
COLLOQU IUM MATHEMAT I CUM
VOL. 104 2006 NO. 2

COMPLEXITY AND PERIODICITY

BY

PETTER ANDREAS BERGH (Trondheim)

Abstract. Let M be a finitely generated module over an Artin algebra. By consid-
ering the lengths of the modules in the minimal projective resolution of M , we obtain
the Betti sequence of M . This sequence must be bounded if M is eventually periodic,
but the converse fails to hold in general. We give conditions under which it holds, using
techniques from Hochschild cohomology. We also provide a result which under certain
conditions guarantees the existence of periodic modules. Finally, we study the case when
an element in the Hochschild cohomology ring “generates” the periodicity of a module.

1. Introduction. This paper is devoted to investigating connections
between periodicity and complexity for modules over Artin algebras, as was
done in [9] for modules over both group rings of finite groups and commuta-
tive Noetherian local rings. More specifically, let M be a finitely generated
module over an Artin algebra. By considering the lengths of the modules in
the minimal projective resolution of M , we obtain the Betti sequence of M .
If M is eventually periodic, i.e. if its minimal projective resolution becomes
periodic from some step on, then the Betti sequence of M must be bounded.
The converse, however, fails to hold in general, that is, it need not be true
that M is eventually periodic even though its Betti sequence is bounded.
We give conditions under which it holds, using techniques from Hochschild
cohomology. In addition we provide a result which under certain conditions
guarantees the existence of periodic modules.

One reason for restricting our attention to Artin algebras is that we
need to make sure that every finitely generated module has a unique min-
imal projective resolution. Therefore, throughout this paper, we let k be a
commutative Artin ring and Λ an Artin k-algebra with Jacobson radical r.
We fix a finitely generated Λ-moduleM with a minimal projective resolution

(P, d) : · · · d3−→ P2
d2−→ P1

d1−→ P0
d0−→M → 0,

i.e. Ker di ⊆ rPi. The integers βn(M) = ℓk(Pn) are called the Betti numbers

of M , and they are all finite since a module is finitely generated over k

2000 Mathematics Subject Classification: Primary 16E05, 16E40, 16P10, 16P20,
16P90; Secondary 20J06.

Key words and phrases: eventually periodic modules, complexity, Hochschild cohomo-
logy.

[169]



170 P. A. BERGH

whenever it is finitely generated over Λ. Moreover, these integers are well
defined since any minimal projective resolution is unique up to isomorphism.
Thus, we may associate the infinite sequence

β0(M), β1(M), β2(M), . . .

to M , and this sequence is called the Betti sequence of M . Over a commu-
tative Noetherian local ring it is customary to define the Betti numbers of a
finitely generated module as the ranks of the modules in its minimal free res-
olution. However, this would not make sense in our setting since projective
modules need not be free.

We say that M is periodic if there is an integer p ≥ 1 such that M is iso-
morphic to Ωp

Λ(M) (the pth syzygy in the minimal projective resolution P),
and the least such integer p is the period of M . Furthermore, M is even-

tually periodic if one of its syzygies (in the minimal projective resolution)
is periodic. Clearly, if M has this last property, then its Betti sequence is
bounded. The converse is not true in general. A counterexample was given
by R. Schulz in [14, Proposition 4.1], where he considered finite-dimensional
algebras of the form k〈x, y〉/(x2, xy + qyx, y2), for k a field and q ∈ k a
nonzero element.

In [9] D. Eisenbud proved that the converse does hold over group rings
of finite groups, and that it also holds in the commutative Noetherian local
setting when the rings considered are complete intersections. In fact, it was
shown that over a hypersurface (that is, a complete intersection of codimen-
sion one) any minimal free resolution eventually becomes periodic. In the
same paper it was therefore conjectured that over a commutative Noetherian
local ring a module having bounded Betti numbers must be periodic.

However, just as in the case of Artin algebras, the conjecture fails to
hold in general. An example of this was given in [11]. Here V. Gasharov and
I. Peeva considered the commutative local finite-dimensional k-algebra

(R,m, k) = k[x1, x2, x3, x4, x5]/a,

where a is the ideal generated by the quadratic forms

x2
1, x2

2, x2
5, x3x4, x3x5, x4x5, x1x4 + x2x4,

x2
4 − x2x5 + x1x5, αx1x3 + x2x3, x2

3 − x2x5 + αx1x5

for a nonzero element α ∈ k having infinite order in the multiplicative group
k \ {0}. They constructed the free resolution

· · · d3−→ R2 d2−→ R2 d1−→ R2 d0−→M → 0,

where the maps are given by the matrices

dn =

(

x1 αnx3 + x4

0 x2

)
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for n ≥ 0, and M = Im d0. The module M has a constant Betti sequence,
but is not eventually periodic.

We now briefly describe the contents of the three main sections of this
paper. Section 2 is devoted to constructing a certain chain endomorphism
on the minimal projective resolution of a module, given a finite generation
hypothesis similar to the one used in [10]. This chain map eventually be-
comes surjective, and we use this to prove the main result: whenever the
finite generation hypothesis holds, a module has bounded Betti numbers
precisely when it is eventually periodic. In some cases (Theorem 2.5) we are
also able to determine what the period is.

In Section 3 we develop a method for “reducing” the complexity of a
module. More precisely, given a module M satisfying certain conditions
(and having finite nonzero complexity), we construct a new module closely
related to M and having complexity exactly 1 less than that of M . Iterating
this procedure, we end up with a module having complexity 1 (i.e. having
bounded Betti numbers), and this module must be periodic in view of the
main result in the first section.

Finally, in Section 4 we study the case when the period of an eventually
periodic module is “generated” by an element in the Hochschild cohomology
ring. As with many other concepts, the inspiration comes from the group ring
case, where one uses the group cohomology ring instead of the Hochschild
cohomology ring.

2. Preliminary results. The existence of eventually periodic mod-
ules of infinite projective dimension—and therefore of nonzero periodic mo-
dules—is far from obvious in general. In the next section we prove a result
which under certain circumstances guarantees the existence of such modules.
The proof is based on the main result of this section, which for a module
gives a sufficient condition under which having a bounded Betti sequence is
equivalent to being periodic.

The following proposition is the key to the main results. It guarantees
regular elements for graded modules, provided we go “far enough” in the
grading.

Proposition 2.1. Let A =
⊕∞

i=0Ai be a commutative Noetherian

graded k-algebra of finite type over k (that is, each Ai is a finitely generated

k-module), generated as an A0-algebra by homogeneous elements a1, . . . , ar
of positive degrees. If N =

⊕∞
i=0Ni is a finitely generated graded A-module,

then there exists a homogeneous element η ∈ A of positive degree such that

the multiplication map
Ni

η−→ Ni+|η|

is a k-monomorphism for i≫ 0. Moreover , we can pick this η such that for

some j, the degree of aj divides |η|.
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Proof. Consider the graded ideal A+ =
⊕∞

i=1Ai of A and the graded
submodule

(0 :N A+) = {x ∈ N | A+x = 0}
of N . Since N is Noetherian, this submodule is finitely generated. Moreover,
since it is annihilated by A+ it is a finitely generated A0-module (A0 =
A/A+). Now A0, being finitely generated over k, is Artinian, hence (0 :N A+)
has the descending chain condition on submodules. Therefore there exists
an integer w such that (0 :N A+)i = 0 for i ≥ w.

