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ON SEQUENTIALLY RAMSEY SETS
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ANNA BRZESKA (Katowice)

Abstract. We consider sequentially completely Ramsey and sequentially nowhere
Ramsey sets on ωω with the topology generated by a free filter F on ω. We prove that
if F is an ultrafilter, then the σ-algebra of Baire sets is the σ-algebra SFCR of sequen-
tially completely Ramsey sets. Further we study additivity and cofinality of the σ-ideal
SFCR0 of sequentially nowhere Ramsey sets. We prove that if F is a P (b)-ultrafilter then
add(SFCR0) = b, and if F is a P -ultrafilter then cof(SFCR0) is the point π-character of
the space Seq(F).

1. Introduction. Ramsey and completely Ramsey sets (or in other ter-
minology: completely and nowhere Ramsey sets) were studied by many au-
thors (e.g. [L], [GP], [P], [Sz]) in the context of open, Borel and analytic sets
([El], [GP], [Si], [P]) and cardinal coefficients of ideals ([BSh]). In this pa-
per we study sequentially completely Ramsey sets (SFCR) and sequentially
nowhere Ramsey sets (SFCR0) on ωω equipped with the topology generated
by a free filter F . These notions are generalizations of the notions of com-
pletely Ramsey sets (CRF ) and nowhere Ramsey sets (CR0

F ) on [ω]ω (or
on ωω↑).

Let Seq and ωω denote respectively the set of all finite and all infinite
sequences of non-negative integers. We will call them sequences and branches
respectively. Note that we have a natural partial order on Seq: if s, t are two
sequences then s � t whenever s = t�dom(s).

Let F be a free filter on ω. We consider the standard topology on Seq
generated by all sets of the form

U(s, φ) =
⋃
{Un(s, φ) : n ∈ ω}

where U0(s, φ) = {s} and Un+1(s, φ) =
⋃
{t_φ(t) : t ∈ Un(s, φ)}, s is a

sequence and φ(t) ∈ F for each sequence t.
Note that each U(s, φ) is clopen and Seq endowed with this topology is

Lindelöf and normal because of its cardinality. It is also known ([BSz]) that
it is extremally disconnected if and only if F is an ultrafilter.
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We will write φ ⊆ ψ when φ(s) ⊆ ψ(s) for each sequence s. Analogously
(φ ∩ ψ)(s) = φ(s) ∩ φ(s) for every sequence s.

Lemma 1.1. Let s, t ∈ Seq and φ, ψ : Seq → F . Then the following
statements hold:

(1) If s ∈ U(t, ψ), then t � s and U(s, ψ) ⊆ U(t, ψ).
(2) If U(s, φ) ∩ U(t, ψ) 6= ∅ then either s � t or t � s.
(3) If dom(s) = dom(t) and s 6= t then U(s, φ) ∩ U(t, ψ) = ∅.
(4) If dom(t) ≤ dom(s) and s 6∈ U(t, ψ) then U(s, φ) ∩ U(t, ψ) = ∅.

Take a collection {φn : Seq → F : n ∈ ω} and a sequence s. Then
{U(s, φn) : n ∈ ω} is a fusion sequence if U(s, φn+1) ⊆ U(s, φn) and
Uk(s, φn+1) = Uk(s, φn) for every k ≤ n .

Proposition 1.2 (Fusion Lemma). If {U(s, φn) : n ∈ ω} is a fusion
sequence then

⋂
{U(s, φn) : n ∈ ω} is open.

Proof. Set U =
⋂
{U(s, φn) : n ∈ ω}. Of course U is not empty. Assume

that ψ is such that ψ(t) =
⋂
k≤n+1 φk(t) for each t which satisfies dom(s) +

n = dom(t). To prove the statement it is enough to check that U(s, ψ) = U .
By the definition of ψ it suffices to show that U ⊆ U(s, ψ).

So assume that t ∈ U(s, ψ) whenever t ∈ U and dom(t) = dom(s) + n
for some integer n > 0. If t1 ∈ U is such that dom(t1) = dom(s)+n+1 then
there exists a sequence t ∈ U such that t ≺ t1 and dom(t) = dom(t1) − 1.
So t ∈ U(s, ψ) by the inductive assumption and t1 ∈ t_ψ(t) by the choice
of ψ.

