ℓ^{2}-HOMOLOGY AND PLANAR GRAPHS

BY
TIMOTHY A. SCHROEDER (Murray, KY)

Abstract

In his 1930 paper, Kuratowski proves that a finite graph Γ is planar if and only if it does not contain a subgraph that is homeomorphic to K_{5}, the complete graph on five vertices, or $K_{3,3}$, the complete bipartite graph on six vertices. This result is also attributed to Pontryagin. In this paper we present an ℓ^{2}-homological method for detecting non-planar graphs. More specifically, we view a graph Γ as the nerve of a related Coxeter system and construct the associated Davis complex, Σ_{Γ}. We then use a result of the author regarding the (reduced) ℓ^{2}-homology of Coxeter groups to prove that if Γ is planar, then the orbihedral Euler characteristic of $\Sigma_{\Gamma} / W_{\Gamma}$ is non-positive. This method not only implies as subcases the classical inequalities relating the number of vertices V and edges E of a planar graph (that is, $E \leq 3 V-6$ or $E \leq 2 V-4$ for triangle-free graphs), but it is stronger in that it detects non-planar graphs in instances the classical inequalities do not.

1. Introduction. Let S be a finite set of generators. A Coxeter matrix on S is a symmetric $S \times S$ matrix $M=\left(m_{s t}\right)$ with entries in $\mathbb{N} \cup\{\infty\}$ such that each diagonal entry is 1 and each off-diagonal entry is ≥ 2. The matrix M gives a presentation of an associated Coxeter group W :

$$
\begin{equation*}
\left.W=\langle S|(s t)^{m_{s t}}=1 \text { for each pair }(s, t) \text { with } m_{s t} \neq \infty\right\rangle \tag{1.1}
\end{equation*}
$$

The pair (W, S) is called a Coxeter system. Denote by L the nerve of (W, S). It is a simplicial complex with vertex set S; the precise definition will be given in Section 2. In several papers (e.g., 11, 2], and [3), M. Davis describes a construction which associates to any Coxeter system (W, S) a simplicial complex $\Sigma(W, S)$, or simply Σ when the Coxeter system is clear, on which W acts properly and cocompactly. The two salient features of Σ are that (1) it is contractible, and (2) it admits a cellulation under which the nerve of each vertex is L. It follows that if L is a triangulation of \mathbb{S}^{n-1}, then Σ is an aspherical n-manifold. Hence, there is a variation of Singer's Conjecture, originally regarding the (reduced) ℓ^{2}-homology of aspherical manifolds, for such Coxeter groups.

Conjecture 1.1 (Singer's Conjecture for Coxeter groups). Let (W, S) be a Coxeter group such that its nerve, L, is a triangulation of \mathbb{S}^{n-1}. Then $\mathcal{H}_{i}\left(\Sigma_{L}\right)=0$ for all $i \neq n / 2$.

For details on ℓ^{2}-homology theory, see 3], 4] and [5. Conjecture 1.1 holds for elementary reasons in dimensions 1 and 2. In [8], Lott and Lück prove that the general statement of Singer's Conjecture holds for those aspherical 3 -manifolds for which Thurston's Geometrization Conjecture is true. (Hence, by Perelman, for all aspherical 3-manifolds.) Thurston proved in [11] that the Geometrization Conjecture holds for Haken 3-manifolds; and in [4], Davis and Okun show that when (W, S) is right-angled (this means that generators either commute, or have no relation), Davis' construction yields examples of Haken 3-manifolds. Thus, they show that Thurston's Geometrization Conjecture holds for closed aspherical 3-manifolds arising as quotient spaces of right-angled Davis complexes. Also in [4], Davis and Okun prove that if Conjecture 1.1 holds for right-angled Coxeter systems in some odd dimension n, then it also holds in dimension $n+1$. They prove directly that Conjecture 1.1 holds for right-angled systems in dimension 3, and thus by the previous statement, also in dimension 4. In [10], the author proves that Conjecture 1.1 holds for arbitrary Coxeter systems with nerve \mathbb{S}^{2}, and in 9], that Conjecture 1.1 holds for $n=4$ if (W, S) is even (that is, for $s \neq t, m_{s t}$ is either even or infinite) and if the nerve is a flag triangulation of \mathbb{S}^{3}.

