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ON ENTROPY AND HAUSDORFF DIMENSION OF

MEASURES DEFINED THROUGH A

NON-HOMOGENEOUS MARKOV PROCESS

BY

ATHANASIOS BATAKIS (Orléans)

Abstract. We study the Hausdorff dimension of measures whose weight distribution
satisfies a Markov non-homogeneous property. We prove, in particular, that the Hausdorff
dimensions of this kind of measures coincide with their lower Rényi dimensions (entropy).
Moreover, we show that the packing dimensions equal the upper Rényi dimensions. As
an application we get a continuity property of the Hausdorff dimension of the measures,
when viewed as a function of the distributed weights under the ℓ

∞ norm.

1. Introduction. Let us consider the dyadic tree (even though all the
results in this paper can be easily generalised to any ℓ-adic structure, ℓ ∈ N),
let K be its limit (Cantor) set and denote by (Fn)n∈N the associated filtration
with the usual 0-1 encoding.

We are interested in Borel measures µ on K constructed in the follow-
ing way: Take a sequence (pn, qn)n∈N of couples of real numbers satisfying
0 ≤ pn, qn ≤ 1. Let I = Iε1...εn be a cylinder of the nth generation, J = Iεn+1

a cylinder of the first generation and IJ = Iε1...εnεn+1
the subcylinder of I

of the (n+1)th generation, where ε1, . . . , εn, εn+1 ∈ {0, 1}. The mass distri-
bution of µ|I will be as follows: µ(I0) = p0, µ(I1) = 1 − p0 and

(1)
µ(IJ)

µ(I)
=

{
pn1{εn+1=0} + (1 − pn)1{εn+1=1} if εn = 0,

qn1{εn+1=0} + (1 − qn)1{εn+1=1} if εn = 1,

where the extreme case µ(I) = 0 (and hence µ(IJ) = 0) is treated in the
same way by convention.

We use the notation dimH for the Hausdorff dimension and dimP for the
packing dimension.

Definition 1.1. If µ is a measure on K, we will denote by h∗(µ) its
lower entropy :

h∗(µ) = lim inf
n→∞

−1

n

∑

I∈Fn

log µ(I) · µ(I),
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by h∗(µ) its upper entropy :

h∗(µ) = lim sup
n→∞

−1

n

∑

I∈Fn

log µ(I) · µ(I),

by dim∗(µ) its lower Hausdorff dimension:

dim∗(µ) = inf{dimH E : E ⊂ K and µ(E) > 0},

and by dim∗(µ) its upper Hausdorff dimension:

dim∗(µ) = inf{dimH E : E ⊂ K and µ(K \ E) = 0}.

In the same way we define the lower packing dimension of µ:

Dim∗(µ) = inf{dimP E : E ⊂ K and µ(E) > 0},

and the upper packing dimension of µ:

Dim∗(µ) = inf{dimP E : E ⊂ K and µ(K \ E) = 0}.

One can show (see [Bat02], [BH02]) that

dim∗(µ) ≤ h∗(µ) ≤ h∗(µ) ≤ Dim∗(µ),

and there are examples of these inequalities being strict, even when the
measure µ is rather “regular”.

It is also well known (cf. [Fal97], [Bil65], [Mat95], [Fan94], [You82],
[Rén70] and [Heu98]) that

dim∗(µ) = ess inf
µ

lim inf
n→∞

log µ(In(x))

−n log 2

and

dim∗(µ) = ess sup
µ

lim inf
n→∞

log µ(In(x))

−n log 2
,

where In(x) is the dyadic cylinder of the nth generation containing x, ess infµ
is the essential infimum and ess supµ is the essential supremum, taken over
µ-almost all x ∈ K.

Whenever µ is a shift-invariant and ergodic measure, it is well known
that all limits exist and

lim
n→∞

log µ(In(x))

−n log 2
= h∗(µ) = h∗(µ),

which is the Breiman–Shanon–McMillan formula. This is also valid in sev-
eral random settings (see for instance [Nas87], [Kah87], [KP76] and [Heu03])
and for products of Bernoulli measures (cf. [Bil65]).

In the case of measures defined by (1) we can use tools developed in
[Bat96] and [Bat00] to prove they are exact , i.e. that dim∗(µ) = dim∗(µ) or
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equivalently that

lim inf
n→∞

log µ(In(x))

−n log 2
= dim∗(µ) for µ-almost all x ∈ K.