Let s ∈ Seq and φ : Seq→ F be given. We define the set of all branches
of U(s, φ) as follows:

[U(s, φ)] = {f ∈ ωω : ∀n ∈ ω (f�(dom(s) + n) ∈ Un(s, φ))}.

Lemma 1.3. For any sequences s and t:

(1) U(s, φ) ⊆ U(t, ψ)⇒ [U(s, φ)] ⊆ [U(t, ψ)].
(2) [U(s, ψ)] =

⋃
{[U(t, φ)] : t ∈ Un(s, φ)}.

Lemma 1.4. The family of all sets of branches is a base of a topology on
the set ωω.

Proof. Note that every branch f ∈ ωω is a member of [U(∅, φω)] where
Seq = φ−1ω [{ω}]. Further, the statement is a consequence of filter proper-
ties.

We will consider ωω to be equipped with the topology defined in Lemma
1.4 for the rest part of this paper.
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2. The classes SFCR and SFCR0. A set M ⊆ ωω is sequentially
completely Ramsey if for every U(s, φ) there exists ψ ⊆ φ such that ei-
ther [U(t, ψ)] ⊆ M or [U(t, ψ)] ∩M = ∅. If for every U(s, φ) there exists
ψ ⊆ φ which satisfies the latter condition then M ⊆ ωω is sequentially
nowhere Ramsey. The families of all sequentially completely Ramsey sets
and all sequentially nowhere Ramsey sets will be denoted by SFCR and
SFCR0 respectively.

Lemma 2.1. SFCR0 is the ideal of all nowhere dense sets.

Lemma 2.2. Let φ : Seq → F . Then [U(s, φ)] ∈ SFCR for any se-
quence s.

Proof. Assume [U(t, ψ)] ∩ [U(s, φ)] 6= ∅. Then by Lemma 1.1, t ≺ s or
s ≺ t. In the first case we put λ(t) = ψ(t) \ s(dom(t)), and λ(u) = ψ(u) for
u 6= t. Then U(s, φ) ∩ U(t, λ) = ∅ and [U(s, φ)] ∩ [U(t, λ)] = ∅.

The second case is a simple consequence of the filter properties. Namely
if λ(u) = φ(u) ∩ ψ(u) for every u ∈ U(t, ψ) then [U(t, λ)] ⊆ [U(s, φ)].

Till the end of the paper, we assume that F is an ultrafilter.

Proposition 2.3. Let M ⊆ ωω and U(s, φ) be given. Then either

(1) there exists a function ψ ⊆ φ such that [U(s, ψ)] ⊆M , or
(2) there exists a function ψ ⊆ φ such that [U(t, λ)] 6⊆ M for each t ∈

U(s, ψ) and every λ with λ ⊆ ψ.

Proof. Assume that (1) does not hold. We shall construct a fusion se-
quence {U(s, ψn) : n ∈ ω} such that for every n there is no t ∈ U(s, ψn) and
no λ ⊆ ψn with [U(t, λ)] ⊆M .

Take ψ0 = φ and assume that we have defined U(s, ψ0), . . . , U(s, ψn−1)
so that the above statement is true. If t ∈ Un−1(s, ψn−1) we denote by
Xt the set of all m ∈ ψn−1(t) such that there exists a function λ with
U(t_m,λ) ⊆ U(t_m,ψn−1) and [U(t_m,λ)] ⊆M .

Then either Xt or ψn−1(t) \Xt is in F . In the first case there would be
a function λ ⊆ ψn−1 such that [U(t, λ)] ⊆ M , contradicting the inductive
assumption. So ψn−1(t) \Xt ∈ F . To finish the construction we define

ψn(t) =

{
ψn−1(t) \Xt, t ∈ Un−1(s, ψn−1),
ψn−1(t), other t.

By the Fusion Lemma we are done.

Proposition 2.4.

SFCR0 = {M ⊆ ωω : ∀U(s, φ) ∃ψ ⊆ φ ([U(s, ψ)] ∩M = ∅)}.

Proof. This follows directly from the previous proposition.
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Recall ([En]) that M is nowhere dense if for every non-empty open set
U there exists a non-empty open set V ⊆ U such that V ∩M = ∅. Hence
every nowhere dense set in ωω is an SFCR0-set.

Proposition 2.5. SFCR0 is the σ-ideal of nowhere dense sets.

