SYMMETRIC SPECIAL BISERIAL ALGEBRAS OF EUCLIDEAN TYPE

By
RAFA€ BOCIAN and ANDRZEJ SKOWROŃSKI (Toruń)

Abstract

We classify (up to Morita equivalence) all symmetric special biserial algebras of Euclidean type, by algebras arising from Brauer graphs.

Introduction and the main result. Throughout the paper K will denote a fixed algebraically closed field. By an algebra we mean a finitedimensional K-algebra with identity, which we shall assume (without loss of generality) to be basic and connected. For an algebra A, we denote by $\bmod A$ the category of finite-dimensional right A-modules and by D the standard duality $\operatorname{Hom}_{K}(-, K)$ on $\bmod A$. The Cartan matrix C_{A} of A is the matrix $\left(\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(P_{i}, P_{j}\right)\right)_{1 \leq i, j \leq n}$ for a complete family P_{1}, \ldots, P_{n} of pairwise nonisomorphic indecomposable projective A-modules.

An algebra A is called selfinjective if $A \cong D(A)$ in $\bmod A$, that is, the projective A-modules are injective. Further, A is called symmetric if A and $D(A)$ are isomorphic as A-bimodules. For a selfinjective algebra A, we denote by Γ_{A}^{s} the stable Auslander-Reiten quiver of A, obtained from the Auslander-Reiten quiver Γ_{A} of A by removing all projective modules and the arrows attached to them. We also note that if A is symmetric then the Auslander-Reiten translation $\tau_{A}=D \operatorname{Tr} \operatorname{in} \bmod A$ is the square Ω_{A}^{2} of the Heller syzygy operator Ω_{A}. An important class of selfinjective algebras is formed by the algebras of the form \widehat{B} / G, where \widehat{B} is the repetitive algebra [8] (locally finite-dimensional, without identity)

$$
\widehat{B}=\bigoplus_{m \in \mathbb{Z}}\left(B_{m} \oplus Q_{m}\right)
$$

of an algebra B, where $B_{m}=B$ and $Q_{m}=D(B)$ for all $m \in \mathbb{Z}$, the multiplication in \widehat{B} is defined by

$$
\left(a_{m}, f_{m}\right)_{m} \cdot\left(b_{m}, g_{m}\right)_{m}=\left(a_{m} b_{m}, a_{m} g_{m}+f_{m} b_{m+1}\right)_{m \in \mathbb{Z}}
$$

[^0]for $a_{m}, b_{m} \in B_{m}, f_{m}, g_{m} \in Q_{m}$, and G is an admissible group of K-automorphisms of \widehat{B}. In particular, if $\nu_{\widehat{B}}: \widehat{B} \rightarrow \widehat{B}$ is the Nakayama automorphism of \widehat{B} given by the identity shifts $B_{m} \rightarrow B_{m+1}$ and $Q_{m} \rightarrow Q_{m+1}$, then the infinite cyclic group $\left(\nu_{\widehat{B}}\right)$ generated by $\nu_{\widehat{B}}$ is admissible and $\widehat{B} /\left(\nu_{\widehat{B}}\right)$ is the trivial extension $T(B)=B \ltimes D(B)$ of B by $D(B)$, and is a symmetric algebra.

We are concerned with the problem of classifying all selfinjective algebras of Euclidean type, that is, of the form \widehat{B} / G, where B is a tilted algebra of Euclidean type $\Delta \in\left\{\widetilde{\mathbb{A}}_{m}, \widetilde{\mathbb{D}}_{n}, \widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}, \widetilde{\mathbb{E}}_{8}\right\}$ and G is an admissible group of K-automorphisms of \widehat{B}. It is known (see [2], [16]) that if $A=\widehat{B} / G$ and B is tilted of Euclidean type Δ then the stable Auslander-Reiten quiver Γ_{A}^{s} has the following "clock structure":

