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Abstract. We study the problem of how a map f : M — R on an m-manifold
M induces canonically an affinor A(f) : TT"M — TT") M on the vector r-tangent
bundle T M = (J"(M,R)o)* over M. This problem is reflected in the concept of natural

operators A : Tl(/(\)/’&) ~os 7D () For integers r > 1 and n > 2 we prove that the space of

all such operators is a free (r+ 1)?-dimensional module over C*(T("R) and we construct
explicitly a basis of this module.

0. In [2], Gancarzewicz and Kolaf obtained a full classification of all
natural (canonical) affinors A : TT(") M — TT) M on the vector r-tangent
bundle T M = (J"(M,R)o)* over an n-manifold M. They proved that
for r > 1 any such A is a linear combination (with real coefficients) of the
identity affinor Id : TT"M — TT"M and the affinor § : TT"WM —
TT) M which is the composition

TTOM — TOM x TM CTOM x 3 TOM 2 VT M c TTT M,

where the arrow is (77, Tw) : TT"M — TUM x5 TM, 77 : TT M —
T M is the tangent bundle projection, = : TU)AM — M is the bundle
projection, and the inclusion TM < T()M is the dualization of the jet
projection J"(M,R)g — J*(M,R)o.

In this note we study the problem of how a map f : M — R on an
n-manifold M induces canonically an affinor A(f) : TT"WM — TT" M
on T M. This problem is reflected in the concept of natural operators
A: ﬂ%% ~s TUEDTT) in the sense of [3], where T = (J7(-,R)o)* is the
r-tangent vector bundle functor on manifolds. For integers » > 1 and n > 2
we prove that the space of all such operators is a free (r + 1)?-dimensional
module over C*®(T("R) and we exhibit an explicit basis of this module.

Natural affinors A : TT") M — TT() M can be considered as “constant”
natural operators A : T‘(j(\)/l(}) ~s TADT) So, we recover the above men-
tioned result of [2]. Other generalizations of [2] are presented in [6]—[8], [10].
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Natural affinors play an important role in differential geometry. For ex-
ample, they can be used to study “generalized” torsions of a connection (see
[4], [1]). Tt seems that a similar role can be played by affinors depending
canonically on some geometric objects (functions, vector fields, connections,
etc.). That motivates investigation of natural operators with values in affi-
nors.

Throughout this note the usual coordinates on R™ are denoted by
xl, ... 2" and 9; = 0/02", i = 1,...,n. All manifolds and maps are as-
sumed to be of class C'*°.

1. In this section we recall how a map f: M — R on an n-manifold M
induces a map F(f) : T"VM — R. This problem is reflected in the concept

of natural operators F : Tl(/?/’l(}) s OO (r),

EXAMPLE 1. Let f : M — R. Applying the functor T(") we obtain
T f : TOM — TWR. For a map h € C¥(T"R) we get FIM(f) =
hoT( f:T"M — R. The correspondence F() : 11%3& ~s TOO M) g g
natural operator.

PROPOSITION 1 ([5]). Every natural operator F' : Tl(/?/’l(}l s TOO) () s
of the form F = F" for some h € CW(T(T)R).

2. In this section we explain how a map f : M — R on an n-manifold M
induces canonically a vector field V/(f) on T(") M. This problem is reflected

in the concept of natural operators V : 1](/(\)/’&1 ~s TT)

ExaMPLE 2. Let f: M — R. Forany s =0,...,r—1 we define a vertical
vector field VIsI(f) on T M by

VENH) Y = (w, ol e Wy xTOM =2V, TOM, weTM, e M.
Here o/ € T{" M = (J5(M.R)o)*, w71(j5(7)) = w(iE((f = f(2))*7)),
v : M — R, y(z) = 0. In particular VI°(f) is the Liouville vector field. The
correspondence V15! : T‘(/(\)A(}) ~ TT) M is a natural operator.

