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SYMMETRIC SPECIAL BISERIAL ALGEBRAS OF
EUCLIDEAN TYPE

BY

RAFAL BOCIAN and ANDRZEJ SKOWRONSKI (Torun)

Abstract. We classify (up to Morita equivalence) all symmetric special biserial alge-
bras of Euclidean type, by algebras arising from Brauer graphs.

Introduction and the main result. Throughout the paper K will
denote a fixed algebraically closed field. By an algebra we mean a finite-
dimensional K-algebra with identity, which we shall assume (without loss
of generality) to be basic and connected. For an algebra A, we denote by
mod A the category of finite-dimensional right A-modules and by D the
standard duality Homg (—, K) on mod A. The Cartan matriz Cy of A is
the matrix (dimg Hom4(P;, Pj))1<i,j<n for a complete family Py,..., P, of
pairwise nonisomorphic indecomposable projective A-modules.

An algebra A is called selfinjective if A = D(A) in mod A, that is,
the projective A-modules are injective. Further, A is called symmetric if
A and D(A) are isomorphic as A-bimodules. For a selfinjective algebra A,
we denote by I the stable Auslander—Reiten quiver of A, obtained from
the Auslander—Reiten quiver I'y of A by removing all projective modules
and the arrows attached to them. We also note that if A is symmetric
then the Auslander—Reiten translation 74 = D Tr in mod A is the square
2% of the Heller syzygy operator £24. An important class of selfinjective

algebras is formed by the algebras of the form B /G, where B is the repetitive
algebra [8] (locally finite-dimensional, without identity)

B =@ (Bn®Qm)

meZ

of an algebra B, where B,, = B and Q,, = D(B) for all m € Z, the
multiplication in B is defined by

(ama fm)m : (bma gm)m = (ambma am9m + fmbm+1)mez
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for am, b € B, fm; gm € @m, and G is an admissible group of K-automor-
phisms of B. In particular, if vz : B — B is the Nakayama automorphism
of B given by the identity shifts By, — Bmi1 and Qm — Qm.1, then the
infinite cyclic group (v3) generated by vz is admissible and B /(vg) is the
trivial extension T(B) = B x D(B) of B by D(B), and is a symmetric
algebra.

We are concerned with the problem of classifying all selfinjective algebras
of Euclidean type, that is, of the form B /G, where B is a tilted algebra of
Euclidean type A € {Am,Dn,EG,E7,E8} and G is an admissible group of
K-automorphisms of B. Tt is known (see [2], [16]) that if A = B/G and B is
tilted of Euclidean type A then the stable Auslander—Reiten quiver I} has
the following “clock structure”:

where r > 1 and for each p € {1,...,r}, &) is of the form ZA and 7,
is a P (K)-family of stable tubes. In fact, if A is symmetric then r < 2,
and r = 2if A = T(B) = E/(yé). It has been proved in [12] that ev-
ery symmetric algebra of Euclidean type A € {IEG, ]E7,I~E8} is isomorphic to
the trivial extension T'(B) of a (representation-infinite) tilted algebra B of
type A. But this is not the case for the Euclidean types Am and Iﬁ)n (see
[16, 2.6, 2.7]).

The aim of this paper is to describe all symmetric algebras of Euclidean
types Ay, m > 1. It is known (see [3], [16]) that the class of selfinjective
algebras of Euclidean type &m coincides with the class of representation-
infinite special biserial algebras of polynomial growth. Recall that following
[17] an algebra A is called special biserial if it is isomorphic to a bound
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quiver algebra K@ /I where the bound quiver (@, I) satisfies the following
conditions:

(SP1) The number of arrows in ) with a given source or sink is at most
two.

(SP2) For any arrow « of @, there is at most one arrow 3 and at most
one arrow -y such that a8 and ya are not in I.

We refer to [6] and [13] for the structure and representation theory of
special biserial selfinjective algebras.

If K is of characteristic p > 0 and G is a finite group, we know by
Dade [4], Janusz [9] and Kupisch [11] (see also [1]) that the representation-
finite blocks of the group algebra K G are Morita equivalent to special biserial
algebras arising from Brauer trees with one distinguished vertex. In fact, it
was shown later in [10] and [15] that every symmetric special biserial algebra
is Morita equivalent to a special biserial algebra arising from a Brauer graph
which is locally embedded in the plane. Following this idea we associate (see
Section 1 for details) to any Brauer tree T' with two distinguished vertices vy
and vy a symmetric special biserial algebra A(T,v1,v2), and to any Brauer
graph T with exactly one cycle a symmetric special biserial algebra A’(T")
(resp. A”(T)) according as the unique cycle in 7' has an odd (resp. even)
number of edges. The following main results of the paper give a complete
description of all symmetric algebras of Euclidean types A, (equivalently,
symmetric special biserial algebras of Euclidean type).

THEOREM 1. Let A be a basic connected algebra. Then the following
conditions are equivalent:

(i) A is a symmetric algebra of Euclidean type Km and the Cartan
matriz of A is nonsingular.

(ii) A is isomorphic to an algebra of the form B/ (), where B is a repre-
sentation-infinite tilted algebra of Fuclidean type Am and ¢ is a square root
of the Nakayama automorphism vg of B, but A is not isomorphic to the
four-dimensional local algebra K{x,vy)/(z? y? zy + yx) if char K # 2.

