VOL. 104

2006

NO. 2

RIGHT CLOSING ALMOST CONJUGACY FOR G-SHIFTS OF FINITE TYPE

BҮ

ANDREW DYKSTRA (College Park, MD)

Abstract. A *G*-shift of finite type (*G*-SFT) is a shift of finite type which commutes with the continuous action of a finite group *G*. For irreducible *G*-SFTs we classify right closing almost conjugacy, answering a question of Bill Parry.

1. Introduction. For a finite group G, a G-shift of finite type (G-SFT) is a shift of finite type (X, σ) together with a continuous G-action on X which commutes with the shift σ . For irreducible shifts of finite type, right closing almost conjugacy is classified in terms of entropy, period, and an algebraic invariant called ideal class [6]. Bill Parry [15] posed the following question: what additional invariants are necessary to classify right closing almost conjugacy for irreducible G-SFTs? In Theorem 4.1 we show that for mixing G-SFTs where the G-action is free, there are no additional invariants. In Section 5 we generalize Theorem 4.1 to mixing G-SFTs where the G-action is no longer assumed to be free. In Section 6 we generalize further to irreducible but periodic G-SFTs. As a corollary to our results we classify regular isomorphism for G-Markov chains with respect to measures of maximal entropy.

Without the right closing assumption, almost conjugacy for irreducible G-SFTs was classified by Roy Adler, Bruce Kitchens and Brian Marcus [1]. They were working in a more general setting, but by modifying the proofs given here we can arrive at the same classification of almost conjugacy for irreducible G-SFTs (as was also done in [14]).

I thank Mike Boyle for many helpful discussions about this problem.

2. Background and definitions. We assume some familiarity with shifts of finite type; [11] and [12] provide more complete backgrounds. All of

²⁰⁰⁰ Mathematics Subject Classification: Primary 37B10; Secondary 05C50, 20C05, 58E40.

 $Key\ words\ and\ phrases:$ shift of finite type, right closing almost conjugacy, skew product, group action.

Partially supported by NSF grant 0400493.

the free G-SFTs we consider arise out of skew products, as in [7]. The study of skew products dates back to von Neumann, in the context of ergodic measure preserving transformations on a probability space. For an example of more recent work with skew products in ergodic theory, see [10]. Also see [16] and [17] (and their references) for recent results with skew products in Livšic theory.

2.1. Shifts of finite type. Let A be an $n \times n$ matrix over the nonnegative integers \mathbb{Z}_+ . Then A is the adjacency matrix for a directed graph, \mathcal{G}_A , which has vertices $\{v_1, \ldots, v_n\}$, and the number of edges from v_I to v_J is A_{IJ} . Let $\mathcal{E}_A = \{\text{edges in } \mathcal{G}_A\}$, and put

 $\Sigma_A = \{ x = (x_i)_{i \in \mathbb{Z}} \in (\mathcal{E}_A)^{\mathbb{Z}} : \text{each } x_i x_{i+1} \text{ is a path in } \mathcal{G}_A \}.$

With the appropriate topology (the relative of the product of the discrete topology on \mathcal{E}_A), Σ_A is a compact metric space. The *shift* on Σ_A is the homeomorphism $\sigma: \Sigma_A \to \Sigma_A$ given by $(\sigma x)_i = x_{i+1}$. The pair (Σ_A, σ) is the *edge shift of finite type* (*edge SFT*) defined by A. Where σ is understood, we write just Σ_A to denote (Σ_A, σ) .

A map between SFTs $\pi: \Sigma_A \to \Sigma_B$ is a continuous function such that $\pi \circ \sigma(x) = \sigma \circ \pi(x)$ for all $x \in \Sigma_A$. The map π is one block if it is induced by a function which sends each edge of \mathcal{G}_A to an edge of \mathcal{G}_B . A factor map is a surjective map. An injective factor map is a conjugacy.

The matrix A is *irreducible* if for each entry A_{IJ} of A there is a natural number N such that $(A^N)_{IJ} > 0$. If A is irreducible we also say that the graph \mathcal{G}_A and the edge SFT Σ_A are irreducible. The matrix A is *primitive* if there is a natural number N such that for each entry A_{IJ} of A, $(A^N)_{IJ} > 0$. If A is primitive we also say that the graph \mathcal{G}_A is primitive; in this case the edge SFT Σ_A is *mixing*.

If λ is the Perron eigenvalue of A, then the *entropy* of Σ_A is $\log \lambda$. If $v = [v_1, \ldots, v_n]^T$ is a right Perron eigenvector with entries in the ring $\mathbb{Z}[1/\lambda]$, then the *ideal class* of Σ_A is the class of the $\mathbb{Z}[1/\lambda]$ -ideal which is generated by the components v_1, \ldots, v_n of v. A point $x \in \Sigma_A$ is *periodic* if there exists a natural number p such that $\sigma^p(x) = x$. In this case p is a *period* of x; the smallest period of x is called the *least period* of x. We define the period of the edge SFT Σ_A to be the greatest common divisor of the set of periods of periodic points in Σ_A . The period of the graph \mathcal{G}_A is the period of Σ_A .

Any SFT (X, σ) is conjugate to some edge SFT (Σ_A, σ) . Then the terms *irreducible*, *mixing*, *entropy*, *ideal class* and *period* apply to X exactly as they apply to Σ_A . A point $x \in X$ is *doubly transitive* if both sets $\{\sigma^n(x) : n \ge 0\}$ and $\{\sigma^n : n \le 0\}$ are dense in X. Two points $x = (x_n)_{n \in \mathbb{Z}}$ and $y = (y_n)_{n \in \mathbb{Z}}$ in X are *left asymptotic* if there is an integer n such that $x_k = y_k$ for all $k \le n$. A map between SFTs $\pi : X \to Y$ is 1-1 *a.e.* if it is injective on the set

of doubly transitive points in X. The map π is *right closing* if, for each pair $x, y \in X$ of distinct left asymptotic points, $\pi(x) \neq \pi(y)$. We say the SFTs X and Y are *right closing almost conjugate as SFTs* if there is a third SFT Z which factors onto both X and Y by factor maps which are 1-1 a.e. and right closing.

