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RIGHT CLOSING ALMOST CONJUGACY FOR

G-SHIFTS OF FINITE TYPE

BY

ANDREW DYKSTRA (College Park, MD)

Abstract. A G-shift of finite type (G-SFT) is a shift of finite type which commutes
with the continuous action of a finite group G. For irreducible G-SFTs we classify right
closing almost conjugacy, answering a question of Bill Parry.

1. Introduction. For a finite group G, a G-shift of finite type (G-SFT )
is a shift of finite type (X,σ) together with a continuous G-action on X
which commutes with the shift σ. For irreducible shifts of finite type, right
closing almost conjugacy is classified in terms of entropy, period, and an
algebraic invariant called ideal class [6]. Bill Parry [15] posed the following
question: what additional invariants are necessary to classify right closing
almost conjugacy for irreducible G-SFTs? In Theorem 4.1 we show that for
mixing G-SFTs where the G-action is free, there are no additional invari-
ants. In Section 5 we generalize Theorem 4.1 to mixing G-SFTs where the
G-action is no longer assumed to be free. In Section 6 we generalize further
to irreducible but periodic G-SFTs. As a corollary to our results we clas-
sify regular isomorphism for G-Markov chains with respect to measures of
maximal entropy.

Without the right closing assumption, almost conjugacy for irreducible
G-SFTs was classified by Roy Adler, Bruce Kitchens and Brian Marcus [1].
They were working in a more general setting, but by modifying the proofs
given here we can arrive at the same classification of almost conjugacy for
irreducible G-SFTs (as was also done in [14]).

I thank Mike Boyle for many helpful discussions about this problem.

2. Background and definitions. We assume some familiarity with
shifts of finite type; [11] and [12] provide more complete backgrounds. All of

2000 Mathematics Subject Classification: Primary 37B10; Secondary 05C50, 20C05,
58E40.

Key words and phrases: shift of finite type, right closing almost conjugacy, skew prod-
uct, group action.

Partially supported by NSF grant 0400493.

[207]



208 A. DYKSTRA

the free G-SFTs we consider arise out of skew products, as in [7]. The study
of skew products dates back to von Neumann, in the context of ergodic
measure preserving transformations on a probability space. For an example
of more recent work with skew products in ergodic theory, see [10]. Also see
[16] and [17] (and their references) for recent results with skew products in
Livšic theory.

2.1. Shifts of finite type. Let A be an n×n matrix over the nonnegative
integers Z+. Then A is the adjacency matrix for a directed graph, GA, which
has vertices {v1, . . . , vn}, and the number of edges from vI to vJ is AIJ . Let
EA = {edges in GA}, and put

ΣA = {x = (xi)i∈Z ∈ (EA)Z : each xixi+1 is a path in GA}.

With the appropriate topology (the relative of the product of the discrete
topology on EA), ΣA is a compact metric space. The shift on ΣA is the
homeomorphism σ : ΣA → ΣA given by (σx)i = xi+1. The pair (ΣA, σ) is
the edge shift of finite type (edge SFT ) defined by A. Where σ is understood,
we write just ΣA to denote (ΣA, σ).

A map between SFTs π : ΣA → ΣB is a continuous function such that
π ◦ σ(x) = σ ◦ π(x) for all x ∈ ΣA. The map π is one block if it is induced
by a function which sends each edge of GA to an edge of GB . A factor map

is a surjective map. An injective factor map is a conjugacy.
The matrix A is irreducible if for each entry AIJ of A there is a natural

number N such that (AN )IJ > 0. If A is irreducible we also say that the
graph GA and the edge SFT ΣA are irreducible. The matrix A is primitive if
there is a natural number N such that for each entry AIJ of A, (AN )IJ > 0.
If A is primitive we also say that the graph GA is primitive; in this case the
edge SFT ΣA is mixing.

If λ is the Perron eigenvalue of A, then the entropy of ΣA is log λ.
If v = [v1, . . . , vn]

T is a right Perron eigenvector with entries in the ring
Z[1/λ], then the ideal class of ΣA is the class of the Z[1/λ]-ideal which is
generated by the components v1, . . . , vn of v. A point x ∈ ΣA is periodic

if there exists a natural number p such that σp(x) = x. In this case p is a
period of x; the smallest period of x is called the least period of x. We define
the period of the edge SFT ΣA to be the greatest common divisor of the
set of periods of periodic points in ΣA. The period of the graph GA is the
period of ΣA.

