, as stated
above, β0(L) = 0. Poincaré duality then implies that the top-dimensional
`2-Betti numbers are also 0.

Orbihedral Euler characteristic. SinceΣL is a geometricW -complex,
there are only a finite number of W -orbits of cells in ΣL, and the order of
each cell stabilizer is finite. The orbihedral Euler characteristic of ΣL/W ,
denoted χorb(ΣL/W ), is the rational number defined by

(3.4) χorb(ΣL/W ) = χorb(K) =
∑
σ

(−1)dimσ

|Wσ|
,

where the summation is over the simplices of K, and |Wσ| denotes the order
of the stabilizer of Σ in W . Then, if the dimension of L is n− 1, a standard
argument (see [5]) proves Atiyah’s formula

(3.5) χorb(K) =

n∑
i=0

(−1)iβi(L).

Joins. If L = L1 ∗L2, the join of L1 and L2, where each edge connecting
a vertex of L1 with a vertex of L2 is labeled 2, we write L = L ∗2 L2 and
thenWL =WL1×WL2 and ΣL = ΣL1×ΣL2 . We may then use the Künneth
formula to calculate the (reduced) `2-homology of ΣL, and the following
equation from [4, Lemma 7.2.4] extends to our situation:

(3.6) βk(L1 ∗2 L2) =
∑
i+j=k

βi(L1)βj(L2).

If L = P ∗2 L2, where P is one point, then we call L a right-angled
cone. Since ΣP = [−1, 1], there are no 1-cycles in ΣP and β1(P ) = 0. But
χorb(ΣP /WP ) = 1/2. So by equation (3.5), β0(P ) = 1/2. Thus, in reference
to the right-angled cone L, equation (3.6) implies that

(3.7) βi(L) =
1
2βi(L2).

Kuratowski’s K3,3 graph. Along with Lemma 1.2, the above gives us
enough to prove that K3,3 is not planar. Indeed, let P3 denote 3 disjoint
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points. Then K3,3 = P3 ∗2 P3 is the nerve of a right-angled Coxeter system.
If K3,3 were a planar graph, it could be embedded as a full subcomplex
of a flag triangulation of S2, where each edge is labeled 2. That is, K3,3 is
a full-subcomplex of S2, the nerve of a right-angled Coxeter system. Since
WK3,3 is infinite, β0(K3,3) = 0, and equations (3.4) and (3.5) imply that
β1(P3) = 1/2. It then follows from (3.6) that β2(K3,3) = 1/4. But this con-
tradicts Lemma 1.2. For details on this proof see [4, Sections 8, 9 and 11].

4. Planar graphs and planar complexes. Now suppose Γ is a simple,
connected graph. The idea is similar to that above: We understand Γ as the
labeled nerve of some Coxeter system and, if possible, embed Γ as a full
subcomplex of a metric flag triangulation of S2. The problem here is that
if Γ contains triangles, or 3-cycles, then we must place restrictions on the
labels of these edges in order for Γ itself to be metric flag or for Γ to embed
as a full subcomplex of a metric flag simplicial complex. In particular, if r,
s and t are vertices of a 3-cycle, then, using the notation from Section 2, we
must have the corresponding edge labels satisfy

1

mrs
+

1

mst
+

1

mrt
≤ 1.

For then {r, s, t} is not a spherical subset of generators and this set does not
span a 2-simplex in the nerve of the corresponding Coxeter system. Note
that for a given graph, there are many labelings that result in the graph
being a metric flag complex. So, our emphasis will not only be on a given
graph, but also on a specific labeling of edges. Thus, we say a labeling of
edges of a graph Γ is metric flag if the labeled Γ corresponds to the labeled
nerve of a Coxeter system. We observe that if Γ contains 3-cycles, then Γ
cannot correspond to the labeled nerve of a right-angled Coxeter system. So,
we require the following definition.

Definition 4.1. We say a full subcomplex A of a metric flag simplicial
complex L has a right-angled complement if the label on all edges not in A
is 2.

The following two lemmas will be used in the set-up and proof of our
main theorem.

Lemma 4.2. Let L be a metric flag simplicial complex, and A ⊆ L a full
subcomplex with a right-angled complement. Let B be a full subcomplex of L
such that A ⊆ B and let v ∈ B−A be a vertex. Then Bv, the link of v in B,
is a full subcomplex of L.

Proof. Let T be a subset of vertices contained in Bv and the vertex set
of a simplex σ of L. Then T defines a spherical subset of the corresponding
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Coxeter system. Since the elements of T are in Bv, v commutes with each
vertex of T . Thus T ∪ {v} is a spherical subset and therefore σ is in Bv.