2.2. *G*-shifts of finite type. Let *G* be a finite group. A *G*-SFT is an SFT (X, σ) together with a continuous right *G* action on *X* such that $\sigma(x \cdot g) = \sigma(x) \cdot g$ for all $x \in X$ and $g \in G$. We say the *G*-SFT *X* (or the *G*-action on *X*) is free if, for each nonidentity element *g* of *G*, $x \cdot g \neq x$ for all $x \in X$. We say *X* (or the *G*-action on *X*) is faithful if, for each nonidentity element *g* of *G*, $x \cdot g \neq x$ for all $x \in X$. We say *X* (or the *G*-action on *X*) is faithful if, for each nonidentity element *g* of *G*, there exists some $x \in X$ such that $x \cdot g \neq x$. If *Y* is another *G*-SFT, then a *G*-map $\pi: X \to Y$ is a map between SFTs such that $\pi(x \cdot g) = \pi(x) \cdot g$ for all $x \in X$ and $g \in G$. A *G*-factor map is a surjective *G*-map and a *G*-conjugacy is an injective *G*-factor map. Two *G*-SFTs *X* and *Y* are right closing almost conjugate as *G*-SFTs if there is a third *G*-SFT *Z* which factors onto both *X* and *Y* by 1-1 a.e. and right closing *G*-factor maps. We point out that right closing almost conjugate *G*-SFTs. The terms we define above for SFTs, such as irreducible, mixing, entropy, ideal class and period, apply to a *G*-SFT *X* as they apply to *X* as an SFT.

2.3. Skew products and matrices over \mathbb{Z}_+G . By $\mathbb{Z}G$ we mean the integral group ring of G. We write an element x of $\mathbb{Z}G$ as $x = \sum_{g \in G} n_g g$, where each $n_g \in \mathbb{Z}$. Then for each g in G we define $\pi_g(x) = n_g$. If $\pi_g(x) > 0$, then g is a summand of x. If $\pi_g(x) > 0$ for each g in G, then we say x is very positive and write $x \gg 0$. The augmentation of x is $|x| = \sum_{g \in G} \pi_g(x)$. If A is a matrix over $\mathbb{Z}G$, then $A \gg 0$ if $A_{IJ} \gg 0$ for each entry A_{IJ} of A. The augmentation |A| is the matrix given by $|A|_{IJ} = |A_{IJ}|$ for each entry A_{IJ} of A. We let

$$\mathbb{Z}_+G = \{ x \in \mathbb{Z}G : \pi_q(x) \ge 0 \text{ for each } g \in G \}.$$

If \mathcal{G} is a directed graph and l is a labeling of the edges of \mathcal{G} by elements of G, then we say (\mathcal{G}, l) is a G-labeled graph. If A is a square matrix over \mathbb{Z}_+G , then |A| is a square matrix over \mathbb{Z}_+ which, as before, is the adjacency matrix for a directed graph $\mathcal{G}_{|A|}$. The matrix A corresponds to a G-labeled graph $(\mathcal{G}_{|A|}, l_A)$, where l_A is defined as follows: for each pair I, J of vertices in $\mathcal{G}_{|A|}, A_{IJ} = \sum n_g g$ if and only if for each $g \in G$ exactly n_g of the edges from I to J are l_A -labeled g. The edge labeling l_A determines a function $\tau_A \colon \Sigma_{|A|} \to G$ by $\tau_A(x) = l_A(x_0)$ for each $x = (x_n)_{n \in \mathbb{Z}}$ in $\Sigma_{|A|}$. The function τ_A is locally constant: for each $x \in \Sigma_{|A|}, \tau_A$ is constant on a neighborhood of x (here τ_A is constant on $\{y \in \Sigma_{|A|} : y_0 = x_0\}$). The function τ_A is the skewing function defined by A. Given two locally constant functions $\tau_1, \tau_2 \colon \Sigma_{|A|} \to G$, we say τ_1 is *cohomologous* to τ_2 if there is another locally constant $h \colon \Sigma_{|A|} \to G$ such that

$$\tau_1(x) = [h(\sigma x)]^{-1} \cdot \tau_2(x) \cdot h(x)$$

for each $x \in \Sigma_{|A|}$.

The \mathbb{Z}_+G matrix A determines an automorphism $S_A \colon \Sigma_{|A|} \times G \to \Sigma_{|A|} \times G$ by

$$S_A(x,g) = (\sigma(x), \tau_A(x) \cdot g),$$

where τ_A is the skewing function defined by A. We say the dynamical system $(\Sigma_{|A|} \times G, S_A)$ is the *skew product* defined by A. There is a free right G-action on $(\Sigma_{|A|} \times G, S_A)$ which commutes with the automorphism S_A , given by $g: (x, h) \mapsto (x, h \cdot g)$. Often we write just S_A as an abbreviation for the skew product $(\Sigma_{|A|} \times G, S_A)$.

We can present the skew product S_A as a free *G*-SFT (which we also denote by S_A) as follows. As an edge SFT, S_A has graph \mathcal{G} , where the vertex set of \mathcal{G} is the product of the vertex set of $\mathcal{G}_{|A|}$ with G, and for each edge e from I to J in $\mathcal{G}_{|A|}$, for each g in G, there is an edge from (I, g) to $(J, l_A(e) \cdot g)$ in \mathcal{G} . For each pair v, v' of vertices of \mathcal{G} we choose an ordering of the edges from v to v', and let g in G act by the one block map given by the unique automorphism of \mathcal{G} which acts on the vertex set of \mathcal{G} by $(J, h) \mapsto (J, h \cdot g)$, and which is order preserving.

In this way any skew product is a free G-SFT. Conversely, any free G-SFT is G-conjugate to a skew product S_A for some \mathbb{Z}_+G matrix A. We say a matrix A over \mathbb{Z}_+G is very primitive if there exists a natural number N such that $A^N \gg 0$. One easily checks that A is very primitive if and only if the G-SFT S_A is mixing.

Square matrices A and B over \mathbb{Z}_+G are strong shift equivalent (SSE) over \mathbb{Z}_+G if they are connected by a string of elementary moves of the following sort: there are R and S over \mathbb{Z}_+G such that A = RS and B = SR. Parry has shown that A and B are SSE over \mathbb{Z}_+G if and only if the skew products S_A and S_B are G-conjugate [7, Prop. 2.7.1].