Much of [4] is devoted to variations of Conjecture 1.1, including the following generalization.

Lemma 1.2 ([4, Lemma 9.2.3]). Suppose (W, S) is a right-angled Coxeter system with nerve L, a flag triangulation of \mathbb{S}^{2}. Let A be a full subcomplex of L. Then

$$
\mathcal{H}_{i}\left(W \Sigma_{A}\right)=0 \quad \text { for } i>1
$$

Here, Σ_{A} is the Davis complex associated to the Coxeter system $\left(W_{A}, A^{0}\right)$, where W_{A} is the subgroup of W generated by vertices in A, with nerve A. It is a subcomplex of Σ. Finally, $W \Sigma_{A}$ is the collection of all the W-translates of Σ_{A} in Σ.

Lemma 1.2 is the key to what Davis and Okun call "a complicated proof of the classical fact that $K_{3,3}$ is not planar," where $K_{3,3}$ denotes the complete bipartite graph on six vertices (See Section 11.4.1 of [4). We outline that argument in Section 3. The key observation there is that $K_{3,3}$ can correspond to the nerve of a right-angled Coxeter system. We generalize this to non-right-angled systems by labeling the edges of a graph Γ with integers ≥ 2 in such a way that (the labeled) Γ defines, and is the nerve of, a Coxeter system with generators corresponding to the vertices of Γ. We call such a labeling metric flag. (See Sections 2 and 4) The purpose of this paper is to use ℓ^{2}-homological methods to prove the following classification of planar graphs.

Corollary 1.3 (see Corollary 4.8). Let Γ be a simple, connected graph, with $V>2$ vertices. If Γ admits a metric flag labeling where n_{e} (an inte-
ger ≥ 2) is the label on the edge e with

$$
1-\frac{V}{2}+\left(\sum_{\text {edges } e} \frac{1}{n_{e}}\right) \frac{1}{2}>0
$$

then Γ is not planar.
The key step for us is proving a result analogous to Lemma 1.2 , but for subcomplexes of arbitrary Coxeter systems.

Main Theorem (see Theorem 4.5). Let (W, S) be a Coxeter system with nerve L, a triangulation of \mathbb{S}^{2}. Let A be a full subcomplex of L with right-angled complement. Then

$$
\mathcal{H}_{i}\left(W \Sigma_{A}\right)=0 \quad \text { for } i>1
$$

The subcomplex A having a "right-angled complement" means that for generators s and t, the Coxeter relation $m_{s t} \neq 2$ nor ∞ implies that the vertices corresponding to s and t are both in A.
2. The Davis complex. Let (W, S) be a Coxeter system. Given a subset U of S, define W_{U} to be the subgroup of W generated by the elements of U. A subset T of S is spherical if W_{T} is a finite subgroup of W. In this case, we will also say that the subgroup W_{T} is spherical. Denote by \mathcal{S} the poset of spherical subsets of S, partially ordered by inclusion. Given a subset V of S, let $\mathcal{S}_{\geq V}:=\{T \in \mathcal{S} \mid V \subseteq T\}$. Similar definitions exist for $<,>, \leq$. For any $w \in W$ and $T \in \mathcal{S}$, we call the coset $w W_{T}$ a spherical coset. We will denote by $W \mathcal{S}$ the poset of all spherical cosets.

Let $K=|\mathcal{S}|$, the geometric realization of the poset \mathcal{S}. It is a finite simplicial complex. Denote by $\Sigma(W, S)$, or simply Σ when the system is clear, the geometric realization of the poset $W \mathcal{S}$. This is the Davis complex. The natural action of W on $W \mathcal{S}$ induces a simplicial action of W on Σ which is proper and cocompact. Observe that K includes naturally into Σ via the map induced by $T \rightarrow W_{T}$. So we view K as a subcomplex of Σ, and note that K is a strict fundamental domain for the action of W on Σ.