Lemma 4.3. Let L be a metric flag triangulation of S1, and A a full
subcomplex of L. Then βi(A) = 0 for i > 1.

Proof. Consider the long exact sequence of the pair (ΣL,WΣA):

0→ h2(A)→ h2(L)→ h2(L,A)→ · · ·
Since Conjecture 1.1 is true in dimension 2, h2(L) = 0 and exactness implies
the result.

For convenience, we restate the relevant result from [10] needed to prove
our main result, Theorem 4.5.

Theorem 4.4 (see Corollary 4.4 of [10]). Let L be a metric flag trian-
gulation of S2. Then

hi(L) = 0 for all i.

Theorem 4.5. Let L be a metric flag triangulation of S2, and A ⊆ L a
full subcomplex with right-angled complement. Then

βi(A) = 0 for i > 1.

Proof. Let B be a full subcomplex of L such that A ⊆ B ⊆ L. We
induct on the number of vertices of L − B, the case L = B being given by
Theorem 4.4. Assume hi(B) = 0 for i > 1. Let v be a vertex of B − A and
set B′ = B − v. Then B = B′ ∪C2Bv where Bv (by Lemma 4.2) and B′ are
full subcomplexes. We have the following Mayer–Vietoris sequence:

· · · → hi(Bv)→ hi(B
′)⊕ hi(C2Bv)→ hi(B)→ · · · .

Observe that Bv is a full subcomplex of Lv, the link of v in L, a metric
flag triangulation of S1. So Lemma 4.3 implies hi(Bv) = 0 for i > 1. Thus,
by (3.7), hi(C2Bv) = 0 for i > 1. It follows from exactness that hi(B′) = 0.

Planar complexes. Consider a connected, metric flag complex A of
dimension ≤ 2. If A is planar, then it can be embedded as a subcomplex of
the 2-sphere. In this case, our goal is to attain a flag triangulation of S2 with
A as a full subcomplex. To that end, we introduce a new vertex in the interior
of each complementary region, and cone off the boundary of each region.
Now, it could be the case that an n-cycle in A, n ≥ 4, in which non-adjacent
vertices are connected by an edge in A, bounds a complementary region in S2.
In this case, coning off this n-cycle as above and labeling the cone edges with
2’s results in a non-metric flag triangulation of S2. So, after coning off the
boundary of each complementary region, we take the barycentric subdivision
of each coned region, though to keep A intact as a full subcomplex, we do
not subdivide edges included in A. Finally, we label each new edge with 2
and obtain a metric flag triangulation of S2 in which every edge not in A is
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labeled 2, i.e. A has a right-angled complement. Thus, we have the following
restatement of Theorem 4.5 (cf. [4, Theorem 11.4.1]).

Theorem 4.6. Let A be a metric flag complex of dimension ≤ 2. Suppose
A is planar (that is, it can be embedded as a subcomplex of the 2-sphere). Then

β2(A) = 0.

Proof. By Mayer–Vietoris, we may assume A is connected. Take the em-
bedding of A in S2 described above; then the result follows from the proof
of Theorem 4.5.

Corollary 4.7. Suppose Γ is a planar, metric flag, simple graph, not
a single edge nor a single vertex. Let WΓ denote the corresponding Cox-
eter group and ΣΓ the corresponding Davis complex with fundamental do-
main KΓ . Then χorb(KΓ ) ≤ 0.

Proof. Since WΓ is infinite, we know β0(Γ ) = 0. By Theorem 4.6, we
know β2(Γ ) = 0. Thus, the result follows from Atiyah’s formula (3.5).

Planar graphs. We do have specific calculations of χorb in the case
described in Corollary 4.7. Indeed, consider a metric flag labeling of a graph
Γ with V vertices and E edges in which ne is the label on the edge e. Let ΣΓ
denote the corresponding Davis complex with fundamental domain KΓ , and
consider the simplicial decomposition ofKΓ in which simplices correspond to
linearly ordered (with respect to containment) chains of spherical subsets.
Then KΓ has one 0-simplex with trivial stabilizer, corresponding to the
empty set, V 0-simplices with stabilizers of order 2, and for each edge e, a
0-simplex with a stabilizer of order 2ne. Moreover, KΓ has E+V 1-simplices
with trivial stabilizers, each corresponding to chains of the form ∅ ⊂ {r} or
∅ ⊂ {r, s}, where r 6= s are vertices Γ , and 2E 1-simplices with stabilizers
of order 2, corresponding to chains of the form {r} ⊂ {r, s}, where r 6= s
are vertices of Γ . Finally, KΓ has 2E 2-simplices with trivial stabilizers
corresponding to chains of the form ∅ ⊂ {r} ⊂ {r, s}, where r 6= s are
vertices of Γ . Hence

χorb(KΓ ) =

(
1 +

V

2
+

(∑
e

1

ne

)
1

2

)
−
(
V + E +

2E

2

)
+ (2E)(4.1)

= 1− V

2
+

(∑
e

1

ne

)
1

2
.