(iii) A is isomorphic to an algebra of the form A(T,vi,v2) for a Brauer
tree T with two distinguished vertices v1 and va, or to A'(T) for a Brauer
graph T having a unique cycle, and the cycle has an odd number of edges.

THEOREM 2. Let A be a basic connected algebra. Then the following
conditions are equivalent:

(i) A is a symmetric algebra of Euclidean type &m and the Cartan
matriz of A is singular.
(ii) A is isomorphic to the trivial extension T(B), where B is a repre-

sentation-infinite tilted algebra of Euclidean type Ap,.
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(iii) A is isomorphic to an algebra of the form A”(T), where T is a Brauer
graph having a unique cycle, and the cycle has an even number of edges.

As a consequence of our proofs we also obtain the following descrip-
tion of all weakly symmetric algebras of Euclidean types A,, which are not
symmetric.

COROLLARY 3. Let A be a basic connected algebra. Then the following
conditions are equivalent:

(i) A is a weakly symmetric but nonsymmetric algebra of Fuclidean type
A,, for some m.

(ii) A is isomorphic to the four-dimensional local algebra K (x,y)/(z%, y?,
xy — Ayx) for some A € K\ {0,1}.

Recall that an algebra A is called weakly symmetric if the socle soc P of
any indecomposable projective A-module P is isomorphic to its top P/rad P.

For general background concerning representation theory of algebras and
selfinjective algebras applied here we refer to [1], [5], [6], [14] and [19].

1. Brauer quiver algebras. In this paper, by a Brauer graph we mean
only (for a general definition see [10], [15]) a finite connected undirected
graph T with at most one cycle, possibly with a loop or a double edge,
together with a circular ordering of the edges issuing from each vertex, which
we put in a concrete form by drawing 7' in the plane in such a way that
the edges issuing from any vertex have the clockwise cyclic order. A Brauer
graph T defines a Brauer quiver QQr such that:

(a) Qr is the union of (oriented) cycles.
(b) Every vertex of Q7 belongs to exactly two cycles.

The vertices of Q7 are the edges of T, and there is an arrow i — j in
Q7 if and only if the edges 7 and j have a common vertex v and j is
the immediate successor of ¢ in the circular ordering of the edges issu-
ing from v. Therefore, the vertices of T' correspond to the oriented cycles
of QT-

Let T be a Brauer tree. Then the simple cycles of the Brauer quiver Qr
may be divided into two camps, the a-camp and (-camp, in such a way that
any two cycles which intersect nontrivially belong to different camps. We
denote by «; (resp. 3;) the arrow of the a-camp (resp. S-camp) of Q7 starting
at the vertex i, and by a(i) (resp. 5(7)) the end vertex of c; (resp. ;). We
also denote by A; (resp. B;) the cycle from i to ¢ going once around the
a-cycle (resp. (-cycle) through i, that is,

Ai = qiag(y - a1y, Bi = BiBpy - - Ba-1(s)-
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ExXAMPLE 1.1. Let T be a Brauer tree of the form

Then Qr is (up to choice of a-camps and S-camps) of the form
az

a \7 N
= /x e
oS AT

O

Qg

Let T be a Brauer tree with a set V. = {v1,...,v:} of distinguished
(pairwise different) vertices, marked by e. Then the associated Brauer quiver
Q1 has exceptional cycles given by the edges of T' issuing from the vertices
v1,...,0. We define A(T,V) as the bound quiver algebra KQr/I(T,V),
where K Q7 is the path algebra of the quiver Q7 and I(T,V) is the ideal in
K Q7 generated by:

(1) @iBag)s Biagg for all vertices i of Qr,

(2) Aj — Bj if neither the a-cycle nor the B-cycle through the vertex j
are exceptional,

(3) A?—Bj if the a-cycle through j is exceptional but the §-cycle through
j is not,

(4) Aj —BJQ- if the B-cycle through j is exceptional but the a-cycle through
j is not,

(5) A? — BJZ if the a-cycle and (3-cycle through j are exceptional.
We write frequently A(T, vy, ...,v¢) instead of A(T, V), and I(T,v1,...,v:)
instead of I(T,V).

ExaMPLE 1.2. Let T be the following Brauer tree with two distinguished
vertices v1 and vo:
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Then the algebra A(T, vy, v2) is given by the quiver Qr (described in 1.1) and
the ideal I(T,v1,v2) in KQp generated by: o151, frag, asfe, Peas, arfs,
B3au, aafs, Baon, azfs, Bsas, asls, Beas, asPr, Poar, asfs, Pras, agf,
Bgag, o — 1320304, oz — B2B3BaPr, au — Baf1 3203, (asasar)? — B3BafBi P2,
(asaraz)® — B506, (arasas)? — Brfs b, as — P65, as — BsBofr, ag — o5

Let T be a Brauer graph with exactly one cycle and let the cycle have
an odd number of edges. Assume first that the cycle is not a loop (so has at
least two vertices). We fix a vertex on the cycle and denote by ~; the arrow
of the associated simple cycle of Qp starting at a vertex i, and by (i) the
end vertex of ;. Then the remaining (simple) cycles of Q7 may be divided
into two camps, the a-camp and (-camp, in such a way that any two cycles
which intersect nontrivially belong to different camps. We define the cycles
A; and B; as above. We also denote by C; the simple cycle from i to ¢ going
once around the y-cycle through ¢, that is,

Ci = YiVy(i) - - - Ty=1(0)-
We define A'(T') as the bound quiver algebra KQr/I'(T), where I'(T) is the
ideal generated by:
(1) @iBagi)» Bicg(iys QiValiys ViCy(iys Vilby), Bivae) for all vertices i of Qr,
(2) Aj — By if j is the intersection of an a-cycle and a (-cycle,
(3) Aj — C; if j is the intersection of an a-cycle and a 7-cycle,
4)

(

ExaMPLE 1.3. Let T be the following Brauer graph with one cycle:

Bj; — Cj if j is the intersection of a 3-cycle and a ~-cycle.

