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THE NATURAL OPERATORS T (0,0)  T (1,1)T (r)

BY

WŁODZIMIERZ M. MIKULSKI (Kraków)

Abstract. We study the problem of how a map f : M → R on an n-manifold
M induces canonically an affinor A(f) : TT (r)M → TT (r)M on the vector r-tangent
bundle T (r)M = (Jr(M,R)0)∗ over M . This problem is reflected in the concept of natural

operators A : T (0,0)
|Mfn

 T (1,1)T (r). For integers r ≥ 1 and n ≥ 2 we prove that the space of

all such operators is a free (r+ 1)2-dimensional module over C∞(T (r)R) and we construct
explicitly a basis of this module.

0. In [2], Gancarzewicz and Kolář obtained a full classification of all
natural (canonical) affinors A : TT (r)M → TT (r)M on the vector r-tangent
bundle T (r)M = (Jr(M,R)0)∗ over an n-manifold M . They proved that
for r ≥ 1 any such A is a linear combination (with real coefficients) of the
identity affinor Id : TT (r)M → TT (r)M and the affinor δ : TT (r)M →
TT (r)M which is the composition

TT (r)M → T (r)M ×M TM ⊂ T (r)M ×M T (r)M ∼= V T (r)M ⊂ TT (r)M,

where the arrow is (πT , Tπ) : TT (r)M → T (r)M ×M TM , πT : TT (r)M →
T (r)M is the tangent bundle projection, π : T (r)M → M is the bundle
projection, and the inclusion TM ⊂ T (r)M is the dualization of the jet
projection Jr(M,R)0 → J1(M,R)0.

In this note we study the problem of how a map f : M → R on an
n-manifold M induces canonically an affinor A(f) : TT (r)M → TT (r)M
on T (r)M . This problem is reflected in the concept of natural operators
A : T (0,0)

|Mfn
 T (1,1)T (r) in the sense of [3], where T (r) = (Jr(·,R)0)∗ is the

r-tangent vector bundle functor on manifolds. For integers r ≥ 1 and n ≥ 2
we prove that the space of all such operators is a free (r + 1)2-dimensional
module over C∞(T (r)R) and we exhibit an explicit basis of this module.

Natural affinors A : TT (r)M → TT (r)M can be considered as “constant”
natural operators A : T (0,0)

|Mfn
 T (1,1)T (r). So, we recover the above men-

tioned result of [2]. Other generalizations of [2] are presented in [6]–[8], [10].
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Natural affinors play an important role in differential geometry. For ex-
ample, they can be used to study “generalized” torsions of a connection (see
[4], [1]). It seems that a similar role can be played by affinors depending
canonically on some geometric objects (functions, vector fields, connections,
etc.). That motivates investigation of natural operators with values in affi-
nors.

Throughout this note the usual coordinates on Rn are denoted by
x1, . . . , xn, and ∂i = ∂/∂xi, i = 1, . . . , n. All manifolds and maps are as-
sumed to be of class C∞.

1. In this section we recall how a map f : M → R on an n-manifold M
induces a map F (f) : T (r)M → R. This problem is reflected in the concept
of natural operators F : T (0,0)

|Mfn
 T (0,0)T (r).

Example 1. Let f : M → R. Applying the functor T (r) we obtain
T (r)f : T (r)M → T (r)R. For a map h ∈ C∞(T (r)R) we get F (h)(f) =
h ◦ T (r)f : T (r)M → R. The correspondence F (h) : T (0,0)

|Mfn
 T (0,0)T (r) is a

natural operator.

Proposition 1 ([5]). Every natural operator F : T (0,0)
|Mfn

 T (0,0)T (r) is

of the form F = F (h) for some h ∈ C∞(T (r)R).

2. In this section we explain how a map f : M → R on an n-manifold M
induces canonically a vector field V (f) on T (r)M . This problem is reflected
in the concept of natural operators V : T (0,0)

|Mfn
 TT (r).

Example 2. Let f : M → R. For any s = 0, . . . , r−1 we define a vertical
vector field V [s](f) on T (r)M by

V [s](f)ω = (ω, ω[s,f ]) ∈ {ω} × T (r)
x M ∼= VωT

(r)M, ω ∈ T (r)
x M, x ∈M.