Any SFT (X,σ) is conjugate to some edge SFT (ΣA, σ). Then the terms
irreducible, mixing, entropy, ideal class and period apply toX exactly as they
apply to ΣA. A point x ∈ X is doubly transitive if both sets {σn(x) : n ≥ 0}
and {σn : n ≤ 0} are dense in X. Two points x = (xn)n∈Z and y = (yn)n∈Z

in X are left asymptotic if there is an integer n such that xk = yk for all
k ≤ n. A map between SFTs π : X → Y is 1-1 a.e. if it is injective on the set
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of doubly transitive points in X. The map π is right closing if, for each pair
x, y ∈ X of distinct left asymptotic points, π(x) 6= π(y). We say the SFTs
X and Y are right closing almost conjugate as SFTs if there is a third SFT
Z which factors onto both X and Y by factor maps which are 1-1 a.e. and
right closing.

2.2. G-shifts of finite type. Let G be a finite group. A G-SFT is an SFT
(X,σ) together with a continuous right G action on X such that σ(x · g) =
σ(x)·g for all x ∈ X and g ∈ G. We say the G-SFTX (or the G-action on X)
is free if, for each nonidentity element g of G, x ·g 6= x for all x ∈ X. We say
X (or the G-action on X) is faithful if, for each nonidentity element g of G,
there exists some x ∈ X such that x · g 6= x. If Y is another G-SFT, then a
G-map π : X → Y is a map between SFTs such that π(x ·g) = π(x) ·g for all
x ∈ X and g ∈ G. A G-factor map is a surjective G-map and a G-conjugacy

is an injective G-factor map. Two G-SFTs X and Y are right closing almost

conjugate as G-SFTs if there is a third G-SFT Z which factors onto both
X and Y by 1-1 a.e. and right closing G-factor maps. We point out that
right closing almost conjugate G-SFTs are in particular right closing almost
conjugate SFTs. The terms we define above for SFTs, such as irreducible,
mixing, entropy, ideal class and period, apply to a G-SFT X as they apply
to X as an SFT.

2.3. Skew products and matrices over Z+G. By ZG we mean the integral
group ring of G. We write an element x of ZG as x =

∑
g∈G ngg, where each

ng ∈ Z. Then for each g in G we define πg(x) = ng. If πg(x) > 0, then
g is a summand of x. If πg(x) > 0 for each g in G, then we say x is very

positive and write x≫ 0. The augmentation of x is |x| =
∑

g∈G πg(x). If A
is a matrix over ZG, then A ≫ 0 if AIJ ≫ 0 for each entry AIJ of A. The
augmentation |A| is the matrix given by |A|IJ = |AIJ | for each entry AIJ
of A. We let

Z+G = {x ∈ ZG : πg(x) ≥ 0 for each g ∈ G}.

If G is a directed graph and l is a labeling of the edges of G by elements
of G, then we say (G, l) is a G-labeled graph. If A is a square matrix over
Z+G, then |A| is a square matrix over Z+ which, as before, is the adjacency
matrix for a directed graph G|A|. The matrix A corresponds to a G-labeled
graph (G|A|, lA), where lA is defined as follows: for each pair I, J of vertices
in G|A|, AIJ =

∑
ngg if and only if for each g ∈ G exactly ng of the edges

from I to J are lA-labeled g. The edge labeling lA determines a function
τA : Σ|A| → G by τA(x) = lA(x0) for each x = (xn)n∈Z in Σ|A|. The function
τA is locally constant: for each x ∈ Σ|A|, τA is constant on a neighborhood
of x (here τA is constant on {y ∈ Σ|A| : y0 = x0}). The function τA is
the skewing function defined by A. Given two locally constant functions



210 A. DYKSTRA

τ1, τ2 : Σ|A| → G, we say τ1 is cohomologous to τ2 if there is another locally
constant h : Σ|A| → G such that

τ1(x) = [h(σx)]−1 · τ2(x) · h(x)

for each x ∈ Σ|A|.
The Z+G matrix A determines an automorphism SA : Σ|A| × G →

Σ|A| ×G by

SA(x, g) = (σ(x), τA(x) · g),

where τA is the skewing function defined by A. We say the dynamical system
(Σ|A| × G,SA) is the skew product defined by A. There is a free right G-
action on (Σ|A|×G,SA) which commutes with the automorphism SA, given
by g : (x, h) 7→ (x, h · g). Often we write just SA as an abbreviation for the
skew product (Σ|A| ×G,SA).

We can present the skew product SA as a free G-SFT (which we also
denote by SA) as follows. As an edge SFT, SA has graph G, where the
vertex set of G is the product of the vertex set of G|A| with G, and for each
edge e from I to J in G|A|, for each g in G, there is an edge from (I, g) to
(J, lA(e) · g) in G. For each pair v, v′ of vertices of G we choose an ordering
of the edges from v to v′, and let g in G act by the one block map given
by the unique automorphism of G which acts on the vertex set of G by
(J, h) 7→ (J, h · g), and which is order preserving.