Then Q7 is the quiver
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Q2

8 A7 4
A O
9 =

and A'(T) is given by the above quiver and the ideal I'(T') generated by:
a1y, Broe, asof, Boas, arfls, B3as, cufs, PBaar, azvys, Ysae, asBr, Boar,
a9, Berg, B8, V805, Y608, 66, 1 — 31323354, aa — B33 8451, azasay —
B33451 02, aa — Baf1 P23, asaras — 57678, 06 — V6V8V5, r3s — B,
Y8756 — BsBof7, g — BofB70s.

Now assume that the cycle is a loop (so has only one vertex). We fix
this vertex on the loop of T. The associated (nonsimple) cycle of Q7 is
a composition of two simple shorter cycles with exactly one intersection
vertex. We denote by ~; (resp. ¢;) the arrows of the first (resp. second) of
them starting at a vertex i, and by (i) (resp. 6(¢)) the end vertex of ;
(resp. d;). Then the remaining (simple) cycles of Q7 may be divided into
two camps, the a-camp and (-camp, in such a way that any two cycles
which intersect nontrivially belong to different camps. Again, we denote by
A; (resp. B;) the cycle from i to i going once around the a-cycle (resp.
B-cycle) through i. We denote by v the intersection vertex of the v-cycle
and d0-cycle and by C, (resp. D,) the simple cycle from v to v going once
around the y-cycle (resp. d-cycle) through v, that is,

Ov = %’yv(v) .. "Y’y—l(v)v DU = 5055(11) ‘e 56—1(1))‘

We define A'(T) as the bound quiver algebra KQr/I'(T), where I'(T) is the
ideal generated by:

(1) €iBagiys Bicg(iys QiYaiys ViQy(i)> Vil (i)s BiVsei)s Qida(i)s 0is(iys 0iBs(i)s
Bidg(iy for all vertices i of Qr,

(2) Aj — By if j is the intersection of an a-cycle and a (-cycle,

(3) Aj = Y G) - Vy—tw) Do - - Vy-1(5) if J is the intersection of an
a-cycle and the vy-cycle,

(4) Aj = 8j05(j) - - - 05-1(5)Cu0y - . . 65-1;y if j is the intersection of an a-
cycle and the d-cycle,
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(5) Bj—605(j) - - - 05-1()Cu0u - - . d5-1(;) if j is the intersection of a S-cycle
and the d-cycle,

(6) Bj = %YyG) -+ Vy-1(w)Doyo - - Vy-1(5) if j is the intersection of a
[B-cycle and the y-cycle,

(7) 77—1(1,)’)/0, 55—1(1;)5117 Cva - DvC’v.

ExaMPLE 1.4. Let T be the following Brauer graph with one loop:

Then Q7 is the quiver

065 044

T
G AN

062

and A'(T) is given by the above quiver and the ideal I'(T") generated by:
d1a2, a2da, doa3, @303, O304, Qqds, Y1Q5, 575, V56, Qef7, Bragz, arye,
0401, Y671, Q2 — 0203041757601, @3 — 0304715760102, 4 — 0417576010203,
as — V5760102036471, aear — V6010203047175, Br — arae 01620304717Y5Y6 —
Y1757601020304.

Let T be a Brauer graph with exactly one cycle, and let the cycle have
an even number of edges. Then the simple cycles of the Brauer quiver Qr
may be divided into two camps, the a-camp and (-camp, in such a way
that any two cycles which intersect nontrivially belong to different camps.
We define A; and B; as before. We let A”(T) be the bound quiver algebra
KQp/I'"(T), where I"(T) is generated by:

(1) aifaiy, Biag) for all vertices i of Qr,
(2) Aj — By if j is the intersection of an a-cycle and a [-cycle.
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ExaMPLE 1.5. Let T be the following Brauer graph with one cycle:

Then Q7 is the quiver

062

Cgneaie
=S e
\57/ o

049

and A”(T) is given by the above quiver and the ideal I"(T) generated
by: a161, frag, azf, Baas, arzfs, Bzay, asfs, Baaa, aszfBs, Bsas, asls,
Becws, ass, Bsag, a9y, Boar, asfr, Bras, an — B1B203084, ae — B2B38401,
azasagar — 3645152, as— B451 3203, asagaras—B506, as — PBefs, arazasas

— BrBsB9, agarazas — BePofr, g — BoBrBs.

2. Cartan matrix of the algebra A(T,V). Let T be a Brauer tree
with e edges, V' a set of distinguished vertices of T, and ¢ = |V/|. The main
aim of this section is to prove the following formula for the determinant of
the Cartan matrix of A(T,V).