The poset $\mathcal{S}_{>\emptyset}$ is an abstract simplicial complex. This simply means that if $T \in \mathcal{S}_{>\emptyset}$ and T^{\prime} is a non-empty subset of T, then $T^{\prime} \in \mathcal{S}_{>\emptyset}$. Denote this simplicial complex by L and call it the nerve of (W, S). The vertex set of L is S and a non-empty subset of vertices T spans a simplex of L if and only if T is spherical.

Define a labeling on the edges of L by the map $m:$ Edge $(L) \rightarrow\{2,3, \ldots\}$, where $\{s, t\} \mapsto m_{s t}$. This labeling accomplishes two things: (1) the Coxeter system (W, S) can be recovered (up to isomorphism) from L, and (2) the 1-skeleton of L inherits a natural piecewise spherical structure in which the edge $\{s, t\}$ has length $\pi-\pi / m_{s t}$. The complex L is then a metric flag sim-
plicial complex (see [2, Definition I.7.1]). This means that any finite set of vertices, which are pairwise connected by edges, spans a simplex of L if and only if it is possible to find some spherical simplex with the given edge lengths. In other words, L is "metrically determined by its 1 -skeleton".

Recall that a simplicial complex L is flag if every non-empty, finite set of vertices that are pairwise connected by edges spans a simplex of L. Thus, it is clear that any flag simplicial complex can correspond to the nerve of a right-angled Coxeter system. For the purpose of this paper, we will say that labeled (with integers ≥ 2) simplicial complexes are metric flag if they correspond to the labeled nerve of some Coxeter system. We then treat vertices of metric flag simplicial complexes as generators of a corresponding Coxeter system. Moreover, for a metric flag simplicial complex L, we write Σ_{L} to denote the associated Davis complex.

A cellulation of Σ by Coxeter cells. The complex Σ has a coarser cell structure: its cellulation by "Coxeter cells". (References include [2] and [4].) The features of the Coxeter cellulation are summarized by [2, Proposition 7.3.4]. We point out that under this cellulation the link of each vertex is L. It follows that if L is a triangulation of \mathbb{S}^{n-1}, then Σ is a topological n-manifold.

Full subcomplexes. Suppose A is a full subcomplex of L. Then A is the nerve for the subgroup generated by the vertex set of A. We will denote this subgroup by W_{A}. (This notation is natural since the vertex set of A corresponds to a subset of the generating set S.) Let \mathcal{S}_{A} denote the poset of the spherical subsets of W_{A} and let Σ_{A} denote the Davis complex associated to (W_{A}, A^{0}), with fundamental domain K_{A}. The inclusion $W_{A} \hookrightarrow W_{L}$ induces an inclusion of posets $W_{A} \mathcal{S}_{A} \hookrightarrow W_{L} \mathcal{S}_{L}$ and thus an inclusion of Σ_{A} as a subcomplex of Σ_{L}. Note that W_{A} acts on Σ_{A} and that if $w \in W_{L}-W_{A}$, then Σ_{A} and $w \Sigma_{A}$ are disjoint copies of Σ_{A} in Σ_{L}. Denote by $W_{L} \Sigma_{A}$ the union of all translates of Σ_{A} in Σ_{L}.
3. Previous results in ℓ^{2}-homology. Let L be a metric flag simplicial complex, and let A be a full subcomplex of L. The following notation will be used throughout.

$$
\begin{align*}
\mathfrak{h}_{i}(L) & :=\mathcal{H}_{i}\left(\Sigma_{L}\right), \tag{3.1}\\
\mathfrak{h}_{i}(A) & :=\mathcal{H}_{i}\left(W_{L} \Sigma_{A}\right), \tag{3.2}\\
\beta_{i}(A) & :=\operatorname{dim}_{W_{L}}\left(\mathfrak{h}_{i}(A)\right) . \tag{3.3}
\end{align*}
$$

Here $\operatorname{dim}_{W_{L}}\left(\mathfrak{h}_{i}(A)\right)$ is the von Neumann dimension of the Hilbert W_{L}-module $W_{L} \Sigma_{A}$ and $\beta_{i}(A)$ is the i th ℓ^{2}-Betti number of $W_{L} \Sigma_{A}$. The notation in (3.2) and (3.3) will not lead to confusion since $\operatorname{dim}_{W_{L}}\left(W_{L} \Sigma_{A}\right)=\operatorname{dim}_{W_{A}}\left(\Sigma_{A}\right)$. (see 4] and 5).