Here ω[s,f ] ∈ T (r)
x M = (Jrx(M,R)0)∗, ω[s,f ](jrx(γ)) = ω(jrx((f − f(x))sγ)),

γ : M → R, γ(x) = 0. In particular V [0](f) is the Liouville vector field. The
correspondence V [s] : T (0,0)

|Mfn
 TT (r)M is a natural operator.

The set of all natural operators V : T (0,0)
|Mfn

 TT (r) is (in an obvious way)

a module over the algebra of all natural operators F : T (0,0)
|Mfn

 T (0,0)T (r).

So, by Proposition 1 it is a module over C∞(T (r)R).
The following fact will not be used in further considerations.

Proposition 2. For natural numbers r ≥ 2 and n ≥ 3 the natural
operators V [s] for s = 0, . . . , r− 1 form a basis in the C∞(T (r)R)-module of
all natural operators V : T (0,0)

|Mfn
 TT (r).
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Proof scheme. Let V : T (0,0)
|Mfn

 TT (r) be a natural operator. For any

f : M → R we have V (f) : T ∗T (r)M → R, which is fiber linear. So, V
can be considered as a natural operator V : T (0,0)

|Mfn
 T (0,0)(T ∗T (r)) satis-

fying the obvious fiber linearity condition. Conversely, any natural operator
V : T (0,0)

|Mfn
 T (0,0)(T ∗T (r)) with the fiber linearity condition can be consid-

ered as a natural operator V : T (0,0)
|Mfn

 TT (r). So, to prove Proposition 2 it

remains to “extract” the natural operators V : T (0,0)
|Mfn

 T (0,0)(T ∗T (r)) sat-

isfying the fiber linearity condition from all natural operators V : T (0,0)
|Mfn

 
T (0,0)(T ∗T (r)), described in [9]. We leave the details to the reader.

3. In this section we show how a map f : M → R on an n-manifold
M induces canonically a linear transformation A(f) : TT (r)M → T (r)M .
The linearity means that A(f) restricts to linear maps A(f)u : TuT (r)M →
T

(r)
x M for any u ∈ T (r)

x M , x ∈M . This problem is reflected in the concept
of natural operators A : T (0,0)

|Mfn
 (TT (r) → T (r))lin.

Example 3. Consider the composition

δ̃ : TT (r)M → TM → T (r)M

of the map Tπ : TT (r)M → TM tangent to the bundle projection π :
T (r)M → M with the inclusion TM → T (r)M given by the dualization of
the jet projection Jr(M,R)0 → J1(M,R)0. Then δ̃ can be considered as the
“constant” natural operator δ̃ : T (0,0)

|Mfn
 (TT (r) → T (r))lin.

Example 4. Let s = 0, . . . , r − 1 and k = 1, . . . , r. Consider hk :
T (r)R→ R given by

hk(ω) = 〈ω, jrx((t− x)k)〉, ω ∈ T (r)
x R, x ∈ R, t = idR : R→ R.

We define a natural operator Ã[s,k] : T (0,0)
|Mfn

 (TT (r) → T (r))lin by

Ã[s,k](f) = d(F (hk)(f)) · (pr2 ◦V [s](f)◦πT ), f : M → R, M ∈ obj(Mfn).

Here πT : TT (r)M → T (r)M is the tangent bundle projection and pr2 :
V T (r)M ∼= T (r)M ×M T (r)M → T (r)M is the projection onto the second
(essential) factor. The map F (hk)(f) : T (r)M→R is described in Example 1.

Example 5. Let s = 0, . . . , r − 1. Let π : T (r)R → R be the bundle
projection. We define a natural operator Ã[s] : T (0,0)

|Mfn
 (TT (r)→ T (r))lin by

Ã[s](f) = d(F (π)(f)) · (pr2 ◦V [s](f) ◦ πT ), f : M → R, M ∈ obj(Mfn).

Example 6. Let q = 1, . . . , r − 1. For f : M → R and v ∈ (TT (r)M)x
with x ∈M define ω(q,f,v) ∈ T (r)

x M by
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〈ω(q,f,v), jrx(γ)〉 = 〈d(F (h1)(γ) ◦ pr2 ◦V [q](f) ◦ πT ), v〉,
γ : M → R, γ(x) = 0.