PROPOSITION 2.1. In the above notation, we have

det Cyryy =2 (e —t + 1) + 274

We need a technical lemma. For integers x,ai,...,a, we denote by
[z,a1,...,ay,] the n X n-matrix
a) +x x - x
x as+x ... x

T T ..o aptx
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LEMMA 2.2. We have the equality
n
det[z,a1,...,a,] = al...an—i—xZal...aZ’...an,
=1

where a; = 1.

Proof. We proceed by induction on n. For n = 1, the claim is obvious.
For n > 2, we have the equalities

det[z,a1,...,an, ant1]
n+1
= (a1 + x) det[z,ag,...,an,ant1] — Z det|z,ag,..., Q... an, Gpy1]
=2

n+1
:a1<a2...an+1+x E ag...ai...anH)
=2

n+1 n+1
~ 2 ~
+x(a2...an+1+x§ ag...ai...anH)—m g ag...ai...0p4+1
i=2 i=2

n+1

=a1a2...0p4+1 + 2 E aiag...0;...Apy1 + 202 ... Qpt1
=2
n+1 n+1
2 ~ 2 ~
+z E ag...Q;...0p41 — g ag...0;...0n+1
=2 =2
n+1

=a1a2...0p41 + 2 E as...0i...0p41. W
=1

Proof of Proposition 2.1. We argue in several steps, by induction on the
number k of vertices of T having at least two neighbours.

(1) Assume k = 0. Then the Brauer tree T' consists of one edge, 0 <
t < 2, and hence Cy ) is of the form either [2], [3], or [4]. Since 2 =
2°1-0+1)40,3=2"(1—-1+1)+1and 4 =2%(1—-2+1)+2'-2, the
required formula holds.

(2) Assume k = 1. Then T is a star of the form

and @ is of the form
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w,
CT/ \‘O

CT‘ -:Q

We have two cases to consider.

(a) Assume that the middle of the star T is a distinguished vertex. Then
C(t,v) 1s of the form
t—1
4 2

2 3
with 2’s everywhere off the main diagonal. From Lemma 2.2 we have the
equalities
detCA(T,V) =det[2,2,...,2,1,...,1]
—— ——
t—1 e—t+1
=27t 22 e —t 4 1) +2072(t — 1))
=2y olle—t+ 1) 2t —1) =2 e —t + 1) + 20712
(b) Assume that the middle of the star T is an ordinary vertex. Then
Cxr,v) is of the form

t
3 1

1 o

with 1’s off the main diagonal. From Lemma 2.2 we have
det CA(T,V) = det[l, 2, ey 2, 1, ceuy 1]
—— ——

t e—t
=2y ole—t)+ 2t =2 e —t+1)+ 2171t
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(3) Assume k > 2 and the required formula holds for the Brauer trees
having at most £ — 1 vertices with at least two neighbours. Let T be a
Brauer tree having k vertices with at least two neighbours and let r be the
last vertex of T which is not an end, that is, T is of the form

@)
e—(d—1)

e—(d—2)

Denote by p the neighbour of the vertex » which connects r with the second
part of T'. Then Qr is of the form

e—1

*
e—d
|
\ e—(d— Z)D
e—(d—1)
Consider the following two subtrees of T
O
e—(d—1)
e—(d—2)
T o——0 T,

The Brauer quivers Q7 and Qr, are
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Qry: “‘e—dO Qmny: Ce—d ‘

Then the Cartan matrix Cy(7yy is of the block form
X 0

0 Y

where X is the Cartan matrix of A(71,V1), Y is the Cartan matrix of
A(T,V3) and z is the only common nonzero coefficient of the matrices X
and Y. Then, applying [1, Lemma 24.4], we obtain

det C 1,y = det(X) det(Yp) + det(Xo) det(Y) — 2 det(Xo) det(Yp),

where X is obtained from X by erasing the last row and last column, and
Y is obtained from Y by erasing the first row and first column.

Assume that T5 has m distinguished vertices. We have four cases to
consider.

(a) Assume that p and r are ordinary vertices. Then z = 2, and using
our inductive assumption, we obtain

det C g,y = det(X) det(Yp) + det(Xo) det(Y) — 2det(Xp) det(Yo)
=(2""™(e—d— (t—m)+ 1)+ 2"t —m))
x (2™(d —m+1) + 2" 1m)
+ (2 e—d—1—(t—m)+1)+ 27"t —m))
x (2™(d+1—m+1)+2m"1m)
—22™(e—d—1—(t—m)+ 1)+ 20771t —m))
(2"™(d —m + 1) + 2™ 1)
=2 e—t+1)+21¢
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(b) Assume that p is an ordinary vertex and r is a distinguished vertex.
Then z = 3, and using our inductive assumption, we obtain

det Caryy = (27" He—d—(t—m+ 1)+ 1)+ 2"t —m+1))
x (2"™(d —m +1) + 2™ 'm)
+ (25 e—d—1—(t—m)+ 1)+ 2"t —m))
x (2™(d+1—m+1)+2m"1m)
— 302 (e—d—1—(t —m)+ 1)+ 2"t —m))
x (2™(d —m +1) + 2™ )
=2e—t+1)+27 1t

