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A REPRESENTATION THEOREM FOR CHAIN RINGS
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Abstract. A ring A is called a chain ring if it is a local, both sided artinian, principal
ideal ring. Let R be a commutative chain ring. Let A be a faithful R-algebra which is a
chain ring such that A = A/J(A) is a separable field extension of R = R/J(R). It follows
from a recent result by Alkhamees and Singh that A has a commutative R-subalgebra Rg
which is a chain ring such that A = Ry 4+ J(A) and Rg N J(A) = J(Ro) = J(R)Rp. The
structure of A in terms of a skew polynomial ring over Rg is determined.

Introduction. Let S be a finite local ring. As shown by Wirt [8, The-
orem 2.2] and independently by Clark and Drake [4], S has a commutative
local subring Sy such that S = Sp + J(S) and Sy N J(S) = pSy, where
p = char(S/J(S)). This subring is called a coefficient subring of S. A ring
is called a chain ring if it is a local, both sided artinian and principal ideal
ring. Wirt [8] gave a representation of a finite chain ring S in terms of a
homomorphic image of a skew polynomial ring over its coefficient subring.
On the other hand, Alkhamees and Singh [1] generalized the results on the
existence of coefficient subrings of finite local rings to certain non-finite local
rings.

Let R be a commutative chain ring, and A be a local ring that is a
faithful R-algebra. Then J(R) = RN J(A). Let A = A/J(A) be a separ-
able, algebraic field extension of R, and let A be either a locally finite R-
algebra or an artinian duo ring. As proved in [1], A has a commutative local
R-subalgebra Ry such that A = Ry + J(A) and J(Ry) = RoN J(A) =
J(R)Ry. This subalgebra Ry is also called a coefficient subring of A; such a
subring is a commutative chain ring, and is a faithful R-algebra. The group
of R-automorphisms of Ry is investigated in Section 2. Wirt [8] introduced
the concept of a distinguished basis of a bimodule over a Galois ring. In
Section 3 an analogous concept for bimodules over Ry is investigated.

The main purpose of this paper is to prove a representation theorem
for A, in case A is a chain ring, in terms of an appropriate homomorphic
image of a skew polynomial ring over its coefficient subring. Sections 4 and 5
are devoted to proving the main theorem (Theorem 5.5). By Cohen [5], any
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commutative local artinian ring admits a coefficient subring. We outline an
example given in [2] to show that a non-commutative local ring need not
admit a coefficient subring. For such a ring an analogue of Theorem 5.5
cannot be proved.

1. Preliminaries. All rings considered in the paper have 1 # 0. Let S
be any ring. Then J(S), Z(S) denote its Jacobson radical and center re-
spectively. For any subset X of S, C(X) denotes its centralizer in S. For any
module M, d(M) denotes its composition length. For any automorphism o
of S, S|z, o] denotes the left skew polynomial ring over S determined by o.
Its members are left polynomials Y, a;z%, a; € S, and za = o(a)z for every
a€s.

Let R be a commutative local ring and R = R/J(R). For any f(x) € R[x],
let f(z) denote its natural image in R[x]. The ring R is called a Hensel ring
if it has the following property: Given any monic polynomial f(x) € R|x],
if f(z) = a(x)b(z) for some relatively prime monic polynomials a(z),b(z)
€ Rlx], then there exist monic polynomials g(x),h(x) € R[z] such that
f(x) = g(x)h(z), g(x) = a(z) and h(x) = b(x). By the Hensel lemma
[9, p. 279], any commutative, complete local ring R is a Hensel ring. In
particular any commutative local artinian ring is a Hensel ring.

Let A be an algebra over R. If Ag is finitely generated, then A is called
a finite R-algebra. The algebra A is called faithful if for any r € R, rA =10
implies that = 0; in that case R is regarded a subring of A. Moreover, A is
called unramified if J(A) = J(R)A; R-separable if it is a commutative, local,
finite, faithful and unramified R-algebra such that A = A/J(A) is a finite
separable field extension of R/J(R); and locally separable if it is a local,
faithful, unramified R-algebra such that any finite subset of A is contained
in a separable R-subalgebra. If A is a locally separable R-algebra, then A is
a separable, algebraic field extension of R.

A commutative chain ring R is called a special primary ring [7, p. 200].
A finite special pimary ring S such that J(S) = pS, where p = char(S/J(95)),
is a Galois ring (see [4]). A ring S in which every one-sided ideal is two-sided
is called a duo ring.

2. Ring monomorphisms

LEMMA 2.1. Let R be a Hensel ring and A be a commutative, local,
finite, faithful R-algebra such that J(R) = RN J(A).

(i) A is a Hensel ring.

(ii) Let f(z) € R[z] be a monic polynomial such that f(x) € R[z] is
irreducible and separable. If for some ¢ € A, f(c) = 0, then there exists a
unique a € A such that f(a) =0 and a = c.
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Proof. For (i) see [3, Theorem 32]. For (ii), see [1, Lemma 2.1].

Let A be a separable algebra over a Hensel ring R. An element a € A is
said to be lift algebraic over R if there exists a monic polynomial f(z) € R[z]
such that f(x) is irreducible modulo J(R) and f(a) = 0; we call f(x) an
associated polynomial of a. Throughout this section R is a special primary
ring with J(R) = mR = Rw and n is the index of nilpotency of .

LEMMA 2.2. Let A be a commutative, local, faithful, unramified R-alge-
bra such that A is a separable algebraic field extension of R.

(I) A is a special primary ring with index of nilpotency of J(A) the
same as that of J(R).
(IT) Let a,b € A be lift algebraic over R.

(i) Let f(x) € R[x] be a monic polynomial such that f(x) is irre-
ducible over R. Then T = R[z]/{f(x)) is an unramified, local
finite R-algebra. If , in addition, f(x) is separable over R, then
T is a separable R-algebra.