In this way any skew product is a free G-SFT. Conversely, any free
G-SFT is G-conjugate to a skew product SA for some Z+G matrix A. We
say a matrix A over Z+G is very primitive if there exists a natural number
N such that AN ≫ 0. One easily checks that A is very primitive if and only
if the G-SFT SA is mixing.

Square matrices A and B over Z+G are strong shift equivalent (SSE )
over Z+G if they are connected by a string of elementary moves of the
following sort: there are R and S over Z+G such that A = RS and B = SR.
Parry has shown that A and B are SSE over Z+G if and only if the skew
products SA and SB are G-conjugate [7, Prop. 2.7.1].

3. Some useful results. In this section we collect some results to be
used later. We begin with the known classification of right closing almost
conjugacy for irreducible SFTs, which is a corollary of [6, Theorem 7.1].

Theorem 3.1. Irreducible SFTs are right closing almost conjugate as

SFTs if and only if they have the same ideal class, entropy and period.

Lemma 3.2 (Z+G Masking Lemma). Let A and C be matrices over Z+G
such that the skew product SA is G-conjugate to a subsystem of the skew

product SC . Then there is a matrix B over Z+G such that A is a principal

submatrix of B, and SB and SC are G-conjugate skew products.
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Proof. If SA is G-conjugate to a subsystem of SC , then A is SSE over
Z+G to a principal submatrix of C [7, Prop. 2.7.1]. Nasu’s original Masking
Lemma for matrices over Z [13, Lemma 3.18] also holds for matrices over an
arbitrary semiring containing 0 and 1 [5, Appendix 1]; in particular it holds
for matrices over Z+G. This means there is a matrix B over Z+G such that
A is a principal submatrix of B, and B is SSE over Z+G to C; SB and SC
are G-conjugate skew products by [7, Prop. 2.7.1].

Lemma 3.3. Let A and B be matrices over Z+G. A G-factor map

π : SA → SB induces a factor map π : Σ|A| → Σ|B| such that the skew-

ing function τA is cohomologous to τB ◦ π. Conversely , if π : Σ|A| → Σ|B|

is a factor map such that τA is cohomologous to τB ◦ π, then π induces a

G-factor map π : SA → SB. The G-map π is 1-1 a.e. and right closing if

and only if the map π is 1-1 a.e. and right closing.

Proof. Let π : SA → SB be a G-factor map. Write π = π1 × π2, so that
for an element (x, g) ∈ Σ|A| ×G, π(x, g) = (π1(x, g), π2(x, g)). Let e denote
the identity element of G. Then

π : (x, g) 7→ (π1(x, e), π2(x, e) · g),

since π intertwines G-actions. For x ∈ Σ|A|, set π(x) = π1(x, e) and h(x) =
π2(x, e), so that π(x, g) = (π(x), h(x) ·g). Look componentwise at the equal-
ity π ◦ SA = SB ◦ π. The first component shows that π : Σ|A| → Σ|B| is a
well defined factor map. The second component shows that

τA(x) = [h(σx)]−1 · (τB ◦ π)(x) · h(x)

for each x ∈ Σ|A|. Hence τA is cohomologous to τB ◦ π.
Conversely, suppose π : Σ|A| → Σ|B| is a factor map such that τA is

cohomologous to τB ◦ π. Then there is a locally constant map h : Σ|A| → G

such that for each x ∈ Σ|A|, τA(x) = [h(σx)]−1 · (τB ◦ π)(x) · h(x). Define
π : Σ|A| × G → Σ|B| × G by π(x, g) = (π(x), h(x) · g). Observe that π is a
G-factor map.

For the last statement of the lemma, consider the following commutative
diagram, where the maps qA : SA → ΣA and qB : SB → ΣB are each given
by (x, g) 7→ x:

SA
π

//

qA
��

SB

qB
��

Σ|A|
π

// Σ|B|

Both maps qA and qB are |G|-to-1 everywhere. Therefore π is 1-1 a.e. if and
only if π is 1-1 a.e. For the closing condition, note that if φ and ψ are maps
between irreducible SFTs, then φ◦ψ is right closing if and only if both φ and
ψ are right closing [6, Props. 4.10 and 4.11]. Because the constant-to-one
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maps qA and qB are in particular right closing [11, Prop. 4.3.4], it follows
that π is right closing if and only if π is right closing.

If (G, l) is a G-labeled graph, then for a cycle s = s1 . . . sp in G we define
the weight of s by l(s) = l(s1) · · · l(sp). The ratio group ∆l is the subgroup
of G given by

∆l = {l(s) · l(s′)−1 : s, s′ are cycles in G of the same length}.