(c) Assume that p is a distinguished vertex and r is an ordinary vertex.
Then z = 3, and using our inductive assumption, we obtain

det Cyiryy = (2™ (e —d — (t —m) + 1) + 271t — m))
x (2"™(d —m +1) + 2™ tm)
+25Me—d—1—(t—m)+ 1)+ 27"t —m))
x (2" (d+1—(m+1)+1)+2™(m+ 1))
— 32" e —d—1—(t —m)+ 1)+ 2"t —m))
x (2"™(d —m +1) + 2™ tm)
=2e—t+1)+27 1t

(d) Assume finally that p and r are distinguished vertices. Then z = 4,
and invoking our inductive assumption, we obtain

det Cyryy = (27" e—d—(t—m+1)+1)+2"™(t—m+1))
x (2"™(d —m +1) + 2™ tm)
+(25Me—d—1—(t—m)+ 1)+ 27"t —m))
x (2" (d+1—(m+1)+1)+2™(m+ 1))
—4(2"Me—d—1—(t —m)+ 1)+ 2"t —m))
X (2™(d —m+1) + 2™ m)
=2e—t+1)+271¢ u

We record some immediate consequences of Proposition 2.1:

COROLLARY 2.3. Let T be a Brauer tree with two distinguished vertices
v1 and ve and with e edges. Then

det CA(T7U17U2) = 4e.
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COROLLARY 2.4. Let T be a Brauer tree with one distinguished vertex v
and with e edges. Then

det CA(T,’U) =2e—+1.
COROLLARY 2.5. Let T be a Brauer tree without distinguished vertices

and with e edges. Then
det CA(T) =e+1.

3. Cartan matrices of the algebras A'(T') and A”(T'). The aim of
this section is to prove the following formulas on the determinant of the
Cartan matrices of the algebras A'(T) and A”(T).

PROPOSITION 3.1. Let T be a Brauer graph with exactly one cycle. Then:

(1) det Cyr(7y = 4 if the number of edges on the cycle is odd.
(2) det Cyr(ry = 0 if the number of edges on the cycle is even.

In order to prove the proposition we need several technical facts.

Let n > 4. Denote by Ep(n) the Cartan matrix of the algebra A(T) =
A(T, D), where T is a tree, without distinguished vertices, of the shape

1 2 n
O O « e+« O——O

We define two square n X n matrices:

1100 000
0210 000
01 21 000
001 2 000

El(n): . y
00 00 2 10
0000 1 1
1.0 0 0 01 2|
(1 2 1 0 0 0 0]
01 21 000
001 2 000
00 01 000

EQ(TL): .
00 00 1 21
00 00 0 1 2
1.0 0 0 00 1)
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LEMMA 3.2. In the above notation:

(1) det By(n) = (—=1)""! +n,

(2) det Ex(n) =1+ (=1)""n.

Proof. (1) Applying the Laplace formula to the first row of Ej(n), we

obtain
det Fy(n) = det Eg(n — 1) — det D,

where ~ _
01 00 0 0 0
0 2 10 0 00
01 2 1 0 00
0 01 2 0 0O

D=

0000 ... 210
0000 ... 1 21
1000 ... 01 2]

It is easy to check that det D = (—1)". Then we conclude from Corollary 2.5
that det B1(n) =n — (=1)" = (=1)"T! 4+ n.
(2) Applying the Laplace formula to the first column of Fy(n), we obtain

det Ey(n) = det D + (—1)""! det Eo(n — 1),

where _ )
1 210 000
01 21 000
0 0 1 2 0 00
0 0 01 000
D= .
0000 ... 121
0000 ... 012
|00 00 ... 00 1]
It is clear that det D = 1. Then we conclude from Corollary 2.5 that
det Eo(n) =1+ (—=1)""!n. »

LEMMA 3.3. Let T be the Brauer graph with ezxactly one cycle of the
form
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Then:

(1) det Cy/(7y = 4 if the cycle has an odd number of edges.
(2) det C gy = 0 if the cycle has an even number of edges.

Proof. We have four cases to consider.

(a) Assume e = 1. Then T' consists of one loop and hence C /(1) is of
the form [4]. So det C /() = 4.

(b) Assume e = 2. Then T is a cycle having two edges and C () =
[g g] Hence det C 47y = 0.

(c) Assume e = 3. Then

2 11
o |121)

and hence det Cp/(1) = 4.
(d) Assume e > 4. Set A(e) = A'(T) for e odd and A(e) = A”(T) for e
even. Then

2 1 0 0 0 0 17
1 2 10 0 0 0
01 2 1 0 0 0
0 01 2 0 00
CA(e): R Do
0000 ...21°0
0000 ...1 21
L1 0 0 0 ... 01 2]

We apply the Laplace formula to the first row and Lemma 3.2 to obtain
det Cy(¢) = 2det Eg(e — 1) — det Ey(e — 1) + (=1)°"" det Ep(e — 1)
=2 — ((-1)°+e—1)+ (=) 1+ (-1)%(e—1))

—9 2_1e+1:{4 if e is odd,
+2(=1) 0 ifeiseven. m

Let T be a Brauer graph (with exactly one cycle) of the form
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Denote by e the number of edges of T', by R the unique cycle in T', and
by ¢ the number of edges in R. For each vertex v of T" we denote by I(v) the
number of edges having v as one of its ends. Define

s = max{l(v) | v is a vertex of R}.