(ii) If f(x) € Rlz| is an associated polynomial of a, then R[a] =
R[z]/(f(x)), Rla] is a separable R-algebra and dgr(Rla]) =
ndeg f(z), where n = dr(R).

(iii) If @ = b, then Rla] = R[b].

(iv) R[b] C Rla] if and only if R[b] C R[a.

(ITIT) If A is an R-separable algebra, then there exists a lift algebraic
element a € A such that A = Ra).

Proof. We have J(R) = 7R and J(A) = wA. As n is the index of nilpo-
tency of m, we see that A is a special primary ring such that the index of
nilpotency of J(A) is n. This proves (I).

To prove (II)(i), observe that J(T') = (w, f(x))/{f(z))==T, and T'/J(T)
=~ Rlx]/(f(z)). To prove (ii), let g(z) be a non-zero member of R[z] such
that g(a) = 0 and deg g(v) < deg f(z). We can write g(x) = 7*h(x) such
that deg g(z) = deg h(z) and h(x) € R[z]\ J(R[z]). Then h(a) € J(A). This
contradicts the fact that f(x) modulo J(R) is the minimal polynomial of a.
Hence R[a] = R[z]/{f(z)). The last part of (ii) follows from (i). Let @ = b,
and let g(x) € R[z] be an associated polynomial of b. As R[a] is a Hensel
ring, there exists ¢ € R[a] such that g(c) = 0 and ¢ = b. By 2.1, b = c.
Since R|a] and R[b] have the same composition length as R-modules, we get
R[a] = R[b]. Similar arguments prove (II)(iv).

In case A is a separable R-algebra, A is a simple extension of R: for some
lift algebraic element a € A, A = R[a]. Hence A = RJa]. This proves (III).

LEMMA 2.3. Let A be a commutative, local, faithful unramified R-alge-
bra such that A is a separable algebraic field extension of R.
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(i) For any subfield F of A is a finite estension of R, there eists a
unique R-separable subalgebra S of A such that F = S. Further, there
exists a lift algebraic element a € S such that S = RJa].

(ii) For any subfield F of A containing R, there exists a unique locally
R-separable subalgebra S of A such that S = F.

Proof. (i) We have F = R|c] for some ¢ € F. Let f(z) € R[x] be a monic
polynomial which modulo J(R) is the minimal polynomial of ¢ over R. As
A is a Hensel ring we get an a € A such that f(a) = 0 and @ = ¢. As
in 2.2, R[a] is an R-separable subalgebra isomorphic to R[z]/(f(x)). Put
S = Rla). Clearly F = S. Let T be another such R-separable subalgebra
of A. By 2.2(III) there exists b € T lift algebraic over R such that T'= RJ[b].
As R[a) = R[b], by 2.2(1I)(iii) we have R[a] = R[b], so S = T. This proves (i).

(ii) Let F be any subfield of A containing R. Then F is a directed union
of simple field extensions of R. Apply (i) to complete the proof.

LEMMA 2.4. Let A be a commutative, local, faithful unramified R-alge-
bra such that A is a separable algebraic field extension of R. Let a,b € A
be lift algebraic over R.

(i) There exists a ¢ € A lift algebraic over R such that Rla]+R[b] C R|c|.
(ii) A is the union of all the subrings of the form R[a], where a runs
over all the elements of A that are lift algebraic over R.
(iii) A is a locally separable R-algebra.
(iv) If A" is a locally separable A-algebra, then A’ is a locally separable
R-algebra.

Proof. As @, b are both separable over R, there exists a lift algebraic
element ¢ € A such that R[a@,b] = R[¢]. Then 2.2(II)(iv) completes the proof
of (i).

Let B be the union of all the subrings of A of the form Rla], where a
is any element of A lift algebraic over R. (i) shows that B is a subring and
B=A S0 A=B+ J(A)=B+7A, as J(R) = nR. As 7 is nilpotent, we
get A = B. This proves (ii); and (iii) is immediate from (ii).

For (iv), the hypothesis on A" gives J(A") = J(A)A" = J(R)A’, so A’ is
an unramified R-algebra. Also A’ is a separable field extension of R. Now
(iii) completes the proof.

THEOREM 2.5. Let A and A’ be two commutative, local, faithful, un-
ramified algebras over a special primary ring R such that A and A’ are
both separable field extensions of R. If there exists an R-monomorphism
o:A— A, then o has a unique lifting to an R-monomorphism n: A — A'.
Further, n is an automorphism if and only if o is an automorphism.

Proof. Consider any a,b € A lift algebraic over R. Let f(x),g() € R[z]
be associated polynomials of a, b respectively. Now f(a) = 0 gives
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f(c(@)) =0. So we can find a unique a’ € A’ for which f(a’) = 0 and
a_ = o(a). But Rla] = R[z]/{f(x)) = R[d'], so we get an R-isomorphism
Ao @ Rla] — R[a’] such that A,(a) = a’. Then A\,(a) = o(a). So A, lifts the

restrlct ion of o to R[a]. Similarly, for b we get ' € A’ such that g(b') = 0,
b = o(b) and we have an R-isomorphism ), : R[b] — R[V'] such that
A\p(b) = V. Suppose R[a] C R[b]. Then R[a] C R[b]. Now \y(a) = o(a)
and f(Ap(a)) = 0 = f(a’). This gives A\p(a) = As(a). Hence Ay is an exten-
sion of A\,. As A is the union of all R[a], where a is any element of A lift
algebraic over R, the union of the maps A\, gives the desired monomorphism
n: A — A’ which lifts o. Clearly 7 is uniquely determined by o. By using
the arguments in the proof of 2.4(ii) it follows that 1 is an isomorphism if
and only if ¢ is an isomorphism.

The following is immediate.