So, using this formula with the contrapositive of Corollary 4.7, we have the
following test for detecting non-planar graphs.

Corollary 4.8. Let Γ be a simple, connected graph with V > 2 vertices.
If Γ admits a metric flag labeling where ne (an integer ≥ 2) is the label on
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the edge e with

1− V

2
+

( ∑
edges e

1

ne

)
1

2
> 0,

then Γ is not planar.

Corollary 4.8 does detect that both of Kuratowski’s graphs are non-
planar. Indeed, if Γ is the complete bipartite graph on six vertices, we can
label each edge with 2 and we get χorb(KΓ ) = 1 − 6

2 + 9
4 = 1

4 . If Γ is the
complete graph on five vertices, we can use a uniform labeling with 3’s and
we have χorb(KΓ ) = 1− 5

2 + 10
6 = 1

6 .
Of course, the straight application of Corollary 4.7 to equation (4.1) is

that, for a planar graph, all metric flag labelings satisfy 1−V/2+
∑

(1/ne)/2
≤ 0. Now note that for any graph Γ , a uniform labeling of each edge with
3’s is metric flag, and if Γ contains no 3-cycles, then a uniform labeling with
2’s is metric flag. So the classical inequalities relating the number of edges
and vertices of a planar graph follow from Corollary 4.8.

Corollary 4.9. Let Γ be a simple, connected, planar graph with V > 2
vertices and E edges. Then E ≤ 3V −6. If, moreover, Γ contains no 3-cycles,
then E ≤ 2V − 4.

Proof. Take a uniform labeling of 3’s on the edges of Γ . Then

χorb(KΓ ) = 1− V

2
+
E

6
≤ 0,

which implies that E ≤ 3V −6. If Γ contains no 3-cycles, then take a uniform
labeling of 2’s on the edges to find that

χorb(KΓ ) = 1− V

2
+
E

4
≤ 0,

which implies that E ≤ 2V − 4.

A stronger inequality . . . but not too strong. Note that in equa-
tion (4.1), increasing any one edge label of Γ decreases χorb(KΓ ). So, in
the case Γ contains no 3-cycles, it is clear that a labeling of 2’s on each
edge will give you the largest possible orbihedral Euler characteristic. In
other words, the `2-homological method, i.e. the calculation of the orbihe-
dral Euler characteristic described in Corollary 4.8, is not stronger than the
classical inequality E ≤ 2V −4, meaning it will not detect non-planar graphs
the classical inequality misses.

However, in the case of a graph containing 3-cycles, there are choices that
can be made. It is not the case that a uniform labeling of 3’s will always lead
to the largest possible orbihedral Euler characteristic for the orbifold KΓ .

Example 4.10. Let Γ be the graph pictured in Figure 1, a member of
the Petersen family of graphs. Then Γ does contain 3-cycles and we have
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V = 7 and E = 15. So the classical inequality (or the labeling by 3’s) does not
detect that Γ is non-planar. However, with the indicated metric flag labeling,

χorb(KΓ ) = 1− 7

2
+

(
7

2
+

8

4

)
1

2
=

1

4
.

So, by Corollary 4.8, we can conclude Γ is not planar.

Fig. 1 Fig. 2

The Petersen family of graphs provides another example in Figure 2.
Here V = 8 and E = 15, so E < 3V − 6, but with the indicated labeling, we
again have χorb = 1/4 and thus the graph is not planar.

The previous examples do indeed show that the `2-methods culminating
in Corollary 4.8 are stronger than the classical inequality reproved in Corol-
lary 4.9. But there are cases in which non-uniform labelings do not detect
a known non-planar graph. Consider the non-planar graph Γ in Figure 3,

Fig. 3
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again a member of the Petersen family of graphs. Since Γ has one 3-cycle,
it is clear that the indicated labeling maximizes the orbihedral Euler char-
acteristic of KΓ . But here χorb(KΓ ) = 0, and so Corollary 4.8 does not tell
us that this graph is non-planar.

Conclusion. As Davis and Okun state in [4], they have found a “com-
plicated proof of the classical fact”[s] that certain (known to be non-planar)
graphs are indeed non-planar. However, the `2-homological methods pre-
sented reduce to an accessible and straightforward calculation that provides
a stronger test for planarity than the classical inequalities.
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