Consider the graded A-submodule N≥w =
⊕∞

i=wNi of N . Since it is
finitely generated, its set of associated prime ideals is finite and consists of
graded ideals each of which is the annihilator of a homogeneous element
(see, for example, [6, Lemma 1.5.6]); the union of these ideals is the set
of zero-divisors on N≥w. If A+ is contained in any of these primes, then
A+ annihilates a nonzero homogeneous element of N≥w, a contradiction.
Therefore, by the graded version of the “prime avoidance” lemma (see, for
example [6, Lemma 1.5.10]), there exists a homogeneous N≥w-regular ele-
ment η in A+, obviously of positive degree. Since a1, . . . , ar generate A+, a
slight modification of the proof of [6, Lemma 1.5.10] shows that η can be
chosen so that the degree of aj divides that of η for some j.

From now on, we assume that Λ is projective (or, equivalently, flat) as a
k-module. We denote by Λe its enveloping algebra Λ⊗k Λ

op, and by HH∗(Λ)
its Hochschild cohomology ring. Since Λ is projective as a k-module, we have

HH∗(Λ) =
∞

⊕

i=0

ExtiΛe(Λ,Λ)

with Yoneda product as multiplication. For two Λ-modules X and Y we
denote the graded k-module

⊕∞
i=0 ExtiΛ(X,Y ) by Ext∗Λ(X,Y ), and this is a

left and right HH∗(Λ)-module via the ring homomorphisms

−⊗Λ Y : HH∗(Λ) → Ext∗Λ(Y, Y ), −⊗Λ X : HH∗(Λ) → Ext∗Λ(X,X)

followed by Yoneda composition. The left and right scalar multiplications on
this module are closely related as follows (see [15, Corollary 1.3]): for homo-
geneous elements η ∈ HH∗(Λ) and θ ∈ Ext∗Λ(X,Y ) we have ηθ = (−1)|η||θ|θη,
where |η| and |θ| denote the degrees of these elements. In particular, we see
that Ext∗Λ(X,Y ) is finitely generated as a left HH∗(Λ)-module if and only if
it is finitely generated as a right HH∗(Λ)-module.

In view of the counterexamples provided by Schulz, Gasharov and Peeva,
we need to impose some restrictions in order to be able to prove that M is
eventually periodic whenever its Betti numbers are bounded. The assump-
tion we introduce is a “local variant” of those used in [10] to develop the
theory of support varieties for Artin algebras, and it enables us to use well
known techniques from commutative algebra to obtain our results.
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Assumption Fg. Given the finitely generated Λ-module M , there ex-
ists a commutative Noetherian graded subalgebra H =

⊕∞
i=0H

i of the
Hochschild cohomology ring HH∗(Λ) with the property that H0 = HH0(Λ)

(the center of Λ) and that the module Ext∗Λ(M,Λ/r) is finitely generated
over H.

Now we apply Proposition 2.1 to H and to the graded H-module
Ext∗Λ(M,Λ/r). This we can do because H, being Noetherian, is generated as
an algebra over H0 by a finite set of homogeneous elements of positive de-
grees. From the homogeneous element granted by Proposition 2.1 we obtain
a negative degree chain endomorphism {ξ0, ξ1, . . . } : P → P (where P is the
minimal projective resolution of M) which eventually becomes surjective,
that is, the map ξi is an epimorphism for i≫ 0.

Proposition 2.2. Assume Fg holds. Then there exists an integer n ≥ 1
with a map ξ : Ωn

Λ(M) →M and a chain map {ξ0, ξ1, . . . } : P → P over ξ of

degree −n, such that ξi is surjective for i≫ 0.

Proof. From Proposition 2.1 we see that there exists an integer w and
a homogeneous element η ∈ H |η|, with |η| ≥ 1, such that the multiplication
map

ExtiΛ(M,Λ/r)
η−→ Ext

i+|η|
Λ (M,Λ/r)

is injective for i ≥ w. Moreover, since (P, d) is a minimal projective resolu-
tion we have Im di ⊆ rPi−1, implying that the differential in the complex
HomΛ(P, Λ /r) is zero. Therefore ExtiΛ(M,Λ/r) = HomΛ(Pi, Λ /r). Now con-
sider the element η and the maps it induces. The action on ExtiΛ(M,Λ/ r)
is via the map −⊗ΛM : HH∗(Λ) → Ext∗Λ(M,M), followed by Yoneda com-
position. Let ξ denote the image of η in Ext∗Λ(M,M). It can be interpreted
as a Λ-linear map

Ω
|η|
Λ (M)

ξ−→M,

and so by the Comparison Theorem there exist Λ-linear maps {ξ0, ξ1, ξ2, . . . }
making the diagram

· · ·
// P|η|+i+1

d|η|+i+1
//

ξi+1

��

P|η|+i

d|η|+i
//

ξi

��

· · ·
// P|η|

//

ξ0

��

Ω
|η|
Λ (M) //

ξ

��

0

· · ·
// Pi+1

di+1
// Pi

di
//
· · ·

// P0

d0
// M // 0

commute. We show ξi is surjective for i ≥ w.
An element θ ∈ ExtiΛ(M,Λ/r) can be interpreted as a Λ-linear map

Pi
θ−→ Λ/ r (having the property θ ◦ di+1 = 0), and then scalar multiplica-

tion by η is given by θη = θ ◦ ξi : Pi+|η| → Λ/r. Thus the map η · (−):
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HomΛ(Pi, Λ /r) → HomΛ(Pi+|η|, Λ /r) is simply given by

ξ∗i : f 7→ f ◦ ξi,
and we know it is injective for i ≥ w. Applying HomΛ(−, Λ/r) to the exact
sequence

P|η|+i
ξi−→ Pi → Coker ξi → 0

therefore shows that HomΛ(Coker ξi, Λ/ r) = 0 for i ≥ w. Now if X is any
finitely generated nonzero Λ-module, then X/rX is nonzero by Nakayama’s
Lemma. This factor module is semisimple, and since every simple Λ-module
occurs as a direct summand of Λ/ r, there exists a nonzero map X → Λ/r.
This shows Coker ξi = 0 for i ≥ w. By taking n = |η|, we are done.

We now prove the main result of this section, which gives sufficient (and
necessary) conditions for a module to be eventually periodic. Having Propo-
sition 2.2 at hand, the proof is only a formality, as it reduces to simply
comparing lengths in the minimal projective resolution of a module.

Theorem 2.3. If Fg holds, then M has bounded Betti numbers if and

only if it is an eventually periodic module.

Proof. From the previous proposition, there exist integers w ≥ 0 and
n ≥ 1 such that we have n sequences of surjective maps

· · · ξw+i+2n−−−−−→ Pw+i+2n
ξw+i+n−−−−→ Pw+i+n

ξw+i−−−→ Pw+i, 0 ≤ i < n.