This is, for instance, the case of harmonic measure on homogeneous Cantor
sets and on limit sets of a large class of iterated function systems, like the
ones considered in the articles mentioned above. Nevertheless, some kind of
shift-invariance is needed in replacement of the Markov condition proposed
in this work. In Theorem 1.2 we prove that dim∗(µ) = dim∗(µ).

In general, there is no trivial inequality between h∗(µ) and dim∗(µ).
Furthermore, it is easy to construct measures µ satisfying (1) such that

h∗(µ) 6= h∗(µ), which shows that the sequence of functions log µ(In(x))
−n log 2 does

not necessarily converge (in any space).
The proof of Theorem 1.2 implies that there is a sequence (cn)n∈N of real

numbers such that

lim
n→∞

[
log µ(In(x))

−n log 2
− cn

]
= 0,

where

cn =
−1

n log 2

∑

I∈Fn

log(µ(I))µ(I).

This can be seen as a Breiman–Shannon–McMillan type theorem generalised
to measures defined through non-homogeneous Markov chains.

Note that the tools of [KP76] and [Kah87] can be applied to give the
same results for “almost every” measure µ satisfying (1). Other results in
this sense involving colouring of graphs are proposed in [Nas87].

A. Bisbas and C. Karanikas [BK94] have already partially proved the
conclusions of Theorem 1.2 under some assumptions on the sequences
(pn, qn)n∈N. In particular they proved the theorem when the sequences
(pn, qn)n∈N are uniformly bounded away from 0 and 1, which is the case
of a perturbation of a homogeneous Markov chain. We thank A. Bisbas for
informing us about that article.

Theorem 1.2. If µ satisfies (1) then

dim∗(µ) = dim∗(µ) = h∗(µ) and Dim∗(µ) = Dim∗(µ) = h∗(µ).

Using the same type of argument we also obtain the following continuity
result.

Theorem 1.3. Let µ and µ′ be measures defined by (1) and the respec-

tive sequences (pn, qn)n∈N and (p′n, q′n)n∈N. Then |dim∗(µ) − dim∗(µ
′)| and

|Dim∗(µ) − Dim∗(µ
′)| go to 0 as ‖(pn, qn)n∈N − (p′n, q′n)n∈N‖∞ tends to 0.
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2. Lemmas and preliminary results. Let us introduce some nota-
tion: for p ∈ [0, 1] we define

h(p) = p log p + (1 − p) log(1 − p)

and if I = Iε1,...,εn−1
∈ Fn, we also set

γ(I, n) =
∑

i=0,1

log

(
µ(IIi)

µ(I)

)
µ(IIi)

µ(I)
.

Note that γ(I, n) = EI(Xn) in the notation of [Chu01, Section 9.1, p. 295].
We also remark that for n ∈ N and I ∈ Fn−1, γ(I, n) is equal to h(pn) if
εn−1 = 0 and to h(qn) if εn−1 = 1 and therefore |γ(I, n)| ≤ log 2.

Let us start with the following easy lemma.

Lemma 2.1. For all n, k ∈ N and all I ∈ Fn−1,

(2)
∑

K∈Fk

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)

= γ(I, n) +
∑

i=0,1

µ(IIi)

µ(I)

∑

K∈Fk−1

log

(
µ(IIiK)

µ(IIi)

)
µ(IIiK)

µ(IIi)
.

where I0 and I1 are the two cylinders of the first generation. Furthermore,
if we set

ak
n(I) =

∑

K∈Fk−1

log

(
µ(II0K)

µ(II0)

)
µ(II0K)

µ(II0)
,

bk
n(I) =

∑

K∈Fk−1

log

(
µ(II1K)

µ(II1)

)
µ(II1K)

µ(II1)
,

then ak
n(I) = ak

n(I ′) and bk
n(I) = bk

n(I ′) for all I, I ′ ∈ Fn.

Proof. We have

(3)
∑

K∈Fk

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)

=
∑

i=0,1

∑

K∈Fk−1

log

(
µ(IIiK)

µ(I)

)
µ(IIiK)

µ(I)

=
∑

i=0,1

∑

K∈Fk−1

log

(
µ(IIiK)

µ(IIi)

)
µ(IIiK)

µ(I)
+

∑

i=0,1

log

(
µ(IIi)

µ(I)

)
µ(IIi)

µ(I)
.