COROLLARY 2.6. Let A, A’ be two commutative, local, faithful unram-
ified algebras over a special primary ring R such that A and A’ are both
separable algebraic field extensions of R, let G be the set of all R-monomor-
phisms of A into A', and let G be the set of all R-monomorphisms of A
into A’. Then there is a one-to-one correspondence between G and G given
by n < M, where 7 € G is induced by n € G. If A = A’, then this corre-
spondence induces an isomorphism between Autg(A) and Autz(A).

THEOREM 2.7. Let A be a commutative, local, faithful unramified alge-
bra over a special primary ring R such that A is a separable, algebraic field
extension of R.

(a) Autr(A4) = Autz(A).

(b) Let 0 : A — A be an R-monomorphism.

(i) o is an automorphism of A and for any b € A lift algebraic
over R, b€ A% if and only if b€ A°.

(ii) The fixed ring A% of o is a local, unramified R-algebra. If the
order of o is a positive integer k, then [A : A7) =k and A= A%|[c]
for some c lift algebraic over A°. The fized ring of & equals A°.

Proof. (a) is given in 2.6.

(b) Consider any finite subset T' of A. By adjoining all the conjugates
of elements in T over R, in A, we get a finite set 7" containing T such that
n(R[T']) = R[T’] for any R-monomorphism 7 : A — A. This in particular
gives 5(A) = A. Thus 0(A) = A, and hence o is an automorphism. Let
b € A be lift algebraic over R such that b € A%. Let f(z) € R[z] be an
associated polynomial of b. Then f(b) = 0 gives f(o(b)) = 0. But b = &(b).
By 2.1, b = o(b). This proves (i).

Every finite separable field extension of R is simple. Let S be the set of all
those a € A such that a is lift algebraic over R, and n(R[a]) = R]a] for every
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n € Autg(A). Then A =J,cq Rla]. Now R[a]” = R[b,] for some b, € Rla]
lift algebraic over R. It follows by using 2.4(i) that A" = |J,cg R[ba] is an
unramified local R-algebra, and A" C A%. Let ¢ € A%. Then ¢ € R[a] for
some a € S. Thus for some ¢; € R[b,] lift algebraic over R, ¢ = ¢ and
¢ =c1 + 7"uy for some r > 0 and a unit uy € Rla]. If 7"u; = 0, we get
c € A'. Suppose m"u; # 0. As 1"u; € A%, we get 7" (o(u1) —u1) = 0, so
Uy € R[by]. As for ¢, we get uy = ¢y + Tuy for some co € R[b,], s > 0 and
ug some unit in R[a]. Then ¢ = ¢; + 7" co + 7" 5uy and r + s > r. Continue
the process with us and so on. As 7 is nilpotent, we eventually get ¢ € A’.
Clearly, A is unramified over A?. Suppose that the order of o is a positive
integer k; then so is the order of &. Consequently, [4 : A°] = k. By 2.2(I1I),
A = A%[c] for some ¢ € A lift algebraic over A?. Clearly A2 C A", the
fixed ring of @. Let y € A”. Then for some a € S, y € R[b,]. As R[b,] is
R-separable, y = ¢ for some ¢ € R[b,] C A°. This proves the result.

3. Distinguished basis. Throughout this section R is a special primary
ring and A is a commutative, locally separable R-algebra. Let H be the set
of all R-subalgebras of A of the form R[a] such that a € A is any element
liftt algebraic over R. By 2.4, H is an upper semi-lattice, and the union
of members of H is A. Observe that any R[a] € H is projective as an
R-module, so Ap is flat. As J(R[a]) = J(R)[a] for each R[a] € H, we have
J(A) = J(R)A, i.e. A is an unramified R-algebra. Let T = A ®p A. Then
for any Rla] € H, T, = A®pg R[a] C T and T is the union of the set of
all such subrings. The concept of a distinguished basis of a bimodule over a
Galois ring is discussed by Wirt [8]. The results in this section are related to
those by Wirt, but in contrast to [8], the underlying rings need not be finite.
Also, there is a marked difference between the proofs in [8] and of similar
results in this section. Any (A, A)-bimodule M is supposed to be such that
rz = xr for any x € M and r € R.

LEMMA 3.1. Let a € A be lift algebraic over R.

(i) T, = A®g Ra] is a finite direct sum of local rings each of which is
a separable A-algebra (so also a locally separable R-algebra). Further, T, is
an artinian principal ideal ring and J(T,) = J(R)T,. If A is a normal
extension of R, then T, is a direct sum of copies of A.

(ii) For any mazimal ideal P of T there is no ideal L of T such that
P? < L < P. For any ideal C of T for which T/C is artinian, T/C is a
principal ideal ring.

(iii) J(T) = J(R)T.

Proof. (i) Let f(x) € R[z] be an associated polynomial of a. As A is a
Hensel ring, f(x) = H 1 fi(x) with each f;(z) monic, and modulo J(A)
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irreducible over A. Then
t

A®p Rla] = A®r Rl2]/(f(x)) = Alz]/{f(x)) = H Ala]/(fi(z))-

Now each A[z]/(fi(z)) is a separable A-algebra. As A is an unramified
R-algebra, by 2.4(iv), A[z]/(fi(x)) is R-unramified. This gives J(T,) =
J(R)T,. That T, is a principal ideal ring follows from the fact that any
locally separable R-algebra is a principal ideal ring. If A is a normal exten-
sion of R, then each f;(x) is of degree one, so each A[z]/{fi(x)) is isomorphic
to A.

Suppose that, on the contrary, L is an ideal of T such that P? < L < P.
For any Rla] € H let P, = PNT, and L, = LNT,. As T, is a principal ideal
ring, there is no ideal of T, properly between P, and (P,)%. So L, = P, or
L, = P> N T,. The hypothesis implies that there exist R[a], R[b] € H such
that L, # P> NT, and L, # P,. Now there exists R[c] € H such that
R[a] U R[b] C R[c]. Then T, UT, C T... If L, = P> NT,, then L, = P> NT,;
if L. = P,, then L, = P,. This is a contradiction. Let C' be any ideal of T’
such that 7'/C' is artinian. Then for any prime ideal @ of T'/C' there is no
ideal of T'/C properly between @ and Q2. Hence T/C is a principal ideal
ring [7, Theorem 39.2].