Theorem 3.4 (ZG Replacement Theorem). Let (G, l) and (G′, l′) be ir-

reducible G-labeled graphs of the same period which define edge SFTs Σ and

Σ′ (respectively) and skewing functions τ : Σ → G and τ ′ : Σ′ → G given by

τ(x) = l(x0) and τ ′(x) = l′(x0). Let π : Σ → Σ′ be a factor map such that

τ is cohomologous to τ ′ ◦ π. If ∆l = ∆l′ , then there is a 1-1 a.e. factor map

π : Σ → Σ′ such that τ is cohomologous to τ ′ ◦ π. Moreover , if π is right

closing , then π can be taken to be right closing as well.

In [4, Theorem 6.1], Ashley proves a version of his (Z) Replacement
Theorem for maps between irreducible Markov chains which can be inter-
preted as follows. Let R

+ denote the multiplicative group of positive real
numbers. Let (G, l) and (G′, l′) be irreducible R

+-labeled graphs of the same
period, which define irreducible SFTs Σ and Σ′ and locally constant func-
tions τ : Σ → R

+ and τ ′ : Σ′ → R
+ where τ(x) = l(x0) and τ ′(x) = l′(x0). If

the ratio groups ∆l and ∆l′ are equal (as multiplicative subgroups of R
+),

and π : Σ → Σ′ is a factor map such that τ is cohomologous to τ ′ ◦ π, then
there is a 1-1 a.e. factor map π : Σ → Σ′ such that τ is cohomologous to
τ ′ ◦π. Moreover, if π is right closing, then π can be taken to be right closing
as well.

If instead of R
+-labeled graphs we consider G-labeled graphs, then we

have the statement of Theorem 3.4. To prove Theorem 3.4, one can easily
check that Ashley’s proof for R

+-labeled graphs goes through for G-labeled
graphs as well.

Theorem 3.5. Let X and Y be mixing free G-SFTs. Let π : X → Y
be a G-factor map which is right closing. Then there is a G-factor map

π′ : X → Y which is 1-1 a.e. and right closing.

Proof. Since X and Y are mixing free G-SFTs, assume without loss of
generality that X = SA and Y = SB for very primitive matrices A and B
over Z+G. By Lemma 3.3 the G-factor map π induces a map π : Σ|A| → Σ|B|

such that τA is cohomologous to τB ◦ π. Since A and B are very primitive
the periods of G|A| and G|B| are both 1, and furthermore ∆lA = ∆lB = G.
So assume (by Theorem 3.4) that the map π is 1-1 a.e. and right closing.
Again apply Lemma 3.3 to obtain a G-factor map π′ : SA → SB which is 1-1
a.e. and right closing.
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4. Right closing almost conjugacy for mixing free G-SFTs. For
mixing SFTs, entropy and ideal class are a complete set of invariants of right
closing almost conjugacy (Theorem 3.1). We show that there are no addi-
tional invariants of right closing almost conjugacy for mixing free G-SFTs.

Theorem 4.1. Let X and Y be mixing free G-SFTs. Then the following

are equivalent :

(1) X and Y are right closing almost conjugate as G-SFTs.

(2) X and Y are right closing almost conjugate as SFTs.

(3) X and Y have the same entropy and ideal class.

Moreover , assuming (2) or (3), the common extension of X and Y in (1)
can be taken to be a free G-SFT.

Proof. (2)⇔(3) follows from Theorem 3.1. Right closing almost conju-
gate G-SFTs are in particular right closing almost conjugate as SFTs, so
(1)⇒(2). It remains to show (2)⇒(1).

Let X and Y be mixing free G-SFTs which are right closing almost con-
jugate as SFTs. Without loss of generality, assume that X and Y are skew
products SA and SB for very primitive matrices A and B over Z+G. Let
lA, lB, τA and τB denote the edge labelings and skewing functions defined
by A and B, respectively (see Section 2). Since SA and SB are right closing
almost conjugate as SFTs, they have the same entropy and ideal class (The-
orem 3.1). The factor maps qA : SA → Σ|A| and qB : SB → Σ|B| given by
(x, g) 7→ x are |G|-to-1 everywhere. In particular they preserve entropy and
ideal class, so Σ|A| and Σ|B| have the same entropy and ideal class. Hence
Σ|A| and Σ|B| are right closing almost conjugate as SFTs (Theorem 3.1).