Since we have set

γ(I, n) =
∑

i=0,1

log

(
µ(IIi)

µ(I)

)
µ(IIi)

µ(I)
,
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the equalities (3) give

∑

K∈Fk

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)

= γ(I, n) +
∑

i=0,1

µ(IIi)

µ(I)

∑

K∈Fk−1

log

(
µ(IIiK)

µ(IIi)

)
µ(IIiK)

µ(IIi)
.

It is immediate that 0 ≤ −γ(I, n) ≤ log 2. By the construction of the mea-
sure µ, the quantities ak

n(I) and bk
n(I) do not depend on the cylinder I but

only on the cylinder’s generation n, and this ends the proof.

Remark 2.2. Since the quantities ak
n(I) and bk

n(I) depend only on the
generation of I and on k, we can write ak

n = ak
n(I) and bk

n = bk
n(I) for I ∈ Fn.

We also set ∆k
n = |ak

n − bk
n|/k.

The following lemma is easy to prove but helps to clarify the proof.

Lemma 2.3. Take ε > 0. There exists ζ > 0 such that for all p, q ∈ [0, 1]
we have either |h(p) − h(q)| ≤ ε/2 or |p − q| < 1 − ζ. For all k > k0 =
[4(log 2)/ζε] and all α > ε/2,

|h(p) − h(q)|

k
+ |p − q|

(
1 −

1

k

)
α <

(
1 −

1

2k

)
α,

and hence, for all α > 0,

|h(p) − h(q)|

k
+ |p − q|

(
1 −

1

k

)
α < min

{
ε,

(
1 −

1

2k

)
α

}
.

The proof is elementary and therefore omitted. In the following we will
denote by k0 the positive integer defined in the previous lemma.

Proposition 2.4. Let I, I ′ be two cylinders of the nth generation. Then

1

k

∣∣∣∣
∑

K∈Fk

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)
−

∑

K∈Fk

log

(
µ(I ′K)

µ(I ′)

)
µ(I ′K)

µ(I ′)

∣∣∣∣ < η(k)

where η is a positive function, not depending on n, such that η(k) goes to 0
as k tends to ∞.

Proof. Take any two cylinders I = Iε1...εn , I ′ = Iε′
1
...ε′n

of the nth gener-

ation. If εn = ε′n then by definition of the measure µ we get

1

k

∣∣∣∣
∑

K∈Fk

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)
−

∑

K∈Fk

log

(
µ(I ′K)

µ(I ′)

)
µ(I ′K)

µ(I ′)

∣∣∣∣ = 0.
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If εn 6= ε′n, using Lemma 2.1 and the notation therein we obtain

∆k+1
n−1 =

∣∣∣∣
1

k + 1

∑

K∈Fk+1

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)
(4)

−
1

k + 1

∑

K∈Fk+1

log

(
µ(I ′K)

µ(I ′)

)
µ(I ′K)

µ(I ′)

∣∣∣∣

=

∣∣∣∣∣
γ(I, n)−γ(I ′, n)

k + 1
+

1

k+1

µ(II0)

µ(I)

∑

K∈Fk

log

(
µ(II0K)

µ(II0)

)
µ(II0K)

µ(II0)

+
1

k + 1

µ(II1)

µ(I)

∑

K∈Fk

log

(
µ(II1K)

µ(II1)

)
µ(II1K)

µ(II1)

−
1

k + 1

µ(I ′I0)

µ(I ′)

∑

K∈Fk

log

(
µ(I ′I0K)

µ(I ′I0)

)
µ(I ′I0K)

µ(I ′I0)

−
1

k + 1

µ(I ′I1)

µ(I ′)

∑

K∈Fk

log

(
µ(I ′I1K)

µ(I ′I1)

)
µ(I ′I1K)

µ(I ′I1)

∣∣∣∣∣

=

∣∣∣∣
h(pn) − h(qn)

k + 1
+

1

k + 1

((
µ(II0)

µ(I)
−

µ(I ′I0)

µ(I ′)

)
ak

n

+

(
µ(II1)

µ(I)
−

µ(I ′I1)

µ(I ′)

)
bk
n

)∣∣∣∣

≤
|h(pn) − h(qn)|

k + 1
+

∣∣∣∣
1

k + 1

(
µ(II0)

µ(I)
−

µ(I ′I0)

µ(I ′)

)
(ak

n − bk
n)

∣∣∣∣.

