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LOW DIMENSIONAL HOMOTOPY GROUPS OF SUSPENSIONS
OF THE HAWAIIAN EARRING

BY

KAZUHIRO KAWAMURA (Tsukuba)

Abstract. We study the (n + 1)st homotopy groups and the shape groups of the
(n− 1)-fold reduced and unreduced suspensions of the Hawaiian earring.

1. Introduction. We study the (n+1)st homotopy group of the (n−1)-
fold reduced and unreduced suspensions of the Hawaiian earring H1. The
Hawaiian earring H1 is the compact subset of the plane defined by

H1 =
∞⋃

j=1

{(x, y) | (x− 1/j)2 + y2 = 1/j2}

with base point o = o1 = (0, 0). The (n − 1)-fold reduced suspension
Hn = Σ̃n−1

o H1 is a compact metric space whose underlying set is the one-
point union of countably many n-dimensional spheres at the base point on,
and is called the n-dimensional Hawaiian earring. The singular homology of
the space Hn is complicated ([1], [8]), and this paper is an attempt to under-
stand the low dimensional homotopy groups of Hn. The space Hn is (n−1)-
connected and it is shown in [9] that for each n ≥ 2, Hn(Hn) ∼= πn(Hn) ∼= Zω,
the countable product of the integers. So the next step is to understand
Hn+1(Hn) and πn+1(Hn). On the other hand, the singular homology of the
(n − 1)-fold unreduced suspension Ĥn = Σn−1

o H1 is easily seen to be as
follows:

H̃q(Ĥn) ∼=
{

H1(H1) if q = n,

0 otherwise,

where H1(H1) has been computed in [8]. The space Ĥn is (n− 1)-connected
and πn(Ĥn) ∼= Hn(Ĥn), and again the next nontrivial homotopy group to be
computed is πn+1(Ĥn).

Notice that Hn and Ĥn have the same shape type but do not have the
same homotopy type by [1] and the above. In the present paper, the count-
able product of the n-dimensional spheres is denoted by Sn∞. If we fix a base
point ∗ ∈ Sn of the n-sphere, then the space Hn is naturally embedded in
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Sn∞ as follows:

Hn ≈
∞⋃

i=1

{(xj) | xj = ∗ for each j 6= i}.

In this paper we show the following results. The q-dimensional shape
group (or Čech homotopy group) of a space X is denoted by π̌q(X).

(a) πn+1(Hn) ∼= πn+1(Sn)ω ⊕ πn+2(Sn∞,Hn) for each n ≥ 2,
(b) πn+1(Ĥn) ∼= (Z/2Z)ω ⊕⊕c(Z/2Z) for each n ≥ 3,

(c) π̌n+1(Hn) ∼= π̌n+1(Ĥn) ∼= (Z/2Z)ω for n ≥ 3 and Zω for n = 2.

Some comments on these results are in order. (a) is an infinite prod-
uct analogue of the well known isomorphism for finite products. We have
not succeeded in an explicit computation of the relative homotopy group
πn+2(Sn∞,Hn), which turns out to be isomorphic to the relative singular ho-
mology group Hn+2(Sn∞,Hn). The computation in [1] shows that π4(S2

∞,H2)
is nonzero. In (b), we have not obtained an explicit structure of π3(Ĥ2). With
the help of [7] and [4] (see also [14]), the group can be represented as the
kernel of a certain homomorphism (see the beginning of Section 4). How-
ever, the representation does not reveal the explicit structure of the group.
Also the group is isomorphic to Γ (H1(H1)), where Γ (A) denotes the White-
head quadratic group of an abelian group A ([13]). Here we obtain an exact
sequence containing Γ (H1(X)) for an arbitrary one-dimensional separable
metric spaceX. However, the author has not succeeded in making an explicit
computation of π3(Ĥ2). The computation (c) depends on the Hilton–Milnor
theorem [12].

2. πn+1(Hn) and π̌n+1(Hn). For a countable collection {(Xi, xi)} of
pointed compacta, let

∨̃
iXi =

⋃
i{(yj) | yj = xj for each j 6= i} ⊂ ∏iXi.