The set of all natural operators V' : TI(/[\)/’l(})n ~ TT") is (in an obvious way)

a module over the algebra of all natural operators F : Tl(/(\)/’l[}i ~s TO0) ()
So, by Proposition 1 it is a module over C>(T("R).
The following fact will not be used in further considerations.

PROPOSITION 2. For natural numbers r > 2 and n > 3 the natural
operators V¥l for s =0,...,7 — 1 form a basis in the C>(T"R)-module of

all natural operators V : ﬂg&? s TT)
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Proof scheme. Let V : Tl(/?/’l[}) ~» TT) be a natural operator. For any

f: M — R we have V(f) : T*T" M — R, which is fiber linear. So, V

can be considered as a natural operator V : 7](/(\)/’&1 s TOO(T*T (M) satis-
fying the obvious fiber linearity condition. Conversely, any natural operator

vV T|(/[\J/t(])”)n ~s TOO(T*T(M) with the fiber linearity condition can be consid-

ered as a natural operator V : Tl(ji)/’l[}) ~ TT(") . So, to prove Proposition 2 it
remains to “extract” the natural operators V : T|(/(\)4’33n s TOO)(T*T() gat-

isfying the fiber linearity condition from all natural operators V : T |(/?/’t(}) ~

TOO(T*T(™)), described in [9]. We leave the details to the reader. m

3. In this section we show how a map f : M — R on an n-manifold
M induces canonically a linear transformation A(f) : TTWM — T M.
The linearity means that A(f) restricts to linear maps A(f), : T,T "M —

TQET)M for any u € Tér)M , x € M. This problem is reflected in the concept

of natural operators A : T\(/?/ﬁ‘) s (TTT) — T,

ExaMPLE 3. Consider the composition
§:TTM — TM — T M

of the map Tr : TT"M — TM tangent to the bundle projection 7 :
T M — M with the inclusion TM — T M given by the dualization of
the jet projection J"(M,R)g — J!(M,R)g. Then § can be considered as the

“constant” natural operator 5 T‘(/(\)/’[(}n > (TT(T) N T(T))lin.
ExamMpPLE 4. Let s = 0,...,r — 1 and &k = 1,...,r. Consider hy :
TR — R given by
hi(w) = (w, i ((t—z)*), weTR, zeR, t=idg:R —R.

We define a natural operator Alsikl T\(/(\)/’t(;‘) ~ (TT(T) — T(T))lin by

AR (f) = d(F () (pryoVEl(f)onT),  f: M — R, M € obj(Mfy).

Here 77 : TT"WM — T M is the tangent bundle projection and pry :
VTWM =2 TOM xp TOM — TUM is the projection onto the second
(essential) factor. The map F("*)(f) : T(") M — R is described in Example 1.

EXAMPLE 5. Let s = 0,...,7 — 1. Let 7 : T"JR — R be the bundle
projection. We define a natural operator Alsl TI(/[\J/I(J)’)n > (TT(T) — T(T))lin by
AVI(f) = d(FD(f)) - (prooVEl(f) o n”),  f: M =R, M € obj(Mf).

EXAMPLE 6. Let ¢ =1,...,7r — 1. For f : M — R and v € (TT" M),
with z € M define w(¢fv) ngr)M by
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(W @) 57 () = (d(FP) () 0 pry o VI (f) o 7T, 0),

Here hy : TR — R is as in Example 4. By the assumption on ¢ the
value (d(F")(v) o pryoVId(f) o 77),v) depends linearly on (). Hence
w@F) e TSM is well defined. We define A@(f) : TTWM — TMM
by

AD(f)(v) =WV v e TT M,

and we obtain a natural operator Ala) TI(/[\]/I(;’)n ~ (TT(T) — T(T))hn.

REMARK 1. For ¢ = 0 the definition of w(®/*) as in Example 6 is not
correct because the term defining w(%*) is not determined by ;% (7).