3. Some useful results. In this section we collect some results to be used later. We begin with the known classification of right closing almost conjugacy for irreducible SFTs, which is a corollary of [6, Theorem 7.1].

THEOREM 3.1. Irreducible SFTs are right closing almost conjugate as SFTs if and only if they have the same ideal class, entropy and period.

LEMMA 3.2 (\mathbb{Z}_+G Masking Lemma). Let A and C be matrices over \mathbb{Z}_+G such that the skew product S_A is G-conjugate to a subsystem of the skew product S_C . Then there is a matrix B over \mathbb{Z}_+G such that A is a principal submatrix of B, and S_B and S_C are G-conjugate skew products. *Proof.* If S_A is *G*-conjugate to a subsystem of S_C , then *A* is SSE over \mathbb{Z}_+G to a principal submatrix of *C* [7, Prop. 2.7.1]. Nasu's original Masking Lemma for matrices over \mathbb{Z} [13, Lemma 3.18] also holds for matrices over an arbitrary semiring containing 0 and 1 [5, Appendix 1]; in particular it holds for matrices over \mathbb{Z}_+G . This means there is a matrix *B* over \mathbb{Z}_+G such that *A* is a principal submatrix of *B*, and *B* is SSE over \mathbb{Z}_+G to *C*; S_B and S_C are *G*-conjugate skew products by [7, Prop. 2.7.1].

LEMMA 3.3. Let A and B be matrices over \mathbb{Z}_+G . A G-factor map $\pi: S_A \to S_B$ induces a factor map $\overline{\pi}: \Sigma_{|A|} \to \Sigma_{|B|}$ such that the skewing function τ_A is cohomologous to $\tau_B \circ \overline{\pi}$. Conversely, if $\overline{\pi}: \Sigma_{|A|} \to \Sigma_{|B|}$ is a factor map such that τ_A is cohomologous to $\tau_B \circ \overline{\pi}$, then $\overline{\pi}$ induces a G-factor map $\pi: S_A \to S_B$. The G-map π is 1-1 a.e. and right closing if and only if the map $\overline{\pi}$ is 1-1 a.e. and right closing.

Proof. Let $\pi: S_A \to S_B$ be a *G*-factor map. Write $\pi = \pi_1 \times \pi_2$, so that for an element $(x,g) \in \Sigma_{|A|} \times G$, $\pi(x,g) = (\pi_1(x,g), \pi_2(x,g))$. Let *e* denote the identity element of *G*. Then

$$\pi\colon (x,g)\mapsto (\pi_1(x,e),\pi_2(x,e)\cdot g),$$

since π intertwines *G*-actions. For $x \in \Sigma_{|A|}$, set $\overline{\pi}(x) = \pi_1(x, e)$ and $h(x) = \pi_2(x, e)$, so that $\pi(x, g) = (\overline{\pi}(x), h(x) \cdot g)$. Look componentwise at the equality $\pi \circ S_A = S_B \circ \pi$. The first component shows that $\overline{\pi} \colon \Sigma_{|A|} \to \Sigma_{|B|}$ is a well defined factor map. The second component shows that

$$\tau_A(x) = [h(\sigma x)]^{-1} \cdot (\tau_B \circ \overline{\pi})(x) \cdot h(x)$$

for each $x \in \Sigma_{|A|}$. Hence τ_A is cohomologous to $\tau_B \circ \overline{\pi}$.

Conversely, suppose $\overline{\pi}: \Sigma_{|A|} \to \Sigma_{|B|}$ is a factor map such that τ_A is cohomologous to $\tau_B \circ \overline{\pi}$. Then there is a locally constant map $h: \Sigma_{|A|} \to G$ such that for each $x \in \Sigma_{|A|}, \tau_A(x) = [h(\sigma x)]^{-1} \cdot (\tau_B \circ \overline{\pi})(x) \cdot h(x)$. Define $\pi: \Sigma_{|A|} \times G \to \Sigma_{|B|} \times G$ by $\pi(x,g) = (\overline{\pi}(x), h(x) \cdot g)$. Observe that π is a *G*-factor map.

For the last statement of the lemma, consider the following commutative diagram, where the maps $q_A \colon S_A \to \Sigma_A$ and $q_B \colon S_B \to \Sigma_B$ are each given by $(x, g) \mapsto x$:

$$\begin{array}{ccc} S_A & \xrightarrow{\pi} & S_B \\ q_A & & & & & \\ q_A & & & & \\ \Sigma_{|A|} & \xrightarrow{\overline{\pi}} & \Sigma_{|B|} \end{array}$$

Both maps q_A and q_B are |G|-to-1 everywhere. Therefore π is 1-1 a.e. if and only if $\overline{\pi}$ is 1-1 a.e. For the closing condition, note that if ϕ and ψ are maps between irreducible SFTs, then $\phi \circ \psi$ is right closing if and only if both ϕ and ψ are right closing [6, Props. 4.10 and 4.11]. Because the constant-to-one maps q_A and q_B are in particular right closing [11, Prop. 4.3.4], it follows that π is right closing if and only if $\overline{\pi}$ is right closing.

If (\mathcal{G}, l) is a *G*-labeled graph, then for a cycle $s = s_1 \dots s_p$ in \mathcal{G} we define the *weight* of *s* by $l(s) = l(s_1) \cdots l(s_p)$. The *ratio group* Δ_l is the subgroup of *G* given by

 $\Delta_l = \{l(s) \cdot l(s')^{-1} : s, s' \text{ are cycles in } \mathcal{G} \text{ of the same length}\}.$

THEOREM 3.4 (ZG Replacement Theorem). Let (\mathcal{G}, l) and (\mathcal{G}', l') be irreducible G-labeled graphs of the same period which define edge SFTs Σ and Σ' (respectively) and skewing functions $\tau \colon \Sigma \to G$ and $\tau' \colon \Sigma' \to G$ given by $\tau(x) = l(x_0)$ and $\tau'(x) = l'(x_0)$. Let $\pi \colon \Sigma \to \Sigma'$ be a factor map such that τ is cohomologous to $\tau' \circ \pi$. If $\Delta_l = \Delta_{l'}$, then there is a 1-1 a.e. factor map $\overline{\pi} \colon \Sigma \to \Sigma'$ such that τ is cohomologous to $\tau' \circ \overline{\pi}$. Moreover, if π is right closing, then $\overline{\pi}$ can be taken to be right closing as well.