The base point (xi)i is denoted by x∞. The one-point union
∨k
j=1Xj is

embedded in
∨̃
iXi in the obvious way. Under this notation, Hn ≈

∨̃
iS
n
i ⊂∏

i S
n
i = Sn∞. In what follows, Hn is identified with

∨̃
iS
n
i . The projection

of
∏
j Xj onto the ith factor Xi is denoted by pi. The homomorphism ϕ :

πq(
∏
iXi) →

∏
i πq(Xi) defined by ϕ(α) = ((pi)](α))i for α ∈ πq(

∏
iXi) is

an isomorphism. Our first result is stated as follows.

Theorem 2.1. For each q ≥ 2, there exists a split exact sequence

0→ πq+1

(∏

i

Xi,
∨̃

i

Xi

)
∂→ πq

(∨̃

i

Xi

)
i]→ πq

(∏

i

Xi

)
→ 0

where i] is induced by the inclusion i :
∨̃
iXi →

∏
iXi and ∂ is the boundary

homomorphism of the homotopy long exact sequence.
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Proof. First we define λ :
∏
i πq(Xi) → πq(

∨̃
iXi) under the following

notation and convention.

Notation and Convention. Let aj = 1− 1/j, j ≥ 1, and notice that
∞⋃

j=1

(Iq−1 × [aj, aj+1]) = Iq−1 × [0, 1).

For simplicity, a map fj : (Iq, ∂Iq)→ (Xj , xj) is identified with the map

fj ◦ (id× sj) : (Iq−1 × [aj , aj+1], ∂(Iq−1 × [aj, aj+1]))→ (Xj , xj),

where sj(t) = (t− aj)/(aj+1 − aj), t ∈ [aj , aj+1]. Also we assume that∨̃
iXi has a metric so that diamXi < 1/2i for each i, and in particular

diam
∨̃
j≥iXj → 0 as i→∞.

For each (αi) ∈
∏
i πq(Xi) and each i, take a map fi : (Iq, ∂Iq) →

(Xi, xi) which represents the element αi. Define the map l : Iq → ∨̃
iXi by

l|Iq−1 × [aj , aj+1] = fj for j ≥ 1 and l|Iq−1 × {1} = x∞ (recall the above
convention). The crucial fact here is that diam fj(Iq)→ 0 as j →∞, and this
guarantees that l : Iq → ∨̃

iXi is continuous. Let λ((αi)) = [l] ∈ πq(
∨̃
iXi).

Claim 1. λ((αi)) is well defined , that is, the homotopy class [l] does not
depend on the choice of the maps (fi).

Proof of Claim 1. Suppose that fi ' gi rel. ∂Iq and fix a homotopy
Hi : Iq × [0, 1] → Xi such that Hi(x, 0) = fi(x) and Hi(x, 1) = gi(x) for
x ∈ Iq, and Hi(x, t) = x∞ for all x ∈ ∂Iq and t ∈ [0, 1]. Let f∞, g∞ :
(Iq, ∂Iq) → (

∨̃
iXi, x∞) be the maps defined by f∞|Iq−1 × [aj , aj+1] = fj

(recall the above convention) and f∞|Iq−1 × {1} ≡ x∞ etc. By the same
reason as above, f∞ and g∞ are continuous. Again the fact that diamHi(Iq×
[0, 1]) → 0 as i → ∞ guarantees that the map H∞ : Iq × [0, 1] → ∨̃

iXi

defined by H∞|(Iq−1× [aj , aj+1])× [0, 1] = Hi (recall the above convention)
and H∞|(Iq−1 × {1})× [0, 1] ≡ x∞ is a continuous homotopy rel. ∂Iq from
f∞ to g∞. This completes the proof.

Claim 2. λ is a homomorphism.

Proof. Take two sequences {fi : (Iq, ∂Iq)→ (Xi, xi)} and {gi : (Iq, ∂Iq)
→ (Xi, xi)} of maps. We need to prove the equality

λ(([fi] + [gi])) = λ(([fi])) + λ(([gi])).