The set of all natural operators A : ﬂ%(j‘l s (TTT) — Ty, is a
module over the algebra of all natural operators F' : T‘(/(\JA(}) s TO0) ()
So, by Proposition 1 it is a module over C>(T("R).

The crucial point in our considerations is the following proposition.

PROPOSITION 3. For natural numbers r > 1 and n > 2 the (r + 1)2 -1
natural operators 6, AV ALl and AlSF forq=1,...,r—1,5s=0,...,r—1
and k=1,...,r form a basis in the C“(T(T)R)—module of all natural oper-

070 T T
ators A : Tl(Mf)n s (TTT) — Ty

Proof. Let (j7z®)* € T'R™ for @ € (NU{0})" with 1 < |af < r
be the usual basis. The coordinates of v € TO(T)R” with respect to the
above basis will be denoted by [v],, where the « are as above. The co-
ordinates of w € R™ with respect to the obvious basis will be denoted by

[W]1y ...y [W]h-

Fix a natural operator A : TI(/(\)A[})TL s (TTT) — Ty, Clearly, A is
determined by the values (A(f)(y),75(7)) € R for any f : R" — R, any
v :R" — R with y(0) = 0 and any y = (y1,72,3) € R*x T\VR x TR
(TT(R™)o. Therefore, we will now study those values.

Since n > 2, by the rank theorem we can assume that f = z" 4+ a
and v = z'. By the naturality of A with respect to the homotheties a; =

(ttat, .. gnlgn=l gn) for t = (..., 1" 1) € R%!, we have
(A(z" + a)(TT"(ar)(y)), j5 (x1)) = t'(A(z" + a) (1), j («1))
for any t = (t!,...,t"71) € Ri_l. Then, using the homogeneous function

theorem ([3]) and the fiber linearity of A(z™ + a) we obtain
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(1) (A" +a)(y), JS( D) = Ma, ([y2)o,....0.0)1=1) 1)1

Z 7 ’07l)),[:1)[y2:|(1,0,,0,8) [yl]n
s=0
~1
+ v¥(a, ([y2)(o,....0.0) )i=1) ¥l (1,0,....0,5)
s=0
Z (0,.0.0)i=1)[¥21,0,...09)¥5]0,....0.0)
:O =1

for some maps \, p®,v% 0% : R x R = TU)R — R, where a € R and
y = (y1,y2,y3) € R" x TSR x TR,
It is easy to verify that

(2) (0" +a)(y), o («")) = [n]s,
(3) (APl @ + a)(y), j5 (")) = [y2)(1.0,...0.5) [v1]n,
(4) <A[s Kla™ + a)(y), ji(at)) = [2](1,0,...,0,5) [U3](0,....0,k) >
(5) (A9 (@™ +a)(y), 55 (")) = [ws)v0....0.0);
forg=1,....,r—1,s=0,...,r—land k =1,....,r,a € Rand y =
(y1,y2,y3) € R™ x T(’")R” TU(’”)RH. So, replacing A by

A— N\ — Tz:usg[s} _ Tzl VAl Tzzl ZT: 01 Als:dl

5=0 q=1 5=0 g=1

and using (1) we can assume that

(6) (A" +a)(), jo (1)) = v*(a, ([y2)o....0.0))i=1) [¥s](1.0....0)

for some map v : R x R” — R, where a € R and y = (y1,¥2,93) €

R™ x TR x TSR
We are going to show that A = 0. Let ¢ = (2! + (2!)" 1, 22,... 2")
near 0 € R™. By the invariance of A with respect to ¢ we have