Here h1 : T (r)R → R is as in Example 4. By the assumption on q the
value 〈d(F (h1)(γ) ◦ pr2 ◦V [q](f) ◦ πT ), v〉 depends linearly on jrx(γ). Hence
ω(q,f,v) ∈ T

(r)
x M is well defined. We define Ã〈q〉(f) : TT (r)M → T (r)M

by

Ã〈q〉(f)(v) = ω(q,f,v), v ∈ TT (r)M,

and we obtain a natural operator Ã〈q〉 : T (0,0)
|Mfn

 (TT (r) → T (r))lin.

Remark 1. For q = 0 the definition of ω(0,f,v) as in Example 6 is not
correct because the term defining ω(0,f,v) is not determined by jrx(γ).

The set of all natural operators A : T (0,0)
|Mfn

 (TT (r) → T (r))lin is a

module over the algebra of all natural operators F : T (0,0)
|Mfn

 T (0,0)T (r).

So, by Proposition 1 it is a module over C∞(T (r)R).
The crucial point in our considerations is the following proposition.

Proposition 3. For natural numbers r ≥ 1 and n ≥ 2 the (r + 1)2 − 1
natural operators δ̃, Ã〈q〉, Ã[s] and Ã[s,k] for q= 1, . . . , r−1, s= 0, . . . , r−1
and k = 1, . . . , r form a basis in the C∞(T (r)R)-module of all natural oper-
ators A : T (0,0)

|Mfn
 (TT (r) → T (r))lin.

Proof. Let (jr0x
α)∗ ∈ T

(r)
0 Rn for α ∈ (N ∪ {0})n with 1 ≤ |α| ≤ r

be the usual basis. The coordinates of v ∈ T
(r)
0 Rn with respect to the

above basis will be denoted by [v]α, where the α are as above. The co-
ordinates of w ∈ Rn with respect to the obvious basis will be denoted by
[w]1, . . . , [w]n.

Fix a natural operator A : T (0,0)
|Mfn

 (TT (r) → T (r))lin. Clearly, A is
determined by the values 〈A(f)(y), jr0(γ)〉 ∈ R for any f : Rn → R, any
γ : Rn → R with γ(0) = 0 and any y = (y1, y2, y3) ∈ Rn×T (r)

0 Rn×T (r)
0 Rn ∼=

(TT (r)Rn)0. Therefore, we will now study those values.
Since n ≥ 2, by the rank theorem we can assume that f = xn + a

and γ = x1. By the naturality of A with respect to the homotheties at =
(t1x1, . . . , tn−1xn−1, xn) for t = (t1, . . . , tn−1) ∈ Rn−1

+ , we have

〈A(xn + a)(TT (r)(at)(y)), jr0(x1)〉 = t1〈A(xn + a)(y), jr0(x1)〉
for any t = (t1, . . . , tn−1) ∈ Rn−1

+ . Then, using the homogeneous function
theorem ([3]) and the fiber linearity of A(xn + a) we obtain
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(1) 〈A(xn + a)(y), jr0(x1)〉 = λ(a, ([y2](0,...,0,l))
r
l=1)[y1]1

+
r−1∑

s=0

µs(a, ([y2](0,...,0,l))
r
l=1)[y2](1,0,...,0,s)[y1]n

+
r−1∑

s=0

νs(a, ([y2](0,...,0,l))
r
l=1)[y3](1,0,...,0,s)

+
r−1∑

s=0

r∑

q=1

%sq(a, ([y2](0,...,0,l))
r
l=1)[y2](1,0,...,0,s)[y3](0,...,0,q)

for some maps λ, µs, νs, %sq : R × Rr ∼= T (r)R → R, where a ∈ R and
y = (y1, y2, y3) ∈ Rn × T (r)

0 Rn × T (r)
0 Rn.

It is easy to verify that

〈δ̃(xn + a)(y), jr0(x1)〉 = [y1]1,(2)

〈Ã[s](xn + a)(y), jr0(x1)〉 = [y2](1,0,...,0,s)[y1]n,(3)