Proof. Consider a family {Mn : n ∈ ω} of SFCR0-sets.
Let M =

⋃
{Mn : n ∈ ω} and take an arbitrary sequence s and a func-

tion φ. We shall define a fusion sequence {U(s, φn) : n ∈ ω} such that φn ⊆ φ
and [U(s, φn)] ∩ Mn = ∅ for every n. We choose U(s, φ0) already by the
definition of SFCR0-set with respect to M0. Assume U(s, φ0), . . . , U(s, φn)
are already defined. Then we take a function ψt for every t ∈ Un(s, φn)
such that ψt ⊆ φn and [U(t, ψt)] ∩ Mn+1 = ∅. We put φn+1(u) = φn(u)
if dom(u) < dom(s) + n and φn+1(u) = ψu�(dom(s)+n)(u) if dom(u) ≥
dom(s) + n. Note that if f ∈ [U(s, φn+1)] then there exists t ∈ Un(s, φn)
such that f ∈ [U(t, φn+1)]. So by the Fusion Lemma there exists a function
ψ such that U(s, ψ) ⊆ U(s, φn) for each n ∈ ω and [U(s, ψ)] ∩M = ∅.

Summarizing the foregoing results, every set A ⊆ ωω with Baire property
is the union of an open set U and an SFCR0-set M0. We shall show that if
F is an ultrafilter, the class SFCR coincides with the class of Baire sets.

Proposition 2.6.

SFCR = {M ⊆ ωω : ∀U(s, φ) ∃ψ ⊆ φ
([U(s, ψ)] ∩M = ∅ ∨ [U(s, ψ)] ⊆M)}.

Proof. LetM ∈ SFCR. Then there exists an SFCR0-setM0 and a U ∈ Tp
such thatM =M0∪U . Let U(s, φ) be given. By Proposition 2.3 there exists
a function ψ ⊆ φ such that [U(s, ψ)] ∩M0 = ∅. If [U(s, ψ)] ∩ U = ∅ then we
are done. Assume otherwise and suppose that there is no ψ′ ⊆ ψ such that
[U(s, ψ′)] ⊆ M . Since U is open, there exists a sequence t and a function λ
such that [U(t, λ)] ⊆ [U(s, ψ)] ∩ U , contrary to Proposition 2.1.

Proposition 2.7. M ⊆ ωω is a SFCR-set if and only if M is a Baire
set.

Proof. If M is SFCR-set then it is not hard to see that M0 =M \ IntM
is an SFCR0-set.

Assume now M is a Baire set. Then we can find an open set U and a
SFCR0-set N such that M = U ∪ N . Let U(s, φ) be such that [U(s, φ)] ∩
N = ∅ and [U(s, φ)] ∩ U 6= ∅. By Proposition 2.3, either (1) there exists a
function ψ1 such that [U(s, ψ1)] ⊆ U , or (2) there exists a function ψ2 such
that [U(t, ψ2)] 6⊆ U for every t ∈ U(s, ψ2). If (1) holds we are done since
U ⊆ M . If (2) holds, then we get a contradiction, because U ∩ [U(s, φ)] is
open and non-empty.
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Lemma 2.8. SFCR is a σ-field of sets.

Proof. This follows from the previous proposition and Proposition 2.5.

3. Cardinal invariants. Let us recall some cardinal coefficients of non-
trivial ideals I ⊆ ωω containing all singletons (see e.g. [BSh]):

add(I) = min
{
|F| : F ⊆ I ∧

⋃
F 6∈ I

}
,

cov(I) = min
{
|F| : F ⊆ I ∧

⋃
F = ωω

}
,

non(I) = min{|F| : F ⊆ ωω ∧ F 6∈ I}
cof(I) = min{|F| : F ⊆ I ∧ F is a base of I},

here F is a base of I if for each A ∈ I there exists B ∈ F such that
A ⊆ B. These cardinals are referred to as the additivity, covering, uniformity
and cofinality of I. Observe that SFCR0 contains all singletons and hence⋃
SFCR0 = ωω. So

add(SFCR0) ≤ min(non(SFCR0), cov(SFCR0))

and
cof(SFCR0) ≥ max(non(SFCR0), cov(SFCR0)).

By Proposition 2.5, if F is an ultrafilter, then

ω < add(SFCR0).

Lemma 3.1.

(1) For any function φ,

Aφ = ωω \
⋃
{[U(s, φ)] : s ∈ Seq}

is an SFCR0-set.
(2) The collection of all Aφ’s is a base of SFCR0.