Let Σ|C| be a common extension of Σ|A| and Σ|B| by 1-1 a.e. right closing
factor maps π1 : Σ|C| → Σ|A| and π2 : Σ|C| → Σ|A|:

SA
qA

!!C
CC

CC
CC

C
Σ|C|

π1

||zz
zz

zz
zz π2

""EE
EE

EE
EE

SB
qB

}}{{
{{

{{
{{

Σ|A| Σ|B|

Without loss of generality, assume the factor maps π1 and π2 are one block.
Define edge labelings l1 and l2 on G|C| by l1 = lA ◦ π1 and l2 = lB ◦ π2. The
labelings l1 and l2 correspond to matrices C1 and C2 (respectively) over Z+G
such that |C1| = |C2| = |C|. Define skewing functions τ1 : Σ|C| → G and
τ2 : Σ|C| → G by τ1(x) = l1(x0) and τ2(x) = l2(x0). Define G-factor maps
π1 : SC1

→ SA and π2 : SC2
→ SB by π1(x, g) = (π1(x), g) and π2(x, g) =

(π2(x), g). Let q1 : SC1
→ Σ|C| and q2 : SC2

→ Σ|C| be the factor maps
(x, g) 7→ x. Then the following diagram commutes:
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SC1

π1

}}{{
{{

{{
{{ q1

""EE
EE

EE
EE

SC2

q2

||yy
yy

yy
yy π2

!!CC
CC

CC
CC

SA
qA

!!C
CC

CC
CC

C
Σ|C|

π1

||zz
zz

zz
zz π2

""EE
EE

EE
EE

SB
qB

}}{{
{{

{{
{{

Σ|A| Σ|B|

The factor maps π1 and π2 are 1-1 a.e. and right closing, so the factor
maps π1 and π2 are as well (Lemma 3.3). In particular SC1

and SC2
are

mixing free G-SFTs, so C1 and C2 are very primitive. Let l be the (G×G)-
labeling l = l1 × l2. Then l corresponds to a Z+(G × G) matrix whose
augmentation is |C|. Call this matrix C. Let τ : Σ|C| → G × G denote the
skewing function given by τ(x) = l(x0).

Claim 4.2. There is a vertex I in G|C| and a natural number N such that

there is a collection U of paths of length N from I to I with the following

properties:

(1) For each g in G there are at least |G| paths u ∈ U with weights

l1(u) = g.
(2) For each g in G there are at least |G| paths u ∈ U with weights

l2(u) = g.
(3) For each u = u1 · · ·uN ∈ U the point xu ∈ Σ|C|, defined by xui = uj

if i ≡ j mod N , has least period N .

(4) If u and v are distinct paths in U , then xu and xv are in different

orbits under the shift.

To prove the claim, let α be the element of Z+G given by α =
∑

g∈G g.
Fix a vertex I in G|C|. Let η be the number of cycles of length 1 in G|C|,
and choose a positive integer k large enough so that k − η ≥ |G|. Since C1

and C2 are very primitive matrices there is a positive integer M = M(k)
such that, for i = 1, 2 and for all m ≥ M , k · α is a summand of (Cmi )II .
Let N ≥ M be a prime number. Let V be the set of all N -paths from
I to I. Each v = v1 · · · vN ∈ V defines a point xv ∈ Σ|C| by xvi = vj if
i ≡ j mod N . Since N is prime, each such xv has least period either N or 1.
Let V1 = {v ∈ V : xv has least period 1} and U = V − V1.

It remains to verify that U satisfies the properties of the claim. Note that,
for i = 1, 2, each monomial summand g of (CNi )II corresponds to a path
v ∈ V with weight li(v) = g. Also, N was chosen so that k ·α is a summand
of each (CNi )II . So for i = 1, 2 and for each g ∈ G, there are at least k paths
v ∈ V with weight li(v) = g. There are only η cycles of length 1 in G|C|, so

in particular |V1| ≤ η. But k − η ≥ |G|. Hence, for i = 1, 2 and for each
g ∈ G, there are at least k paths u ∈ U with weight li(u) = g, which verifies
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properties (1) and (2). Properties (3) and (4) are true by construction of U .
This proves the claim.

Now consider all points xu ∈ Σ|C| such that u ∈ U . Let Σ|C| denote
the smallest closed σ-invariant subset of Σ|C| containing all points of this

form. Then Σ|C| × G is a closed SC -invariant subset of Σ|C| ×G, so it is a

subsystem of the skew product SC . Let SC denote this subsystem of SC .

Construct a (G × G)-labeled graph (H, lH) as follows. The vertex set
of H consists of N vertices, I1, . . . , IN . For j = 1, . . . , N − 1, draw exactly
one edge starting at Ij and ending at Ij+1, and give this edge the lH-label
(e, e), where e is the identity element of G. From IN to I1 draw exactly |U|
edges, call them s1, . . . , s|U|. Let S = {s1, . . . , s|U|}, and fix a set bijection
φ : S → U . For si ∈ S, put

lH(si) = l(φ(si)) = (l1(φ(si)), l2(φ(si))).