In [4, Theorem 6.1], Ashley proves a version of his (\mathbb{Z}) Replacement Theorem for maps between irreducible Markov chains which can be interpreted as follows. Let \mathbb{R}^+ denote the multiplicative group of positive real numbers. Let (\mathcal{G}, l) and (\mathcal{G}', l') be irreducible \mathbb{R}^+ -labeled graphs of the same period, which define irreducible SFTs Σ and Σ' and locally constant functions $\tau \colon \Sigma \to \mathbb{R}^+$ and $\tau' \colon \Sigma' \to \mathbb{R}^+$ where $\tau(x) = l(x_0)$ and $\tau'(x) = l'(x_0)$. If the ratio groups Δ_l and $\Delta_{l'}$ are equal (as multiplicative subgroups of \mathbb{R}^+), and $\pi \colon \Sigma \to \Sigma'$ is a factor map such that τ is cohomologous to $\tau' \circ \pi$, then there is a 1-1 a.e. factor map $\overline{\pi} \colon \Sigma \to \Sigma'$ such that τ is cohomologous to $\tau' \circ \overline{\pi}$. Moreover, if π is right closing, then $\overline{\pi}$ can be taken to be right closing as well.

If instead of \mathbb{R}^+ -labeled graphs we consider *G*-labeled graphs, then we have the statement of Theorem 3.4. To prove Theorem 3.4, one can easily check that Ashley's proof for \mathbb{R}^+ -labeled graphs goes through for *G*-labeled graphs as well.

THEOREM 3.5. Let X and Y be mixing free G-SFTs. Let $\pi: X \to Y$ be a G-factor map which is right closing. Then there is a G-factor map $\pi': X \to Y$ which is 1-1 a.e. and right closing.

Proof. Since X and Y are mixing free G-SFTs, assume without loss of generality that $X = S_A$ and $Y = S_B$ for very primitive matrices A and B over \mathbb{Z}_+G . By Lemma 3.3 the G-factor map π induces a map $\overline{\pi} \colon \Sigma_{|A|} \to \Sigma_{|B|}$ such that τ_A is cohomologous to $\tau_B \circ \overline{\pi}$. Since A and B are very primitive the periods of $\mathcal{G}_{|A|}$ and $\mathcal{G}_{|B|}$ are both 1, and furthermore $\Delta_{l_A} = \Delta_{l_B} = G$. So assume (by Theorem 3.4) that the map $\overline{\pi}$ is 1-1 a.e. and right closing. Again apply Lemma 3.3 to obtain a G-factor map $\pi' \colon S_A \to S_B$ which is 1-1 a.e. and right closing.

4. Right closing almost conjugacy for mixing free *G*-SFTs. For mixing SFTs, entropy and ideal class are a complete set of invariants of right closing almost conjugacy (Theorem 3.1). We show that there are no additional invariants of right closing almost conjugacy for mixing free *G*-SFTs.

THEOREM 4.1. Let X and Y be mixing free G-SFTs. Then the following are equivalent:

- (1) X and Y are right closing almost conjugate as G-SFTs.
- (2) X and Y are right closing almost conjugate as SFTs.
- (3) X and Y have the same entropy and ideal class.

Moreover, assuming (2) or (3), the common extension of X and Y in (1) can be taken to be a free G-SFT.

Proof. (2) \Leftrightarrow (3) follows from Theorem 3.1. Right closing almost conjugate *G*-SFTs are in particular right closing almost conjugate as SFTs, so $(1)\Rightarrow(2)$. It remains to show $(2)\Rightarrow(1)$.

Let X and Y be mixing free G-SFTs which are right closing almost conjugate as SFTs. Without loss of generality, assume that X and Y are skew products S_A and S_B for very primitive matrices A and B over \mathbb{Z}_+G . Let l_A , l_B , τ_A and τ_B denote the edge labelings and skewing functions defined by A and B, respectively (see Section 2). Since S_A and S_B are right closing almost conjugate as SFTs, they have the same entropy and ideal class (Theorem 3.1). The factor maps $q_A \colon S_A \to \Sigma_{|A|}$ and $q_B \colon S_B \to \Sigma_{|B|}$ given by $(x,g) \mapsto x$ are |G|-to-1 everywhere. In particular they preserve entropy and ideal class, so $\Sigma_{|A|}$ and $\Sigma_{|B|}$ have the same entropy and ideal class. Hence $\Sigma_{|A|}$ and $\Sigma_{|B|}$ are right closing almost conjugate as SFTs (Theorem 3.1).

Let $\Sigma_{|C|}$ be a common extension of $\Sigma_{|A|}$ and $\Sigma_{|B|}$ by 1-1 a.e. right closing factor maps $\overline{\pi}_1 \colon \Sigma_{|C|} \to \Sigma_{|A|}$ and $\overline{\pi}_2 \colon \Sigma_{|C|} \to \Sigma_{|A|}$:

Without loss of generality, assume the factor maps $\overline{\pi}_1$ and $\overline{\pi}_2$ are one block. Define edge labelings l_1 and l_2 on $\mathcal{G}_{|C|}$ by $l_1 = l_A \circ \overline{\pi}_1$ and $l_2 = l_B \circ \overline{\pi}_2$. The labelings l_1 and l_2 correspond to matrices C_1 and C_2 (respectively) over \mathbb{Z}_+G such that $|C_1| = |C_2| = |C|$. Define skewing functions $\tau_1 \colon \Sigma_{|C|} \to G$ and $\tau_2 \colon \Sigma_{|C|} \to G$ by $\tau_1(x) = l_1(x_0)$ and $\tau_2(x) = l_2(x_0)$. Define G-factor maps $\pi_1 \colon S_{C_1} \to S_A$ and $\pi_2 \colon S_{C_2} \to S_B$ by $\pi_1(x,g) = (\overline{\pi}_1(x),g)$ and $\pi_2(x,g) =$ $(\overline{\pi}_2(x),g)$. Let $q_1 \colon S_{C_1} \to \Sigma_{|C|}$ and $q_2 \colon S_{C_2} \to \Sigma_{|C|}$ be the factor maps $(x,g) \mapsto x$. Then the following diagram commutes:

The factor maps $\overline{\pi}_1$ and $\overline{\pi}_2$ are 1-1 a.e. and right closing, so the factor maps π_1 and π_2 are as well (Lemma 3.3). In particular S_{C_1} and S_{C_2} are mixing free G-SFTs, so C_1 and C_2 are very primitive. Let l be the $(G \times G)$ labeling $l = l_1 \times l_2$. Then l corresponds to a $\mathbb{Z}_+(G \times G)$ matrix whose augmentation is |C|. Call this matrix C. Let $\tau \colon \Sigma_{|C|} \to G \times G$ denote the skewing function given by $\tau(x) = l(x_0)$.

CLAIM 4.2. There is a vertex I in $\mathcal{G}_{|C|}$ and a natural number N such that there is a collection \mathcal{U} of paths of length N from I to I with the following properties:

- (1) For each g in G there are at least |G| paths $u \in \mathcal{U}$ with weights $l_1(u) = g$.
- (2) For each g in G there are at least |G| paths $u \in \mathcal{U}$ with weights $l_2(u) = g$.
- (3) For each $u = u_1 \cdots u_N \in \mathcal{U}$ the point $x^u \in \Sigma_{|C|}$, defined by $x_i^u = u_j$ if $i \equiv j \mod N$, has least period N.
- (4) If u and v are distinct paths in \mathcal{U} , then x^u and x^v are in different orbits under the shift.

To prove the claim, let α be the element of \mathbb{Z}_+G given by $\alpha = \sum_{g \in G} g$. Fix a vertex I in $\mathcal{G}_{|C|}$. Let η be the number of cycles of length 1 in $\mathcal{G}_{|C|}$, and choose a positive integer k large enough so that $k - \eta \geq |G|$. Since C_1 and C_2 are very primitive matrices there is a positive integer M = M(k) such that, for i = 1, 2 and for all $m \geq M, k \cdot \alpha$ is a summand of $(C_i^m)_{II}$. Let $N \geq M$ be a prime number. Let \mathcal{V} be the set of all N-paths from I to I. Each $v = v_1 \cdots v_N \in \mathcal{V}$ defines a point $x^v \in \Sigma_{|C|}$ by $x_i^v = v_j$ if $i \equiv j \mod N$. Since N is prime, each such x^v has least period either N or 1. Let $\mathcal{V}^1 = \{v \in V : x^v$ has least period 1\} and $\mathcal{U} = \mathcal{V} - \mathcal{V}^1$.

It remains to verify that \mathcal{U} satisfies the properties of the claim. Note that, for i = 1, 2, each monomial summand g of $(C_i^N)_{II}$ corresponds to a path $v \in \mathcal{V}$ with weight $l_i(v) = g$. Also, N was chosen so that $k \cdot \alpha$ is a summand of each $(C_i^N)_{II}$. So for i = 1, 2 and for each $g \in G$, there are at least k paths $v \in \mathcal{V}$ with weight $l_i(v) = g$. There are only η cycles of length 1 in $\mathcal{G}_{|C|}$, so in particular $|\mathcal{V}^1| \leq \eta$. But $k - \eta \geq |G|$. Hence, for i = 1, 2 and for each $g \in G$, there are at least k paths $u \in \mathcal{U}$ with weight $l_i(u) = g$, which verifies properties (1) and (2). Properties (3) and (4) are true by construction of \mathcal{U} . This proves the claim.

Now consider all points $x^u \in \Sigma_{|C|}$ such that $u \in \mathcal{U}$. Let $\overline{\Sigma}_{|C|}$ denote the smallest closed σ -invariant subset of $\Sigma_{|C|}$ containing all points of this form. Then $\overline{\Sigma}_{|C|} \times G$ is a closed S_C -invariant subset of $\Sigma_{|C|} \times G$, so it is a subsystem of the skew product S_C . Let \overline{S}_C denote this subsystem of S_C .

Construct a $(G \times G)$ -labeled graph $(\mathcal{H}, l_{\mathcal{H}})$ as follows. The vertex set of \mathcal{H} consists of N vertices, I_1, \ldots, I_N . For $j = 1, \ldots, N - 1$, draw exactly one edge starting at I_j and ending at I_{j+1} , and give this edge the $l_{\mathcal{H}}$ -label (e, e), where e is the identity element of G. From I_N to I_1 draw exactly $|\mathcal{U}|$ edges, call them $s_1, \ldots, s_{|\mathcal{U}|}$. Let $\mathcal{S} = \{s_1, \ldots, s_{|\mathcal{U}|}\}$, and fix a set bijection $\phi \colon \mathcal{S} \to \mathcal{U}$. For $s_i \in \mathcal{S}$, put

$$l_{\mathcal{H}}(s_i) = l(\phi(s_i)) = (l_1(\phi(s_i)), l_2(\phi(s_i))).$$

Let D be the $\mathbb{Z}_+(G \times G)$ adjacency matrix for the $(G \times G)$ -labeled graph $(\mathcal{H}, l_{\mathcal{H}})$. Observe that the set bijection $\phi \colon S \to \mathcal{U}$ induces a $(G \times G)$ conjugacy between S_D and \overline{S}_C . Assume without loss of generality that Dis a principal submatrix of C (Lemma 3.2), so that $(\mathcal{H}, l_{\mathcal{H}})$ is an induced sub-labeled graph of $(\mathcal{G}_{|C|}, l)$.