Let us recall that b is the minimal size of an unbounded subfamily of ωω,
and d is the minimal size of a dominating subfamily of ωω; we write f ≤? g
if {n ∈ ω : f(n) > g(n)} is finite. It is well known that b ≤ d.

Proposition 3.2.

cov(SFCR0) ≤ b ≤ d ≤ non(SFCR0).

Proof. Let U ⊆ ωω realize b. If f ∈ U then we put

φf (s) = {n ∈ ω : n > f(dom(s))}
for each sequence s. Of course φf (s) is a member of F since it is cofinite and
by the previous lemma each set of the form Aφf is an SFCR0-set. We shall
prove that

⋃
{Aφf : f ∈ U} = ωω. Indeed, if g is a branch then there exists
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a branch f in U such that ¬f ≤? g. This means that for every n ∈ ω there
exists m ≥ n such that g(m) < f(m). Then g ∈ Aφf .

Assume now that A ⊆ ωω is not an SFCR0-set. Then A dominates ωω.
Indeed, assume the contrary. Then there exists a branch f such that ¬f ≤? g
for each g from A. Define φf as at the beginning of the proof. Then Aφf ⊇ A,
so we get a contradiction, since SFCR0 is a proper ideal of sets.

Take a cardinal λ < ω. A free filter F on ω is a P (λ)-filter if for every
τ < λ and every subfamily {Aξ : ξ < τ} of F there exists an A ∈ F such
that A \Aξ is finite for every ξ < τ (we write briefly A ⊆? Aξ).

Remark 3.3. Note that in the definitions of the numbers b and d we
can replace ωω by ωSeq, where f ≺? g means that the set of all sequences x
such that f(x) > g(x) is finite.

Proposition 3.4. Let λ > ω be a cardinal and F be a P (λ)-ultrafilter
on ω. If b ≥ λ then add(SFCR0) ≥ λ.

Proof. Consider b ≥ λ, τ < λ and let {Mξ : ξ < τ} be a family of
SFCR0-sets. Let U(s, φ) be given. By Proposition 2.4 for every ξ < τ there
exists a subset U(s, ψξ) of U(s, φ) such that [U(s, ψξ)]∩Mξ = ∅. Since F is a
P (λ)-filter, there exists an A ∈ F such that A ⊆? ψξ(t) for every t ∈ Seq and
ξ < τ . Put fξ(t) = max{n ∈ ω : n ∈ A \ ψξ(t)} + 1 for t ∈ Seq. Then there
exists a function G ∈ Seqω such that fξ ≤? G for every ξ < τ . We define
Γ ∈ FSeq by Γ (t) = A\G(t) for t ∈ Seq. Then [U(s, Γ )]∩

⋃
{Mξ : ξ < τ} = ∅.

Indeed, to see this we set m(ξ) = max{m ∈ ω : (∃t ∈ mω)(fξ(t) > G(t))}+1
and consider two cases:

Case 1: m(ξ) ≤ dom(s). Then fξ(t) ≤ G(t) for every s � t. Thus if
s � t and n ∈ Γ (t) then n ∈ ψξ(t), by the definitions of Γ and fξ. So by
Lemma 1.3, [U(s, Γ )] ⊆ [U(s, ψξ)] and [U(s, Γ )] ∩Mξ = ∅.

Case 2: m(ξ) > dom(s). Let n = m(ξ) − dom(s). First note that if
dom(t) ≥ n + dom(s) then U(t, Γ ) ⊆ U(t, ψξ) just as in Case 1, since
dom(t) ≥ m(ξ). Consider now dom(t) = dom(s) + n − 1. Then, since
Γ (t) ⊆? ψξ(t), there exist numbers n1, . . . , nl such that fξ(t_n) ≤ G(t_n)
for each n 6∈ {n1, . . . , nl}. So if we slightly modify the function Γ setting
Γ ′(t) = Γ (t) \ {n1, . . . , nl} then U(t, Γ ′) ⊆ U(t, ψξ). On the other hand,

U(t, Γ ) = U(t, Γ ′) ∪
⋃
{U(t_ni, Γ ) : i = 1, . . . , l}

and dom(t_ni) = n + dom(s), so by the inductive assumption U(t, Γ ) ⊆
U(t, ψξ). Hence we are done.

Corollary 3.5. If F is a P (b)-ultrafilter then add(SFCR0) = b.