The element on the left hand side is represented by a map h : (Iq, ∂Iq)→
(
∨̃
iXi, x∞) defined as follows. Let bi = (ai + ai+1)/2. Define the map h

by h|Iq−1 × [ai, bi] = fi and h|Iq−1 × [bi, ai+1] = gi for each i ≥ 1 and
h|Iq−1 × {1} ≡ x∞. On the other hand, the element on the right hand
side of the equality is represented by a map k : (Iq, ∂Iq) → (

∨̃
iXi, x∞)
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Fig. 1

Fig. 2

defined as follows. Let ci = ai/2 and di = (ai + 1)/2. Define the map k
by k|Iq−1 × [ci, ci+1] = fi, k|Iq−1 × [di, di+1] = gi and k|Iq−1 × {1/2} ≡
k|Iq−1 × {1} ≡ x∞. We need to prove that h and k are homotopic rel. ∂Iq.
The following proof is motivated by the proof of the fact that the homotopy
group of dimension at least 2 is abelian.

The map h is homotopic rel. ∂Iq to a map h0 illustrated in Fig. 1. Here
Iq−1

1 and Iq−1
2 denote the subsets of Iq defined by Iq−1

1 = Iq−2× [0, 1/2] and
Iq−1

2 = Iq−2 × [1/2, 1]. Fig. 2 illustrates a map h1 which is homotopic rel.
∂Iq to h0 via a homotopy H0 : Iq × [0, 1]→ ∨̃

iXi such that diamH0({z} ×
[0, 1]) ≤ diam(

∨2
j=1Xj) ≤ 1 for each z ∈ Iq. The map h1 is homotoped to a

map h2 such that

(2.1) h2|Iq−1 × ([c1, c3] ∪ [d1, d3]) = h1|Iq−1 × ([c1, c3] ∪ [d1, d3]),
(2.2) h2|Iq−1

1 × [c3, c4] = f2, h2|Iq−1
1 × [d3, d4]) = g3,

(2.3) h2|Iq−1
2 × [0, 1/2] ≡ h2|Iq−1

1 × [1/2, 1] ≡ x∞.



HOMOTOPY GROUPS OF HAWAIIAN EARRING 31

Fig. 3

A homotopy H1 rel. ∂Iq from h1 to h2 may be chosen so that H1(z, t) =
h1(z, t) for each (z, t) ∈ Iq−1× ([c1, c3]∪ [d1, d3]) and diamH1({z}× [0, 1]) ≤
diam(

∨3
j=2Xj) ≤ 1/2 for each z ∈ Iq.

Continuing this process, we have sequences {hm : (Iq, ∂Iq) →
(
∨̃
iXi, x∞)}m≥1 of maps and {Hm}m≥1 of homotopies rel. ∂Iq from hm

to hm+1 (m ≥ 1) such that

(m.1) diamHm({z}× [0, 1]) ≤ diam(
∨̃
i≥mXi) ≤ 1/2m−1 for each z ∈ Iq,

(m.2) Hm(z, t) = hm(z) for all z ∈ h−1
m (
∨m
j=1Xj) and t ∈ [0, 1]. In

particular, hm+1|h−1
m (
∨m
j=1Xj) = hm|h−1

m (
∨m
j=1Xj).

The above condition (m.1) implies that (hm) forms a Cauchy sequence
and h∞ = limm→∞hm exists and is continuous. By (m.2), h∞|h−1

m (
∨m
j=1Xj)

= hm|h−1
m (
∨m
j=1Xj). Also the limit H∞ = limm→∞Hm ∗Hm−1 ∗· · ·∗H1 ∗H0

exists and is a homotopy rel. ∂Iq between h0 and h∞. The map h∞ is
illustrated in Fig. 3 and is clearly homotopic to k rel. ∂Iq. Thus we have the
desired equality.

Claim 3. ϕ ◦ i] ◦ λ = id :
∏
i πq(Xi)→

∏
i πq(Xi).

Proof. For each (αi = [fi])i ∈
∏
i πq(Xi), the element (pi)]◦ i]◦λ((αi)) is

easily seen to be represented by the map f i : (Iq, ∂Iq)→ (
∨̃
iXi, x∞) defined

by f i|Iq−1 × [ai, ai+1] = fi and f i|Iq \ (Iq−1 × [ai, ai+1]) ≡ x∞. Obviously
the map is homotopic to fi rel. ∂Iq. This shows that ϕ◦ i] ◦λ((αi)) = ((αi)),
completing the proof.