(7) (A(z" +a)(y), jg (")) = (A@@" + a)(TTT ()(y), G5 (=),

because ¢ preserves both the map z™ + a and ji(z'). If y = (e1,%2,0),
€1 = (170770) € Rn? then TT(T)(SO)(y) = (617g27g3) for some g27§3 €
Tér)Rn with [52](0 ..... 0,) = [3/2](0 ..... 0,0) for | = 0,...,’1" and [373](1,0 77777 0) =
aly2](ro,....0) for some a # 0. Now, by using (7) and (6) with y and
TT™) (p)(y) we see that v° = 0, i.e. (A(z™ + a)(y),j5(x')) = 0 for any
y = (y1,y2,93) € R" X Tér)R” X Tér)]R” and a € R. Consequently, A =0. m
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4. In this section we study the problem of how a map f : M — R
on an n-manifold M induces canonically a linear transformation A(f) :
TT"M — TM. The linearity means that A(f) restricts to linear maps

A(f)u : T,T™M — T,M for any u € T\’ M, z € M. This problem is
reflected in the concept of natural operators A : T‘(/&% ~ (TT(T) — Tiin.-

EXAMPLE 7. The tangent map T'w : TT(" M — TM of the bundle pro-
jection 7 : T M — M can be considered as the “constant” natural operator
0,0 -
T : Ty}~ (TTC) = Ty,
ExAMPLE 8. Let kK = 1,...,r. Consider the natural operator Alr=LE]

T7, ~ (TT®) — Ty, of Example 4. Given f : M — R and v €

(TT" M), with € M we have (Al'=UH()(v), j7(y)) = 0 for any 7 : M —R
with j1(y) =0, i.e. AF=UF(f)(v) € T,M C T M. So, by corestriction we
produce a natural operator B (k] . T‘(/(\)/l(})n s (TT(T) — T)iin by

B (f) = AU=Y8(f) . TTOM — TM, f:M —R.

EXAMPLE 9. Similarly, using the natural operator Alr=11 T‘(f\)/’l(})

n

(TT) — Ty, of Example 5, by corestriction we produce a natural op-
erator Bl : Tl(j\)/’l(}) ~ (TT(’”) — T)iin by

BU(f) = Ar=U(f) . TTM — TM, f:M —R.

The set of all natural operators A : T‘(/?/’[(})n s (TT(T) — T)yp is a module

over the algebra of all natural operators F' : T‘(/?/’Sc) s TOOTE) So, by

Proposition 1 it is a module over C(T("R).

PROPOSITION 4. For natural numbersr > 1 and n > 2 the r + 2 natural
operators Tw, Bl and B! for k =1,...,r form a basis in the C°(T(R)-

module of all natural operators A : Tl(/?/l(}) ~ (TT(T) — Tin.

Proof. Consider a natural operator A : Tl(/?/’l(}l ~s (TTT) = T)yy. Ap-

plying the natural inclusion TM C T M we can consider A as a natural
operator A : 70, (TT™) — Ty, So, by Proposition 3 we have

[Mfr
r—1 r—1 r—1 r
A= )\g‘i‘ Zusg[s] + Z VQZ<‘1> + Z Z st;{[s,k]
5=0 q=1 5=0 k=1

for some smooth maps A, %, v9, 0°% : T"R = R x R¥ — R. Replacing A by
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A—\Tr— Bl — 22:1 0"~ ! ¥BI we can assume
r—=2 r

A= ZMSA[S +ZVqu)+ZZstASk

s=0 k=1

for some smooth maps p®, v9, gSk :R x R¥ — R. Now, for y = (y1,%2,3) €
R™ x TéT)R" X T(T)R” and a € R we have

6 (A" + )30 = 3 5@ ([0 i) Bt el o0
s=0

1

Z Y2l(0,...,0.0))i=1)3](1,0,...,0,)
=1

r—2 r

+ Z Z 0**(a, ([y2l(o,....0.0)i=1) [¥3) 0,....0,0) [¥2] (1,0.....0,5)-
s=0 k=

1
Then for 7 = 1 we have (A(z" + a)(y), j5(z!)) = 0, i.e. A=0.

Let now r > 2. As A(z"+a)(y) € ToR", we have (A(x"+a)(y), j5((z1)?))
=0, i.e.