We can rewrite (4) in the following way:

|ak+1
n−1 − bk+1

n−1|

k + 1
≤

|h(pn) − h(qn)|

k + 1
+ |pn − qn|

|ak
n − bk

n|

k

(
1 −

1

k + 1

)

and thus,

(5) ∆k+1
n−1 ≤

|h(pn) − h(qn)|

k + 1
+ |pn − qn|

(
1 −

1

k + 1

)
∆k

n.

Take ε > 0. By Lemma 2.3, for k ≥ k0 we have

(6) ∆k+1
n−1 ≤ min

{
ε ,

(
1 −

1

2(k + 1)

)
∆k

n

}
.

We use a recursion argument to finish the proof the lemma. First observe
that if for some ℓ ∈ {1, . . . , k − k0} we have

(7) ∆k−ℓ
n+ℓ < ε

then we will also have
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∆k−ℓ+1
n+ℓ−1 < min

{
ε,

(
1 −

1

2(k + 1)

)
∆k−ℓ

n+ℓ

}
≤ ε

by (6), and therefore ∆k
n < ε.

On the other hand, if (7) does not hold for any ℓ ∈ {1, . . . , k − k0} then
by (6) we get

∆k−ℓ+1
n+ℓ−1 ≤

(
1 −

1

2(k − ℓ + 1)

)
∆k−ℓ

n+ℓ

and finally

(8) ∆k
n ≤

k+1∏

ℓ=k0

(
1 −

1

2(ℓ + 1)

)
log 2,

which becomes strictly smaller than ε if k is large enough, and the proof is
complete.

We will also use the following two theorems of [BH02] that we include
without proof for the convenience of the reader (a direct proof—without
using these theorems—is possible but much longer).

Theorem 2.5 ([BH02]). Let m be a probability measure on [0, 1)D equip-

ped with the filtration of ℓ-adic cubes, ℓ ∈ N. Then

dim∗(m) ≤ h∗(m).

Moreover , the following properties are equivalent :

1. dim∗(m) = h∗(m).
2. dim∗(m) = dim∗(m) = h∗(m).
3. There exists a subsequence (nk)k∈N such that for m-almost every

x ∈ [0, 1)D,

lim
k→∞

log m(Ink
(x))

−nk log ℓ
= dim∗(m).

Theorem 2.6 ([BH02]). We also have

h∗(m) ≤ Dim∗(m),

and the following properties are equivalent :

1. Dim∗(m) = h∗(m).
2. Dim∗(m) = Dim∗(m) = h∗(m).
3. There exists a subsequence (nk)k∈N such that for m-almost every

x ∈ [0, 1)D,

lim
k→∞

log m(Ink
(x))

−nk log ℓ
= Dim∗(m).

3. Proofs of the theorems. To prove Theorem 1.2 we will use the
following strong law of large numbers (cf. [HH80]).
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Theorem 3.1 (Law of Large Numbers). Let (Xn)n∈N be a sequence

of real random variables uniformly bounded in L2 on a probability space

(X,B, P ) and let (Fn)n∈N be an increasing sequence of σ-subalgebras of B

such that Xn is measurable with respect to Fn for all n ∈ N. Then

(9) lim
n→∞

1

n

n∑

k=1

(Xk − E(Xk | Fk−1)) = 0 P -almost surely.

We point out that the assumptions on the random variables are not
optimal but the result will be sufficient for our goal. The space here is K, the
filtration will be the dyadic one, and µ will take the place of the probability
measure P .

Proof of Theorem 1.2. Consider the random variables Xn, n ∈ N, defined
on K by

Xn(x) = log
µ(In(x))

µ(In−1(x))
,

where, for x ∈ K, we have denoted by In(x) the unique element of Fn

containing x. Theorem 3.1 implies that for all positive p,

(10) lim
n→∞

1

n+1

n∑

j=1

(
1

p

p∑

k=1

[Xjp+k−E(Xjp+k | Fjp)]

)
=0 µ-almost surely.

On the other hand, on each I ∈ Fn we have

(11)
1

p

p∑

k=1

E(Xnp+k | Fnp) =
1

p

∑

K∈Fp

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)
.