〈Ã[s,k](xn + a)(y), jr0(x1)〉 = [y2](1,0,...,0,s)[y3](0,...,0,k),(4)

〈Ã〈q〉(xn + a)(y), jr0(x1)〉 = [y3](1,0,...,0,q),(5)

for q = 1, . . . , r − 1, s = 0, . . . , r − 1 and k = 1, . . . , r, a ∈ R and y =
(y1, y2, y3) ∈ Rn × T (r)

0 Rn × T (r)
0 Rn. So, replacing A by

A− λδ̃ −
r−1∑

s=0

µsÃ[s] −
r−1∑

q=1

νqÃ〈q〉 −
r−1∑

s=0

r∑

q=1

%sqÃ[s,q]

and using (1) we can assume that

(6) 〈A(xn + a)(y), jr0(x1)〉 = ν0(a, ([y2](0,...,0,l))
r
l=1)[y3](1,0,...,0)

for some map ν0 : R × Rr → R, where a ∈ R and y = (y1, y2, y3) ∈
Rn × T (r)

0 Rn × T (r)
0 Rn.

We are going to show that A = 0. Let ϕ = (x1 + (x1)r+1, x2, . . . , xn)
near 0 ∈ Rn. By the invariance of A with respect to ϕ we have

(7) 〈A(xn + a)(y), jr0(x1)〉 = 〈A(xn + a)(TT (r)(ϕ)(y), jr0(x1)〉,
because ϕ preserves both the map xn + a and jr0(x1). If y = (e1, y2, 0),
e1 = (1, 0, . . . , 0) ∈ Rn, then TT (r)(ϕ)(y) = (e1, ỹ2, ỹ3) for some ỹ2, ỹ3 ∈
T

(r)
0 Rn with [ỹ2](0,...,0,l) = [y2](0,...,0,l) for l = 0, . . . , r and [ỹ3](1,0,...,0) =
α[y2](r,0,...,0) for some α 6= 0. Now, by using (7) and (6) with y and
TT (r)(ϕ)(y) we see that ν0 = 0, i.e. 〈A(xn + a)(y), jr0(x1)〉 = 0 for any
y = (y1, y2, y3) ∈ Rn × T (r)

0 Rn × T (r)
0 Rn and a ∈ R. Consequently, A = 0.
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4. In this section we study the problem of how a map f : M → R
on an n-manifold M induces canonically a linear transformation A(f) :
TT (r)M → TM . The linearity means that A(f) restricts to linear maps
A(f)u : TuT (r)M → TxM for any u ∈ T

(r)
x M , x ∈ M . This problem is

reflected in the concept of natural operators A : T (0,0)
|Mfn

 (TT (r) → T )lin.

Example 7. The tangent map Tπ : TT (r)M → TM of the bundle pro-
jection π : T (r)M →M can be considered as the “constant” natural operator
Tπ : T (0,0)

|Mfn
 (TT (r) → T )lin.

Example 8. Let k = 1, . . . , r. Consider the natural operator Ã[r−1,k] :
T

(0,0)
|Mfn

 (TT (r) → T (r))lin of Example 4. Given f : M → R and v ∈
(TT (r)M)x with x∈M we have 〈Ã[r−1,k](f)(v), jrx(γ)〉= 0 for any γ : M→R
with j1

x(γ) = 0, i.e. Ã[r−1,k](f)(v) ∈ TxM ⊂ T (r)
x M . So, by corestriction we

produce a natural operator B[k] : T (0,0)
|Mfn

 (TT (r) → T )lin by

B[k](f) := Ã[r−1,k](f) : TT (r)M → TM, f : M → R.

Example 9. Similarly, using the natural operator Ã[r−1] : T (0,0)
|Mfn

 
(TT (r) → T (r))lin of Example 5, by corestriction we produce a natural op-
erator B[] : T (0,0)

|Mfn
 (TT (r) → T )lin by

B[](f) := Ã[r−1](f) : TT (r)M → TM, f : M → R.

The set of all natural operators A : T (0,0)
|Mfn

 (TT (r) → T )lin is a module

over the algebra of all natural operators F : T (0,0)
|Mfn

 T (0,0)T (r). So, by

Proposition 1 it is a module over C∞(T (r)R).