Considering the lengths of these modules over k, we see that we have non-
decreasing sequences βw+i(M) ≤ βw+i+n(M) ≤ · · · for 0 ≤ i < n. Now if the
Betti numbers of M are bounded, then these sequences must all eventually
stabilize. Thus there is an integer t such that ξi is bijective for i ≥ t, and
diagram chasing in the commutative diagram

Pn+t+1

dn+t+1
//

ξt+1

��

Pn+t
//

ξt

��

Ωn+t
Λ (M) // 0

Pt+1

dt+1
// Pt // Ωt

Λ(M) // 0

with exact rows provides an isomorphism ψ : Ωn+t
Λ (M) → Ωt

Λ(M).

From this result we obtain some insight into the structure of the sequence
of Betti numbers of M . Determining how these sequences grow is a problem
which has been studied for a long time in the commutative Noetherian local
setting. In [1], L. Avramov asked whether the Betti sequence (b0, b1, b2, . . . )
of a finitely generated module over such a ring is eventually nondecreasing,
whereas a somewhat weaker question was asked by M. Ramras in [13]: is
it true that either (b0, b1, b2, . . . ) is eventually constant, or limi→∞ bi = ∞?
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With these questions in mind, we include the following corollary to Propo-
sition 2.2 and Theorem 2.3. The result shows that we can split the “tail” of
the sequence of Betti numbers of M into a finite number of sequences, each
of which is either eventually constant or strictly increasing, depending on
whether M has bounded Betti numbers or not.

Corollary 2.4. Let the setting be as in the theorem. There exist inte-

gers w ≥ 0 and n ≥ 1 such that the n sequences

(βw+i+jn(M))∞j=0, 0 ≤ i < n,

are nondecreasing. In fact , these sequences are all eventually constant if the

Betti numbers of M are bounded , and strictly increasing if not. In particu-

lar , if the Betti numbers of M are unbounded , then limi→∞ βi(M) = ∞.

Proof. The n nondecreasing sequences were given in the proof of the
theorem. It is clear that if the Betti numbers of M are bounded, then the
sequences are all eventually constant. In the case when there is no bound
on the Betti numbers, the module M is not eventually periodic, and then
ξi cannot be bijective for any i ≥ w. For if ξt were bijective for some t ≥ w,
then since ξt+1 is surjective we would (as in the proof of theorem) have an
isomorphism Ωn+t

Λ (M) ≃ Ωt
Λ(M).

Although Theorem 2.3 provides a tool for determining whether or not
a module M is eventually periodic, it does not indicate when the minimal
projective resolution of M becomes periodic, nor what the period actually
is, in contrast to the commutative local case. In [9, Theorem 4.1] it is shown
that over a commutative local complete intersection A any minimal free
resolution whose Betti sequence is bounded becomes periodic of period 2
after at most dimA+ 1 steps.

Question. Given the assumptions of Theorem 2.3, does there exist a
computable integer s such that the minimal projective resolution of M be-
comes periodic after at most s steps?

As to determining the period, the degree n of the element η, which we
obtain from Proposition 2.1, is of course a candidate, but all that is certain
is that the (eventual) period must divide n. However, imposing moderate
restrictions on the rings k and H, we get a much stronger result.

Theorem 2.5. Suppose k contains an infinite field , and let H be gener-

ated as an algebra over H0 by homogeneous elements a1, . . . , ar of positive

degrees. Then if Fg holds and M has bounded Betti numbers, the eventual

period of M divides lcm(|a1|, . . . , |ar|). In particular , if |ai| = 1 for all i
then the eventual period of M is 1, and if |ai| ≤ 2 for all i then the Betti

sequence of M is eventually constant.
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Proof. From Proposition 2.1 we know there exists an integer w and a
homogeneous element η ∈ H, of positive degree, such that η is regular on
the H-module E≥w =

⊕∞
i=w ExtiΛ(M,Λ/r). Now let {pi}si=1 be the (finite)

set of associated primes of E≥w, and denote lcm(|a1|, . . . , |ar|) by u. Then
a suitable power of each ai belongs to Hu, and so if Hu ⊆ pj for some j,
then each ai belongs to pj . This implies that the ideal H+ =

⊕∞
i=1H

i is
contained in pj , contradicting the fact that η, which is an element of H+, is
regular on E≥w. Therefore Hu * pi for 1 ≤ i ≤ s, implying Hu ∩ pi ⊂ Hu

(strict inclusion). In particular, if k′ is an infinite field contained in k, then
Hu ∩ pi is a proper k′-subspace of Hu. Since over an infinite field no vector
space can be written as a finite union of proper subspaces, we get the (strict)
inclusion

(Hu ∩ p1) ∪ · · · ∪ (Hu ∩ ps) ⊂ Hu,

and so Hu must contain an element η′ which is not contained in p1∪· · ·∪ps.
This union is the set of all zero-divisors on E≥w, hence η′ is regular on this
module. In the proofs of Proposition 2.2 and Theorem 2.3 we may replace
η by η′, thus proving the first statement.

Suppose |ai| ≤ 2 for all i. Clearly, if each ai is of degree 1 then the
eventual period of M is 1, and the sequence of Betti numbers of M is
eventually constant. If one of the generators is of degree 2, then the eventual
period is either 1 or 2. If it is 2, then for some integer N ≥ 0 we have
Ωi
Λ(M) ≃ Ωi+2

Λ (M) for i ≥ N . By taking the alternate sum of the k-
dimensions in the exact sequence

0 → Ωi+2
Λ (M) → Pi+1 → Pi → Ωi

Λ(M) → 0,

and recalling that this sum has to be zero, we get βi(M) = βi+1(M) for
i ≥ N . Therefore the sequence of Betti numbers of M is eventually constant
also in this case.

The results we have proved in this section (and also the main result in the
next section) depend on the assumption that Ext∗Λ(M,Λ/r) is finitely gen-
erated as a module over H, and therefore also as a module over HH∗(Λ). As
the action of the Hochschild cohomology ring on this module factors through
the rings Ext∗Λ(M,M) and Ext∗Λ(Λ/ r, Λ /r) via ring homomorphisms, the
assumption forces Ext∗Λ(M,Λ/r) to be finitely generated as a module over
both these last rings. In which situations this happens has been studied in
the commutative case.

Let (A,m, k′) be a commutative Noetherian local ring, and N a finitely
generated A-module whose so-called complete intersection dimension (first
defined in [3]) over A is finite (as happens for example when A is a com-
plete intersection). Then L. Avramov and L.-C. Sun proved in [4] that the
graded module Ext∗A(N, k′) is finitely generated over Ext∗A(k′, k′), whereas
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L. Avramov, V. Gasharov and I. Peeva proved in [3] that the module is also
finitely generated over Ext∗A(N,N).

Question. When is Ext∗Λ(M,Λ/r) finitely generated over (one of)
Ext∗Λ(M,M) and Ext∗Λ(Λ/r, Λ /r)?

It is not difficult to see that Ext∗Λ(M,Λ/r) is finitely generated over
Ext∗Λ(M,M) whenever M is periodic: suppose Ωp

Λ(M) = M and let µ denote
the extension

0 →M → Pp−1 → · · · → P0 →M → 0.

If n ≥ p, say n = qp+ i where 0 ≤ i < p, then an element of ExtnΛ(M,Λ/r)
can be written as fµq where f ∈ ExtiΛ(M,Λ/r). Since ExtiΛ(M,Λ/r) is
finitely generated over k for 0 ≤ i < p, the result follows.