Let D be the Z+(G × G) adjacency matrix for the (G × G)-labeled
graph (H, lH). Observe that the set bijection φ : S → U induces a (G×G)-
conjugacy between SD and SC . Assume without loss of generality that D
is a principal submatrix of C (Lemma 3.2), so that (H, lH) is an induced
sub-labeled graph of (G|C|, l).

For each g ∈ G, at least |G| of the edges si ∈ S have l-labels of the
form (g, ·), and at least |G| of the si ∈ S have l-labels of the form (·, g)
(by definition). Therefore there is a way to permute the second coordinates
of the l-labelings of edges in S so that each (g, h) ∈ G × G labels at least
one si ∈ S. Equivalently, there exists a graph isomorphism P of G|C| which
fixes all edges except those in S, and permutes the set S so that for any
(g, h) ∈ G×G, there is at least one edge si ∈ S with

(l1(si), l2 ◦ P (si)) = (g, h).

Fix a graph isomorphism P with this property and set l′ to be the (G×G)-
labeling of G|C| given by l′ = l1×(l2 ◦P ). Let P denote the automorphism of

Σ|C| induced by P . Let C ′
2 be the Z+G matrix defined by the edge labeling

l2 ◦ P of G|C|. Note that the map ψ : SC′

2
→ SC2

given by (x, g) 7→ (P (x), g)
is a G-conjugacy.

Let C ′ be the Z+(G×G) matrix defined by the edge labeling l′ of G|C|,
and let τ ′ : Σ|C| → G × G be the skewing function given by τ ′(x) = l′(x0).
Then SC′ is the skew product (Σ|C| ×G×G,SC′), where

SC′(x, g, h) = (σ(x), τ ′(g, h)) = (σ(x), τ1(x) · g, (τ2 ◦ P )(x) · h),

and G×G acts by (k, l) : (x, g, h) 7→ (x, gk, hl). Note that C ′ is very primi-
tive. (This is because, with I = I1 and N as above, (C ′N )II has as a sum-
mand every element of G×G.) Therefore SC′ is a mixing free (G×G)-SFT.
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From now on, regard SC′ as a mixing free G-SFT by restricting the
(G × G)-action to the diagonal: let g ∈ G act by (x, h, k) 7→ (x, hg, kg).
Let p1 : SC′ → SC1

be the |G|-to-one factor map (x, g, h) 7→ (x, g), and let
p2 : SC′ → SC′

2
be the |G|-to-one factor map (x, g, h) 7→ (x, h). Note that p1

and p2 are G-factor maps; they are right closing because they are constant-
to-one [11, Prop 4.3.4]. This gives a diagram of right closing G-factor maps:

SC′

p1

}}{{
{{

{{
{{ p2

!!C
CC

CC
CC

C

SC1

π1

}}||
||

||
||

SC′

2

!!B
BB

B

!!B
BB

B

ψ

π2

!!

SA SB

Now, SC′ is a mixing free G-SFT, so by Theorem 3.5, the right closing
G-factor maps π1 ◦ p1 and π2 ◦ ψ ◦ p2 can be replaced by 1-1 a.e. and right
closing G-factor maps. This proves the theorem.

5. General mixing G-SFTs. In this section we classify right closing
almost conjugacy for mixing G-SFTs where the G-action is no longer as-
sumed to be free. We will need this generalization to classify the irreducible
but periodic case in Section 6. We begin with a result for faithful G-SFTs,
which were defined in Section 2.

Lemma 5.1. Any irreducible faithful G-SFT is a 1-1 a.e. right closing

G-factor of an irreducible free G-SFT.

Lemma 5.1 is a corollary of [1, Theorem 3]. If X is a G-SFT, we let HX

denote the normal subgroup of G which acts by the identity map. Then X
is a faithful (G/HX)-SFT where, for all g ∈ G and x ∈ X, x · (gHX) = x · g.

Theorem 5.2. Let X and Y be mixing G-SFTs. Then the following are

equivalent.

(1) X and Y are right closing almost conjugate as G-SFTs.

(2) X and Y are right closing almost conjugate as SFTs, and HX = HY.

(3) X and Y have the same entropy and ideal class, and HX = HY.