(iii) follows from (i).

THEOREM 3.2. Let A be a locally separable algebra over a special pri-
mary ring R, and M be an (A, A)-bimodule such that d(aM) is finite.
Then M = & Z?Zl A;x; with each A; a separable A-algebra, and there exist
R-monomorphisms o; : A — A; such that x;a = o;(a)x; for any a € A. In
case A is a normal extension of R, each A; can be taken to be A and each
o; an R-automorphism of A.

Proof. Let T = A®p A. Then M is a left T-module such that (a®b)x =
axb for any a,b € A and z € M. Then d(rM) is also finite. So there
exists an ideal C' of T" such that T/C is artinian and CM = 0. As T/C
is an artinian principal ideal ring, M = @© > | T'z;, where each Tz; is a
non-zero uniserial module [6, Theorem 25.4.2]. Consider any x € M. For
any Rla] € H, (A ®pg Rla))z = T,z is a left A-submodule of Tz. There
exists an R[c] € H such that T.x has maximal composition length as left
A-module among all submodules T,z. As T is the union of all the T,’s it
follows from 2.4(i) that Tz = T,x. For any u € T, T(uz) = u(Tx) = uT,x =
T.(ux). This shows that any T.-submodule of T'z is also a T-submodule. In
addition, suppose that Tz is uniserial. Then T'z is also a uniserial T,.-module.
By 3.1, T, is a direct sum of rings which are separable A-algebras. This gives
a summand A" of T, such that A’ is a separable A-algebra, Tox = A’z and
every A’-submodule of A’z is a T-submodule. Hence for 1 < i < n we get
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A-subalgebras A; of T such that each A; is a separable A-algebra and T'x; =
A;x;. Let J(R) = wR. Then J(A) = 7A and J(A") = 1 A’. For any x € M,
xm = mx. This gives that D; = r.anna(z;) = 7% A and D} = l.anny, (z;)
= A;7%. Consider a € A; as z;a € Tx; = A;z; there exists a’ € A; such
that x;a = a’z;. This gives an R-monomorphism »; : A/D; — A;/D) such
that n;(a + D;) = a’ + D}. By 2.5, ; uniquely lifts to an R-monomorphism
o; : A — A;. Clearly z;a = 0;(a)x; for every a € A.

Let A be a normal extension of R. By 3.1(i) each A; is a copy of A, so
A; = Ae; for some indecomposable idempotent e; in T, and o;(a) = n;(a)e;
for some R-automorphism 7; of A. Hence M = & Z?Zl Ay; with y; = e;x;
and y;a = n;(a)y;. This proves the result.

In case A is a normal extension of R, and M is an (A, A)-bimodule as in
the above theorem, it follows from the above theorem that there exist finitely
many distinct R-automorphisms o1,...,0, such that M = N1 @ ... P N,
for some non-zero submodules N; with the property that for any non-zero
x € N;, za = o;(a)x for every a € A.

COROLLARY 3.3. Let A and T be as in the above theorem and A/J(A)
be a normal field extension of R. Let M be an (A, A)-bimodule such that
d(AM) < 0.

(i) There exist uniquely determined R-automorphisms o1,...,05 of A
such that for 1 <i < s, N; ={x € M : xza = o;(a)x for every a € A} is a
non-zero submodule of M and M = N1 & ... D N;.

(ii) If the module 7 M is uniserial, then s M is uniserial.

Proof. We have M = N1 & ... & N, for some non-zero submodules N;
and distinct R-automorphisms o; of A such that ya = o;(a)y for y € N,
a € A. Suppose that for some R-automorphism 7 of A there exists a non-zero
x € M such that za = n(a)x for every a € A. Write z = ) z;, z; € N;.
Then za = n(a)x gives > n(a)r; = ) o;i(a)z;. For some j, x; # 0. Then
(n(a) — oi(a))z; =0 gives n(a) — oj(a) € J(A) for every a € A. By 2.7(a),
n = o0j, and hence z € N;. This proves (i).

It has been seen in the proof of the above theorem that M is a direct sum
of uniserial T-modules each of which is a uniserial left A-module. Hence, if
M is a uniserial T-module it must be a uniserial left A-module.

Let S be a faithful R-algebra such that S = S/J(S) is a countably
generated separable algebraic field extension of R. If S is locally finite or is an
artinian duo ring, then S has a coefficient subring T" which is unique to within
isomorphisms [1]. In particular any finite local ring S of characteristic p™,
where p is a prime number, can be regarded as an algebra over Z/(p™), so

it has a coefficient subring T’; this T is a Galois ring of order p™” where the
order of S/J(S) is p".
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THEOREM 3.4. Let (R, m) be any special primary ring and S be a left
artinian, faithful R-algebra such that S = S/.J(S) is a countably generated,
separable normal algebraic field extension of R. Let S have a coefficient
subring Ro. Then as an (Ro, Ry)-bimodule, S = Ry ® (® Y .—; Rox;) such
that for 1 < i < n, x; € J(S) and there exists a o; € Autr(Ro) such
that z;a = o;(a)x; for every a € A. These automorphisms are uniquely
determined by S.

