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Abstract. The study of one-dimensional rare maximal functions was started in [4, 5].
The main result in [5] was obtained with the help of some general procedure. The goal of
the present article is to adapt the procedure (we call it “dyadic crystallization”) to the
multidimensional setting and to demonstrate that rare maximal functions have properties
not better than the Strong Maximal Function.

The well-known Jessen–Marcinkiewicz–Zygmund theorem [6] states that
the differentiation basis of all n-dimensional intervals differentiates a.e. the
integrals of all functions from L(log+ L)n−1. The importance of this theorem
is discussed, for example, in [3, 7]. Miguel de Guzmán [2, 3] found the quan-
titative version of the theorem by proving the following weak type estimate
for the corresponding maximal function Mf (the so-called “Strong Maximal
Function”):

(1) |{x : Mf(x) > λ}| .
\|f(x)|

λ

(

1 + log+ |f(x)|

λ

)n−1

dx

where . denotes inequality with a constant depending only on dimension.
This is the best possible estimate as can be easily seen from the following

example which is a multidimensional dyadic version of the well-known Bohr
construction (see Note 1 in [1]). Let Q be the unit cube, m be an arbitrary
positive integer, α ≡ (i1, . . . , in) be such that i1 + · · · + in = m and

Iα ≡ [0, 2i1 ] × · · · × [0, 2in ].

Then it is clear that |Iα| = 2m, Q ⊂ Iα and |Q ∩ Iα| = 2−m|Iα|. Hence

Xm ≡
⋃

i1+···+in=m

Iα ⊂ {x : MχQ(x) ≥ 2−m}.
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All the Iα are pairwise incomparable n-dimensional intervals, hence

|{x : MχQ(x) ≥ 2−m}| ≥ |Xm| &
∑

i1+···+in=m

|Iα| = 2m
∑

i1+···+in=m

1.

Since {(i1, . . . , in) : i1+ · · ·+in = m} = {(i1, . . . , in−1, m−(i1+ · · ·+in−1)) :
i1 + · · · + in−1 ≤ m}, we have

#{(i1, . . . , in) : i1 + · · ·+ in = m} = #{(i1, . . . , in−1) : i1 + · · ·+ in−1 ≤ m}.

On the other hand, {i1 ≤ m/(n − 1), . . . , in−1 ≤ m/(n − 1)} ⊂ {i1 + · · · +
in−1 ≤ m}. Altogether, this gives

(2)
∑

i1+···+in=m

1 ≥
∑

i1≤m/(n−1),...,in−1≤m/(n−1)

1 & mn−1.

Thus

(3) |{x : MχQ(x) ≥ 2−m}| & mn−12m|Q| &
\χQ

2−m

(

1 + log+ χQ

2−m

)n−1

dx

and (1) cannot be improved.

Now, if one tries to repeat the same procedure for the basis whose side
lengths are not just all dyadic, but more sparse, e.g. like 2−n2

, then the
above procedure does not work because the desired inequality

∑

i2
1
+···+i2n−1

≤m

1 & mn−1

is false. In fact,
∑

i2
1
+···+i2n−1

≤m

1 ∼ m(n−1)/2.

To circumvent this difficulty, we will use a procedure we call dyadic

crystallization. We hope that it will be a good complement to the basic
harmonic analysis procedures like linearization, dualization, etc. The reader
can observe the result of application of the procedure by comparing Figures
1 and 2 below and get a justification of its name.

The one-dimensional crystallization runs as follows. Given a number m
and a sequence of integers k0 < · · · < kj < · · · (or equivalently, a sequence
of intervals of lengths 2k0 , . . . , 2kj , . . .) let

Yj ≡ {x ∈ [0, 2km ] : rki
(x) = 1 for all i = j, . . . , m}

where ri(x) = sign sin(π2−ix) are the standard Rademacher functions ex-
tended to the whole real line. The sets Yj consist of disjoint dyadic intervals
of length 2kj and have the following easily verified properties:

Yj ⊂ Yj+1, |Yj+1| = 2|Yj|.
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Now, in general assume that we are given a number m ≥ 1 and a sparse
family of n-dimensional intervals whose projections on the sth axis have
lengths 2k0(s), . . . , 2kj(s), . . . .

Then one can form dyadic crystals Y s
j in each variable with the properties

Y s
j ⊂ Y s

j+1, |Y s
j+1| = 2|Y s

j |

for s = 1, . . . , n. We have

(4) Y s
0 ⊂ Y s

j , |Y s
j | = 2j |Y s

0 |.

For each fixed α = (i1, . . . , in) such that i1 + · · · + in = m we define

Yα ≡ Y 1
i1 × · · · × Y n

in .

Since each Y s
is

is a union of disjoint dyadic intervals of length 2kis (s), it
is clear that each Yα is a union of disjoint congruent n-dimensional dyadic
intervals I whose side lengths are of the type 2ki1

(1), . . . , 2kin (n).

Now, we construct a crystal

Xm ≡
⋃

i1+···+in=m

Yα.

We call Xm a crystal because it has a self-similar structure. Applying the
crystallization to the set of rectangles in Figure 1 we will get the crystal
in Figure 2. In other words, the set in Figure 2 “sprouts” from the set in
Figure 1 using the crystallization procedure.

Fig. 1

Fig. 2
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The figures present the two-dimensional case with m = 2. There are 4
“high” congruent rectangles I which form a set Y(0,2), 4 “middle” rectangles
which form a set Y(1,1), and 2 “low” rectangles which form a set Y(2,0).

Let Q = Y 1
0 × · · · × Y n

0 (in the figure these are the black rectangles). It
is clear that Q ⊂ Yα and the crucial property is the following:

(5)
|I ∩ Q|

|I|
=

|Yα ∩ Q|

|Yα|

where I are congruent n-dimensional intervals forming Yα.
Since Q ⊂ Yα, (4) yields

(6)
|Yα ∩ Q|

|Yα|
=

|Q|

|Yα|
=

|Y 1
0 |

|Y 1
i1
|
. . .

|Y n
0 |

|Y n
in
|
= 2−i1 · · · 2−in = 2−m.

This together with (5) implies that Xm ⊂ {x : MχQ(x) ≥ 2−m}, and by (6)
and (2),

|{x : MχQ(x) ≥ 2−m}| ≥ |Xm| &
∑

i1+···+in=m

|Yα| = 2m|Q|
∑

i1+···+in=m

1(7)

& mn−12m|Q|.

Hence, (7) implies (3).
The above considerations prove the following theorem.

Theorem. Let Rs, s = 1, . . . , n, be arbitrary infinite sets of integers. Let

Mf be a maximal function with respect to n-dimensional intervals whose sth
side length can be any number 2k with k ∈ Rs, regardless of what the other

side lengths are. Then for any 0 < λ < 1 there is a measurable bounded set

Q such that

|{x : MχQ(x) ≥ λ}| &
\χQ

λ

(

1 + log+ χQ

λ

)n−1

.

This theorem demonstrates that the rarefaction of the side length of

the intervals does not improve the properties of the corresponding maximal

function.

Indeed, if

|{x : Mf(x) > λ}| .
\
ϕ

(

|f(x)|

λ

)

dx

then

|{x : MχQ(x) ≥ 2−m}| . ϕ(2m)|Q|.

Comparing this with (7) yields ϕ(2m) & mn−12m.
This gives us a better understanding of the behavior of translation in-

variant subbases of the basis of all multidimensional intervals. The general
situation is still very unclear and only a few partial results are known so far.
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