Proof. (2)⇔(3) follows from Theorem 3.1. If X and Y are right closing
almost conjugate as G-SFTs, then in particular they are right closing almost
conjugate as SFTs. Moreover, if Z is a common 1-1 a.e. right closing G-
extension of X and Y , then HX = HZ and HY = HZ , because 1-1 a.e.
G-factor maps preserve the subgroup HZ . This proves (1)⇒(2).
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Conversely, supposeX and Y are right closing almost conjugate as SFTs,
and H = HX = HY . Then X and Y are faithful (G/H)-SFTs, where for
all x ∈ X, y ∈ Y and g ∈ G, x · (gH) = x · g and y · (gH) = y · g. Hence

there are free (G/H)-SFTs X̂ and Ŷ , and 1-1 a.e. right closing (G/H)-factor

maps θX : X̂ → X and θY : Ŷ → Y (Lemma 5.1). Since X and Y are right
closing almost conjugate as SFTs, they have the same entropy and ideal
class. Since θX and θY are right closing factor maps between irreducible
SFTs, they preserve entropy and ideal classes. So X̂ and Ŷ have the same
entropy and ideal class, and are therefore right closing almost conjugate as
SFTs. Thus X̂ and Ŷ are right closing almost conjugate as (G/H)-SFTs, and
the common extension can be taken to be a free (G/H)-SFT (Theorem 4.1).

Let Z be a free (G/H)-SFT with 1-1 a.e. right closing (G/H)-factor

maps πX : Z → X̂ and πY : Z → Ŷ :

Z
πX

����
��

��
�

πY

��
??

??
??

??

X̂

θX

��

Ŷ

θY

��

X Y

For all x̂ ∈ X̂, ŷ ∈ Ŷ and g ∈ G, put x̂·g = x̂·(gH) and ŷ ·g = ŷ ·(gH). With

these G-actions, X̂ and Ŷ are G-SFTs, and θX and θY are now G-maps. For
all z ∈ Z and g ∈ G, put g · z = z · (gH). This G-action makes Z a G-SFT
as well, and πX and πY are now G-maps. Thus Z together with the maps
θX ◦ πX and θY ◦ πY gives a right closing almost conjugacy between X and
Y as G-SFTs.

6. The irreducible but periodic case. Here we classify right clos-
ing almost conjugacy for irreducible but periodic G-SFTs. If (X,σ) is an
irreducible G-SFT of period p, then we let X0, X1, . . . , Xp−1 denote the
cyclically moving subsets of X under σ. Then for 0 ≤ n ≤ p− 1, (Xn, σp) is
a mixing SFT. The (Xn, σp) are pairwise conjugate SFTs and the action of
G on (X,σ) permutes the (Xn, σp). If the entropy of (X,σ) is log λ, then the
entropy of each (Xn, σp) is log λp. The ideal class (in Z[1/λp]) of (Xn, σp)
is determined by the ideal class (in Z[1/λ]) of (X,σ). We let X = X0 and
σ = σp|X . Then as SFTs, X is conjugate to X × {0, . . . , p − 1}, where the
shift for the latter is given by

(6.1) σ(x, n) =

{
(x, n+ 1) if 0 ≤ n ≤ p− 2,

(σ(x), 0) if n = p− 1.
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We give to X × {0, . . . , p − 1} the G-action which is the image under
conjugacy of the G-action on X, so that X is G-conjugate to X × {0, . . . ,
p− 1}. Without loss of generality, we assume from now on that irreducible
but periodic G-SFTs are of the form (X,σ) = (X×{0, . . . , p−1}, σ), where
the shift σ is given by (6.1).

By Zp we mean the group of integers {0, 1, . . . , p − 1} with addition
mod p. The G-action on X determines a homomorphism φX : G → Zp,
given by φX(g) = k if and only if g : (X, 0) 7→ (X, k). We refer to φX as the
action homomorphism for the G-SFT (X,σ). Note that for 0 ≤ n ≤ p − 1
and for each g ∈ G,

g : (X,n) 7→ (X,n+ φX(g) mod p),

where the action on the first coordinate is given by some automorphism Ug
of (X,σ). The first coordinate automorphisms {Ug}g∈G define a G-action
on (X,σ), given by g : x 7→ Ug(x). This G-action on X is not necessarily
free, even if the G-action on X is free. We refer to the G-SFT X as the base

G-SFT for X. We point out that base G-SFTs are mixing, so right closing
almost conjugacy of base G-SFTs is classified by Theorem 5.2.

Theorem 6.2. Let X and Y be irreducible G-SFTs. Then the following

are equivalent :

(1) X and Y are right closing almost conjugate as G-SFTs.

(2) The base G-SFTs X and Y for X and Y are right closing almost

conjugate as G-SFTs, and the action homomorphisms φX and φY
are the same.