Proof. (Ry, ) is a special primary ring and d(g,S) = d(sS5). We regard
S as an (Rp, Ro)-bimodule. Consider any unit x € S such that for some
o € Autgr(Ry), za = o(a)x for every a € Ry. But in S, Ta = az, so
(@—0(a))Z = 0. Thus a—oc(a) € J(Ry) for every a € Ry. By 2.7, ¢ = I, hence
x € C(Ry), the centralizer of Ry. By 3.3, there exist uniquely determined
distinct R-automorphisms 7;, 1 < j < m, such that § = @ EZL B; where
B;={x € S:za=mn;(a)x for all a € Ry} # 0. For x € Ry and a € Ry, xa =
az, so 3.3(i) shows that one of the n;, say 11, equals I. Then B; = C(Ry),
and S = C(Ro) ® H, where H = ) ., B;. For any i > 2, as seen above,
no B; can contain any unit of S. Thus H C J(5). Now Ry is self-injective
(see [6]). By [6, Theorem 25.4.2], C(Ry) = Ro®(® Z§:1 Ryy;). Suppose some
Yi, say Y1, is a unit. Now y; = 21+ for some 21 € Ry and v1 € J(S)NC(Ry)
with Ry & Roy1 = Ry + Rov,. By comparing the composition lengths over
Ry, it is immediate that Ry ® Roy; = Ro @ Rovi. Thus we can take every y;
in J(S). As each B; is also a direct sum of uniserial Rp-modules, the result
follows.

4. Chain rings. We start with the following elementary result.

LEMMA 4.1. (i) Let o be an automorphism of a ring R and f(x) €
Rz, 0] be such that its leading coefficient is a unit, and deg f(x)=mn > 1.
Then for any g(x) € Rlz], we have g(x) = f(x)q(x) + r(x) for some
q(z),r(x) € R[z] with degr(x) < deg f(x). Further, R[x,oc|/f(z)R[z,0]
as a Tight R-module is a direct sum of n copies of R.

(ii) Let o be an automorphism of a division ring D. Then the left skew
polynomial ring Dlx,o| is a right as well as a left principal ideal domain.

Henceforth R is a commutative local ring with maximal ideal J, and
o an automorphism of R. If J is nilpotent, it is obvious that J[z, o] is a
nilpotent ideal of R[z.o].

LEMMA 4.2. If J is nil and o is of finite order, then the ideal J[x,o] of
Rz, 0] is nil.

Proof. Consider any f(x) € J[z,0], and let Y be the set consisting of all
coefficients of f(x) and their images under different powers of o. As o is of
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finite order, Y is a finite set, so the ideal A of R generated by Y is nilpotent.
Clearly any coefficient of an f(x)¥ is in A*. Hence f(z) is nilpotent.

LEMMA 4.3. Let f(z) = 2% + g(x) be such that g(x) € J[z,0] and
degg(z) < k, k a positive integer, and (f(x)) = f(z)R[z,o].

(i) (J,z)/(f(x)) is the unique mazimal ideal of S = R[z,c]/{f(x)).

(i) If J[z,o] is a nil ideal, then S is a local ring with J(S) equal to
() (F(2))-

(iii) If R is a special primary ring with J = wR and g(x) = mu(z),
where the constant term of wu(x) is a unit, then S is a chain ring with
J(S) = (T), and the index of nilpotency of J(S) is kn, where n is the index
of nilpotency of w. Also, 7"~ & (f(x)). Further, for any positive integer
m < kn, T = Rlz,0]/(f(x),z™), and the index of nilpotency of J(T) is m.

Proof. Set B = (J,x). As R[z,0]/B = R/J is a field, clearly L =
B/(f(x)) is a maximal ideal of S. Let h(z) € R|x, o] be such that h(x) ¢ B.
Then (h(z))+ B = R[z, 0], hence (h(z))+ B* = R[z,0]. But B¥ C (J, %) =
(J, f(x)), so (h(z)) + (J, f(z)) = Rlz,o]. Thus for T = R[z,0]/C, where
C = (h(x)) + (f(x)), we have TJ = T. It follows from 4.1 that T is finitely
generated as a right R-module. Thus, by [3, Theorem 5], T" = 0. Hence
(h(z)) + (f(x)) = R|x,o]. This proves that B/(f(z)) is the only maximal
ideal of S.

Let J[z, o] be nil. Then as B¥ C (J, f(z)), B/(f(x)) is a nil ideal. Hence
S is a local ring with J(S) = B/(f(x)).

Let R be a special primary ring with J = 7R and g(x) = wu(x) with the
constant term of u(x) a unit. As J is nilpotent, so is J[z, o]|. Consequently,
S is a local ring. Since u(z) is a unit modulo f(z), it follows that 7S = z*S
and J(S) = TS. So S is a chain ring. It follows from 4.1 that d(Sgr) = kn.
As R/J and S/J(S) are isomorphic as right R-modules, d(Ss) = kn. Hence
the index of nilpotency of J(S) is kn. This also yields #"~1 & {f(x)). The
last part of (iii) follows from the fact that 7" is a homomorphic image of S
and J(S) =ZS.

LEMMA 4.4. Let J be nilpotent and let f(z) = z*+g(x) with k a positive
integer, and g(x) € Jlx,o] be such that (f(x)) = f(z)R[z,0]. Then there
exists an h(x) = x* + q(z) € Rlx,0] with q(z) € J[x,0], degq(x) < k,
(f(x)) = (h(x)) = h(z)R[x,o]. If the constant term of g(z) belongs to J\J?
then h(zx) can also be chosen so that the constant term of h(x) is in J\J2.

Proof. Consider A = (J, f(z)) = (J,2*) and S = R[z,0]/(f(z)). Then
SJ = A/(f(z)),s0S/SJ = R[x,0c]/(J,x*) as right R-modules. So {z?+S5.J :
0 <i <k — 1} generates S/SJ as a right R-module. As J is nilpotent, it
follows that Sp itself is generated by the set {z’ + (f(z)): 0 <i <k —1}.