(A(z" +a)(y), jo (")) = (A" + a)(y). o (=" + (21)?))
for any a and y as above. Using the invariance of A with respect to ¢ =
(x!+ (212,22, ..., 2") near 0 € R™ we find (A(z" +a)(y), j5(z* + (z1)?))
(A(z™ +a)(T")(9)(y)), j§(z")). Thus

(9) (A(z" + a)(y), jo («")) = (A(@" + a)(TT()(y)), Gg (="))
for any y and a as above.

If y=(en,y2,¥3), en=(0,...,0,1) € R, then TT") (0)(y) = (ey,
for some ﬂQ,ﬂg S TéT)Rn with [yg]((L L0 = [yg](o Ol) fOI‘ [ = 0
[Y2](1,0,...,0,5) = [¥2](1,0,....0,5) + [¥2](2,0,...,0,5) fOr s = 0,. 2, [¥so,...,0, k)
[Y3](0,....0k) for k=1,....7, [U3](10,..0,0) = [¥3](1,0,..., ,q) + [93](2 0,..-,0,0) for
g=1,...,7r—2, and [yg](LO,MO,T 1y = [yg](l’ow.’oyr 1)- Now, it is easy to
verify (by using (9) and (8) with TT()(p)(y) playing the role of y) that
' =0fors=0,....,r—2, v =0forqg=1,...,r — 2, and p** = 0 for
s=0,....,r—2and k=1,...,r. Therefore

(10) (A" +a)(y),jo (")) = v (a. ([y2)0.....00) )i=1) W3] (1.0,....0r—1)
for any y = (y1,y2,y3) € R™ x TéT)R” X TO(T)R" and a € R.

If y = (e1,42,93), e1 = (1,0,...,0) € R™, then TT™) (p)(y) = (e1, J2, J3)
for some 2,73 € Ty R™ with [fo](o, op = [y2)0,...00) for I = 0,...,7

and [¥3](10,...00—1) = [W3la0,....00—1) + @[y2]1,0,....r—1) for some a # 0.
Now, by using (9) and (10) with 77 (¢)(y) playing the role of y we see

27?/3)
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that v"~1 = 0, i.e. (A(z" + a)(y),55(x')) = 0 for any y = (y1,92,93) €
R™ x TéT)R” X TéT)R” and a € R. Consequently, A =0. m

5. The purpose of the present paper is to study how amap f : M — Ron
an n-manifold M induces canonically an affinor A(f) : TT" M — TT") M
on T M. This problem is reflected in the concept of natural operators

AT~ TODTE),

EXAMPLE 10. The natural identity affinor Id : 7T — TT() on T
can be considered as the “constant” natural operator Id : T‘(f\z(}) ~s T (7).

EXAMPLE 11. The natural affinor § : 77" — TT) on T(") can be

considered as the “constant” natural operator § : TI(/(\)/’S”{L ~s T (7).

EXAMPLE 12. Let s =0,...,r—1and k=1,...,r. We define a natural
operator AlH : TV s PADTO) by

ABF(F) () = (w, ABH () (0) € {w} x T M 2V, T M c T,TM M

for f: M - R, v e TwT(”)M, w € Ta(;r)M, x € M. We recall that Als* is
the operator from Example 4.

EXAMPLE 13. Let s = 0,...,7 — 1. We define a natural operator Al*! :
T‘%)n s THDTE) by
AP () (@) = (w, AP (f)(v)) € {w} x TS M
for f: M —R,veT,TMM,we T M, 2 € M. We recall that Al is the
operator from Example 5.

EXAMPLE 14. Let ¢ = 1,...,r — 1. We define a natural operator A9 :
700 A7) By

| M fn
AD(F)(v) = (w, A9 (f)(v)) € {w} x T M
for f: M — R, v € T.T"M, w e ngr)M, x € M. We recall that A(@ is
the operator from Example 6.