where $r \geq 1$ and for each $p \in\{1, \ldots, r\}, \mathcal{X}_{p}$ is of the form $\mathbb{Z} \Delta$ and \mathcal{T}_{p} is a $\mathbb{P}_{1}(K)$-family of stable tubes. In fact, if A is symmetric then $r \leq 2$, and $r=2$ if $A=T(B)=\widehat{B} /\left(\nu_{\widehat{B}}\right)$. It has been proved in [12] that every symmetric algebra of Euclidean type $\Delta \in\left\{\widetilde{\mathbb{E}}_{6}, \widetilde{\mathbb{E}}_{7}, \widetilde{\mathbb{E}}_{8}\right\}$ is isomorphic to the trivial extension $T(B)$ of a (representation-infinite) tilted algebra B of type Δ. But this is not the case for the Euclidean types $\widetilde{\mathbb{A}}_{m}$ and $\widetilde{\mathbb{D}}_{n}$ (see [16, 2.6, 2.7]).

The aim of this paper is to describe all symmetric algebras of Euclidean types $\widetilde{\mathbb{A}}_{m}, m \geq 1$. It is known (see [3], [16]) that the class of selfinjective algebras of Euclidean type $\widetilde{\mathbb{A}}_{m}$ coincides with the class of representationinfinite special biserial algebras of polynomial growth. Recall that following [17] an algebra A is called special biserial if it is isomorphic to a bound
quiver algebra $K Q / I$ where the bound quiver (Q, I) satisfies the following conditions:
(SP1) The number of arrows in Q with a given source or sink is at most two.
(SP2) For any arrow α of Q, there is at most one arrow β and at most one arrow γ such that $\alpha \beta$ and $\gamma \alpha$ are not in I.

We refer to [6] and [13] for the structure and representation theory of special biserial selfinjective algebras.

If K is of characteristic $p>0$ and G is a finite group, we know by Dade [4], Janusz [9] and Kupisch [11] (see also [1]) that the representationfinite blocks of the group algebra $K G$ are Morita equivalent to special biserial algebras arising from Brauer trees with one distinguished vertex. In fact, it was shown later in [10] and [15] that every symmetric special biserial algebra is Morita equivalent to a special biserial algebra arising from a Brauer graph which is locally embedded in the plane. Following this idea we associate (see Section 1 for details) to any Brauer tree T with two distinguished vertices v_{1} and v_{2} a symmetric special biserial algebra $\Lambda\left(T, v_{1}, v_{2}\right)$, and to any Brauer graph T with exactly one cycle a symmetric special biserial algebra $\Lambda^{\prime}(T)$ (resp. $\left.\Lambda^{\prime \prime}(T)\right)$ according as the unique cycle in T has an odd (resp. even) number of edges. The following main results of the paper give a complete description of all symmetric algebras of Euclidean types $\widetilde{\mathbb{A}}_{m}$ (equivalently, symmetric special biserial algebras of Euclidean type).

Theorem 1. Let A be a basic connected algebra. Then the following conditions are equivalent:
(i) A is a symmetric algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$ and the Cartan matrix of A is nonsingular.
(ii) A is isomorphic to an algebra of the form $\widehat{B} /(\varphi)$, where B is a repre-sentation-infinite tilted algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$ and φ is a square root of the Nakayama automorphism $\nu_{\widehat{B}}$ of \widehat{B}, but A is not isomorphic to the four-dimensional local algebra $K\langle x, y\rangle /\left(x^{2}, y^{2}, x y+y x\right)$ if char $K \neq 2$.
(iii) A is isomorphic to an algebra of the form $\Lambda\left(T, v_{1}, v_{2}\right)$ for a Brauer tree T with two distinguished vertices v_{1} and v_{2}, or to $\Lambda^{\prime}(T)$ for a Brauer graph T having a unique cycle, and the cycle has an odd number of edges.

Theorem 2. Let A be a basic connected algebra. Then the following conditions are equivalent:
(i) A is a symmetric algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$ and the Cartan matrix of A is singular.
(ii) A is isomorphic to the trivial extension $T(B)$, where B is a repre-sentation-infinite tilted algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$.
(iii) A is isomorphic to an algebra of the form $\Lambda^{\prime \prime}(T)$, where T is a Brauer graph having a unique cycle, and the cycle has an even number of edges.