By Proposition 2.4, for every ε > 0 there exists p ∈ N such that for all n ∈ N

and all I in Fnp,

(12)

∣∣∣∣
1

p

∑

K∈Fp

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)
− cn

∣∣∣∣ < ε,

where cn = p−1
E{

∑
K∈Fp

log(µ(IK)/µ(I))} is a constant depending only

on n and on the chosen p but not on the cylinder I of Fn.
It is also easy to see that the variables (Xn)n∈N are uniformly bounded

in L2(µ). We deduce, using (10) and (11), that for every ε > 0 there exists
p ∈ N and a sequence (cn)n∈N of real numbers such that

−ε < lim inf
n→∞

1

n + 1

n∑

j=1

(
1

p

p∑

k=1

Xjp+k − cj

)
(13)

≤ lim sup
n→∞

1

n + 1

n∑

j=1

(
1

p

p∑

k=1

Xjp+k − cj

)
< ε
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µ-almost everywhere on K. This implies that

lim inf
n→∞

−1

n + 1

n∑

j=1

cj − ε < lim inf
n→∞

−1

p

1

n + 1

n∑

j=1

p∑

k=1

Xjp+k(14)

< lim inf
n→∞

−1

n + 1

n∑

j=1

cj + ε

and

lim sup
n→∞

−1

n + 1

n∑

j=1

cj − ε < lim sup
n→∞

−1

p

1

n + 1

n∑

j=1

p∑

k=1

Xjp+k(15)

< lim sup
n→∞

−1

n + 1

n∑

j=1

cj + ε

µ-almost everywhere on K. If we set

c = lim inf
n→∞

−1

(n + 1) log 2

n∑

j=1

cj , c = lim sup
n→∞

−1

(n + 1) log 2

n∑

j=1

cj ,

we deduce from (14) and (15) that dim∗(µ) = c and Dim∗(µ) = c.
Furthermore, the inequalities (13) imply that for every positive ε there

is a strictly increasing sequence (nl)l∈N of natural numbers satisfying

−ε < lim inf
l→∞

−1

nl + 1

nl∑

j=1

(
1

p

p∑

k=1

Xjp+k

)
− c

≤ lim sup
l→∞

−1

nl + 1

nl∑

j=1

(
1

p

p∑

k=1

Xjp+k

)
− c < ε

for µ-almost all x ∈ K. One easily proves (using, for instance, Cantor’s
diagonal argument) that there exists a strictly increasing sequence (nl)l∈N

of natural numbers such that

lim
l→∞

−1

nl log 2
log µ(Inl

(x)) = dim∗(µ) for µ-almost all x ∈ K.

Similarly, there exists a strictly increasing sequence (n̂l)l∈N of natural
numbers such that

lim
l→∞

−1

n̂l log 2
log µ(In̂l

(x)) = Dim∗(µ) for µ-almost all x ∈ K.

We use Theorems 2.5 and 2.6 to finish the proof.

To prove Theorem 1.3 we will use Proposition 2.4 and Lemma 3.1.

Proof of Theorem 1.3. Take ε > 0 and let (pn, qn)n∈N and (p′n, q′n)n∈N be
two sequences of weights satisfying 0 < pn, qn, p′n, q′n < 1 for all n ∈ N and

‖(pn, qn)n∈N − (p′n, q′n)n∈N‖∞ < ζ.
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We denote by µ and µ′ the measures corresponding to these two sequences
of weights. We will show that

|dim∗(µ) − dim∗(µ
′)| < ε,

if ζ is small enough.
It follows from Proposition 2.4 that there exist a natural number p large

enough and two sequences (cn)n∈N, (c′n)n∈N of real numbers such that
∣∣∣∣
1

p

∑

K∈Fp

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)
− cn

∣∣∣∣ <
ε

4

and ∣∣∣∣
1

p

∑

K∈Fp

log

(
µ′(IK)

µ′(I)

)
µ′(IK)

µ′(I)
− c′n

∣∣∣∣ <
ε

4

for all cylinders I ∈ Fnp and all n ∈ N. Since p is a fixed finite number it
suffices to take ζ small in order to have

∣∣∣∣
1

p

∑

K∈Fp

log

(
µ(IK)

µ(I)

)
µ(IK)

µ(I)
−

1

p

∑

K∈Fp

log

(
µ′(IK)

µ′(I)

)
µ′(IK)

µ′(I)

∣∣∣∣ <
ε

2

for all I ∈ Fnp and all n ∈ N. Hence,

−ε < lim inf
n→∞

1

n + 1

n∑

j=1

|cj − c′j| ≤ lim sup
n→∞

1

n + 1

n∑

j=1

|cj − c′j | < ε.