Question 3.6. If add(SFCR0) = λ > ω, is then F a P (λ)-ultrafilter?
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Proposition 3.7.

πχ(Seq(F), s) ≥ χ(F) · d.
Proof (cf. [JSz]). Assume B(s) is a π-base at s. For every A ∈ F we put

A(t) = A for each sequence t. If A ∈ F then there exists U(t, φ) ∈ B(s)
such that U(t, φ) ⊆ U(s,A). Hence {φ(t) : U(t, φ) ∈ B(s)} is a base of the
ultrafilter F . So we conclude χ(F) ≤ πχ(Seq(F), s).

Now for each U(t, φ) ∈ B(s) and every integer n > dom(t) take gtφ(n)
from the union of all φ(u) where u ∈ U(t, φ) and dom(u) = n (for example,
take the minimum of this union). Then the collection of all gtφ is a dominating
family. Indeed, if f is a branch then we define ψf (u) = ω \ (f(dom(u)) + 1).
So if U(t, φ) ∈ B(s) is contained in U(s, ψf ) then f ≤? gψf

. Thus we get
πχ(Seq(F), s) ≥ d.

Proposition 3.8.

πχ(Seq(F), s) ≤ cof(SFCR0)

Proof. Assume B realizes cofinality of SFCR0. By Lemma 3.1 for every
M ∈ B there exists a function ψM such that M ⊆ AψM

. It is enough to
check that {U(s, ψM ) :M ∈ B} is a base of Seq(F) at s. So assume U(s, φ)
is given. Then Mφ = ωω \

⋃
{[U(t, φ)] : t ∈ Seq} is a sequentially nowhere

Ramsey set. So there is M ∈ B such that Mφ ⊆M . Hence Mφ ⊆ AψM
, and

so
⋃
{[U(t, ψM )] : t ∈ Seq} ⊆

⋃
{[U(t, φ)] : t ∈ Seq}.

We claim now that there is a sequence t such that U(t, ψM ) ⊆ U(s, φ).
Assume the contrary and take the first level n0 of U(s, ψM ) such that
Un0(s, ψM ) \ Un0(s, φ) is non-empty. Consider t0 ∈ Un0(s, ψM ) \ Un0(s, φ)
and take the first level n1 of U(t0, ψM ) such that Un1(t0, ψM ) \ Un1(t0, φ)
is non-empty. Consider t1 in it, and so on. We obtain a sequence {ni}i∈ω
of integers and a collection of sequences {ti}i∈ω such that Uni+1(ti, ψM ) \
Uni+1(ti, φ) is non-empty. So if we take a branch f ∈ [U(s, ψM )] such that
f�(dom(s) + ni) = ti then f 6∈

⋃
{[U(t, φ)] : t ∈ Seq}, a contradiction. So

there must exist a sequence t which satisfies U(t, ψM ) ⊆ U(s, φ).

Proposition 3.9. If F is a P (ω1)-ultrafilter then

πχ(Seq(F), s) = cof(SFCR0) = χ(F) · d.
Proof. It is enough to check that cof(SFCR0) ≤ d · χ(F). So take a

dominating collection of branches D ⊆ Seqω and a base B of the ultrafilter F .
For any f ∈ D and A ∈ B we put ψf,A(s) = A\(f(s)+1) for every sequence s.
We shall show that the collection of all Aψf,A

(defined as in Lemma 3.1)
is a base of the ideal SFCR0. Indeed, assume M is a sequentially nowhere
Ramsey set. By Lemma 3.1 there exists a function φ which satisfiesM ⊆ Aφ.
Since F is a P -ultrafilter, we can choose B ∈ B such that B ⊆? φ(s) for each
sequence s. We define g(s) = max(B\φ(s))+1 for all. By the domination ofD
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there exists f ∈ D such that g ≤? f . Then Aφ ⊆ Aψf,B
. Indeed, if h 6∈ Aψf,B

then h ∈ [U(s, ψf,B)] for some s. So h(dom(s)+k) ∈ B \ (f(f�dom(s)+k)+1)
for all k ∈ ω. But there exists n ∈ ω such that g(t) < f(t) for every t ∈
U(s, ψf,B) such that dom(t) > n. So h(dom(s)+k) ∈ B \ (g(f�dom(s)+k)+1)
for every k with dom(s)+k > n. Hence h ∈ [U(h�dom(s)+n, φ)], which means
h 6∈ Aφ.
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