As to the finiteness of Ext∗Λ(M,Λ/r) as an H-module, a criterion for
when this always happens was given in [10, Proposition 1.4]. This result is
actually much stronger, as it states that Ext∗Λ(X,Y ) is finite over H for all
finite Λ-modules X and Y if and only if Ext∗Λ(Λ/r, Λ /r) is finite over H.

3. Reducing complexity. We can use Theorem 2.3 to construct even-
tually periodic modules—and therefore also periodic modules—of infinite
projective dimension (the modules having finite projective dimension are
not very interesting in the context of eventual periodicity). This is done
by considering an (almost) arbitrary module and from it obtaining a new
module whose minimal projective resolution behaves “nicer”.

Let X =
⊕∞

n=0Xn be a graded k-module of finite type. The rate of

growth of X, denoted γ(X), is defined as

γ(X) = inf{t ∈ N0 | ∃a ∈ R such that ℓk(Xn) ≤ ant−1 for n≫ 0},
and it may be finite or infinite (here N0 denotes N∪{0}). Now consider our
module M with the minimal projective resolution (Pi, di). The complexity of
M , denoted cxΛM , is defined as the rate of growth of the graded k-module
⊕∞

n=0 Pn, that is,

cxΛM = inf{t ∈ N0 | ∃a ∈ R such that βn(M) ≤ ant−1 for n≫ 0}.
Thus the complexity of M indicates how the sequence of Betti numbers
behaves with respect to polynomial growth. From the definition we see that
M has complexity 0 if and only if it has finite projective dimension, and
that it has complexity less than or equal to 1 if and only if its sequence of
Betti numbers is bounded.

The main result of this section gives the existence of a new module whose
complexity is exactly 1 less than that of M . The proof uses the identity

cxΛM = γ(Ext∗Λ(M,Λ/r)),
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which provides a method for computing the complexity of a module. This
identity follows from the identities (see the paragraphs following [5, Defini-
tion 5.3.3])

γ(Ext∗Λ(M,Λ/r)) = max{γ(Ext∗Λ(M,S)) | S simple Λ-module},

βn(M) =
∑

S simple

ℓk(PS)

ℓk(HomΛ(S, S))
· ℓk(ExtnΛ(M,S)),

where PS denotes the projective cover of the simple module S.
Given a homogeneous element η in HH∗(Λ) of positive degree, we can

interpret it as a Λe-linear map η : Ω
|η|
Λe(Λ) → Λ, where Ωi

Λe(Λ) denotes the
ith syzygy in the minimal projective Λe-resolution of Λ. Let Qi denote the
ith module in this resolution. By taking pushout we obtain the exact com-
mutative diagram

0 // Ω
|η|
Λe(Λ) //

η

��

Q|η|−1
//

��

Ω
|η|−1

Λe (Λ) // 0

0 // Λ // Kη
// Ω

|η|−1

Λe (Λ) // 0

of Λe-modules, whose bottom row will be denoted by ζη. Since Ω
|η|−1

Λe (Λ) is
projective as a right (and left) Λ-module, the exact sequence ζη splits when
considered as a sequence of right (and left) Λ-modules. Applying − ⊗Λ M
therefore gives the exact commutative diagram

0 // Ω
|η|
Λe(Λ) ⊗ΛM //

η⊗ΛM

��

Q|η|−1 ⊗ΛM //

��

Ω
|η|−1

Λe (Λ) ⊗ΛM // 0

0 // M // Kη ⊗ΛM // Ω
|η|−1

Λe (Λ) ⊗ΛM // 0

of left Λ-modules, whose bottom row will be denoted by ζη ⊗Λ M . Even
though ζη splits when considered as a sequence of left Λ-modules, this is not
necessarily the case for the new sequence. In fact, from [10, Proposition 2.2]
we see that the sequence splits if and only if η annihilates Ext∗Λ(M,M).

The moduleKη⊗ΛM is going to be the one having complexity 1 less than
that of M . However, as the above shows, the element η cannot be chosen
arbitrarily, for if ζη⊗ΛM splits then the complexity of Kη⊗ΛM equals that
of M . To see this, note that in a split short exact sequence the complexity of
the middle term equals the maximum of the complexities of the end terms,
and that the complexities of the end term modules in ζη⊗ΛM are equal since

Ω
|η|−1

Λe (Λ) ⊗ΛM is a syzygy of M (it does not matter that Ω
|η|−1

Λe (Λ)⊗ΛM
in general is not a syzygy in the minimal projective resolution of M , since
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projectively equivalent modules are of equal complexity). Thus we must pick
an η not annihilating Ext∗Λ(M,M).

Let N be any Λ-module. Applying the functor HomΛ(−, N) to ζη ⊗ΛM
gives the long exact sequence

HomΛ(M,N)
∂η−→ Ext

|η|
Λ (M,N) → Ext1Λ(Kη ⊗ΛM,N) → Ext1Λ(M,N)

∂η−→
...

∂η−→ Ext
i+|η|−1

Λ (M,N) → ExtiΛ(Kη ⊗ΛM,N) → ExtiΛ(M,N)
∂η−→

...

for Ext (we shall refer to this sequence as ES(M,N, η)), where we have

replaced ExtiΛ(Ω
|η|−1

Λe (Λ) ⊗Λ M,N) by Ext
i+|η|−1

Λ (M,N) for i ≥ 1 using
dimension shift. By making these replacements, the new connecting homo-

morphism

ExtiΛ(M,N)
∂η−→ Ext

i+|η|
Λ (M,N)

is just multiplication by (−1)iη, a fact which is vital for the proof of the
main theorem. To see this, note that applying HomΛ(−, N) to the above
commutative diagram gives rise to a commutative diagram of long exact
sequences in Ext. Tracing the connecting homomorphism ∂η then gives the
desired result. Whenever we refer to the exact sequence ES(M,N, η), we
shall drop the sign (−1)i in front of the multiplication map induced by η,
as it is of no relevance.

Note that if Fg holds, then Ext∗Λ(Kη ⊗ΛM,Λ/r) is a finitely generated
H-module, regardless of the choice of η. To see this, consider the exact
sequence
∞

⊕

i=1

Ext
i+|η|−1

Λ (M,Λ/r) →
∞

⊕

i=1

ExtiΛ(Kη ⊗ΛM,Λ/r) →
∞

⊕

i=1

ExtiΛ(M,Λ/ r)

induced by ES(M,Λ/r, η). Both the end terms are finitely generated overH,
hence so is the middle term because H is Noetherian. Since in addition
HomΛ(Kη ⊗Λ M,Λ/r) is finitely generated over k (which sits inside H0),
the claim follows.