0-dimensional homology. Let Σ_{A} be the Davis complex constructed from a Coxeter system with nerve A, so W_{A} acts geometrically on Σ_{A}. The reduced ℓ^{2}-homology groups of Σ_{A} can be identified with the subspace of harmonic i-cycles (see [5] or [4]). That is, $x \in \mathfrak{h}_{i}(A)$ is an i-cycle and i cocycle. 0-dimensional cocycles of Σ_{A} must be constant on all vertices of Σ_{A}. It follows that if W_{A} is infinite, and therefore the 0 -skeleton of Σ_{A} is infinite, then $\beta_{0}(A)=0$.

Singer's Conjecture in dimensions 1 and 2. As mentioned in Section 1. Conjecture 1.1 is true in dimensions 1 and 2 . Indeed, let L be \mathbb{S}^{0} or \mathbb{S}^{1}, the nerve of a Coxeter system (W, S). Then W is infinite and so, as stated above, $\beta_{0}(L)=0$. Poincaré duality then implies that the top-dimensional ℓ^{2}-Betti numbers are also 0 .

Orbihedral Euler characteristic. Since Σ_{L} is a geometric W-complex, there are only a finite number of W-orbits of cells in Σ_{L}, and the order of each cell stabilizer is finite. The orbihedral Euler characteristic of Σ_{L} / W, denoted $\chi^{\text {orb }}\left(\Sigma_{L} / W\right)$, is the rational number defined by

$$
\begin{equation*}
\chi^{\mathrm{orb}}\left(\Sigma_{L} / W\right)=\chi^{\mathrm{orb}}(K)=\sum_{\sigma} \frac{(-1)^{\operatorname{dim} \sigma}}{\left|W_{\sigma}\right|} \tag{3.4}
\end{equation*}
$$

where the summation is over the simplices of K, and $\left|W_{\sigma}\right|$ denotes the order of the stabilizer of Σ in W. Then, if the dimension of L is $n-1$, a standard argument (see [5]) proves Atiyah's formula

$$
\begin{equation*}
\chi^{\mathrm{orb}}(K)=\sum_{i=0}^{n}(-1)^{i} \beta_{i}(L) \tag{3.5}
\end{equation*}
$$

Joins. If $L=L_{1} * L_{2}$, the join of L_{1} and L_{2}, where each edge connecting a vertex of L_{1} with a vertex of L_{2} is labeled 2 , we write $L=L *_{2} L_{2}$ and then $W_{L}=W_{L_{1}} \times W_{L_{2}}$ and $\Sigma_{L}=\Sigma_{L_{1}} \times \Sigma_{L_{2}}$. We may then use the Künneth formula to calculate the (reduced) ℓ^{2}-homology of Σ_{L}, and the following equation from [4, Lemma 7.2.4] extends to our situation:

$$
\begin{equation*}
\beta_{k}\left(L_{1} *_{2} L_{2}\right)=\sum_{i+j=k} \beta_{i}\left(L_{1}\right) \beta_{j}\left(L_{2}\right) \tag{3.6}
\end{equation*}
$$

If $L=P *_{2} L_{2}$, where P is one point, then we call L a right-angled cone. Since $\Sigma_{P}=[-1,1]$, there are no 1 -cycles in Σ_{P} and $\beta_{1}(P)=0$. But $\chi^{\operatorname{orb}}\left(\Sigma_{P} / W_{P}\right)=1 / 2$. So by equation (3.5), $\beta_{0}(P)=1 / 2$. Thus, in reference to the right-angled cone L, equation (3.6) implies that

$$
\begin{equation*}
\beta_{i}(L)=\overline{\frac{1}{2} \beta_{i}}\left(L_{2}\right) \tag{3.7}
\end{equation*}
$$