As a consequence of our proofs we also obtain the following description of all weakly symmetric algebras of Euclidean types $\widetilde{\mathbb{A}}_{m}$ which are not symmetric.

Corollary 3. Let A be a basic connected algebra. Then the following conditions are equivalent:
(i) A is a weakly symmetric but nonsymmetric algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$ for some m.
(ii) A is isomorphic to the four-dimensional local algebra $K\langle x, y\rangle /\left(x^{2}, y^{2}\right.$, $x y-\lambda y x)$ for some $\lambda \in K \backslash\{0,1\}$.

Recall that an algebra A is called weakly symmetric if the socle soc P of any indecomposable projective A-module P is isomorphic to its top $P / \mathrm{rad} P$.

For general background concerning representation theory of algebras and selfinjective algebras applied here we refer to [1], [5], [6], [14] and [19].

1. Brauer quiver algebras. In this paper, by a Brauer graph we mean only (for a general definition see [10], [15]) a finite connected undirected graph T with at most one cycle, possibly with a loop or a double edge, together with a circular ordering of the edges issuing from each vertex, which we put in a concrete form by drawing T in the plane in such a way that the edges issuing from any vertex have the clockwise cyclic order. A Brauer graph T defines a Brauer quiver Q_{T} such that:
(a) Q_{T} is the union of (oriented) cycles.
(b) Every vertex of Q_{T} belongs to exactly two cycles.

The vertices of Q_{T} are the edges of T, and there is an arrow $i \rightarrow j$ in Q_{T} if and only if the edges i and j have a common vertex v and j is the immediate successor of i in the circular ordering of the edges issuing from v. Therefore, the vertices of T correspond to the oriented cycles of Q_{T}.

Let T be a Brauer tree. Then the simple cycles of the Brauer quiver Q_{T} may be divided into two camps, the α-camp and β-camp, in such a way that any two cycles which intersect nontrivially belong to different camps. We denote by α_{i} (resp. β_{i}) the arrow of the α-camp (resp. β-camp) of Q_{T} starting at the vertex i, and by $\alpha(i)$ (resp. $\beta(i)$) the end vertex of α_{i} (resp. β_{i}). We also denote by A_{i} (resp. B_{i}) the cycle from i to i going once around the α-cycle (resp. β-cycle) through i, that is,

$$
A_{i}=\alpha_{i} \alpha_{\alpha(i)} \ldots \alpha_{\alpha^{-1}(i)}, \quad B_{i}=\beta_{i} \beta_{\beta(i)} \ldots \beta_{\beta^{-1}(i)} .
$$

Example 1.1. Let T be a Brauer tree of the form

Then Q_{T} is (up to choice of α-camps and β-camps) of the form

Let T be a Brauer tree with a set $V=\left\{v_{1}, \ldots, v_{t}\right\}$ of distinguished (pairwise different) vertices, marked by •. Then the associated Brauer quiver Q_{T} has exceptional cycles given by the edges of T issuing from the vertices v_{1}, \ldots, v_{t}. We define $\Lambda(T, V)$ as the bound quiver algebra $K Q_{T} / I(T, V)$, where $K Q_{T}$ is the path algebra of the quiver Q_{T} and $I(T, V)$ is the ideal in $K Q_{T}$ generated by:
(1) $\alpha_{i} \beta_{\alpha(i)}, \beta_{i} \alpha_{\beta(i)}$ for all vertices i of Q_{T},
(2) $A_{j}-B_{j}$ if neither the α-cycle nor the β-cycle through the vertex j are exceptional,
(3) $A_{j}^{2}-B_{j}$ if the α-cycle through j is exceptional but the β-cycle through j is not,
(4) $A_{j}-B_{j}^{2}$ if the β-cycle through j is exceptional but the α-cycle through j is not,
(5) $A_{j}^{2}-B_{j}^{2}$ if the α-cycle and β-cycle through j are exceptional.