Proposition 4. For natural numbers r ≥ 1 and n ≥ 2 the r+ 2 natural
operators Tπ, B[] and B[k] for k = 1, . . . , r form a basis in the C∞(T (r)R)-
module of all natural operators A : T (0,0)

|Mfn
 (TT (r) → T )lin.

Proof. Consider a natural operator A : T (0,0)
|Mfn

 (TT (r) → T )lin. Ap-

plying the natural inclusion TM ⊂ T (r)M we can consider A as a natural
operator A : T (0,0)

|Mfn
 (TT (r) → T (r))lin. So, by Proposition 3 we have

A = λδ̃ +
r−1∑

s=0

µsÃ[s] +
r−1∑

q=1

νqÃ〈q〉 +
r−1∑

s=0

r∑

k=1

%skÃ[s,k]

for some smooth maps λ, µs, νq, %sk : T rR = R × Rk → R. Replacing A by
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A− λTπ − µr−1B[] −∑r
k=1 %

r−1 kB[k] we can assume

A =
r−2∑

s=0

µsÃ[s] +
r−1∑

q=1

νqÃ〈q〉 +
r−2∑

s=0

r∑

k=1

%skÃ[s,k]

for some smooth maps µs, νq, %sk : R× Rk → R. Now, for y = (y1, y2, y3) ∈
Rn × T (r)

0 Rn × T (r)
0 Rn and a ∈ R we have

(8) 〈A(xn + a)(y), jr0(x1)〉 =
r−2∑

s=0

µs(a, ([y2](0,...,0,l))
r
l=1)[y1]n[y2](1,0,...,0,s)

+
r−1∑

q=1

νq(a, ([y2](0,...,0,l))
r
l=1)[y3](1,0,...,0,q)

+
r−2∑

s=0

r∑

k=1

%sk(a, ([y2](0,...,0,l))
r
l=1)[y3](0,...,0,k)[y2](1,0,...,0,s).

Then for r = 1 we have 〈A(xn + a)(y), jr0(x1)〉 = 0, i.e. A = 0.
Let now r ≥ 2. As A(xn+a)(y) ∈ T0Rn, we have 〈A(xn+a)(y), jr0((x1)2)〉

= 0, i.e.

〈A(xn + a)(y), jr0(x1)〉 = 〈A(xn + a)(y), jr0(x1 + (x1)2)〉
for any a and y as above. Using the invariance of A with respect to ϕ =
(x1 +(x1)2, x2, . . . , xn) near 0 ∈ Rn we find 〈A(xn+a)(y), jr0(x1 +(x1)2)〉 =
〈A(xn + a)(T (r)(ϕ)(y)), jr0(x1)〉. Thus

(9) 〈A(xn + a)(y), jr0(x1)〉 = 〈A(xn + a)(TT (r)(ϕ)(y)), jr0(x1)〉
for any y and a as above.

If y= (en, y2, y3), en = (0, . . . , 0, 1) ∈ Rn, then TT (r)(ϕ)(y) = (en, ỹ2, ỹ3)
for some ỹ2, ỹ3 ∈ T

(r)
0 Rn with [ỹ2](0,...,0,l) = [y2](0,...,0,l) for l = 0, . . . , r,

[ỹ2](1,0,...,0,s) = [y2](1,0,...,0,s)+[y2](2,0,...,0,s) for s = 0, . . . , r−2, [ỹ3](0,...,0,k) =
[y3](0,...,0,k) for k = 1, . . . , r, [ỹ3](1,0,...,0,q) = [y3](1,0,...,0,q) + [y3](2,0,...,0,q) for
q = 1, . . . , r − 2, and [ỹ3](1,0,...,0,r−1) = [y3](1,0,...,0,r−1). Now, it is easy to
verify (by using (9) and (8) with TT (r)(ϕ)(y) playing the role of y) that
µs = 0 for s = 0, . . . , r − 2, νq = 0 for q = 1, . . . , r − 2, and %sk = 0 for
s = 0, . . . , r − 2 and k = 1, . . . , r. Therefore

(10) 〈A(xn + a)(y), jr0(x1)〉 = νr−1(a, ([y2](0,...,0,l))
r
l=1)[y3](1,0,...,0,r−1)

for any y = (y1, y2, y3) ∈ Rn × T (r)
0 Rn × T (r)