As ϕ : πq(
∏
iXi) →

∏
i πq(Xi) is an isomorphism, Claim 3 implies that

i] is an epimorphism in each dimension and the conclusion of the theo-
rem follows from the long exact sequence of homotopy groups of the pair
(
∏
iXi,

∨̃
iXi).
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Corollary 2.2.

πn+1(Hn) ∼=
{

(Z/2Z)ω ⊕ πn+2(Sn∞,Hn) if n ≥ 3,

Zω ⊕ π4(S2
∞,H2) if n = 2.

Proposition 2.3. The homomorphism i] : πn(Hn) → πn(Sn∞) is an
isomorphism.

Proof. It suffices to prove that i] is a monomorphism. Suppose that
i](α) = 0 for α ∈ πn(Hn). By [9], α is represented by a map f : (In, ∂In)→
(Hn,on) such that f(In−1 × [ai, ai+1]) ⊂ Sni and f(∂(In−1 × [ai, ai+1])) =
on for each i ≥ 1. The condition i](α) = 0 then implies that f |In−1 ×
[ai, ai+1] ' 0 rel. ∂(In−1 × [ai, ai+1]). Let Hi : (In−1 × [ai, ai+1], ∂(In−1 ×
[ai, ai+1])) × [0, 1] → (Hn,on) be a homotopy rel. ∂(In−1 × [ai, ai+1]) from
f |In−1 × [ai, ai+1] to the constant map on. Again the fact diamSni → 0 as
i → ∞ guarantees the continuity of the homotopy H∞ : In × [0, 1] → Hn
defined by H∞|In−1 × [ai, ai+1] = Hi (i ≥ 1) and H∞|In−1 × {1} ≡ on.
Hence f is null-homotopic rel. ∂In and α = 0.

This completes the proof.

The above proposition and Theorem 2.1 imply that

πn+1(Sn∞,Hn) = Hn+1(Sn∞,Hn) = 0, πn+2(Sn∞,Hn) ∼= Hn+2(Sn∞,Hn).

By [11], Hn+1(Sn∞) = 0 for each n ≥ 2 and so the connecting homomorphism
∂ : Hn+2(Sn∞,Hn)→ Hn+1(Hn) is an epimorphism for each n ≥ 2. As H3(H2)
is nonzero ([1]), it follows that H4(S2

∞,H2) is nonzero and i] : π3(H2) →
π3(S2

∞) is not an isomorphism.

Remark. The element γt =
∑

[αi, βi] ∈ πt(n−1)+1(Hn) constructed in
[1] belongs to Ker i].

Next we compute the (n + 1)-st shape group π̌n+1(Hn) via the Hilton–
Milnor Theorem in the following form.

Theorem 2.4 ([12, pp. 511–534]). Let Snj = Σ̃Sn−1
j (j = 1, . . . , k) be

the n-spheres (n ≥ 2). There exists an isomorphism

ϕk :
k⊕

j=1

πn+1(Snj )⊕
∏

r(w)≥2

πn+1(Σ̃w(Sn−1
1 , . . . , Sn−1

k ))→ πn+1

( k∨

j=1

Snj

)

given by the formula

ϕk((βj)1≤j≤k, (γw)r(w)≥2) =
k∑

j=1

ij · βj +
∑

r(w)≥2

w(i1, . . . , ik) · γw,

where r(w) denotes the weight of the basic product w of k generators,
w(Sn−1

1 , . . . , Sn−1
k ) is the reduced join of Sn−1

1 , . . . , Sn−1
k and w(i1, . . . , ik)



HOMOTOPY GROUPS OF HAWAIIAN EARRING 33

is the iterated Whitehead product of the inclusions ij : Snj →
∨k
j=1 S

n
j asso-

ciated with w.

Remark. Let w be a basic product with generators x1, . . . , xk. The
space w(Sn−1

1 , . . . , Sn−1
k ) is homeomorphic to S(n−1)aw(1)

1 ∧ . . .∧ S(n−1)aw(k)
k

where aw(j) is the number of occurrences of xj in the basic product w. Thus

Σ̃w(Sn−1
1 , . . . , Sn−1

k ) is homeomorphic to S1+(n−1)
∑k
j=1 aw(j) ≈ S1+(n−1)r(w).