We write frequently $\Lambda\left(T, v_{1}, \ldots, v_{t}\right)$ instead of $\Lambda(T, V)$, and $I\left(T, v_{1}, \ldots, v_{t}\right)$ instead of $I(T, V)$.

Example 1.2. Let T be the following Brauer tree with two distinguished vertices v_{1} and v_{2} :

Then the algebra $\Lambda\left(T, v_{1}, v_{2}\right)$ is given by the quiver Q_{T} (described in 1.1) and the ideal $I\left(T, v_{1}, v_{2}\right)$ in $K Q_{T}$ generated by: $\alpha_{1} \beta_{1}, \beta_{1} \alpha_{2}, \alpha_{2} \beta_{2}, \beta_{2} \alpha_{3}, \alpha_{7} \beta_{3}$, $\beta_{3} \alpha_{4}, \alpha_{4} \beta_{4}, \beta_{4} \alpha_{1}, \alpha_{3} \beta_{5}, \beta_{5} \alpha_{6}, \alpha_{6} \beta_{6}, \beta_{6} \alpha_{5}, \alpha_{5} \beta_{7}, \beta_{9} \alpha_{7}, \alpha_{8} \beta_{8}, \beta_{7} \alpha_{8}, \alpha_{9} \beta_{9}$, $\beta_{8} \alpha_{9}, \alpha_{1}^{2}-\beta_{1} \beta_{2} \beta_{3} \beta_{4}, \alpha_{2}-\beta_{2} \beta_{3} \beta_{4} \beta_{1}, \alpha_{4}-\beta_{4} \beta_{1} \beta_{2} \beta_{3},\left(\alpha_{3} \alpha_{5} \alpha_{7}\right)^{2}-\beta_{3} \beta_{4} \beta_{1} \beta_{2}$, $\left(\alpha_{5} \alpha_{7} \alpha_{3}\right)^{2}-\beta_{5} \beta_{6},\left(\alpha_{7} \alpha_{3} \alpha_{5}\right)^{2}-\beta_{7} \beta_{8} \beta_{9}, \alpha_{6}-\beta_{6} \beta_{5}, \alpha_{8}-\beta_{8} \beta_{9} \beta_{7}, \alpha_{9}-\beta_{9} \beta_{7} \beta_{8}$.

Let T be a Brauer graph with exactly one cycle and let the cycle have an odd number of edges. Assume first that the cycle is not a loop (so has at least two vertices). We fix a vertex on the cycle and denote by γ_{i} the arrow of the associated simple cycle of Q_{T} starting at a vertex i, and by $\gamma(i)$ the end vertex of γ_{i}. Then the remaining (simple) cycles of Q_{T} may be divided into two camps, the α-camp and β-camp, in such a way that any two cycles which intersect nontrivially belong to different camps. We define the cycles A_{i} and B_{i} as above. We also denote by C_{i} the simple cycle from i to i going once around the γ-cycle through i, that is,

$$
C_{i}=\gamma_{i} \gamma_{\gamma(i)} \ldots \gamma_{\gamma^{-1}(i)}
$$

We define $\Lambda^{\prime}(T)$ as the bound quiver algebra $K Q_{T} / I^{\prime}(T)$, where $I^{\prime}(T)$ is the ideal generated by:
(1) $\alpha_{i} \beta_{\alpha(i)}, \beta_{i} \alpha_{\beta(i)}, \alpha_{i} \gamma_{\alpha(i)}, \gamma_{i} \alpha_{\gamma(i)}, \gamma_{i} \beta_{\gamma(i)}, \beta_{i} \gamma_{\beta(i)}$ for all vertices i of Q_{T},
(2) $A_{j}-B_{j}$ if j is the intersection of an α-cycle and a β-cycle,
(3) $A_{j}-C_{j}$ if j is the intersection of an α-cycle and a γ-cycle,
(4) $B_{j}-C_{j}$ if j is the intersection of a β-cycle and a γ-cycle.