0 Rn and a ∈ R.
If y = (e1, y2, y3), e1 = (1, 0, . . . , 0) ∈ Rn, then TT (r)(ϕ)(y) = (e1, ỹ2, ỹ3)

for some ỹ2, ỹ3 ∈ T
(r)
0 Rn with [ỹ2](0,...,0,l) = [y2](0,...,0,l) for l = 0, . . . , r

and [ỹ3](1,0,...,0,r−1) = [y3](1,0,...,0,r−1) + α[y2](1,0,...,r−1) for some α 6= 0.
Now, by using (9) and (10) with TT (r)(ϕ)(y) playing the role of y we see
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that νr−1 = 0, i.e. 〈A(xn + a)(y), jr0(x1)〉 = 0 for any y = (y1, y2, y3) ∈
Rn × T (r)

0 Rn × T (r)
0 Rn and a ∈ R. Consequently, A = 0.

5. The purpose of the present paper is to study how a map f : M → R on
an n-manifold M induces canonically an affinor A(f) : TT (r)M → TT (r)M
on T (r)M . This problem is reflected in the concept of natural operators
A : T (0,0)

|Mfn
 T (1,1)T (r).

Example 10. The natural identity affinor Id : TT (r) → TT (r) on T (r)

can be considered as the “constant” natural operator Id : T (0,0)
|Mfn

 T (1,1)T (r).

Example 11. The natural affinor δ : TT (r) → TT (r) on T (r) can be
considered as the “constant” natural operator δ : T (0,0)

|Mfn
 T (1,1)T (r).

Example 12. Let s = 0, . . . , r− 1 and k = 1, . . . , r. We define a natural
operator A[s,k] : T (0,0)

|Mfn
 T (1,1)T (r) by

A[s,k](f)(v) = (ω, Ã[s,k](f)(v)) ∈ {ω} × T (r)
x M ∼= VωT

(r)M ⊂ TωT (r)M

for f : M → R, v ∈ TωT (r)M , ω ∈ T (r)
x M , x ∈ M . We recall that Ã[s,k] is

the operator from Example 4.

Example 13. Let s = 0, . . . , r − 1. We define a natural operator A[s] :
T

(0,0)
|Mfn

 T (1,1)T (r) by

A[s](f)(v) = (ω, Ã[s](f)(v)) ∈ {ω} × T (r)
x M

for f : M → R, v ∈ TωT (r)M , ω ∈ T (r)
x M , x ∈M . We recall that Ã[s] is the

operator from Example 5.

Example 14. Let q = 1, . . . , r − 1. We define a natural operator A〈q〉 :
T

(0,0)
|Mfn

 T (1,1)T (r) by

A〈q〉(f)(v) = (ω, Ã〈q〉(f)(v)) ∈ {ω} × T (r)
x M

for f : M → R, v ∈ TωT (r)M , ω ∈ T (r)
x M , x ∈ M . We recall that Ã〈q〉 is

the operator from Example 6.

The set of all natural operators A : T (0,0)
|Mfn

 T (1,1)T (r) is a module

over the algebra of all natural operators F : T (0,0)
|Mfn

 T (0,0)T (r). So, by

Proposition 1 it is a module over C∞(T (r)R).

The main result of the present paper is the following classification theo-
rem.

Theorem 1. For natural numbers r ≥ 1 and n ≥ 2 the (r+ 1)2 natural
operators Id, δ, A〈q〉, A[s] and A[s,k] for q = 1, . . . , r−1, s = 0, . . . , r−1 and
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k = 1, . . . , r form a basis in the C∞(T (r)R)-module of all natural operators
A : T (0,0)

|Mfn
 T (1,1)T (r).

Proof. Let A : T (0,0)
|Mfn

 T (1,1)T (r) be a natural operator. Applying

Tπ : TT (r)M → TM for any n-manifold M , we produce a natural operator
Tπ ◦ A : T (0,0)

|Mfn
 (TT (r) → T )lin such that (Tπ ◦ A)(f) = Tπ ◦ A(f) for

any f : M → R. By Proposition 4 we have

(11) Tπ ◦ A = αTπ + βB[] +
r∑

k=1

γkB[k]

for some α, β, γk ∈ C∞(T (r)R). Replacing A by A−α Id we can assume that
α = 0.