Kuratowski's $K_{3,3}$ graph. Along with Lemma 1.2 , the above gives us enough to prove that $K_{3,3}$ is not planar. Indeed, let P_{3} denote 3 disjoint
points. Then $K_{3,3}=P_{3} *_{2} P_{3}$ is the nerve of a right-angled Coxeter system. If $K_{3,3}$ were a planar graph, it could be embedded as a full subcomplex of a flag triangulation of \mathbb{S}^{2}, where each edge is labeled 2 . That is, $K_{3,3}$ is a full-subcomplex of \mathbb{S}^{2}, the nerve of a right-angled Coxeter system. Since $W_{K_{3,3}}$ is infinite, $\beta_{0}\left(K_{3,3}\right)=0$, and equations (3.4) and 3.5 imply that $\beta_{1}\left(P_{3}\right)=1 / 2$. It then follows from (3.6) that $\beta_{2}\left(K_{3,3}\right)=1 / 4$. But this contradicts Lemma 1.2. For details on this proof see [4, Sections 8, 9 and 11].
4. Planar graphs and planar complexes. Now suppose Γ is a simple, connected graph. The idea is similar to that above: We understand Γ as the labeled nerve of some Coxeter system and, if possible, embed Γ as a full subcomplex of a metric flag triangulation of \mathbb{S}^{2}. The problem here is that if Γ contains triangles, or 3 -cycles, then we must place restrictions on the labels of these edges in order for Γ itself to be metric flag or for Γ to embed as a full subcomplex of a metric flag simplicial complex. In particular, if r, s and t are vertices of a 3 -cycle, then, using the notation from Section 2 , we must have the corresponding edge labels satisfy

$$
\frac{1}{m_{r s}}+\frac{1}{m_{s t}}+\frac{1}{m_{r t}} \leq 1
$$

For then $\{r, s, t\}$ is not a spherical subset of generators and this set does not span a 2 -simplex in the nerve of the corresponding Coxeter system. Note that for a given graph, there are many labelings that result in the graph being a metric flag complex. So, our emphasis will not only be on a given graph, but also on a specific labeling of edges. Thus, we say a labeling of edges of a graph Γ is metric flag if the labeled Γ corresponds to the labeled nerve of a Coxeter system. We observe that if Γ contains 3 -cycles, then Γ cannot correspond to the labeled nerve of a right-angled Coxeter system. So, we require the following definition.

Definition 4.1. We say a full subcomplex A of a metric flag simplicial complex L has a right-angled complement if the label on all edges not in A is 2 .

The following two lemmas will be used in the set-up and proof of our main theorem.

Lemma 4.2. Let L be a metric flag simplicial complex, and $A \subseteq L$ a full subcomplex with a right-angled complement. Let B be a full subcomplex of L such that $A \subseteq B$ and let $v \in B-A$ be a vertex. Then B_{v}, the link of v in B, is a full subcomplex of L.

Proof. Let T be a subset of vertices contained in B_{v} and the vertex set of a simplex σ of L. Then T defines a spherical subset of the corresponding

Coxeter system. Since the elements of T are in B_{v}, v commutes with each vertex of T. Thus $T \cup\{v\}$ is a spherical subset and therefore σ is in B_{v}.

Lemma 4.3. Let L be a metric flag triangulation of \mathbb{S}^{1}, and A a full subcomplex of L. Then $\beta_{i}(A)=0$ for $i>1$.

Proof. Consider the long exact sequence of the pair $\left(\Sigma_{L}, W \Sigma_{A}\right)$:

$$
0 \rightarrow \mathfrak{h}_{2}(A) \rightarrow \mathfrak{h}_{2}(L) \rightarrow \mathfrak{h}_{2}(L, A) \rightarrow \cdots
$$

Since Conjecture 1.1 is true in dimension $2, \mathfrak{h}_{2}(L)=0$ and exactness implies the result.

For convenience, we restate the relevant result from [10] needed to prove our main result, Theorem 4.5.