In addition to giving us an important tool for computing the complexity
of a module, the equality cxΛM = γ(Ext∗Λ(M,Λ/r)) implies that the mod-
ules we work with have finite complexity. For if Fg holds, then the rate of
growth of Ext∗Λ(M,Λ/r) is not more than that of H, since it is a quotient of
a finitely generated free H-module. Now as in the proof of Proposition 2.2,
there is a finite set {a1, . . . , ar} in H of homogeneous elements of positive
degrees, generating H as an algebra over H0. By the Hilbert–Serre The-
orem (see [5, Proposition 5.3.1]) and [5, Proposition 5.3.2], we find that
γ(H) equals the order of the pole at t = 1 of a certain rational function
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g(t)/
∏r
i=1(1 − t|ai|), where g ∈ Z[t]. Hence the rate of growth of H is not

more than r, implying cxΛM ≤ r.
The aim is now to pick η such that the rate of growth of Ext∗Λ(Kη⊗ΛM,

Λ/r) is 1 less than the rate of growth of Ext∗Λ(M,Λ/r). That such an element
exists is a consequence of the following result.

Proposition 3.1. Let A =
⊕∞

i=0Ai be a commutative Noetherian

graded k-algebra of finite type over k, generated as an A0-algebra by ho-

mogeneous elements a1, . . . , ar with |ai| = ni > 0. Let N =
⊕∞

i=0Ni be a

finitely generated graded A-module, and pick a homogeneous element η ∈ A
as in Proposition 2.1. Let w ∈ N be an integer such that η : Ni → Ni+|η| is

injective for i ≥ w, define Vi−w to be the cokernel of this map, and denote by

V the graded k-vector space
⊕∞

i=0 Vi. If γ(N) > 0, then γ(V ) = γ(N) − 1.

Proof. Consider the Poincaré series P (N, t) =
∑∞

i=0 ℓk(Ni)t
i of N . By

the Hilbert–Serre Theorem we have

P (N, t) =
f(t)

∏r
i=1(1 − tni)

for some f(t) ∈ Z[t], and from [5, Proposition 5.3.2] we see that γ(N) equals
the order of the pole of P (N, t) at t = 1. By assumption this integer is
strictly greater than zero.

Now consider the exact sequences

0 → Ni
η−→ Ni+|η| → Vi−w → 0

for i ≥ w. Taking k-module lengths we get ℓk(Vi) = ℓk(Ni+w+|η|)−ℓk(Ni+w)
for i ≥ 0, giving

P (V, t) =
∞

∑

i=0

ℓk(Vi)t
i =

∞
∑

i=0

ℓk(Ni+w+|η|)t
i −

∞
∑

i=0

ℓk(Ni+w)ti.

Multiplying this equation by tw+|η| gives

tw+|η|P (V, t) =
∞

∑

i=0

ℓk(Ni+w+|η|)t
i+w+|η| − t|η|

∞
∑

i=0

ℓk(Ni+w)ti+w

= (1 − t|η|)P (N, t) + g(t),

where g(t) is some polynomial in Z[t], and therefore

P (V, t) =
(1 − t|η|)P (N, t)

tw+|η|
+

g(t)

tw+|η|
=

(1 − t|η|)f(t)

tw+|η|
∏r
i=1(1 − tni)

+
g(t)

tw+|η|
.

Thus the order of the pole of P (V, t) at t = 1 is 1 less than that of P (N, t),
showing γ(V ) = γ(N) − 1.

We now return to the setting given at the beginning of this section. With
Proposition 3.1 at hand, the main theorem is merely a corollary.
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Theorem 3.2 (reducing complexity). Assume that Fg holds and that M
does not have finite projective dimension. Then there exists a homogeneous

element η ∈ H of positive degree such that cxΛ(Kη ⊗ΛM) = cxΛM − 1.

Proof. We use Proposition 3.1 with A = H and N = Ext∗Λ(M,Λ/r).
There is an integer w ∈ N and a homogeneous element η ∈ H of positive

degree such that the multiplication map ExtiΛ(M,Λ/r)
η−→ Ext

i+|η|
Λ (M,Λ/r)

is injective for i ≥ w. From the long exact sequence ES(M,Λ/r, η) we then
get short exact sequences

0 → ExtiΛ(M,Λ/r)
η−→ Ext

i+|η|
Λ (M,Λ/r) → Exti+1

Λ (Kη ⊗ΛM,Λ/r) → 0

for i ≥ w. Using Proposition 3.1 we now get

cxΛ(Kη ⊗ΛM) = γ(Ext∗Λ(Kη ⊗ΛM,Λ/r))

= γ
(

∞
⊕

i=w+1

ExtiΛ(Kη ⊗ΛM,Λ/r)
)

= γ(Ext∗Λ(M,Λ/r)) − 1 = cxΛM − 1.

As a corollary we get a result which under certain conditions guaran-
tees the existence of nonzero periodic modules. As mentioned at the begin-
ning of the previous section, the existence of such modules is not obvious.
For example, in [12], M. Ramras introduced a nonempty class of commu-
tative Noetherian local rings called BNSI rings (short for “Betti numbers
strictly increase” rings), which are rings for which every nonfree module
has a strictly increasing sequence of Betti numbers. There exist a lot of
finite-dimensional algebras which are BNSI rings, for example regular local
rings of dimension at least two modulo any positive power of the maximal
ideal. Clearly, such rings cannot have nonzero periodic modules.

Corollary 3.3. Suppose that Fg holds and that M has infinite pro-

jective dimension. Then Λ has a nonzero periodic module.

Proof. Let d denote the complexity of M (by assumption d > 0). If
d = 1 then M is eventually periodic by Theorem 2.3, whereas if d > 1 the
previous theorem provides homogeneous elements η1, . . . , ηd−1 ∈ H having
the property

cxΛ(Kηi
⊗Λ · · · ⊗Λ Kη1 ⊗ΛM) = d− i

for 1 ≤ i ≤ d − 1. Denote the module Kηd−1
⊗Λ · · · ⊗Λ Kη1 ⊗Λ M by X.

This module has complexity one, and from the discussion prior to Proposi-
tion 3.1 we see that Ext∗Λ(X,Λ/r) is a finitely generated H-module. Using
Theorem 2.3 once more, we deduce that X is eventually periodic.

Now if we take an eventually periodic Λ-module of infinite projective
dimension, one of its syzygies is a nonzero periodic module.



182 P. A. BERGH

Remark. (i) The existence of a periodic Λ-module implies the exis-
tence of a periodic module having period 1; if M is isomorphic to Ωp

Λ(M),

where p ≥ 1, then the module
⊕p−1

i=0 Ω
i
Λ(M) is periodic of period 1 (here

Ω0
Λ(M) = M).

(ii) Suppose Λ is a BNSI ring. Then there cannot exist a nonfree Λ-
module M for which Fg holds, i.e. Ext∗Λ(M,Λ/r) is not finitely generated
over any commutative Noetherian graded subalgebra of HH∗(Λ): if such a
module existed, then the corollary would imply the existence of a nonzero
periodic Λ-module.

4. Generating periodicity. In this section we consider the case when
the period of an eventually periodic module is “detected” by a homogeneous
element in the Hochschild cohomology ring. We start by recalling the group
ring case.

Assume k is an algebraically closed field and let G be a finite group.