We are going to prove that Tπ ◦A = 0.

It is easy to verify that for any a ∈ R and y = (y1, y2, y3) ∈ Rn×T (r)
0 Rn×

T
(r)
0 Rn we have

〈B[](xn + a)(y), jr0(xn)〉 = [y2](0,...,0,r)[y1]n,

〈B[k](xn + a)(y), jr0(xn)〉 = [y2](0,...,0,r)[y3](0,...,0,k).

Then for any a and y as above we obtain

(12) 〈Tπ ◦A(xn + a)(y), jr0(xn)〉 = β(a, ([y2](0,...,0,l))
r
l=1)[y2](0,...,0,r)[y1]n

+
r∑

k=1

γk(a, ([y2](0,...,0,l))
r
l=1)[y2](0,...,0,r)[y3](0,...,0,k).

Therefore putting A(xn + a)(y) = y = (y1, y2, y3) ∈ Rn × T (r)
0 Rn × T (r)

0 Rn
we have y2 = y2 (because A(xn + a) is an affinor) and

[y1]n = β(a, ([y2](0,...,0,l))
r
l=1)[y2](0,...,0,r)[y1]n(13)

+
r∑

k=1

γk(a, ([y2](0,...,0,l))
r
l=1)[y2](0,...,0,r)[y3](0,...,0,k).

Using Ã[r−1] from Example 5 we produce a natural operator Ã[r−1] ◦A :
T

(0,0)
|Mfn

 (TT (r) → T (r))lin defined by

(Ã[r−1] ◦A)(f) = Ã[r−1](f) ◦ A(f), f : M → R.

By Proposition 3 we have

(14) A[r−1] ◦ A = λδ̃ +
r−1∑

s=0

µsÃ[s] +
r−1∑

q=1

νqÃ〈q〉 +
r−1∑

s=0

r∑

k=1

%skÃ[s,k]
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for some smooth maps λ, µs, νq, %sk : T (r)R = R × Rk → R. Then using
(2)–(5) we have

(15) 〈A[r−1](xn + a) ◦A(xn + a)(y), jr0(x1)〉 = λ(a, ([y2](0,...,0,l))
r
l=1)[y1]1

+
r−1∑

s=0

µs(a, ([y2](0,...,0,l))
r
l=1)[y2](1,0,...,0,s)[y1]n

+
r−1∑

q=1

νq(a, ([y2](0,...,0,l))
r
l=1)[y3](1,0,...,0,q)

+
r−1∑

s=0

r∑

k=1

%sk(a, ([y2](0,...,0,l))
r
l=1)[y2](1,0,...,0,s)[y3](0,...,0,k)

for any a and y as above.
On the other hand, if A(xn + a)(y) = y = (y1, y2, y3) then

〈A[r−1](xn + a) ◦A(xn + a)(y), jr0(x1)〉 = [y2](1,0,...,0,r−1)[y1]n

(see (3)). Hence by (13) we have

(15) 〈A[r−1](xn + a) ◦A(xn + a)(y), jr0(x1)〉
= [y2](1,0,...,0,r−1)(β(a, ([y2](0,...,0,l))

r
l=1)[y2](0,...,0,r)[y1]n

+
r∑

k=1

γk(a, ([y2](0,...,0,l))
r
l=1)[y2](0,...,0,r)[y3](0,...,0,k))

for any a and y as above.
Using (15) and (16) we deduce that β = 0 and γk = 0, i.e. Tπ ◦A = 0.
From the last fact we deduce that A(f) : TT (r)M → V T (r)M ∼=

T (r)M×M T (r)M for any f : M → R. Using the projection pr2 : V T (r)M →
T (r)M onto the second factor we produce a natural operator pr2 ◦A :
T

(0,0)
|Mfn

 (TT (r) → T (r))lin such that (pr2 ◦A)(f) = pr2 ◦A(f) for any
f : M → R. By Proposition 3 we have

pr2 ◦A = λδ̃ +
r−1∑

s=0

µsÃ[s] +
r−1∑

q=1

νqÃ〈q〉 +
r−1∑

s=0

r∑

k=1

%skÃ[s,k]

for some λ, µs, νq, %sk ∈ C∞(T (r)R). Then

A = λδ +
r−1∑

s=0

µsA[s] +
r−1∑

q=1

νqA〈q〉 +
r−1∑

s=0

r∑

k=1

%skA[s,k].