Theorem 4.4 (see Corollary 4.4 of [10). Let L be a metric flag triangulation of \mathbb{S}^{2}. Then

$$
\mathfrak{h}_{i}(L)=0 \quad \text { for all } i .
$$

Theorem 4.5. Let L be a metric flag triangulation of \mathbb{S}^{2}, and $A \subseteq L a$ full subcomplex with right-angled complement. Then

$$
\beta_{i}(A)=0 \quad \text { for } i>1 .
$$

Proof. Let B be a full subcomplex of L such that $A \subseteq B \subseteq L$. We induct on the number of vertices of $L-B$, the case $L=B$ being given by Theorem 4.4. Assume $\mathfrak{h}_{i}(B)=0$ for $i>1$. Let v be a vertex of $B-A$ and set $B^{\prime}=B-v$. Then $B=B^{\prime} \cup C_{2} B_{v}$ where B_{v} (by Lemma 4.2) and B^{\prime} are full subcomplexes. We have the following Mayer-Vietoris sequence:

$$
\cdots \rightarrow \mathfrak{h}_{i}\left(B_{v}\right) \rightarrow \mathfrak{h}_{i}\left(B^{\prime}\right) \oplus \mathfrak{h}_{i}\left(C_{2} B_{v}\right) \rightarrow \mathfrak{h}_{i}(B) \rightarrow \cdots .
$$

Observe that B_{v} is a full subcomplex of L_{v}, the link of v in L, a metric flag triangulation of \mathbb{S}^{1}. So Lemma 4.3 implies $\mathfrak{h}_{i}\left(B_{v}\right)=0$ for $i>1$. Thus, by (3.7), $\mathfrak{h}_{i}\left(C_{2} B_{v}\right)=0$ for $i>1$. It follows from exactness that $\mathfrak{h}_{i}\left(B^{\prime}\right)=0$.

Planar complexes. Consider a connected, metric flag complex A of dimension ≤ 2. If A is planar, then it can be embedded as a subcomplex of the 2 -sphere. In this case, our goal is to attain a flag triangulation of \mathbb{S}^{2} with A as a full subcomplex. To that end, we introduce a new vertex in the interior of each complementary region, and cone off the boundary of each region. Now, it could be the case that an n-cycle in $A, n \geq 4$, in which non-adjacent vertices are connected by an edge in A, bounds a complementary region in \mathbb{S}^{2}. In this case, coning off this n-cycle as above and labeling the cone edges with 2 's results in a non-metric flag triangulation of \mathbb{S}^{2}. So, after coning off the boundary of each complementary region, we take the barycentric subdivision of each coned region, though to keep A intact as a full subcomplex, we do not subdivide edges included in A. Finally, we label each new edge with 2 and obtain a metric flag triangulation of \mathbb{S}^{2} in which every edge not in A is
labeled 2, i.e. A has a right-angled complement. Thus, we have the following restatement of Theorem 4.5 (cf. 4, Theorem 11.4.1]).

Theorem 4.6. Let A be a metric flag complex of dimension ≤ 2. Suppose A is planar (that is, it can be embedded as a subcomplex of the 2 -sphere). Then

$$
\beta_{2}(A)=0 .
$$

Proof. By Mayer-Vietoris, we may assume A is connected. Take the embedding of A in \mathbb{S}^{2} described above; then the result follows from the proof of Theorem 4.5.

Corollary 4.7. Suppose Γ is a planar, metric flag, simple graph, not a single edge nor a single vertex. Let W_{Γ} denote the corresponding Coxeter group and Σ_{Γ} the corresponding Davis complex with fundamental domain K_{Γ}. Then $\chi^{\text {orb }}\left(K_{\Gamma}\right) \leq 0$.