Theorem 2.5.

π̌n+1(Hn) ∼=





(Z/2Z)ω if n ≥ 3,

Zω if n = 2,

0 if n = 1.

Proof. Notice that Hn = lim←−(
∨k
i=1 S

n
i , pk :

∨k+1
i=1 S

n
i →

∨k
i=1 S

n
i ), where

pk is the canonical retraction such that pk(Snk+1) = ∗. So the n = 1 case
follows directly from the definition. We divide our considerations into two
cases. Let Wk be the set of all basic products of k generators x1, . . . , xk.

Case 1: n ≥ 3. As Sr(n−1)+1 is r(n− 1)-connected and r(n− 1) ≥ n+ 1
for each r ≥ 2,

∏

w∈Wk, r(w)≥2

πn+1(Σ̃w(Sn−1
1 , . . . , Sn−1

k )) = 0,

and the isomorphism ϕk of Theorem 2.4 is written as ϕk :
⊕k

j=1 πn+1(Snj )→
πn+1(

∨k
j=1 S

n
j ) such that ϕk((βj)) =

∑k
j=1 i

j · βj (for k ≥ 2). Clearly, the
diagram

⊕k+1
j=1 πn+1(Snj ) πn+1(

∨k+1
j=1 S

n
j )

⊕k
j=1 πn+1(Snj ) πn+1(

∨k
j=1 S

n
j )

ϕk+1 //

projk
��

(pk)]
��

ϕk //

is commutative where projk is the canonical projection of
⊕k+1

j=1 πn+1(Snj )

onto
⊕k

j=1 πn+1(Snj ). Hence π̌n+1(Hn) ∼= πn+1(Sn)ω ∼= (Z/2Z)ω.

Case 2: n = 2. As π3(Sr+1) = 0 for each r ≥ 3,
∏

w∈Wk, r(w)≥3

π3(Σ̃w(S1
1 , . . . , S

1
k)) = π3(S1+r(w)) = 0,

and the isomorphism ϕk of Theorem 2.4 is of the form

ϕk :
k⊕

j=1

π3(S2
j )⊕

∏

w∈Wk, r(w)=2

π3(Σ̃w(S1
1 , . . . , S

1
k))→ π3

( k∨

j=1

S2
j

)
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with Σ̃w(S1
1 , . . . , S

1
k) ≈ S3 and

ϕk((βj)1≤j≤k, (γw)w∈Wk,r(w)=2) =
k∑

j=1

ij · βj +
∑

w∈Wk,r(w)=2

w(i1, . . . , ik) · γw.

By the bilinearity of the Whitehead product, we see that

(pk)] ◦ ϕk+1((βj)1≤j≤k+1, (γw)w∈Wk+1, r(w)=2)

= (pk)]
( k+1∑

j=1

ij · βj +
∑

w∈Wk+1, r(w)=2

w(i1, . . . , ik+1) · γw
)

=
k∑

j=1

ij · βj +
∑

xk+1 does not appear inw

w(i1, . . . , ik+1) · γj

=
k∑

j=1

ij · βj +
∑

w∈Wk, r(w)=2

w(i1, . . . , ik) · γw

= ϕk((βj)1≤j≤k, (γw)w∈Wk, r(w)=2).

That means that the diagram
⊕k+1

j=1 π3(S2
j )⊕⊕w∈Wk+1, r(w)=2 π3(S3) π3(

∨k+1
j=1 S

2
j )

⊕k
j=1 π3(S2

j )⊕⊕w∈Wk, r(w)=2 π3(S3) π3(
∨k
j=1 S

2
j )

projk
��

ϕk+1 //

(pk)]
��

ϕk //

is commutative and hence π̌3(H2) ∼= (π3(S2))ω ⊕ (π3(S3))ω ∼= Zω.
This completes the proof.

3. πn+1(Ĥn), n ≥ 3. As stated in the introduction, H∗(Ĥn) is easily
computed, and the computation of πn+1(Ĥn) depends on the result and the
following theorem. For an abelian group A, let Γn+1(A) be A ⊗ Z/2Z if
n ≥ 3, and Γ (A), the Whitehead quadratic group, if n = 2.