A nonzero homogeneous element θ ∈ H|θ|(G, k) = Ext
|θ|
kG(k, k) can be in-

terpreted as a surjective kG-homomorphism θ : Ω
|θ|
kG(k) → k; its kernel is

customarily denoted by Lθ. The cohomological variety of Lθ is easily com-
puted; from [8, Lemma 2.3] we deduce that VG(Lθ) equals VG(θ), i.e. the set
of maximal ideals in the group cohomology ring H·(G, k) containing θ. Now
let N be a finitely generated kG-module. If VG(θ)∩VG(N) = {0}, then from
the above and the equality VG(X ⊗k Y ) = VG(X) ∩ VG(Y ), which holds
for all finitely generated kG-modules X and Y , we get VG(Lθ⊗kN) = {0}.
This is equivalent to Lθ⊗kN being projective, and it follows from the proof

of [5, Theorem 5.10.4] that N is isomorphic to Ω
|θ|
kG(N) ⊕ P , where P is a

projective module. This gives

Ω
|θ|
kG(N) ≃ Ω

|θ|
kG(Ω

|θ|
kG(N) ⊕ P ) ≃ Ω

2|θ|
kG (N),

showing that Ω
|θ|
kG(N) is periodic and therefore that N is isomorphic to a

direct sum of a periodic module and a projective module. If N contains no

nonzero projective summand we must have N ≃ Ω
|θ|
kG(N), with the period

of N dividing |θ|, and in this case the element θ is said to generate the

periodicity of N .
Returning to the setting given in the previous sections, with k a com-

mutative Artin ring, Λ an Artin k-algebra (assumed to be projective as a
k-module) and M a finitely generated Λ-module, let η be a nonzero element
in HH∗(Λ) of positive degree. Instead of considering the kernel of the corre-

sponding Λe-linear map η : Ω
|η|
Λe(Λ) → Λ (which is not necessarily surjective),

we look at the pushout Kη and the tensor module Kη ⊗Λ M , as we did in
the last section.
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Proposition 4.1. If the Λ-module Kη⊗ΛM has finite projective dimen-

sion, then M is eventually periodic with period dividing |η|.
Proof. Denote the projective dimension of Kη⊗ΛM by d. From the long

exact sequence ES(M,Λ/r, η) we see that scalar multiplication by η induces
k-isomorphisms

ExtiΛ(M,Λ/r)
η−→ Ext

i+|η|
Λ (M,Λ/r)

for i > d. Now let · · · → P1
d1−→ P0

d0−→ M → 0 be the minimal projective
resolution of M , and recall the proof of Proposition 2.2. If we denote by ξ

the image of η in Ext∗Λ(M,M), represented by a map Ω
|η|
Λ (M)

ξ−→ M , then
in the commutative diagram (obtained from the Comparison Theorem)

· · · // P|η|+i+1

d|η|+i+1
//

ξi+1

��

P|η|+i

d|η|+i
//

ξi

��

· · · // P|η|
//

ξ0

��

Ω
|η|
Λ (M) //

ξ

��

0

· · · // Pi+1

di+1
// Pi

di
// · · · // P0

d0
// M // 0

we see that ξi is surjective for i > d. Applying HomΛ(−, Λ /r) to the exact
sequences

0 → Ker ξi → P|η|+i
ξi−→ Pi → 0

(for i > d) then gives HomΛ(Ker ξi, Λ /r) = 0, hence Ker ξi = 0. This shows
ξi is bijective for i > d, and as in the proof of Theorem 2.3 we see that

Ωi
Λ(M) ≃ Ω

i+|η|
Λ (M) for i > d.

The proposition motivates the following definition of an element gener-
ating the periodicity of a module:

Definition 4.2. Let M be a Λ-module of infinite projective dimension.
A nonzero homogeneous element η ∈ HH∗(Λ) of positive degree generates the

periodicity of M if the Λ-module Kη ⊗ΛM has finite projective dimension.

Note that in the special case when Kη ⊗Λ M is projective, all but the
end terms in the exact sequence

0 →M → Kη ⊗ΛM → Q|η|−2 ⊗ΛM → · · · → Q0 ⊗ΛM →M → 0

are projective, henceM is isomorphic toΩ
|η|
Λ (M)⊕P , where P is a projective

Λ-module. As in the group ring case above, this implies that Ω
|η|
Λ (M) ≃

Ω
2|η|
Λ (M), and therefore M is isomorphic to the direct sum of a periodic

module and a projective module. In particular, if M contains no nonzero
projective summand then it is periodic.

Also note that, whenever there exists an element η generating the pe-
riodicity of M , for every Λ-module N we see from the long exact sequence
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ES(M,N, η) that multiplication

ExtiΛ(M,N)
η−→ Ext

i+|η|
Λ (M,N)

is an isomorphism for i≫ 0. From the proof of the previous proposition we
see that the converse is also true, hence the following result.

Proposition 4.3. A nonzero homogeneous element η ∈ HH∗(Λ) gener-

ates the periodicity of M if and only if scalar multiplication by η induces

k-isomorphisms

ExtiΛ(M,N)
η−→ Ext

i+|η|
Λ (M,N)

for every Λ-module N and i≫ 0.

As an immediate corollary we obtain the following finite generation re-
sult.

Corollary 4.4. If there exists an element η generating the periodicity

of M , then Ext∗Λ(M,N) is a finitely generated HH∗(Λ)-module for every

Λ-module N . In particular Ext∗Λ(M,M) and Ext∗Λ(M,Λ/r) are finitely gen-

erated.

Proof. The k-bases of HomΛ(M,N),Ext1Λ(M,N), . . . ,Ext
|η|+d
Λ (M,N),

where d = pdΛ(Kη ⊗ΛM), together form a generating set.

Remark. We actually obtain a stronger result, namely that for every
Λ-module N the k-module Ext∗Λ(M,N) is a finitely generated module over
the commutative Noetherian graded subalgebra of HH∗(Λ) generated by
HH0(Λ) and η (in particular Fg holds). As the element η is not nilpotent,
this subalgebra is actually the polynomial ring in one variable over HH0(Λ)
(the center of Λ).

It is natural to ask whether an element generating the periodicity of
M always exists when M is a periodic module. The following two examples
show that this is not the case. In the first example the algebra is selfinjective,
whereas in the second it is commutative local.

Example 4.5. Let k be a field, and consider the 4-dimensional algebra

Λ = k〈x, y〉/(x2, xy + qyx, y2)

where 0 6= q ∈ k is not a root of unity. Let M be any 2-dimensional k-vector
space having a basis {u, v}, say. Straightforward computation shows that
defining

xu = 0, xv = 0, yu = v, yv = 0

gives a Λ-module structure on M (this module was also studied in [14]).
Define a Λ-linear map p : Λ → M by 1 7→ u. This is a surjective map, and
as a vector space Ker p has {x, xy} as a basis. Therefore Ker p is contained
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in the radical of Λ, showing p is the projective cover of M . Define a k-linear
map f : M → Ker p by u 7→ x and v 7→ xy. This is an isomorphism, and
direct computation shows it is Λ-linear. Hence M ≃ Ω1

Λ(M), and so M is
periodic of period 1.

Suppose 0 6= η ∈ HH|η|(Λ) is an element generating the periodicity of M .
Then from Proposition 4.3 scalar multiplication by η induces isomorphisms

ExtiΛ(M,M) ≃ Ext
i+|η|
Λ (M,M) for i ≫ 0. Therefore multiplication by any

power of η also induces isomorphisms. However, from [7] we deduce that
HHn(Λ) = 0 for n ≥ 3, in particular η is nilpotent. Hence ExtiΛ(M,M) = 0
for i≫ 0, and since for each i > 1 we have

ExtiΛ(M,M) ≃ Ext1Λ(Ωi−1
Λ (M),M) ≃ Ext1Λ(M,M),

we get Ext1Λ(M,M) = 0. Therefore M is projective, since it is periodic of
period 1, and this is a contradiction.