Now we deduce from (14) and (15) that |dim∗(µ) − dim∗(µ
′)| < ε and

|Dim∗(µ) − Dim∗(µ
′)| < ε, which completes the proof.

The hyphothesis on the markovian structure of the measures µ and µ′

cannot be omitted as we show in the following section.

4. A counterexample. For every ε > 0 we construct two dyadic
doubling measures µ and ν on K such that if

Xn(x) = log
µ(In(x))

µ(In−1(x))
, Yn(x) = log

ν(In(x))

ν(In−1(x))
, n ∈ N,

then

(16) sup
n∈N

‖Xn − Yn‖L∞ < ε

and, nevertheless, |dim∗(µ)− dim∗(ν)| > 1/4. A first example was proposed
to us by Professor Alano Ancona; the proof provided here is of a similar
nature.

The construction is carried out in two stages. We fix two Bernoulli mea-
sures satisfying (16) and we use a recurrent process to modify them in order
to get the corresponding dimensions very different.
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For I ∈ Fn we denote by Î the unique cylinder of the (n−1)th generation
Fn−1 containing I. Relation (16) can now be reformulated as

(17)

∣∣∣∣
µ(I)

µ(Î)
:
ν(I)

ν(Î)
− 1

∣∣∣∣ < ε for all cylinders I of
⋃

n∈N

Fn.

The starting point. Take ε > 0 and λ0 the Lebesgue (uniform) measure
(of dimension 1) on K.

Consider the Bernoulli measure ̺0 of weight 1/2 − ε, i.e. such that for
I ∈ Fn, n ∈ N,

(18) ̺0(II0) = (1/2 − ε)̺(I), ̺0(II1) = (1/2 + ε)̺(I).

Put µ0 = λ0 and ν0 = ̺0. By construction the measures λ0 and ̺0 satisfy
condition (16), are exact and doubling on the dyadics. Moreover, we have

dim ̺0 = h∗(̺) = −
1/2 − ε

log 2
log

(
1

2
− ε

)
−

1/2 + ε

log 2
log

(
1

2
+ ε

)
.

It is clear that λ0 and ̺0 are singular. Furthermore by the Shannon–MacMil-
lan formula (cf. for instance [Zin97]),

lim
n→∞

log ̺0(In(x))

n
= h∗(̺0) ̺0-almost everywhere on K.

Hence, we can find n1 ∈ N and a partition {F0, F1} of Fn1
such that:

• F0 ∪ F1 = Fn1
,

•

∣∣∣∣
log ̺0(I)

n
+ h∗(̺0)

∣∣∣∣ < ε for all I ∈ F1,

•

∣∣∣∣
log λ0(I)

n
+ log 2

∣∣∣∣ < ε for all I ∈ F0,

•
∑

I∈F1

̺0(I) > 1 − ε,

•
∑

I∈F0

λ0(I) > 1 − ε.

Let us also define the Bernoulli measures ̺1 and λ1 on K by

(19)
̺1(I0) = δ, ̺1(I1) = 1 − δ,

λ1(I0) = δ(1 − ε), λ1(I1) = 1 − δ(1 − ε),

where δ > 0 will be fixed later.

Going on with the construction. For Ii1...in ⊂ I ∈ F1 we put

(20)
µ1(Ii1...in) = µ0(Ii1...in1

)λ1(Iin1
...in),

ν1(Ii1...in) = ν0(Ii1...in1
)̺1(Iin1

...in),
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and for Ii1...in ⊂ I ∈ F0,

(21) µ1(Ii1...in) = µ0(Ii1...in), ν1(Ii1...in) = ν0(Ii1...in).

We remark that for I = Ii1...in with n ≤ n1 we have µ1(I) = µ0(I) and
ν1(I) = ν0(I).