Theorem 3.1 ([13], cf. [2, p. 36]). Suppose that X is an (n − 1)-con-
nected space with n ≥ 2. There exists a natural exact sequence

Hn+2(X)→ Γn+1(Hn(X)) i→ πn+1(X) θ→ Hn+1(X)→ 0

where θ is the Hurewicz homomorphism.

Thus, for each n ≥ 3, πn+1(Ĥn) ∼= H1(H1)⊗ (Z/2Z).

Theorem 3.2. For each n ≥ 3, πn+1(Ĥn) ∼= (Z/2Z)ω ⊕⊕c(Z/2Z).

In the next lemma, we follow the notation of [10].
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Lemma 3.3. Let Jp be the p-adic integers (p a prime) and Ap be the
p-adic completion of the direct sum

⊕
τ Jp (τ ≥ ω). Then

Ap/qAp ∼=
{⊕

τ (Z/pZ) if q = p,

0 otherwise.

Proof. Recall that the p-adic completion of an abelian group B is given
by the projective limit

lim←−(B/pB ← B/p2B ← . . .← B/pnB ← B/pn+1B ← . . .),

where the bonding maps are the canonical projections.
In what follows, we fix τ (≥ ω), and the τ -fold direct sum

⊕
τ is abbre-

viated to
⊕

for simplicity. Multiplication by p, ×p :
⊕
Jp →

⊕
Jp, induces

a homomorphism fn :
⊕
Jp/

⊕
pnJp →

⊕
Jp/

⊕
pnJp and it is easy to see

that

Ker fn =
⊕

pn−1Jp/
⊕

pnJp,

Coker fn =
(⊕

Jp/
⊕

pnJp

)
/
(⊕

pJp/
⊕

pnJp

)
∼=
⊕

(Jp/pJp).

Let %n :
⊕
Jp/

⊕
pn+1Jp →

⊕
Jp/

⊕
pnJp be the canonical projection.

As Ker fn+1 ⊂ Ker %n, the projection %n induces an epimorphism %n :
Im fn+1 → Im fn. Consider the commutative diagram

0 Ker fn+1
⊕
Jp/

⊕
pn+1Jp Im fn+1 0

0 Ker fn
⊕
Jp/

⊕
pnJp Im fn 0

//

0
��

//

%n

��

fn+1 //

%n
��

//

// // fn // //

Each row above is obviously exact. Taking the projective limits of the vertical
sequences, we see that f∞ = lim←− fn : Ap → lim←−(Im fn, %n) is an isomorphism.

Next we consider the following commutative diagram:

0 Im fn+1
⊕
Jp/

⊕
pn+1Jp Coker fn+1

⊕
Jp/pJp 0

0 Im fn
⊕
Jp/p

nJp Coker fn
⊕
Jp/pJp 0

//

%n
��

jn+1 //

%n

��

//

%̃n
��

∼= //

=
��

//

// jn // // ∼= // //

where jn and jn+1 are inclusions. Again each row is obviously exact and we
take the projective limits of the vertical sequences to obtain the following
exact sequence (notice that each %n is an epimorphism, so the first derived
limit lim←−

1(Im fn) is zero):

0→ lim←−(Im fn, %n)
lim←−jn−−→Ap → lim←−Coker fn

∼=→
⊕

Jp/pJp → 0.
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It is easy to see that the composition (lim←− jn) ◦ f∞ : Ap → lim←−(Im fn)→ Ap
coincides with multiplication by p and so

0→ Ap
×p→ Ap →

⊕
(Jp/pJp)→ 0

is exact. Thus Ap/pAp ∼=
⊕

(Jp/pJp) ∼=
⊕

(Z/pZ). This completes the proof
of the first conclusion.

If q is a prime distinct from p, then it is easy to see that ×q : Jp/pnJp →
Jp/p

nJp is an isomorphism for each n and hence ×q : Ap → Ap is an
isomorphism. The second conclusion follows. This completes the proof of
the lemma.