So there exists h(z) = zF — Zf:_ol a;x' € (f(z)) with a; € R. Then h(x) =
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(z* + g(z))v(x) for some v(x) € R[z,0]. In R[x, 0] = R[z,0]/J[x, 0], h(z) =
Z*v(z). This gives v(x) = 1 and h(z) = Z*. It follows that v(z) = 1 4+ w(z)
with w(z) € J[z, 0] and Z;:ol a;xt € J[z,0]. As v(z) is a unit in R[z,0], it
is immediate that (f(z)) = h(z)R[z,0] = (h(z)). Finally, let the constant
term of g(x) be b € J\J2. Then b is also the constant term of f(z). If c € J is
the constant term of w(z), then the constant term of h(x) is b(1+c) € J\J2.
This proves the result.

LEMMA 4.5. Let J be nilpotent, f(z) = z* + g(z) € Rlx,0] with k a
positive integer, and g(x) € Jlx,o] such that (f(x)) = f(x)R[x,o]. Then
Rlz,0]/{f(x)) as a right R-module is isomorphic to a direct sum of k copies

of R.

Proof. Because of 4.4 we can take deg g(x) < k. Now apply 4.1 to com-
plete the proof.

Henceforth R is a special primary ring with J = 7R, the index of nilpo-
tency of J is n, and o is such that o(7) = 7.

LEMMA 4.6. Let f(x) € R[z,0] be such that its constant term or its
leading coefficient is a unit in R. If g(z) € Rz, 0] is such that f(x)g(z) €
m° Rz, 0| for some non-negative integer s, then g(x) € m*R[x,o].

PROPOSITION 4.7. Let f(x) = 2¥+mg(z) € R[x, 0] be such that (f(x)) =
f(z)R[z,0] and the constant term of g(x) is a unit in R. Then S =
Rlz,0]/{f(z)) is a chain ring such that J(S) = (T), and the index of
nilpotency of J(S) is kn, where n is the index of nilpotency of J. For
1<m <kn, A= R[z,0]/(f(x),x™) is a chain ring with m as the index of
nilpotency of J(A).

Proof. Because of 4.4 we can take deg g(x) < k. Then 4.3 completes the
proof of the first part. The second part is an immediate consequence of the
first part.

PROPOSITION 4.8. Let f(z) = zF + wg(z) + roz™" ! € Rz, o] with
m—1>k > 0 and with constant term of g(x) a unit in R. Then T =
Rz, o]/{f(z),z™) is a chain ring with J(T) = (). The index of nilpotency
of J(T) is at most kn.

Proof. Set A = (f(z),z™). Then T' = R[z,0]/A and A C (m,z). As T
is nilpotent in 7', T is a local ring with J(T') = (7, T) a nilpotent ideal. As

14+ rgz™=*=1 and g(x) are units in T,
(T*) = (2F + roam=1) = (~7g(x)) = (7).
Thus the index of nilpotency of T is at most kn and J(T') = (T).

LEMMA 4.9. Let h(z) = a¥ + 7g(z) € Z(R[z,0]) be such that the con-
stant term of g(x) is a unit and deg g(x) < k. Let m be any positive integer
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such that kK <m —1 < kn — 1, and suppose the order of o divides m — 1.
Let f(z) = h(z) +rox™ !, where ro is a unit in R. Then:

(i) If m—1> k, then (f(x),2™) # (f(z),2™1).
(i) If k=m —1 and 1+ 1¢ is a unit, then (f(x), z™) # (f(x), 2™ ).

Proof. Suppose the contrary. Set A = (f(x),2™~ 1) = (h(x),2™~!) and
B = (f(x),z™).

Case I: k < m — 1. So 2™t = (h(z) + rox™ s(z) + 2™v(x) for
some s(z),v(z) € R[z,o]. This gives z™ (1 —rgs(z)) = h(z)s(x) +z™v(x).
If 1 —ros(z) is a unit modulo the ideal C' = (h(z),z™), we deduce that
x™ 1 € C, and the index of nilpotency of the radical of R[z,c]/C is less
than m. This contradicts 4.3(iii). Hence the constant term of 1 — rgs(z) is
a non-unit. Thus, if s¢ is the constant term of s(x), then sy must be a unit.
Also the coefficient of % in h(z)s(z) + ™v(z) is 0. Thus sg — 7b = 0 for
some b € R and sg € J(R). This is a contradiction, which proves (i).

CASEII: K = m—1 and 1+7g is a unit. In this case 7g(z)s(x) € (z™~1).
By 4.6, ws(z) = 2™ 'mq(z). So s(x) = 2™ lq(x) + 7" !\(z) for some
Az) € Rz, o]. Thus

™ = (2™ + wg(x) + rox™ N (@™ Lg(z) + 7N () 4+ 2™ (z)
= 27 (L 1) (2" g(@) + 7)) + 2 rg(@)a(z) + o).
Consequently, 1 = (1+70)(z™ q(z) + 7" X\ (z)) + 7g(x)q(z) +zv(x). This

is not possible, as the constant term on the right hand side is not a unit.
This proves (ii).

REMARK. The hypothesis on h(z) in the above theorem implies that
o(o) divides k and mg(x) € Z(R[z, o]).

THEOREM 4.10. Let (R,m) be a special primary ring and o be an au-
tomorphism of R of order k', a positive integer. Let h(x) = x* + 7g(x)
€ Z(Rx,0]) be such that the constant term of g(x) is a unit in R and
degg(x) < k. Let m be any positive integer such that k(n —1) < m < kn,
k<m—1 and k' divides m — 1. Let f(x) = h(z) +roz™ ! € R[x,0] with
ro € R satisfying the following conditions:

(i) FEither 1o =0 or r¢ is a unit.
(ii) If k=m —1, then 1+ rg is a unit.
Then for A = (f(z),z™), S = R[z,0]/A is a chain ring with J(S) having

ndex of nilpotency m.

Proof. For ro = 0, the result follows from 4.3(iii). For ¢ # 0, it follows
from 4.8 and 4.9.