For each $g \in G$, at least |G| of the edges $s_i \in S$ have *l*-labels of the form (g, \cdot) , and at least |G| of the $s_i \in S$ have *l*-labels of the form (\cdot, g) (by definition). Therefore there is a way to permute the second coordinates of the *l*-labelings of edges in S so that each $(g, h) \in G \times G$ labels at least one $s_i \in S$. Equivalently, there exists a graph isomorphism \overline{P} of $\mathcal{G}_{|C|}$ which fixes all edges except those in S, and permutes the set S so that for any $(g, h) \in G \times G$, there is at least one edge $s_i \in S$ with

$$(l_1(s_i), l_2 \circ P(s_i)) = (g, h).$$

Fix a graph isomorphism \overline{P} with this property and set l' to be the $(G \times G)$ labeling of $\mathcal{G}_{|C|}$ given by $l' = l_1 \times (l_2 \circ \overline{P})$. Let P denote the automorphism of $\Sigma_{|C|}$ induced by \overline{P} . Let C'_2 be the \mathbb{Z}_+G matrix defined by the edge labeling $l_2 \circ \overline{P}$ of $\mathcal{G}_{|C|}$. Note that the map $\psi \colon S_{C'_2} \to S_{C_2}$ given by $(x,g) \mapsto (P(x),g)$ is a G-conjugacy.

Let C' be the $\mathbb{Z}_+(G \times G)$ matrix defined by the edge labeling l' of $\mathcal{G}_{|C|}$, and let $\tau' \colon \Sigma_{|C|} \to G \times G$ be the skewing function given by $\tau'(x) = l'(x_0)$. Then $S_{C'}$ is the skew product $(\Sigma_{|C|} \times G \times G, S_{C'})$, where

$$S_{C'}(x, g, h) = (\sigma(x), \tau'(g, h)) = (\sigma(x), \tau_1(x) \cdot g, (\tau_2 \circ P)(x) \cdot h),$$

and $G \times G$ acts by $(k, l) : (x, g, h) \mapsto (x, gk, hl)$. Note that C' is very primitive. (This is because, with $I = I_1$ and N as above, $(C'^N)_{II}$ has as a summand every element of $G \times G$.) Therefore $S_{C'}$ is a mixing free $(G \times G)$ -SFT. From now on, regard $S_{C'}$ as a mixing free G-SFT by restricting the $(G \times G)$ -action to the diagonal: let $g \in G$ act by $(x,h,k) \mapsto (x,hg,kg)$. Let $p_1: S_{C'} \to S_{C_1}$ be the |G|-to-one factor map $(x,g,h) \mapsto (x,g)$, and let $p_2: S_{C'} \to S_{C'_2}$ be the |G|-to-one factor map $(x,g,h) \mapsto (x,h)$. Note that p_1 and p_2 are G-factor maps; they are right closing because they are constant-to-one [11, Prop 4.3.4]. This gives a diagram of right closing G-factor maps:

Now, $S_{C'}$ is a mixing free *G*-SFT, so by Theorem 3.5, the right closing *G*-factor maps $\pi_1 \circ p_1$ and $\pi_2 \circ \psi \circ p_2$ can be replaced by 1-1 a.e. and right closing *G*-factor maps. This proves the theorem.

5. General mixing G-SFTs. In this section we classify right closing almost conjugacy for mixing G-SFTs where the G-action is no longer assumed to be free. We will need this generalization to classify the irreducible but periodic case in Section 6. We begin with a result for faithful G-SFTs, which were defined in Section 2.

LEMMA 5.1. Any irreducible faithful G-SFT is a 1-1 a.e. right closing G-factor of an irreducible free G-SFT.

Lemma 5.1 is a corollary of [1, Theorem 3]. If X is a G-SFT, we let H^X denote the normal subgroup of G which acts by the identity map. Then X is a faithful (G/H^X) -SFT where, for all $g \in G$ and $x \in X$, $x \cdot (gH^X) = x \cdot g$.

THEOREM 5.2. Let X and Y be mixing G-SFTs. Then the following are equivalent.

- (1) X and Y are right closing almost conjugate as G-SFTs.
- (2) X and Y are right closing almost conjugate as SFTs, and $H^X = H^Y$.
- (3) X and Y have the same entropy and ideal class, and $H^X = H^Y$.

Proof. (2) \Leftrightarrow (3) follows from Theorem 3.1. If X and Y are right closing almost conjugate as G-SFTs, then in particular they are right closing almost conjugate as SFTs. Moreover, if Z is a common 1-1 a.e. right closing G-extension of X and Y, then $H^X = H^Z$ and $H^Y = H^Z$, because 1-1 a.e. G-factor maps preserve the subgroup H^Z . This proves (1) \Rightarrow (2).

Conversely, suppose X and Y are right closing almost conjugate as SFTs, and $H = H^X = H^Y$. Then X and Y are faithful (G/H)-SFTs, where for all $x \in X, y \in Y$ and $g \in G, x \cdot (gH) = x \cdot g$ and $y \cdot (gH) = y \cdot g$. Hence there are free (G/H)-SFTs \hat{X} and \hat{Y} , and 1-1 a.e. right closing (G/H)-factor maps $\theta_X \colon \hat{X} \to X$ and $\theta_Y \colon \hat{Y} \to Y$ (Lemma 5.1). Since X and Y are right closing almost conjugate as SFTs, they have the same entropy and ideal class. Since θ_X and θ_Y are right closing factor maps between irreducible SFTs, they preserve entropy and ideal classes. So \hat{X} and \hat{Y} have the same entropy and ideal class, and are therefore right closing almost conjugate as SFTs. Thus \hat{X} and \hat{Y} are right closing almost conjugate as (G/H)-SFTs, and the common extension can be taken to be a free (G/H)-SFT (Theorem 4.1).

Let Z be a free (G/H)-SFT with 1-1 a.e. right closing (G/H)-factor maps $\pi_X \colon Z \to \widehat{X}$ and $\pi_Y \colon Z \to \widehat{Y}$:

For all $\hat{x} \in \hat{X}$, $\hat{y} \in \hat{Y}$ and $g \in G$, put $\hat{x} \cdot g = \hat{x} \cdot (gH)$ and $\hat{y} \cdot g = \hat{y} \cdot (gH)$. With these *G*-actions, \hat{X} and \hat{Y} are *G*-SFTs, and θ_X and θ_Y are now *G*-maps. For all $z \in Z$ and $g \in G$, put $g \cdot z = z \cdot (gH)$. This *G*-action makes *Z* a *G*-SFT as well, and π_X and π_Y are now *G*-maps. Thus *Z* together with the maps $\theta_X \circ \pi_X$ and $\theta_Y \circ \pi_Y$ gives a right closing almost conjugacy between *X* and *Y* as *G*-SFTs.