The set of all natural operators A : Tl(/?/’l(}l v TADT) g 3 module

over the algebra of all natural operators F' : T(O’(? s TOOT) So. by
Proposition 1 it is a module over C=(T("R).

The main result of the present paper is the following classification theo-
rem.

THEOREM 1. For natural numbers r > 1 and n > 2 the (r + 1)? natural
operators 1d, 6, A9 Al and ASH forqg=1,...,r—1,5s=0,...,7r—1 and
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k=1,...,r form a basis in the C*(TR)-module of all natural operators

A T‘(jﬁf) TADTM),

Proof. Let A : T(O 0) ~s TADT) be a natural operator. Applying

Trn:TT"WM — TM for any n-manifold M, we produce a natural operator
TroA: T\ ~ (TT") — T)yy, such that (T o A)(f) = T o A(f) for
any f: M — R. By Proposition 4 we have

(11) TroA=aTr+ 3B+ 3 A B
k=1

for some a, 3,7* € C®(T"R). Replacing A by A—aId we can assume that
a=0.

We are going to prove that Tmo A = 0.

It is easy to verify that for any a € R and y = (y1,¥2,y3) € R xTO(T)R" X
T{VR" we have

(BU (" +a)(y), 5 (")) = [y2) 0,....0.m W10
(BM (" + a)(y), j5(2")) = [v2)0.....0m W3](0,...00)-

Then for any a and y as above we obtain

(12)  (Tmwo A(z" 4 a)(y), jo(«")) = B(a, ([y2]o,....00 )i=1) W2l 0.....0. [¥1]n

+ Z Y (a, ([Y2)0....00))i=1) 2] (0,....0.) W3] 0,....0.k) -

Therefore putting A(z™ + a)(y) =¥ = (¥1,72, Y3) € R™ x Tér)R” X TéT)R”
we have 7, = y2 (because A(z™ + a) is an affinor) and

(13)  [T1ln = B(a, ([y2)o.,....00))i=1)[¥2](0,....0) [W1]n

+ Z ’Yk(av ([92](0,...,0,1))7:1)[92](0,...,0@ [ys](o,...,o,k)-

Using Alr=11 from Example 5 we produce a natural operator Alr=16 A .
T{Np, ~ (TT@) — T()y, defined by
(Ao a)(f) = Ao A, fiM R
By Proposition 3 we have

r—1 r

(14) Ao A =235 + ZﬁsA o) 4 Z PIAD 4NN gk Al

s=0 k=1
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for some smooth maps X, %, 79,5°% : TR = R x R¥ — R. Then using
(2)—(5) we have

(15)  (ArTU@" +a) o A(z" + a)(y), jo (1)) = Ma, ([y2)0....0.0)i=1)wi]s

+ ) 7 (a, ([v2o,....00)i=) 2] (1,0.....0.6) [¥1]n
s=0

r—1
+ > 7(a, ([y2]0,....00)1=1)¥3](1,0,....0,)
q=1
r—1 r
+ Sk 0,00 1=1)[W2] (1,0,....0,9) [U3] (0,....0.%)
s=0 k=1

for any a and y as above.
On the other hand, if A(z™ + a)(y) =7 = (Y1,7s,Ys) then

(A" +a) o A(2" + a)(y). j5 (1)) = Bal1,0,.00— 1) [F1]n

(see (3)). Hence by (13) we have
(15)  (ArTH(@" +a) o A(z" + a)(y), jo(«*))
= [U2]1.0.,....0,0—1)(B(a, ([y2]0.....00))i=1) [¥2] (0,....0,) [U1]n

+ Z v*(a, ([y2)o.....00))i=1) [¥2)(0.....0.m W3] (0.....0.k))

for any a and y as above.
Using (15) and (16) we deduce that 8 = 0 and v* =0, i.e. Tmo A = 0.
From the last fact we deduce that A(f) : TT"WM — VTIM =
T M x5 T M for any f : M — R. Using the projection pry, : VI ("M —
T M onto the second factor we produce a natural operator pryoA :