Proof. Since W_{Γ} is infinite, we know $\beta_{0}(\Gamma)=0$. By Theorem 4.6. we know $\beta_{2}(\Gamma)=0$. Thus, the result follows from Atiyah's formula (3.5). -

Planar graphs. We do have specific calculations of $\chi^{\text {orb }}$ in the case described in Corollary 4.7. Indeed, consider a metric flag labeling of a graph Γ with V vertices and E edges in which n_{e} is the label on the edge e. Let Σ_{Γ} denote the corresponding Davis complex with fundamental domain K_{Γ}, and consider the simplicial decomposition of K_{Γ} in which simplices correspond to linearly ordered (with respect to containment) chains of spherical subsets. Then K_{Γ} has one 0 -simplex with trivial stabilizer, corresponding to the empty set, $V 0$-simplices with stabilizers of order 2 , and for each edge e, a 0 -simplex with a stabilizer of order $2 n_{e}$. Moreover, K_{Γ} has $E+V$ 1-simplices with trivial stabilizers, each corresponding to chains of the form $\emptyset \subset\{r\}$ or $\emptyset \subset\{r, s\}$, where $r \neq s$ are vertices Γ, and $2 E 1$-simplices with stabilizers of order 2 , corresponding to chains of the form $\{r\} \subset\{r, s\}$, where $r \neq s$ are vertices of Γ. Finally, K_{Γ} has $2 E$ 2-simplices with trivial stabilizers corresponding to chains of the form $\emptyset \subset\{r\} \subset\{r, s\}$, where $r \neq s$ are vertices of Γ. Hence

$$
\begin{align*}
\chi^{\mathrm{orb}}\left(K_{\Gamma}\right) & =\left(1+\frac{V}{2}+\left(\sum_{e} \frac{1}{n_{e}}\right) \frac{1}{2}\right)-\left(V+E+\frac{2 E}{2}\right)+(2 E) \tag{4.1}\\
& =1-\frac{V}{2}+\left(\sum_{e} \frac{1}{n_{e}}\right) \frac{1}{2}
\end{align*}
$$

So, using this formula with the contrapositive of Corollary 4.7, we have the following test for detecting non-planar graphs.

Corollary 4.8. Let Γ be a simple, connected graph with $V>2$ vertices. If Γ admits a metric flag labeling where $n_{e}($ an integer $\geq 2)$ is the label on
the edge e with

$$
1-\frac{V}{2}+\left(\sum_{\text {edges } e} \frac{1}{n_{e}}\right) \frac{1}{2}>0
$$

then Γ is not planar.
Corollary 4.8 does detect that both of Kuratowski's graphs are nonplanar. Indeed, if Γ is the complete bipartite graph on six vertices, we can label each edge with 2 and we get $\chi^{\text {orb }}\left(K_{\Gamma}\right)=1-\frac{6}{2}+\frac{9}{4}=\frac{1}{4}$. If Γ is the complete graph on five vertices, we can use a uniform labeling with 3 's and we have $\chi^{\text {orb }}\left(K_{\Gamma}\right)=1-\frac{5}{2}+\frac{10}{6}=\frac{1}{6}$.

Of course, the straight application of Corollary 4.7 to equation 4.1 is that, for a planar graph, all metric flag labelings satisfy $1-V / 2+\sum\left(1 / n_{e}\right) / 2$ ≤ 0. Now note that for any graph Γ, a uniform labeling of each edge with 3 's is metric flag, and if Γ contains no 3 -cycles, then a uniform labeling with 2 's is metric flag. So the classical inequalities relating the number of edges and vertices of a planar graph follow from Corollary 4.8.

Corollary 4.9. Let Γ be a simple, connected, planar graph with $V>2$ vertices and E edges. Then $E \leq 3 V-6$. If, moreover, Γ contains no 3 -cycles, then $E \leq 2 V-4$.

Proof. Take a uniform labeling of 3's on the edges of Γ. Then

$$
\chi^{\text {orb }}\left(K_{\Gamma}\right)=1-\frac{V}{2}+\frac{E}{6} \leq 0
$$

which implies that $E \leq 3 V-6$. If Γ contains no 3 -cycles, then take a uniform labeling of 2 's on the edges to find that

$$
\chi^{\mathrm{orb}}\left(K_{\Gamma}\right)=1-\frac{V}{2}+\frac{E}{4} \leq 0
$$

which implies that $E \leq 2 V-4$.
A stronger inequality . . . but not too strong. Note that in equation (4.1), increasing any one edge label of Γ decreases $\chi^{\text {orb }}\left(K_{\Gamma}\right)$. So, in the case Γ contains no 3 -cycles, it is clear that a labeling of 2's on each edge will give you the largest possible orbihedral Euler characteristic. In other words, the ℓ^{2}-homological method, i.e. the calculation of the orbihedral Euler characteristic described in Corollary 4.8, is not stronger than the classical inequality $E \leq 2 V-4$, meaning it will not detect non-planar graphs the classical inequality misses.