6. The irreducible but periodic case. Here we classify right closing almost conjugacy for irreducible but periodic G-SFTs. If (X, σ) is an irreducible G-SFT of period p, then we let $X^0, X^1, \ldots, X^{p-1}$ denote the cyclically moving subsets of X under σ . Then for $0 \le n \le p-1$, (X^n, σ^p) is a mixing SFT. The (X^n, σ^p) are pairwise conjugate SFTs and the action of G on (X, σ) permutes the (X^n, σ^p) . If the entropy of (X, σ) is $\log \lambda$, then the entropy of each (X^n, σ^p) is $\log \lambda^p$. The ideal class (in $\mathbb{Z}[1/\lambda^p]$) of (X^n, σ^p) is determined by the ideal class (in $\mathbb{Z}[1/\lambda]$) of (X, σ) . We let $\overline{X} = X^0$ and $\overline{\sigma} = \sigma^p|_{\overline{X}}$. Then as SFTs, X is conjugate to $\overline{X} \times \{0, \ldots, p-1\}$, where the shift for the latter is given by

(6.1)
$$\sigma(\overline{x}, n) = \begin{cases} (\overline{x}, n+1) & \text{if } 0 \le n \le p-2, \\ (\overline{\sigma}(\overline{x}), 0) & \text{if } n = p-1. \end{cases}$$

We give to $\overline{X} \times \{0, \ldots, p-1\}$ the *G*-action which is the image under conjugacy of the *G*-action on *X*, so that *X* is *G*-conjugate to $\overline{X} \times \{0, \ldots, p-1\}$. Without loss of generality, we assume from now on that irreducible but periodic *G*-SFTs are of the form $(X, \sigma) = (\overline{X} \times \{0, \ldots, p-1\}, \sigma)$, where the shift σ is given by (6.1).

By \mathbb{Z}_p we mean the group of integers $\{0, 1, \ldots, p-1\}$ with addition mod p. The *G*-action on X determines a homomorphism $\phi_X \colon G \to \mathbb{Z}_p$, given by $\phi_X(g) = k$ if and only if $g \colon (\overline{X}, 0) \mapsto (\overline{X}, k)$. We refer to ϕ_X as the *action homomorphism* for the *G*-SFT (X, σ) . Note that for $0 \leq n \leq p-1$ and for each $g \in G$,

$$g: (\overline{X}, n) \mapsto (\overline{X}, n + \phi_X(g) \mod p),$$

where the action on the first coordinate is given by some automorphism U_g of $(\overline{X}, \overline{\sigma})$. The first coordinate automorphisms $\{U_g\}_{g \in G}$ define a *G*-action on $(\overline{X}, \overline{\sigma})$, given by $g: \overline{x} \mapsto U_g(\overline{x})$. This *G*-action on \overline{X} is not necessarily free, even if the *G*-action on *X* is free. We refer to the *G*-SFT \overline{X} as the base *G*-SFT for *X*. We point out that base *G*-SFTs are mixing, so right closing almost conjugacy of base *G*-SFTs is classified by Theorem 5.2.

THEOREM 6.2. Let X and Y be irreducible G-SFTs. Then the following are equivalent:

- (1) X and Y are right closing almost conjugate as G-SFTs.
- (2) The base G-SFTs \overline{X} and \overline{Y} for X and Y are right closing almost conjugate as G-SFTs, and the action homomorphisms ϕ_X and ϕ_Y are the same.

Proof. Suppose (X, σ) and (Y, σ) are right closing almost conjugate as *G*-SFTs. Then there is a *G*-SFT (Z, σ) and 1-1 a.e. right closing *G*-factor maps $\pi_X \colon Z \to X$ and $\pi_Y \colon Z \to Y$. The maps π_X and π_Y preserve period, so *Z* must have period *p*, where *p* is the period of both *X* and *Y*. Furthermore *Z* must be irreducible because *X* and *Y* are irreducible. Without loss of generality, assume that $Z = \overline{Z} \times \{0, \ldots, p-1\}$ where \overline{Z} is the base *G*-SFT for *Z*. Further assume $(\overline{X}, 0) = \pi_X(\overline{Z}, 0)$ and $(\overline{Y}, 0) = \pi_Y(\overline{Z}, 0)$, where \overline{X} and \overline{Y} are the base *G*-SFTs for *X* and *Y* respectively. Observe that for $0 \le n \le p-1$,

$$\pi_X(\overline{Z},n) = \pi_X \circ \sigma^n(\overline{Z},0) = \sigma^n \circ \pi_X(\overline{Z},0) = \sigma^n(\overline{X},0) = (\overline{X},n).$$

In particular $\phi_X = \phi_Z$ (since π_X intertwines *G*-actions). Similarly $\phi_Y = \phi_Z$.

Let $P_Z \colon Z \to \overline{Z}$ be the *G*-factor map $(\overline{z}, n) \mapsto \overline{z}$ and let $P_X \colon X \to \overline{X}$ be the *G*-factor map $(\overline{x}, n) \mapsto \overline{x}$. Since $\pi_X(\overline{Z}, n) = (\overline{X}, n)$ for $0 \le n \le p - 1$, there is a *G*-factor map $\overline{\pi}_X \colon \overline{Z} \to \overline{X}$ which makes the following diagram commute:

The map $\overline{\pi}_X$ is 1-1 a.e. and right closing because π_X is. Similarly construct a 1-1 a.e. right closing *G*-factor map $\overline{\pi}_Y \colon \overline{Z} \to \overline{Y}$. Then \overline{X} and \overline{Y} are right closing almost conjugate as *G*-SFTs.