Then the Cartan matrix of A(e) = A'(T) (for t odd) or A(e) = A”(T) (for ¢
even) is of the form

— S —
2 1 1 1 1 a Ae—s
1 21 1 1 0o ... 0
1 1 2 1 1 0o ... 0

C’A(e): 1 11 ... 2 1 0o ... 0 ,

1 11 ... 1 2 by ... be_g
ap 0 0 ... 0 O * ... *

| Ge—s 0 0 ... 0 be—s * ... *

where a;,b; € {0,1} fori,j =1,...,e—s. Let Cy() = (@ij)§ =1 Fort >3
and s > 2, we define the matrix Es(e) = (7i;)f j—, where

aij ifiZlor(i=1and2<j<s),
0 ifi=lands+1<j<e.

Thus
—_ s -
11 1 1 1 a Ge—s
1 21 1 1 0 0
1 1 2 1 1 0 0
Ese)=11 1 1 2 1 0 0
1 1 1 1 2 b be—s
0 b1 x
00 0 ... 0 be—s x ...k k]
LEMMA 3.4.
2 if tis odd
det Es(e) = if £ is odd,
0 if t is even.

Proof. We prove the lemma by induction on the number k of edges of T’
which are not in R. If £ = 0 then
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We apply the Laplace formula to the first row to obtain
det F3(e) = det Ey(e — 1) — det Eg(e — 2) 4+ (—1)¢t1 det D,

where

Since t = e and det D = 1, from Corollary 2.5 we have

O O O

0
0
0

[u—

0
0
0

O O =N

0
0
0

0
0
0

SO = N =

0
0
0

—

0
0
0

_ N = O

0
0
0

o

2
1
0

O O OO

1
0
0

)

1
2
1

o O OO

2
1
0

)

0
1
2

O O OO

1
2
1

det Es(e) =e—(e—1) + (_1)e+1 — 14+ (_1)e+1

Xt

Assume k£ > 1 and the lemma holds for all Brauer graphs of the form ()
having k — 1 edges which are not in R. Let T be a Brauer graph of the form
(%) having k edges which are not in R. Then

det E3(e) = det

1
1
1

—_

0

if ¢ is odd,

if ¢ is even.

0
1
0

)

0

1
1
2

[t

0

— det Bs(e — 1) = {

2
0

S
1 1 aj
1 1 0
1 1 0
2 1 0
1 2 b
0 b *
0 be—s =
if ¢ is odd,

if tis even. m
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For the Cartan matrix Cyy, t > 3 and s > 2, we define Fy(e) =
(5i,j)f,j:1v where

a;;j ifi#sor(i=sand2<j<5s),
Sij=41 ifi=j=s,

0 ifi=sands+1<j<e.
Then E4(e) is of the form

- s -
2 11 ... 11 o Oe—s
1 21 ... 1.1 0 0
1 12 ... 11 0 0
1 11 2 1 0 0
1 11 ... 11 b be—s
aiz 0 0 ... 0 0 =« ... *
| Ge—s 0 0 0 0 =x *
LEMMA 3.5.
2 if tis odd,
det Ey(e) = ) )
0 if t s even.
Proof. We have
- S —
111 I 1 b be—s
2 1 1 1 0 0
11 1 1 0 0
det Ey(e) =det | 1 1 1 1 0 0
1 1 1 ... 1 air ... Qe_g
000 ... 0 a x ... *
i 00 0 ... 0 Ges * ... *

2 if t is odd,

0 iftiseven. m

= (=1)"?det E3(e) = {

For the Cartan matrix Cyey, t > 3 and s > 3, we define Es(e) =
(gi,j);jzla where

e — Q5 ifi%QOl"j;éQ,
W1 ifi=4=2.
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Thus

[ 2 11 1 1 a ... G

1 11 1 1 0 0

11 1 1 0 0

Es(e) = 1 11 2 1 0 0

1 11 ... 1 bi .. be_s

ag 0 0 ... 0 b * ...
| Ge—s 0 0 ... 0 be—s = *

LEMMA 3.6.

e = {3 G

(2) det E5(e) = 0.

Proof. The proof is divided into three parts.
(a) Assume t = 1. Then

4 2 2 2 2 2
2 211 11
21 21 11
Ca=|2 1 12 11
2 1 11 2 1
2111 12
and we have det Cy(.) = 4.
(b) Assume ¢ = 2. Then
_ 5
*
Cae) = I
I s
21 1 12

and obviously det Cy(.) = 0.

(c) Assume t > 3. We prove the lemma by induction on the number k
of edges of T which are not in R. For k = 0, the statement (1) follows from
Lemma 3.3, and the matrix Fs(e) is not defined. Assume k£ > 1 and the
lemma holds for all Brauer graphs of the form (%) having k — 1 edges which
are not in ‘R. Let T be a Brauer graph having k£ edges which are not in R.
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The Laplace formula applied to the second row of Cy(,) and Lemmas 3.4
and 3.5 yield

det CA(e) = —det E3(e — 1) + 2det CA(efl)
+ (s —3)det E5(e — 1) + (=1)*T2 det Ey(e — 1)

_{—2+8+0+%—DH2_{6—2_{4 if t is odd,
0 0 0 iftis even.