T‘(/(\JA(}) ~s (TT) — Ty, such that (pryoA)(f) = pryoA(f) for any

f: M — R. By Proposition 3 we have

r—1 r
pry oA = )‘5+ZMSA[S +ZVqA<q) +ZZQSkAsk
s=0 k=1
fOI‘ some )\7 H 7Vq7 QSk S COO(T(T)R) Then
r—1 r—1 r—1 r
A= )\54— Z/’LSA[S] + ZV‘IA(Q> + ZZQSkA[S,k]. -
s=0 q=1 5=0 k=1

REMARK 2. In [10] we studied the problem of how a vector field X on M
induces an affinor A(X) on T M. This problem is reflected in the concept
of natural operators A : Tjrf, ~ TAEDTE)  We proved that for n > 3



NATURAL OPERATORS 15

the vector space over R of all such operators is (r 4+ 1)-dimensional and we
constructed explicitly a basis of this vector space.

6. To end this paper we explain how a map f : M — R on an n-manifold
M induces canonically a 1-form w(f) € 21(T M) on T") M. This problem

is reflected in the concept of natural operators w : 7O, (),

[Mfn
EXAMPLE 15. Let &k = 1,...,r. We define a natural operator w( :
TO0) s 77 by

WH(f) = dFMI(f),  f:M >R
The map hy, : TR — R is defined in Example 4.

EXAMPLE 16. Let 7 : TR — R be the bundle projection. We define a
natural operator wl : ﬂ%? ~s TFT() by

WI(f)=d(F™(f)), f:M—R

The set of all natural operators w : Tl(/?/’l(}) ~ T*T() is a module over the

algebra of all natural operators F' : Tl(/?/’l(})n ~s TO0T() So. by Proposition 1
it is a module over C>°(T("R).

PROPOSITION 5. For natural numbersr > 1 and n > 1 the r +1 natural
operators wl and w¥! fork =1,...,r form a basis in the C>®(TR)-module

of all natural operators w : T\(/(\)/l(;‘)n o THT(T)

Proof. Consider a natural operator w : 7Y s T*T(). Let a € R and

y = (y1,y2,y3) € R™ x TéT)R” X TéT)R”. The naturality of w with respect
to a; = (o' tax?,... ta") for t # 0 implies that w(z' + a)(T") (as)(y)) =
w(xz! + a)(y). Then using the fiber linearity of w(z! + a) we easily deduce
that

w(z! +a)(y) = ala, ([y2]@o,..0))i=1) 1)1

+ Z 3*(a, ([y2](1,0.....0))i=1) Y3l (k,0.....0)
k=1

for some maps a, 8 : R x R¥ — R. Since w is determined by the values
w(x'+a)(y) for all @ and y as above, it follows that w = awl+3"7 | BFwk]. =

REMARK 3. (a) Proposition 5 for » > 2 is also a corollary of Theorem 1.

More precisely, any natural operator w : 7](/(\)/’&1 ~s T*T(") defines a natural

operator w ® v, T‘(/(\)/’Sc) s T () by

WV =wfHeVvl f:M-R,
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where VI is the Liouville vector field on T M (see Example 2). Using
Theorem 1 we can express w ® V% as a linear combination. Then it is easy
to study w and to complete the proof of Proposition 5.

(b) Proposition 5 is also a corollary of the result of [5]. Indeed, w(f) :
TT™ M — R is a fiber linear map for any f : M — R. Hence w can be con-
sidered as a natural operator w : T/(\?t’,?z ~s TO0(TT()) satisfying the obvi-
ous fiber linearity condition. So, to prove Proposition 5 it is sufficient to “ex-

tract” the natural operators w : T/(S[’]?n ~s TOO(TTM) satisfying the fiber

linearity condition from all natural operators F : T/(S[’]?z ~s TO0) (7)),

classified in [5]. This is an easy exercise on the homogeneous function theo-
rem.
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