CHAIN RINGS 115

5. A representation theorem. Throughout this section (R, ) is a
special primary ring, A is a local, faithful R-algebra which is a chain ring,
J(R) = RN J(A), and A = A/J(A) is a countably generated normal,
separable algebraic field extension of R. As A is a duo ring, by [1], it has a
coefficient subring Ry. Now J(Ry) = Rom. Since A is an (R, Rp)-bimodule,
by 3.4, it can be written as

A= Ry (ea iRoxi)
=1

in such a way that z; € J(A) for 1 < i < n. As J(A) is a principal right
and left ideal, J(A) = Ax; = z;A for some x;; write § for this x; and o for
the corresponding ;. We call (0, 0) a distinguishing pair of A with respect
to Ry. Then J(A) = A = Af and Oa = o(a)f for a € Ry. As m € 0A,
there exists a smallest positive integer k such that #¥ = 7w for some unit
w € A. Let m and n be the indices of nilpotency of 6 and 7 respectively.
Then m = (n — 1)k +t for some 1 <t < k.

As in [4] or in [8], we also have A = Ry @ Rof @ ... ® Rof*~! with
Ry0 = Ry for 1 < i < t, and Ryf® =2 Ry/Rom for t < i < k as left Ry-
modules. Suppose 6% = 0; then © = 0, Ry is a field, and A = Ro[z,o]/(z").
So we are interested only in the case 6% # 0. Observe that if z € R, then
2™t = rd™=1 for some r € Ry.

LEMMA 5.1. If 0F #£ 0, then o is of finite order and its order divides k.
Also, 0% € Z(A).

Proof. We have 7 = w~'0*. Then for any a € Ry, ma = ar yields
(aw™! — w™lok(a))0* = 0 and waw™! — o*(a) € J(A). But A/J(A) is
commutative. We get a — o¥(a) € J(A) N Ry = J(Ry). By 2.7, 0% = I.
Hence the order of o is finite and it divides k. The second part is obvious
from the first.

Henceforth we suppose that 0% # 0, k' is the order of o, and ky = k/k’.

LEMMA 5.2. C(Ro) = {Zf;al azﬂk/i ta; € Ro}

Proof. Let z = Zf:_ol a0’ € C(Ry), a; € Ry. For any a € Ry, ar = xa
yields (a — o(a))a;0" = 0. If for some i, a;0" # 0, then a — o'(a) € J(Ry),
by 2.7, 0¢ = I and hence k' divides i. This proves the result.

LEMMA 5.3. Let w € A be a unit.

(i) If for some l,q > 0, a(wn'0?) = (wr'0%)a for every a € A, with
709 £ 0, then k' divides q.

(ii) If O(wr'09) = (wr'01)0 and 7'0IFT # 0, then w = so + w10 for
some unit so € R, u > 1 and some unit wy € A. In addition, if w € Ry,
then w = s+ s’ for some s € RS and s’ € J"~ 1 17F O Ry,
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(iii) Let L = Zf;gl R30™ . If k' does not divide m — 1, then Z(A) = L.
If k' divides m — 1, then Z(A) = L + J(A)™~ 1.

Proof. (i) a(wn'0?) = (wn'0?)a for every a € A with 7'0? # 0 gives
(aw — woi(a))m'0? = 0, and as in 5.1, we find that k' divides q.

(ii) Suppose that 8(wn'0?) = (wn'0?)§ and 799+ #£ 0. Now w = r + v
for some » € Ry and v € J. The hypothesis gives (o(r) — r)rlg9+! =
ottt — Qorlgatt € 719t so (o(r) —r) € J N Ry. By 2.7(b), r =
so + rim® for some unit s € R§, o > 1, and some unit r; € Ry. Then
w =8y +r7*+v =5y + w 0" for some unit wy; € A, u > 1.

Suppose w =71 € Ry. Then r = sg + 17 and 0(r;7*+09) = (1w 109)6.
If 7oH9atl = 0, then ri7® € J? 9717k N Ry, and we stop. Otherwise we
continue with rq in place of . Then 1 = a; +rom? for some unit a; € R§, o
a unit in Ry, and some 3 > 1. Then r = s; —|—r27ra+5, 51 =580 +a1m € RY.
Observe that a + # > «a. Continue the process with ro and so on. As 7 is
nilpotent, we shall finally get » = s + /7P for some s € R and s’ = r'nP €
Jm—q—l—k:l e RO-

(iii) If ¥ =1, then A = Z(A), and the result holds trivially. Let £ > 1.
Let 2 € Z(A). Then = € C(Ry), x = Zf;gl 108 1 € Ry. As 0z = 20 and
(k1 — DK +1 < k, we get 0(r;0°) = (r;0°)0. By (ii), r; = s; + a; for some
s; € R§ and a; € Jm=Ki-1 Hence = s+ a with s = > szﬂk/i € L and
a=Y,a;0" € J" 1. Now a € Z(A). Suppose a # 0. Then a = r6™! for
some unit r € R. By (i), ¥’ divides m — 1. Further, if £’ divides m — 1, then
Jm=1 C Z(A). This proves (iii).

LEMMA 5.4. For 6% = mw, the following hold.

(i) If k' does not divide m — 1, then w can be chosen in the form
Zf;gl 5:0%'" with s; € R, and this element is in L C Z(A).

(ii) If k' divides m — 1, then w = wqy + rof™ *=1 with wy € L, and
ro € Ro is either zero or a unit.

(iii) w chosen in either of the above forms is in C(Ry). Further, C(Ry)
s a special primary ring with radical <9k,>.

(iv) 6% = wh(0) + r0™, where h(z) € RG[z*'], degh(z) < k, the con-
stant term of h(x) is a unit, r = 0 if k' does not divide m — 1, and r is
zero or a unit in Ry otherwise. Further, if k =m — 1, then 1 —r s a unit.