Conversely, suppose the base G-SFTs $(\overline{X}, \overline{\sigma})$ and $(\overline{Y}, \overline{\sigma})$ are right closing almost conjugate as G-SFTs, and $\phi = \phi_X = \phi_Y$. In particular, X and Y have the same period p. Let $(\overline{Z}, \overline{\sigma})$ be a G-SFT with 1-1 a.e. right closing G-factor maps $\overline{\pi}_X \colon \overline{Z} \to \overline{X}$ and $\overline{\pi}_Y \colon \overline{Z} \to \overline{Y}$. Let $Z = \overline{Z} \times \{0, \ldots, p-1\}$ with the shift defined as in (6.1). Define a G-action on Z by

$$g \colon (\overline{z}, n) \mapsto (\overline{z} \cdot g, n + \phi(g) \mod p).$$

Define maps $\pi_X \colon Z \to X$ and $\pi_Y \colon Z \to Y$ by $\pi_X(\overline{z}, n) = (\overline{\pi}_X(\overline{z}), n)$ and $\pi_Y(\overline{z}, n) = (\overline{\pi}_Y(\overline{z}), n)$. Then π_X and π_Y are *G*-factor maps. They are 1-1 a.e. and right closing because $\overline{\pi}_X$ and $\overline{\pi}_Y$ are.

7. Regular isomorphism of G-Markov chains. Let (X, μ) and (Y, ν) be irreducible Markov chains with Markov measures μ and ν . Let α and β be the time zero partitions of X and Y, respectively. Consider the past σ -algebras

$$\alpha^{-} = \bigvee_{n=0}^{\infty} \sigma^{n} \alpha, \quad \beta^{-} = \bigvee_{n=0}^{\infty} \sigma^{n} \beta.$$

Then (X,μ) and (Y,ν) are regularly isomorphic if there is a measurable isomorphism $\phi: (X,\mu) \to (Y,\nu)$ such that

$$\phi^{-1}(\beta^{-}) \subset \sigma^{-N} \alpha^{-} = \alpha^{-} \lor \sigma^{-1} \alpha \lor \cdots \lor \sigma^{-N} \alpha,$$

$$\phi(\alpha^{-}) \subset \sigma^{-N} \beta^{-} = \beta^{-} \lor \sigma^{-1} \beta \lor \cdots \lor \sigma^{-N} \beta,$$

for some nonnegative integer N. The idea of regular isomorphism was introduced and studied by Parry, first in [9] and also in [14]. For a regular isomorphism ϕ (in contrast to an arbitrary measurable isomorphism), to code the present $(\phi x)_0$, it suffices to know the past and a bounded look into the future $x_{(-\infty,N]}$. Boyle and Tuncel [8] show that this measurable coding relation has a more finite and continuous formulation, as follows.

THEOREM 7.1. Irreducible Markov chains (X, μ) and (Y, ν) are regularly isomorphic if and only if there exists an irreducible Markov chain (Z, η) and 1-1 a.e. right closing factor maps $\pi_X : (Z, \eta) \to (X, \mu)$ and $\pi_Y : (Z, \eta) \to (Y, \nu)$. A *G*-Markov chain is a Markov chain (X, μ) such that X is a *G*-SFT and μ is a *G*-invariant Markov measure on X. Say that irreducible *G*-Markov chains (X, μ) and (Y, ν) are *G*-regularly isomorphic if there is a regular isomorphism $\phi: (X, \mu) \to (Y, \nu)$ such that ϕ is *G*-equivariant. By Theorems 4.1 and 7.1 we have the following.

COROLLARY 7.2. Mixing free G-Markov chains (X, μ_X) and (Y, μ_Y) , with unique measures of maximal entropy μ_X and μ_Y , are G-regularly isomorphic if and only if (X, μ_X) and (Y, μ_Y) are regularly isomorphic as Markov chains.

In the general irreducible case, G-regular isomorphism with respect to measures of maximal entropy can be classified in terms of the invariants of Theorem 6.2.

REFERENCES

- R. Adler, B. Kitchens and B. Marcus, Finite group actions on shifts of finite type, Ergodic Theory Dynam. Systems 5 (1985), 1–25.
- [2] —, —, *Almost topological classification of finite-to-one factor maps between shifts of finite type*, ibid., 485–500.
- R. Adler and B. Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219.
- [4] J. Ashley, Bounded-to-1 factors of an aperiodic shift of finite type are 1-to-1 almost everywhere factors also, Ergodic Theory Dynam. Systems 10 (1990), 615–625.
- [5] M. Boyle and D. Handelman, The spectra of nonnegative matrices via symbolic dynamics, Ann. of Math. 133 (1991), 249–316.
- [6] M. Boyle, B. Marcus and P. Trow, Resolving maps and the dimension group for shifts of finite type, Mem. Amer. Math. Soc. 70 (1987), no. 377.
- [7] M. Boyle and M. Sullivan, Equivariant flow equivalence for shifts of finite type, by matrix equivalence over group rings, Proc. London Math. Soc. 91 (2005), 184–214.
- [8] M. Boyle and S. Tuncel, Regular isomorphism of Markov chains is almost topological, Ergodic Theory Dynam. Systems 10 (1990), 89–100.
- [9] R. Fellgett and W. Parry, Endomorphisms of a Lebesgue space II, Bull. London Math. Soc. 7 (1975), 151–158.
- [10] M. Field and M. Nicol, Ergodic theory of equivariant diffeomorphisms: Markov partitions and stable ergodicity, Mem. Amer. Math. Soc. 169 (2004), no. 803.
- B. Kitchens, Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts, Springer, 1991.
- [12] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995.
- [13] M. Nasu, Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov shifts, in: Lecture Notes in Math. 1342, Springer, 1988, 564–607.
- W. Parry, Notes on coding problems for finite state processes, Bull. London Math. Soc. 23 (1991), 1–33.
- [15] —, unpublished communication, 2003.

- [16] W. Parry, The Livšic periodic point theorem for non-abelian cocycles, Ergodic Theory Dynam. Systems 19 (1999), 687–701.
- [17] K. Schmidt, Remarks on Livšic' theory for nonabelian cocycles, ibid., 703–721.

Department of Mathematics University of Maryland College Park, MD 20742-4015, U.S.A. E-mail: dykstraa@math.umd.edu URL: www.math.umd.edu/~dykstraa

> Received 16 March 2005; revised 10 August 2005 (4576)