Proof. Suppose (X,σ) and (Y, σ) are right closing almost conjugate as
G-SFTs. Then there is a G-SFT (Z, σ) and 1-1 a.e. right closing G-factor
maps πX : Z → X and πY : Z → Y . The maps πX and πY preserve period, so
Z must have period p, where p is the period of both X and Y . Furthermore
Z must be irreducible because X and Y are irreducible. Without loss of
generality, assume that Z = Z × {0, . . . , p− 1} where Z is the base G-SFT
for Z. Further assume (X, 0) = πX(Z, 0) and (Y , 0) = πY (Z, 0), where X
and Y are the base G-SFTs for X and Y respectively. Observe that for
0 ≤ n ≤ p− 1,

πX(Z, n) = πX ◦ σn(Z, 0) = σn ◦ πX(Z, 0) = σn(X, 0) = (X,n).

In particular φX = φZ (since πX intertwines G-actions). Similarly φY = φZ .

Let PZ : Z → Z be the G-factor map (z, n) 7→ z and let PX : X → X be
the G-factor map (x, n) 7→ x. Since πX(Z, n) = (X,n) for 0 ≤ n ≤ p − 1,
there is a G-factor map πX : Z → X which makes the following diagram
commute:
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Z
πX

//

PZ

��

X

PX

��

Z
πX

// X

The map πX is 1-1 a.e. and right closing because πX is. Similarly construct
a 1-1 a.e. right closing G-factor map πY : Z → Y . Then X and Y are right
closing almost conjugate as G-SFTs.

Conversely, suppose the base G-SFTs (X,σ) and (Y , σ) are right closing
almost conjugate as G-SFTs, and φ = φX = φY . In particular, X and Y
have the same period p. Let (Z, σ) be a G-SFT with 1-1 a.e. right closing
G-factor maps πX : Z → X and πY : Z → Y . Let Z = Z × {0, . . . , p − 1}
with the shift defined as in (6.1). Define a G-action on Z by

g : (z, n) 7→ (z · g, n+ φ(g) mod p).

Define maps πX : Z → X and πY : Z → Y by πX(z, n) = (πX(z), n) and
πY (z, n) = (πY (z), n). Then πX and πY are G-factor maps. They are 1-1
a.e. and right closing because πX and πY are.

7. Regular isomorphism of G-Markov chains. Let (X,µ) and (Y, ν)
be irreducible Markov chains with Markov measures µ and ν. Let α and β
be the time zero partitions of X and Y , respectively. Consider the past
σ-algebras

α− =

∞∨

n=0

σnα, β− =

∞∨

n=0

σnβ.

Then (X,µ) and (Y, ν) are regularly isomorphic if there is a measurable
isomorphism φ : (X,µ) → (Y, ν) such that

φ−1(β−) ⊂ σ−Nα− = α− ∨ σ−1α ∨ · · · ∨ σ−Nα,

φ(α−) ⊂ σ−Nβ− = β− ∨ σ−1β ∨ · · · ∨ σ−Nβ,

for some nonnegative integer N . The idea of regular isomorphism was in-
troduced and studied by Parry, first in [9] and also in [14]. For a regular
isomorphism φ (in contrast to an arbitrary measurable isomorphism), to
code the present (φx)0, it suffices to know the past and a bounded look into
the future x(−∞,N ]. Boyle and Tuncel [8] show that this measurable coding
relation has a more finite and continuous formulation, as follows.

Theorem 7.1. Irreducible Markov chains (X,µ) and (Y, ν) are regularly

isomorphic if and only if there exists an irreducible Markov chain (Z, η) and

1-1 a.e. right closing factor maps πX : (Z, η) → (X,µ) and πY : (Z, η) →
(Y, ν).
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A G-Markov chain is a Markov chain (X,µ) such that X is a G-SFT and
µ is a G-invariant Markov measure on X. Say that irreducible G-Markov
chains (X,µ) and (Y, ν) are G-regularly isomorphic if there is a regular iso-
morphism φ : (X,µ) → (Y, ν) such that φ is G-equivariant. By Theorems 4.1
and 7.1 we have the following.

Corollary 7.2. Mixing free G-Markov chains (X,µX) and (Y, µY ),
with unique measures of maximal entropy µX and µY , are G-regularly iso-

morphic if and only if (X,µX) and (Y, µY ) are regularly isomorphic as

Markov chains.

In the general irreducible case, G-regular isomorphism with respect to
measures of maximal entropy can be classified in terms of the invariants of
Theorem 6.2.
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[17] K. Schmidt, Remarks on Livšic’ theory for nonabelian cocycles, ibid., 703–721.

Department of Mathematics
University of Maryland
College Park, MD 20742-4015, U.S.A.
E-mail: dykstraa@math.umd.edu
URL: www.math.umd.edu/∼dykstraa

Received 16 March 2005;

revised 10 August 2005 (4576)