Proof of Theorem 3.2. By Theorem 3.1 and the fact that Hn+2(Hn) = 0,
we obtain, for each n ≥ 3, an isomorphism πn+1(Hn) ∼= H1(H1)⊗ (Z/2Z) ∼=
H1(H1)/2H1(H1). By [8], H1(H1) ∼= Zω ⊕⊕cQ ⊕

∏
p: primeAp, where Ap is

the p-adic completion of
⊕

c Jp. Therefore,

πn+1(Hn) ∼= (Z/2Z)ω ⊕
⊕

c
Q/2Q⊕

∏

p: prime

Ap/2Ap

∼= (Z/2Z)ω ⊕ (A2/2A2)
∼= (Z/2Z)ω ⊕

⊕
c
(Z/2Z).

The last two isomorphisms follow from Lemma 3.3.

4. The Whitehead quadratic group of the first singular homol-
ogy groups of one-dimensional spaces. Theorem 3.1 and H3(Ĥ2) =
H4(Ĥ2) = 0 imply that π3(Ĥ2) ∼= Γ (H2(Ĥ2)) ∼= Γ (H1(H1)). The results of
[4] and [7] show that

π3(Ĥ2) ∼= Ker
(×σ

Z⊗×σ
Z→×σ

Z; g ⊗ h 7→ ghg−1h−1
)
,

where ⊗ denotes the noncommutative tensor product introduced in [4]. How-
ever, the author has not succeeded in determining the explicit structure
of this group. Here we provide an exact sequence including Γ (Gab) of the
abelianizationGab of a locally free group G when Gab is torsion free. A group
is said to be locally free if every finitely generated subgroup is free. By [5],
the fundamental group of every one-dimensional separable metric space is
locally free, so the first homology groups of such spaces, being torsion free
by [9], are examples of Gab as above.

In order to state the result, we need some notation and facts. Let G
be a group, and let r : G → A = Gab and % : [G,G] → [G,G]ab be the
projections to the abelianizations of G and of the commutator subgroup
[G,G] respectively. The abelianization A = Gab acts on [G,G]ab by

r(g) · %(x) = %(g−1xg) (g ∈ G, x ∈ [G,G]).
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It is easy to see that this is a well defined action which makes [G,G]ab a
ZA-module. For a ZA-module M , let MA = M/〈γ ·x−x | γ ∈ ZA, x ∈M〉.

Theorem 4.1. Let G be a locally free group and let A = Gab. If A is
torsion free, then there exists an exact sequence

A⊗ ([G,G]ab)A → H1(A; [G,G]ab)→ Γ (A)→ A⊗ A→ ([G,G]ab)A → 0.

It follows from [5] that for each one-dimensional separable metric space
X, Hq(X) = 0 for each q ≥ 2, and it is clear that the unreduced suspension
ΣX satisfies Hq+1(ΣX) ∼= Hq(X) (q ≥ 1). These together with Theorem 3.1
and the above remark imply that π3(ΣX) ∼= Γ (H1(X)). Thus we have the
following corollary.

Corollary 4.2. For each one-dimensional separable metric space X,
we have an exact sequence

H1(X)⊗ ([Π,Π]ab)H1(X) → H1(H1(X); [Π,Π]ab)→ π3(ΣX)

→ H1(X)⊗ H1(X)→ ([Π,Π]ab)H1(X) → 0,

where Π = π1(X).

Example. Let X be the figure-eight. Then Π is the free group of rank
2 and A = H1(X) is the free abelian group of rank 2. Let α and β be the
generators of H1(X), represented by the two cycles of X. Let L = {(x, y) ∈
R2 | x or y in Z}. Then [Π,Π] ∼= π1(L) and hence [Π,Π]ab ∼= H1(L). The
group H1(L) is generated by {[γm,n] | m,n ∈ Z}, where γm,n denotes the
loop which passes through the four vertices (m,n), (m+1, n), (m+1, n+1),
(m,n + 1) in this order. The action of H1(X) on H1(L) is given (upon
exchanging α and β if necessary) by the formulas

α · [γm,n] = [γm+1,n], β · [γm,n] = [γm,n+1].