Example 4.6. Let k be an algebraically closed field of characteristic dif-
ferent from 2, and let k[x1, x2, x3, x4] be the polynomial ring in four variables
over k. Denote by R the finite-dimensional local k-algebra k[x1, x2, x3, x4]/a,
where a is the ideal generated by the quadratic forms

x2
1, x1x2 − x2

3, x1x3 − x2x4, x1x4, x2
2 + x3x4, x2x3, x2

4.

Define two R-endomorphisms φ, ψ : R2 → R2 by the matrices

φ =

(

x1 x3

x2 x4

)

, ψ =

(

x4 −x3

−x2 x1

)

,

and let M = Imψ. In [2] it is shown that Imψ = Kerφ and Imφ = Kerψ,
hence M is periodic of period 2 and has the minimal free resolution

· · · → R2 φ−→ R2 ψ−→ R2 φ−→ R2 ψ−→M → 0.

As a k-vector space M is 8-dimensional, and the elements

v1 =

(

x4

−x2

)

, v2 =

( −x3

x1

)

, v3 =

(

0

x1x2

)

, v4 =

(

x1x3

0

)

,

v5 =

(

x1x3

x3x4

)

, v6 =

(

x3x4

0

)

, v7 =

( −x1x2

x1x3

)

, v8 =

(

0

x1x3

)

form a basis. Furthermore, as a graded R-module M consists of two
nonzero graded components M0 and M1, with {v1, v2} a basis for M0 and
{v3, . . . , v8} a basis for M1. The elements v1, v2 generate M as an R-module.

Denote by µ the extension

0 →M → R2 φ−→ R2 ψ−→M → 0
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in Ext2R(M,M). Then for all n ≥ 0 every element of Ext2nR (M,M) is of the

form fµn for some f ∈ HomR(M,M). Now suppose 0 6= η ∈ HH|η|(R) is an
element generating the periodicity of M . Then |η| is an even number (since
M is of period 2, i.e. Ω1

R(M) 6≃ M), and so the image of η in Ext∗R(M,M)
under the ring homomorphism − ⊗R M can be written as fµn, where f
is an R-endomorphism of M and n = |η|/2. Since M = M0 ⊕ M1 as a
graded module, we can write f as h + g, where h and g are homogeneous
endomorphisms of degree 0 and 1, respectively (see the paragraphs following
[6, Theorem 1.5.8]). Therefore the element fµn is the sum of two elements

hµn and gµn of different internal degrees in Ext
|η|
R (M,M). Since the map

−⊗RM : HH|η|(R) → Ext
|η|
R (M,M) preserves internal grading, hµn and gµn

must both lie in the image of −⊗RM .
Suppose h is nonzero. Since the degree of this map is zero, we must

have h(v1) = c1v1 + c2v2 and h(v2) = c3v1 + c4v2 for elements ci ∈ k. As
v6 = x3v1 = −x4v2 and h is R-linear, direct computation of h(v6) gives

c1v6 + c2v7 = c3v8 + c4v6.

Thus c2 = c3 = 0 and c1 = c4, and we see that h is nothing but a scalar
c ∈ k times the identity on M . Therefore the element cµn belongs to the
image of −⊗RM , and multiplying with the inverse of c we deduce that µn

also lies in this image. From [15, Corollary 1.3] we see that every element of
Im(−⊗RM) belongs to the graded center of Ext∗R(M,M), and so µn, which
is of even degree, is a central element. We show that this is not the case.

An element of Ext1R(M,M) can be considered as an R-linear map θ:
R2 →M such that θ ◦ ψ = 0. Define three such elements θ1, θ2, θ3 by

θ1 :

(

1

0

)

7→ v6,

(

0

1

)

7→ 0,

θ2 :

(

1

0

)

7→ 0,

(

0

1

)

7→ v4,

θ3 :

(

1

0

)

7→ 0,

(

0

1

)

7→ v5.

It is easy to check that these elements are linearly independent, and when
they are multiplied on the right by any power of µ they stay linearly inde-
pendent. Direct computation (lifting maps along the minimal free resolution
of M) gives

µθ1 = (θ1/2 − θ2 + θ3/2)µ,

µθ2 = θ2µ,

µθ3 = (−θ1/2 − θ2 + 3θ3/2)µ,

and so by induction we get µnθ1 = ([1 − n/2]θ1 − nθ2 + [n/2]θ3)µ
n for all

n ≥ 1. This shows that µn is not a central element, implying h must be zero.
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As a consequence, the image of η in Ext∗R(M,M) is gµn, where g is a
homogeneous degree one R-endomorphism of M . In particular, since M only
lives in two degrees, we must have g2 = 0. From Proposition 4.3, the element
η induces isomorphisms

ExtiΛ(M,M)
η−→ Ext

i+|η|
Λ (M,M)

for i≫ 0, and in particular there is an i > 0 such that η · gµi 6= 0 (because
gµn 6= 0 implies gµi 6= 0, since the element µj is not a zero-divisor for
any j). But gµn, being the image of η, is a central element, giving η · gµi =
(gµn)gµi = g(gµn)µi = 0, a contradiction. Therefore there does not exist a
nonzero homogeneous element of positive degree in HH∗(R) generating the
periodicity of M .

These examples show that an element generating the periodicity of an
eventually periodic module does not exist in general. However, when dealing
with “suitably nice” algebras, such an element always exists. Suppose M is
an eventually periodic Λ-module satisfying Fg. Then Theorem 3.2 implies
the existence of a homogeneous element η ∈ HH∗(Λ) of positive degree with
the property that Kη ⊗ΛM has finite projective dimension over Λ, and so
this η generates the periodicity of M .

The following example shows that it may be difficult to decide whether
or not there exists an element generating the periodicity of a module, even
when the algebra is commutative, local and selfinjective.

Example 4.7. Let k be a field of characteristic different from 2, and let
k[x1, x2, x3, x4, x5] be the polynomial ring in five variables over k. Denote
by R the finite-dimensional local k-algebra k[x1, x2, x3, x4, x5]/a, where a is
the ideal generated by the quadratic forms

x2
1, x2

2, x2
5, x3x4, x3x5, x4x5, x2

3 − x2
4,

x1x3 + x2x3, x1x4 + x2x4, x2
3 − x2x5 + x1x5.

It is shown in [11] that R is graded selfinjective with Hilbert series 1 + 5t+
5t2 + t3, and that the R-endomorphism d : R2 → R2 defined by

d =

(

x1 x3 + x4

0 x2

)

satisfies Im d = Ker d. Letting M = Im d, we see that M is periodic of
period 1, with minimal free resolution

· · · → R2 d−→ R2 d−→ R2 d−→M → 0.