The restrictions of the measures µ1 and ν1 to cylinders of Fn1
=

F0 ∪ F1 are Bernoulli measures of different dimensions, so they are sin-
gulars. Therefore, we can find n2 ∈ N and a partition {F00, F01, F10, F11} of
Fn2

such that

• I ∈ Fj0 ∪Fj1 if and only if there is J ∈ Fj such that I ⊂ J , j ∈ {0, 1},

•

∣∣∣∣
log µ1(I)

n2
+ log 2

∣∣∣∣ < ε2 for all I ∈ F00,

•

∣∣∣∣
log ν1(I)

n2
+ h∗(̺1)

∣∣∣∣ < ε2 for all I ∈ F11,

•
∑

J∈F00

J⊂I

µ1(J) > (1−ε2)µ1(I) and
∑

J∈F01

J⊂I

ν1(J) > (1−ε2)ν1(I) for I ∈ F0,

•
∑

J∈F10

J⊂I

µ1(J) > (1−ε2)µ1(I) and
∑

J∈F11

J⊂I

ν1(J) > (1−ε2)ν1(I) for I ∈ F1.

If I ∈ F00 ∪ F10 and J ∈
⋃

n∈N
Fn, we put

µ2(IJ) = µ1(I)λ0(J), ν2(IJ) = ν1(I)̺0(J).

If I ∈ F01 ∪ F11 and J ∈
⋃

n∈N
Fn we put

µ2(IJ) = µ1(I)λ1(J), ν2(IJ) = ν1(I)̺1(J).

Finally, for I ∈ Fn with n ≤ n2, we keep the same mass distribution
µ2(I) = µ1(I) and ν2(I) = ν1(I).

Suppose the measures µk, νk and the partition {Fi1...ik : i1, . . . , ik
∈ {0, 1}} of Fnk

are constructed. As in the two first stages, the restric-
tions of the measures µk and νk to each cylinder of Fnk

are supposed to be
Bernoulli measures: either λ0 and ̺0 or λ1 and ̺1, respectively.

The measures µk and νk are mutually singular. Hence, there is nk+1 > nk

and a partition {Fi1...ik+1
: i1, . . . , ik+1 ∈ {0, 1}} of Fnk+1

satisfying

• for any i1, . . . , ik ∈ {0, 1}, I ∈ Fi1...ik0 ∪ Fi1...ik1 if and only if there is
J ∈ Fi1...ik such that I ⊂ J ,

•

∣∣∣∣
log µk(I)

nk+1
+ log 2

∣∣∣∣ < εk+1 for all I ∈ Fi1...ik−100,

•

∣∣∣∣
log νk(I)

n2
+ h∗(̺1)

∣∣∣∣ < εk+1 for all I ∈ Fi1...ik−111,
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•
∑

J∈Fi1...ik−100

J⊂I

µk(J) > (1 − εk+1)µk(I) and

∑

J∈Fi1...ik−101

J⊂I

νk(J) > (1 − εk+1)νk(I) for all cylinders I ∈ Fi1...ik−10,

•
∑

J∈Fi1...ik−110

J⊂I

µk(J) > (1 − εk+1)µk(I) and

∑

J∈Fi1...ik−111

J⊂I

νk(J) > (1 − εk+1)νk(I) for all cylinders I ∈ Fi1...ik−11.

If I ∈ Fi1...ik0, i1, . . . , ik ∈ {0, 1}, then for all J ∈
⋃

n∈N
Fn we put

µk+1(IJ) = µk(I)λ0(J), νk+1(IJ) = νk(I)̺0(J).

If I ∈ Fi1...ik1, i1, . . . , ik ∈ {0, 1}, then for all J ∈
⋃

n∈N
Fn we put

µk+1(IJ) = µk(I)λ1(J), νk+1(IJ) = νk(I)̺1(J).

Properties of the measures defined. It is clear that the sequences (µn)n∈N

and (νn)n∈N converge towards two probability measures µ and ν respec-
tively. By the construction µ and ν are doubling on the dyadics, exact and
satisfy (16).

On the other hand, clearly dim∗(µ) = 1 and it is not difficult to see that
dim∗ ν ≤ 1/2 if δ is small enough, since

lim inf
n→∞

− log ν(In(x))

n log 2
=

h∗(̺1)

log 2
ν-almost everywhere.

Even more, the measures µ and ν satisfy the conclusion of Theorem 1.2.
The counterexample is complete.
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H. Poincaré 23 (1987), 289–296.
[KP76] J.-P. Kahane et J. Peyrière, Sur certaines martingales de Benoit Mandelbrot ,

Adv. Math. 22 (1976), 131–145.
[Mat95] P. Mattila, Geometric Measure Theory, Cambridge Univ. Press, 1995.
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45067 Orléans Cedex 2, France
E-mail: athanasios.batakis@univ-orleans.fr

Received 22 April 2003;

revised 10 August 2005 (4334)