Therefore, it remains to prove that det F5(e) = 0. If s = 3, then
det E5(e) = —det E3(e — 1) + det Cy (1) — det Ey(e — 1)

2442
— —0.
{
If s > 4, then

- S -
29 11 1 1 1 Qe_s
1 111 1 1 0 0
0 01 0 0 0 0 0
1 11 2 1 1 0 0

detBs(e)=det | | 1 1 5 1 o ... 0

1 1 11 ... 1 2 b ... bos
ag 0 0 0 ... 0 b * ...

| Ges 00 0 oo 0 bems ¢ .. x|

=detEs5(e—1)=0.m

Proof of Proposition 3.1. The proofs of (1) and (2) are similar. Let R be
the unique cycle in T'. Denote by d(7T') the maximal distance of the vertices
of T to the cycle R, so d(T) = 0 if and only if 7" = R. For Brauer graphs
T such that d(T) = 0, the proposition follows from Lemma 3.3. Assume
that d(T) > 1. Let T” be the maximal subgraph of T" such that d(T") = 1.
Then 7" is of the form () and T is the union of 7" and (connected) Brauer
trees T1, ..., Ty(r) having exactly one common vertex with R. We prove the
proposition by induction on k(7). For k(T') = 0, the proposition follows from
Lemma 3.6. Let T be a Brauer graph having k(7)) > 1 and assume that the
required formula holds for all Brauer graphs 7" such that k(T") < k(T).
Let 7" be the maximal subgraph of T with d(T') = 1 and T1,. .., Ty(7) the
Brauer trees having exactly one common vertex with R, such that T is the
union of 77, Ty,...,T, k(T)- We denote by Ty the Brauer graph which is the
union of 7', Ty, .. ., Ty,(r). The Cartan matrix Cyr(p) (vesp. Cyr(ry) is of the
block form
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where X is the Cartan matrix of A'(Tp) (resp. A”(1p)), Y is the Cartan
matrix of A(77) and 2 is the only common nonzero coefficient of the matrices
X and Y. Then, applying [1, Lemma 24.4], we obtain for both det C (1)
and det Cy(7) the formula

det(X) det(Yy) + det(Xo) det(Y) — 2det(X) det(Yp),

where X is obtained from X by erasing the last row and last column, and
Yy is obtained from Y by erasing the first row and first column. Let r be
the number of edges in 77. Then

detCA’(T):4'7“—1'4'(7“4-1)—8-7“:4’
detCA//(T):0T+O(r+1)_204:0

4. Proofs of the main results. Recall from [14, (4.9)] that an algebra
B is a representation-infinite tilted algebra of Euclidean type &m if and
only if B is a tubular extension or a tubular coextension of a hereditary
algebra of type A, for some p < m. Moreover, we know from [2] that the
class of repetitive algebras B of representation-infinite tilted algebras B of
Euclidean types A,,, m > 1, coincides with the class of repetitive algebras
B of tubular extensions B (equivalently, tubular coextensions) of hereditary
algebras of Euclidean types Ap, p>1.

Let B be a representation-infinite tilted algebra of Euclidean type A,
and ey, ..., e, a complete set of primitive orthogonal idempotents of B such
that 15 = e1 +...4e€,. Then we have the canonical set £ = {eg; | 1 <i<n,
k € Z} of primitive orthogonal idempotents of the repetitive algebra B such
that ey 1+eg2+...+ep, is the identity of the diagonal algebra By, = B of B.
By an automorphism of B we mean a K -algebra automorphism of B which
fixes the set £. A group G of automorphisms of B is called admissible if G
acts freely on the set & and has finitely many orbits. Then the orbit algebra
B/G is defined (see [7] for details) and is a (finite-dimensional) selfinjective
algebra. The action of the Nakayama automorphism vz of B on the set £
is given by vg(er,i) = exy1,s for (ki) € Z x {1,...,n}, the infinite cyclic
group (vg) is admissible, and B/ (vg) is isomorphic to the trivial extension
T(B) = Bx D(B). An automorphism ¢ of B is said to be rigid [16] if for any
(k,i) € Z x {1,...,n} there exists j € {1,...,n} such that o(ey;) = ey .
Following [16] the tilted algebra B is said to be exceptional if there exists
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an automorphism ¢ of B such that ©? = ovg for a rigid automorphism g
of B.
We need the following special case of the description of admissible groups

of automorphisms of the repetitive algebras of tilted algebras of Euclidean
types established in [16, 2.13].

PROPOSITION 4.1. Let B be a representation-infinite tilted algebra of
FEuclidean type Am and G an admissible group of automorphisms of B. Then
G is an infinite cyclic group generated by an automorphism ok for some
k > 1, where o is a rigid automorphism of B and @ is an automorphism
of B such that 0t = ovg for some d € {1,2} and a rigid automorphism o
of B. Moreover, if B is not exceptional, we may take ¢ = vg.

Let B be a representation-infinite tilted algebra of Euclidean type ,&m,
G an admissible group of automorphisms of B, and A = B/G the associated
selfinjective algebra of type &m Without loss of generality we may assume
B is a tubular extension of a hereditary algebra H of type A, for some
p < m.

Assume that A is weakly symmetric. Since for any indecomposable pro-
jective A-module P the socle of P is isomorphic to the top of P, invoking
Proposition 4.1 we conclude that one of the following two cases holds:

(1) B is exceptional, G = (0%)) for a rigid automorphism o of B and an
automorphism ¢ of B such that ¢? = ovy for some rigid automorphism o
of B, and moreover (01))? acts trivially on the set £.