Denote by µ the extension 0 → M → R2 d−→ M → 0 in Ext1R(M,M). Then
for all n ≥ 0 every element of ExtnR(M,M) is of the form fµn for some
endomorphism f of M .
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Now suppose 0 6= η ∈ HH|η|(R) is an element generating the periodicity
of M . Then the image of η in Ext∗R(M,M) can be written as fµ|η|, and

as in the previous example this implies that µ|η| belongs to the image of

−⊗RM : HH|η|(R) → Ext
|η|
R (M,M) (in this case M is graded and “lives” in

three degrees, i.e. M = M0 ⊕M1 ⊕M2). In particular µ|η| belongs to the
graded center of Ext∗R(M,M).

An element of ExtiR(M,M) can be considered as an R-linear map θ:
R2 → M with the property θ ◦ d = 0. In our case, ExtiR(M,M) is 12-
dimensional, and the maps

θ1 : e1 7→
(

x1

0

)

, e2 7→
(

x3 + x4

x2

)

, θ7 : e1 7→ 0, e2 7→
(

0

x2x5

)

,

θ2 : e1 7→
(

x1x2

0

)

, e2 7→ 0, θ8 : e1 7→ 0, e2 7→
(

x2x5

−x1x3

)

,

θ3 : e1 7→
(

x1x5

0

)

, e2 7→ 0, θ9 : e1 7→ 0, e2 7→
(

x2x5

−x1x4

)

,

θ4 : e1 7→
(

0

x1x2

)

, e2 7→ 0, θ10 : e1 7→
(

x1x3 − x1x4

0

)

, e2 7→ 0,

θ5 : e1 7→ 0, e2 7→
(

0

x1x2x5

)

, θ11 : e1 7→ 0, e2 7→
(

x1x3

0

)

,

θ6 : e1 7→ 0, e2 7→
(

0

x1x2

)

, θ12 : e1 7→
(

0

x1x4 − x1x3

)

, e2 7→ 0

represent a basis
(

here e1 =
(

1
0

)

and e2 =
(

0
1

))

. Direct computation shows
that µθj = θjµ for j = 1, . . . , 10, while µθj = −θjµ for j = 11, 12, and
therefore µn cannot belong to the graded center of Ext∗R(M,M) when n is
odd. However, the element µ2 does belong to the graded center, hence it is
possible that a homogeneous element of even degree in HH|η|(R) generates
the periodicity of M .

We end with a result providing a positive answer to the following nat-
ural question: if the product or sum of two homogeneous elements in the
Hochschild cohomology ring generates the periodicity of a module, do the
elements themselves (or one of them) generate the periodicity? As a corol-
lary, we obtain a result analogous to [5, Corollary 5.10.6], which states that
if the group cohomology ring of a finite group G is finitely generated over
a subring generated by homogeneous elements x1, . . . , xt, and N is a peri-
odic kG-module (where k is an algebraically closed field), then one of the xi
generates the periodicity of N .

Proposition 4.8. Let η1 ∈ HH|η1|(Λ) and η2 ∈ HH|η2|(Λ) be nonzero

homogeneous elements of positive degrees.
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(i) If 0 6= η1η2 generates the periodicity of M , then η1 and η2 both

generate the periodicity.

(ii) Suppose Λ is Gorenstein and k is an algebraically closed field. If

|η1| = |η2|, and the sum η1 + η2 generates the periodicity of M , then

either η1 or η2 generates the periodicity.

Proof. (i) From Proposition 4.3 we know that multiplication

ExtiΛ(M,Λ/r)
η1η2−−−→ Ext

i+|η1|+|η2|
Λ (M,Λ/r)

is a k-isomorphism for i≫ 0, and since HH∗(Λ) is graded commutative the
element η2η1 also induces isomorphisms. Therefore the map

ExtiΛ(M,Λ/r)
η2−→ Ext

i+|η2|
Λ (M,Λ/r)

is injective for i≫ 0, whereas the map

Ext
i+|η1|
Λ (M,Λ/r)

η2−→ Ext
i+|η1|+|η2|
Λ (M,Λ/r)

is surjective for i≫ 0. It follows from the long exact sequence ES(M,Λ/ r, η)

that Ext
i+|η1|+1

Λ (Kη2 ⊗ΛM,Λ/r) = 0 for i ≫ 0, hence Kη2 ⊗ΛM has finite
projective dimension. Similarly Kη1 ⊗ΛM has finite projective dimension.

(ii) Denote η1+η2 by η, and letH be the commutative Noetherian graded
subalgebra of HH∗(Λ) generated by HH0(Λ) and η. As mentioned in the
Remark following Corollary 4.4, the graded k-vector space Ext∗Λ(M,Λ/r) is a
finitely generated H-module, and consequently Fg holds. We may therefore
apply the theory of support varieties from [10].

Recall that ifX is a finitely generated Λ-module, then the support variety
VH(X) is defined to be the variety in MaxSpecH defined by the annihila-
tor of Ext∗Λ(X,Λ/ r) in H. Denote the annihilator ideal associated to M
by a. Since cxΛM = 1 and cxΛ(Kη ⊗ΛM) = 0, it follows from [10, Propo-
sition 1.1] that the variety VH(M) = VH(a) is one-dimensional, whereas
VH(Kη ⊗ΛM) is zero-dimensional. By [10, Proposition 3.3] the latter va-
riety equals VH(η) ∩ VH(a) = VH(〈η〉 + a) (note that in order to apply
[10, Proposition 3.3] both Fg and the assumption that Λ is Gorenstein are
needed, as a substitute for the stronger finite generation hypothesis used in
that paper).

Suppose neither of the inclusions
√

a ⊆
√

〈ηi〉 + a is strict for i = 1, 2.
Then
√

a =
√

〈η1〉 + a =

√

〈η1〉 +
√

a =

√

〈η1〉 +
√

〈η2〉 + a =
√

〈η1〉 + 〈η2〉 + a,

and since √
a ⊆

√

〈η〉 + a ⊆
√

〈η1〉 + 〈η2〉 + a

we get the equality
√

a =
√

〈η〉 + a. Since the variety defined by any ideal
equals that defined by the radical of the ideal, we deduce that VH(M) =
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VH(Kη ⊗Λ M), which is impossible. Therefore
√

a ⊂
√

〈ηi〉 + a (strict in-
clusion) at least for one j ∈ {1, 2}, and as k is algebraically closed and H
is a finitely generated k-algebra, Hilbert’s Nullstellensatz gives the strict
inclusion VH(Kηj

⊗Λ M) ⊂ VH(M). The variety VH(Kηj
⊗Λ M) is then

zero-dimensional, and consequently Kηj
⊗Λ M has finite projective dimen-

sion.

Corollary 4.9. Suppose that Λ is Gorenstein and k is an algebraically

closed field , and that HH∗(Λ) is generated over a subalgebra by homogeneous

elements x1, . . . , xt. If M is an eventually periodic module and there exists an

element in HH∗(Λ) generating the periodicity , then one of the xi generates

the periodicity. In particular , the period of M divides the degree of one of

the xi.

Remark. Proposition 4.8 enables us to strengthen Theorem 2.5 in the
case when Λ is Gorenstein and k is an algebraically closed field: when Fg

holds and H is generated as an algebra over H0 by homogeneous elements
a1, . . . , ar of positive degrees, then if M has bounded Betti numbers it is
eventually periodic with period dividing one of |ai|.
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