Proof. We have 7 = w™'0% € Z(A). If k = m — 1, then w™10F = 5¢0"
for some unit sy € Rp, so we can take w = 30_1 = 3510’“_’“_1, which is
of type given in (ii). Suppose k < m — 1. By 5.3(ii), w™! = sq + w16% for
some unit so € RY, a unit w; € A, and some o > 1. If §26* = 0, we stop.
Suppose, 090% # 0. Then 0 # w10°0% € Z(A). By 5.3(i), k' divides a. If
w1090+ = 0, then w0 € J™ %=1 Suppose wi0“0*T! #£ 0. By 5.3(ii),
wy, = a1 + we6P for some unit a; € R, a unit wy € A, and some 3 > 1.
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Then w™! = 81 + w207 with 51 = s¢ + a10% € Z(A). Clearly a + 3 > a.
Continue this process with ws and so on. We get w™! = s + v6P for some
unit s € Z(A), a unit v € A, and some p > 1 such that v§Pg*+! = 0.
If v0P0% # 0, then p = m — k — 1. Suppose v6P0* = 0. Then © = s6*,
and in this case we can take w = s~! € Z(A). Suppose v0P6* # 0. Then
vOPOF = ™1 = @™~ for some unit r € Ry, and k' divides m — 1. Then
= (s+rfmF1)0% and OF = m(s71 — s72r0m k1) = w(s7L £ /g R
for some unit ' € Ry, so we can take w = s~! + /§m~k~1 By 5.3(iii),
s = wo + 0™~ for some 71 € Ry and wy € L. Thus wg = h(f) for
some h(zx) € R[z*'] with degh(z) < k. Then 0¥ = m(wo + /6™ *~1), and
we can take w = wo + 7’0™F~1 which is of type given in (ii). All this
proves that w can be chosen of the type given in (i) or (ii), and in any case
this w is in C(Ry). Clearly, C(Ro) = Ry + (0*'), C(Ry) is commutative, and
J(C(Ro)) = mRo + (0¥) = (0*'), as m = w= 0% € (6¥). Hence C(Ry) is a
chain ring.

In case k’ divides m—1, we have 0% = wh(0)+mr'6™ %=1 = h(0)+ro™ !
for some r € Ry. Once again consider the case when k& = m — 1. As seen
above, 0% = 7ry for some unit rg € R. Then 7 = 0, and this gives % =
T+ (ro — )m =74+ r0™ ! = 7h(0) + r6™ ! for some r € Ry, h(z) = 1.
Then (1 — )0 = wh() shows that 1 — r is a unit, as h(#) is a unit. This
proves (iv).

The following theorem generalizes [8, Theorem 4.15].

THEOREM 5.5. Let (R, 7) be a special primary ring with m # 0, and A
be a local, faithful R-algebra such that J(R) = RN J(A) and A = A/J(A)
is a countably generated separable algebraic field extension of R. Then the
following are equivalent.

(a) A is a chain ring with J(A) having indez of nilpotency m.

(b) There exists a commutative local ring Ro which is a faithful unram-
ified R-algebra, an R-automorphism o of Ry of order a positive integer k',
a positive integer k < m — 1 divisible by k', a polynomial g(z) = x* — wh(x)
with h(z) € R[], the constant term of h(x) a unit and degh(z) < k,
for which the following hold.

(i) If k' does not divide m — 1, then A = Ry[z,0]/(g(x),z™).
(ii) If k' divides m — 1 and k < m — 1, then there exists r € Ry
which is either zero or a unit such that
A= Rylz,0]/{g(x) —ra™ 1 2™).
(iii) If k =m — 1, then there exists r € Ry such that either r =0 or
both r and 1+ r are units in Ry, and

A= Rolz,0]/{g(x) —ra™ 1 2™).
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Proof. Let A be a chain ring and m be the index of nilpotency of J(A).
Let Ry be a coefficient subring of A, and (6,0) be a distinguishing pair of
A with respect to Ry. Now, Ry is an unramified R-algebra. There exists a
positive integer k and a unit w € A such that #* = mw. By 5.3, the order
k' of o divides k. We can write 0¥ = wh(0) + 7™~ where h(z) and r are
as specified in 5.4(iv). Let f(x) = 2% — wh(x) — ra™ 1. Tt follows from 4.7
and 4.10 that S = Ry[z,0]/B, where B = (f(x),z™), is a chain ring with
J(S) having index of nilpotency m. We have an R-epimorphism A : S — A
such that for any ¢(z) € Ro[z, o], A(¢(z) + B) = ¢(#). As the index of
nilpotency of J(A) is also m, A is an R-isomorphism. Hence (a) implies (b).
It follows from 4.7 and 4.10 that (b) implies (a).

EXAMPLE (see [2]). Let F' be any field of characteristic 2 and z, y be
two indeterminates. Consider a one-dimensional vector space V over K =
F(z,y). Fix a basis element o of V. Let L be the F-vector space of all
finite formal sums ) aijxiyj , a;j € F', where 4, j are non-negative integers.
Consider S = L @ V. Define

(xnym) o (xryS) — xn+rym+s + mraanrrflmersfl.

In particular, y o x = zy + «. For any au,av € V and f € L, define
(au) o (aw) = 0 and f o (au) = (au) o f = a(uf). Extend this operation
to S. This makes S a ring, with 7 = 0 x V an ideal such that 7?2 = 0
and y™ o z®" = x?"y™. For any f € L, f* € Z(S). It follows that S
satisfies the right as well as left Ore condition. Consequently, S admits a
total right quotient ring A with J(A) = T and A/J(A) = K. Suppose S
admits a coefficient subring 7. Then T is a field isomorphic to K. There
exist u =x+arand v =y+asin T. As uov = v o u, it follows that
x oy = yox. This is a contradiction. Hence this ring does not admit a
coeflicient subring.
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