Hence, as a ZA-module, H1(L) is isomorphic to ZA and generated by [γ1,1].
Thus [Π,Π]ab

A is isomorphic to Z. Therefore Hq(A; [Π,Π]ab) ∼= Hq(A;ZA)
= 0 for each q ≥ 1. Hence the exact sequence of Theorem 4.1 reduces to

(Z⊕ Z)⊗ Z→ H1(A;ZA) = 0→ Γ (Z⊕ Z)→ (Z⊕ Z)⊗ (Z⊕ Z)→ Z→ 0.

Thus Γ (Z⊕ Z) is a free abelian group of rank 3. Actually a formula for the
direct sum ([13]) shows that Γ (Z⊕Z) ∼= Γ (Z)⊕Γ (Z)⊕Z⊗Z ∼= Z⊕Z⊕Z.

Proof of Theorem 4.1. Let M(A, 2) be the Moore space of type (A, 2).
By [2, p. 36], Γ (A) ∼= π3(M(A, 2)) ∼= H4(K(A, 2)). We compute H4(K(A, 2))
via the path fibration

K(A, 1)→ E ' ∗ → K(A, 2).

We examine the differentials of the Leray–Serre spectral sequence

Epq2 = Hp(K(A, 2);Hq(A;Z))⇒ Hp+q(E).
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Since H̃∗(E) = 0, it is easy to see that d4
4,0 : E4

4,0 → E4
0,3 is an isomorphism.

In order to describe E4
0,3, we start with E2

0,3 = H3(A;Z). As A is torsion
free, we have H3(K(A, 2);A) ∼= H3(K(A, 2))⊗A⊕Tor(H2(K(A, 2)), A) = 0
and hence E2

3,1 = E3
3,1 = 0. It follows that E3

0,3 = Coker d2
2,2 = E4

0,3 = 0.
Thus the sequence

A⊗ H2(A,Z) = E2
2,2

d2
2,2−→ E2

0,3 = H3(A,Z) l→ E4
0,3 → 0

is exact. Now consider the sequence

H4(K(A, 2)) = E2
4,0

d2
4,0
−→E2

2,1 = A⊗ A
d2

2,1
−→E2

0,2 = H2(A;Z)

→ Coker d2
2,1 = E3

0,2 = E∞0,2 = 0.

As Ker d2
2,1/Im d2

4,0 = E3
2,1 = E∞2,1 = 0, the above sequence is exact. Com-

bining these two sequences, we have the commutative diagram (with Z as
the coefficients):

A⊗ H2(A) H3(A) H4(K(A, 2)) A⊗ A H2(A) 0

E4
0,3 E4

4,0 = Ker d2
4,0

//

l
��

//
d2

4,0 // // //

d4
4,0
∼=oo

i

OO

(i is the inclusion) with the top row being exact. So the theorem follows
from the above and the following lemma.

Lemma 4.3. Let G be a locally free group and A = Gab. For each n ≥ 2,
we have an isomorphism Hn(A;Z) ∼= Hn−2(A; [G,G]ab), Z being regarded as
a trivial A-module.

Proof. Case 1: n = 2. Consider the five-term exact sequence of [3,
p. 171]:

H2(G)→ H2(A)→ H1([G,G])A → H1(G) α→ H1(A)→ 0.

All coefficients are Z being regarded as trivial modules. It follows from a
footnote in [6] that H2(G) = 0 and, by the definition of A, α is an isomor-
phism. So H2(A) ∼= H1([G,G])A = [G,G]ab

A
∼= H0(A; [G,G]ab). This finishes

the proof for the case n = 2.

Case 2: n ≥ 3. We apply the Lyndon–Hochschild–Serre spectral se-
quence to

1→ [G,G]→ G→ A→ 1.

Since [G,G] is locally free, Hq([G,G];Z) = 0 for each q ≥ 2 (the footnote of
[6]) and hence E2

p,q = 0 for each q ≥ 2. The differential d2
n,0 : Hn(A;Z) →

E2
n−2,1 = Hn−2(A; [G,G]ab) has the property Ker d2

n,0 = E2
n,0 = E2

n,0 = 0
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and so d2
n,0 is a monomorphism. Also E2

n−2,1/Im d2
n,0 = E3

n−2,1 = E∞n−2,1 = 0
since n ≥ 3. Hence d2

n,0 is an epimorphism.
This completes the proof.
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