Remark 2. In [10] we studied the problem of how a vector field X on M
induces an affinor A(X) on T (r)M . This problem is reflected in the concept
of natural operators A : T|Mfn  T (1,1)T (r). We proved that for n ≥ 3
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the vector space over R of all such operators is (r + 1)-dimensional and we
constructed explicitly a basis of this vector space.

6. To end this paper we explain how a map f : M → R on an n-manifold
M induces canonically a 1-form ω(f) ∈ Ω1(T (r)M) on T (r)M . This problem
is reflected in the concept of natural operators ω : T (0,0)

|Mfn
 T ∗T (r).

Example 15. Let k = 1, . . . , r. We define a natural operator ω[k] :
T

(0,0)
|Mfn

 T ∗T (r) by

ω[k](f) = d(F (hk)(f)), f : M → R.

The map hk : T (r)R→ R is defined in Example 4.

Example 16. Let π : T (r)R→ R be the bundle projection. We define a
natural operator ω[] : T (0,0)

|Mfn
 T ∗T (r) by

ω[](f) = d(F (π)(f)), f : M → R.

The set of all natural operators ω : T (0,0)
|Mfn

 T ∗T (r) is a module over the

algebra of all natural operators F : T (0,0)
|Mfn

 T (0,0)T (r). So, by Proposition 1

it is a module over C∞(T (r)R).

Proposition 5. For natural numbers r ≥ 1 and n ≥ 1 the r+ 1 natural
operators ω[] and ω[k] for k = 1, . . . , r form a basis in the C∞(T (r)R)-module
of all natural operators ω : T (0,0)

|Mfn
 T ∗T (r).

Proof. Consider a natural operator ω : T (0,0)
|Mfn

 T ∗T (r). Let a ∈ R and

y = (y1, y2, y3) ∈ Rn × T (r)
0 Rn × T (r)

0 Rn. The naturality of ω with respect
to at = (x1, tx2, . . . , txn) for t 6= 0 implies that ω(x1 + a)(T (r)(at)(y)) =
ω(x1 + a)(y). Then using the fiber linearity of ω(x1 + a) we easily deduce
that

ω(x1 + a)(y) = α(a, ([y2](l,0,...,0))
r
l=1)[y1]1

+
r∑

k=1

βk(a, ([y2](l,0,...,0))
r
l=1)[y3](k,0,...,0)

for some maps α, βk : R × Rk → R. Since ω is determined by the values
ω(x1+a)(y) for all a and y as above, it follows that ω = αω[]+

∑r
k=1 β

kω[k].

Remark 3. (a) Proposition 5 for r ≥ 2 is also a corollary of Theorem 1.
More precisely, any natural operator ω : T (0,0)

|Mfn
 T ∗T (r) defines a natural

operator ω ⊗ V [0] : T (0,0)
|Mfn

 T (1,1)T (r) by

(ω ⊗ V [0])(f) = ω(f)⊗ V [0], f : M → R,
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where V [0] is the Liouville vector field on T (r)M (see Example 2). Using
Theorem 1 we can express ω⊗ V [0] as a linear combination. Then it is easy
to study ω and to complete the proof of Proposition 5.

(b) Proposition 5 is also a corollary of the result of [5]. Indeed, ω(f) :
TT (r)M → R is a fiber linear map for any f : M → R. Hence ω can be con-
sidered as a natural operator ω : T (0,0)

Mfn
 T (0,0)(TT (r)) satisfying the obvi-

ous fiber linearity condition. So, to prove Proposition 5 it is sufficient to “ex-
tract” the natural operators ω : T (0,0)

Mfn
 T (0,0)(TT (r)) satisfying the fiber

linearity condition from all natural operators F : T (0,0)
Mfn

 T (0,0)(TT (r)),
classified in [5]. This is an easy exercise on the homogeneous function theo-
rem.
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