However, in the case of a graph containing 3-cycles, there are choices that can be made. It is not the case that a uniform labeling of 3's will always lead to the largest possible orbihedral Euler characteristic for the orbifold K_{Γ}.

EXAMPLE 4.10. Let Γ be the graph pictured in Figure 1, a member of the Petersen family of graphs. Then Γ does contain 3 -cycles and we have
$V=7$ and $E=15$. So the classical inequality (or the labeling by 3 's) does not detect that Γ is non-planar. However, with the indicated metric flag labeling,

$$
\chi^{\mathrm{orb}}\left(K_{\Gamma}\right)=1-\frac{7}{2}+\left(\frac{7}{2}+\frac{8}{4}\right) \frac{1}{2}=\frac{1}{4} .
$$

So, by Corollary 4.8, we can conclude Γ is not planar.

Fig. 1

Fig. 2

The Petersen family of graphs provides another example in Figure 2. Here $V=8$ and $E=15$, so $E<3 V-6$, but with the indicated labeling, we again have $\chi^{\text {orb }}=1 / 4$ and thus the graph is not planar.

The previous examples do indeed show that the ℓ^{2}-methods culminating in Corollary 4.8 are stronger than the classical inequality reproved in Corollary 4.9. But there are cases in which non-uniform labelings do not detect a known non-planar graph. Consider the non-planar graph Γ in Figure 3,

Fig. 3
again a member of the Petersen family of graphs. Since Γ has one 3 -cycle, it is clear that the indicated labeling maximizes the orbihedral Euler characteristic of K_{Γ}. But here $\chi^{\text {orb }}\left(K_{\Gamma}\right)=0$, and so Corollary 4.8 does not tell us that this graph is non-planar.

Conclusion. As Davis and Okun state in [4, they have found a "complicated proof of the classical fact" $[\mathrm{s}]$ that certain (known to be non-planar) graphs are indeed non-planar. However, the ℓ^{2}-homological methods presented reduce to an accessible and straightforward calculation that provides a stronger test for planarity than the classical inequalities.

Acknowledgements. I would like to express my thanks to Boris Okun for discussions and guidance.

REFERENCES

[1] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. Math. 117 (1983), 293-324.
[2] M. W. Davis, The Geometry and Topology of Coxeter Groups, Princeton Univ. Press, Princeton, NJ, 2007.
[3] M. W. Davis and G. Moussong, Notes on nonpositively curved polyhedra, Ohio State Math. Res. Inst. Preprints, 1999.
[4] M. W. Davis and B. Okun, Vanishing theorems and conjectures for the ℓ^{2}-homology of right-angled Coxeter groups, Geom. Topol. 5 (2001), 7-74.
[5] B. Eckmann, Introduction to ℓ^{2}-methods in topology: reduced ℓ^{2}-homology, harmonic chains, ℓ^{2}-Betti numbers, Israel J. Math. 117 (2000), 183-219.
[6] J. W. Kennedy, L. V. Quintas, and M. M. Sysło, The theorem on planar graphs, Historia Math. 12 (1985), 356-368.
[7] K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), 271-283.
[8] J. Lott and W. Lück, L-topological invariants of 3-manifolds, Invent. Math. 120 (1995), 15-60.
[9] T. A. Schroeder, The ℓ^{2}-homology of even Coxeter groups, Algebr. Geom. Topol. 9 (2009), 1089-1104.
[10] T. A. Schroeder, Geometrization of 3-dimensional Coxeter orbifolds and Singer's conjecture, Geom. Dedicata 140 (2009), 163-174.
[11] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381.

Timothy A. Schroeder
Department of Mathematics and Statistics
Murray State University
Murray, KY 42071, U.S.A.
E-mail: tschroeder@murraystate.edu