(2) G = (ovp) for some rigid automorphism o of B, and G acts trivially
on &.

If (2) holds, then since B is a tubular extension of a hereditary al-
gebra H of Euclidean type Ap for some p, we easily deduce that A =
E/(m/é) = E/(Vé) = T(B). Similarly, if (1) holds and A is not local, then
A = B/(0) = B/(p) for an automorphism ¢ of B such that ¢? = vy As-
sume now that A is local. Then (1) holds, B = H is the hereditary algebra of
type 1&1, given by the Kronecker quiver-=2 -, and consequently A = B /(o) is
isomorphic to the four-dimensional algebra Ay = K (x,y)/(2%,y?, 2y — \yzx)
for some A € K \ {0}. Moreover, A = A, is symmetric if and only if A =1
(see [5, Chapter III]).

Assume now that A = B /(p) for an automorphism ¢ of B such that
¢? = vg. It follows from [3] that B is special biserial, and hence A is selfin-
jective and special biserial. Further, since ¢? = vy, it follows from [16] that
the stable Auslander-Reiten quiver I} consists of one component of the

form ZA,, and a P, (K)-family of stable tubes. Moreover, the one-parameter
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families of indecomposable modules are given by the images of the one-
parameter families of indecomposable modules over the hereditary algebra
H of type A under the push down functor F) : mod B — mod A associated

to the Galois covering F : B — B/( ) = A. In fact, the bound quiver, say
(Q,I), of A admits a unique primitive walk (in the sense of [18]) which is the
image of the unique cycle (with underlying graph ka) of the Gabriel quiver
of B. This primitive walk in (@, I) is formed by the corresponding paths of
one of the bound quivers

IAVARVEARVERVERVER
AN AT

with the relations A2 — Ay, A, — A721+17 Aj — Ajyq for j = 2,...,nif

2 2 . .
n > 2, A — A5 iftn =1, and Qnj 00 j+1, Qnjyq,j+101,5 for j = 1,...,n,
041‘7]'041417]‘ e anjyjaljj e aifl,jai,j for i = 1, e ,nj, ] = 2, ey Ny ai,jai+1,j
s jAjan g i jag g for i =1,...,ny, j = 1,n + 1, where n; is the

number of arrows on the cycle A; and «;; is the arrow on the cycle A;
starting at the vertex ¢, or

with the relations A; — Ajyq for j=1,...,n (and n +1 = 1), an, jo1 541,
an]-+1,j+1a1,j for ] = 1, Loy ny ai’jai_,_l,j e oanj,jal’j e ai—l,jai,j for i =
1,...,n;, where n; is the number of arrows on the cycle A;, «;; is the
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arrow on the cycle A; starting at the vertex 4, and the number of simple
cycles is odd. The first algebra is an algebra of the form A(7y, v, v2) for the
Brauer tree T of the form

while the second one is of the form A’(T{) for the Brauer graph T}

with one cycle, and the cycle has an odd number of edges. Since A = KQ/I
is special biserial, and (@, I) contains exactly one primitive walk (described
above), we deduce that @ = Qr and [ = I(T,v;,v2) for a Brauer tree T
with two distinguished vertices v; and v2, containing the Brauer tree T as
a full convex subtree, or that Q = Q7+ and I = I'(T") for a Brauer graph 7"
with one cycle containing the Brauer graph T as a full convex subgraph.

Assume now that A = T(B) = E/(l/@). Then again T'(B) is a selfin-
jective (even symmetric) special biserial algebra but the stable Auslander—
Reiten quiver consists of two components of type ZA,, and two B (K)-
families of stable tubes (see [2]). Then the bound quiver (@, I) of A =T(B)
contains exactly two primitive walks, and both contain all sources and sinks
of the unique cycle of B (of type &p) as vertices. Hence these primitive
walks are formed by the corresponding paths of the quiver of the form (%)
and an even number of simple cycles. Clearly, this is an algebra of the form
A'(T{) for a Brauer graph (x) with one cycle, and the cycle has an even
number of edges. Since A is a symmetric special biserial algebra with exactly
two primitive walks (described above) we infer that A = KQp/I"(T) for a
Brauer graph T with one cycle containing the Brauer graph T} as a full
convex subgraph.
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Finally, assume that A is an algebra of one of the forms A(T, v, v2),
A(T), or A"(T). Then clearly A is a special biserial algebra whose bound
quiver contains at most two primitive walks, and consequently A is of do-
mestic type (see [6], [16]). Applying now [16] we infer that A is a self-

injective algebra of Euclidean type A,,. Moreover, A is symmetric, be-
cause we have canonical symmetrizing linear forms ¢ : A(T,v1,v2) — K,
o A(T) - K, ¢" : A"(T) — K assigning 1 to any maximal nonzero
path and 0 to the remaining paths of the bound quiver (Qr, I(T,v1,v2)),
(Qr, I'(T)), (Qr,I"(T)), respectively (see [5] and [19] for characterizations
of symmetric algebras). We also know from Propositions 2.1 and 3.1 that
the Cartan matrices of the algebras A(T,v1,v2) and A'(T) are nonsingular
while that of A”(T) is singular.

Summing up our considerations above, we obtain the assertions of The-
orems 1 and 2, and obviously also of Corollary 3.
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