Example 1.3. Let T be the following Brauer graph with one cycle:

Then Q_{T} is the quiver

and $\Lambda^{\prime}(T)$ is given by the above quiver and the ideal $I^{\prime}(T)$ generated by: $\alpha_{1} \beta_{1}, \beta_{1} \alpha_{2}, \alpha_{2} \beta_{2}, \beta_{2} \alpha_{3}, \alpha_{7} \beta_{3}, \beta_{3} \alpha_{4}, \alpha_{4} \beta_{4}, \beta_{4} \alpha_{1}, \alpha_{3} \gamma_{5}, \gamma_{5} \alpha_{6}, \alpha_{5} \beta_{7}, \beta_{9} \alpha_{7}$, $\alpha_{9} \beta_{9}, \beta_{8} \alpha_{9}, \beta_{7} \gamma_{8}, \gamma_{8} \alpha_{5}, \gamma_{6} \beta_{8}, \alpha_{6} \gamma_{6}, \alpha_{1}-\beta_{1} \beta_{2} \beta_{3} \beta_{4}, \alpha_{2}-\beta_{2} \beta_{3} \beta_{4} \beta_{1}, \alpha_{3} \alpha_{5} \alpha_{7}-$ $\beta_{3} \beta_{4} \beta_{1} \beta_{2}, \alpha_{4}-\beta_{4} \beta_{1} \beta_{2} \beta_{3}, \alpha_{5} \alpha_{7} \alpha_{3}-\gamma_{5} \gamma_{6} \gamma_{8}, \alpha_{6}-\gamma_{6} \gamma_{8} \gamma_{5}, \alpha_{7} \alpha_{3} \alpha_{5}-\beta_{7} \beta_{8} \beta_{9}$, $\gamma_{8} \gamma_{5} \gamma_{6}-\beta_{8} \beta_{9} \beta_{7}, \alpha_{9}-\beta_{9} \beta_{7} \beta_{8}$.

Now assume that the cycle is a loop (so has only one vertex). We fix this vertex on the loop of T. The associated (nonsimple) cycle of Q_{T} is a composition of two simple shorter cycles with exactly one intersection vertex. We denote by γ_{i} (resp. δ_{i}) the arrows of the first (resp. second) of them starting at a vertex i, and by $\gamma(i)$ (resp. $\delta(i)$) the end vertex of γ_{i} (resp. δ_{i}). Then the remaining (simple) cycles of Q_{T} may be divided into two camps, the α-camp and β-camp, in such a way that any two cycles which intersect nontrivially belong to different camps. Again, we denote by A_{i} (resp. B_{i}) the cycle from i to i going once around the α-cycle (resp. β-cycle) through i. We denote by v the intersection vertex of the γ-cycle and δ-cycle and by C_{v} (resp. D_{v}) the simple cycle from v to v going once around the γ-cycle (resp. δ-cycle) through v, that is,

$$
C_{v}=\gamma_{v} \gamma_{\gamma(v)} \ldots \gamma_{\gamma^{-1}(v)}, \quad D_{v}=\delta_{v} \delta_{\delta(v)} \ldots \delta_{\delta^{-1}(v)}
$$

We define $\Lambda^{\prime}(T)$ as the bound quiver algebra $K Q_{T} / I^{\prime}(T)$, where $I^{\prime}(T)$ is the ideal generated by:
(1) $\alpha_{i} \beta_{\alpha(i)}, \beta_{i} \alpha_{\beta(i)}, \alpha_{i} \gamma_{\alpha(i)}, \gamma_{i} \alpha_{\gamma(i)}, \gamma_{i} \beta_{\gamma(i)}, \beta_{i} \gamma_{\beta(i)}, \alpha_{i} \delta_{\alpha(i)}, \delta_{i} \alpha_{\delta(i)}, \delta_{i} \beta_{\delta(i)}$, $\beta_{i} \delta_{\beta(i)}$ for all vertices i of Q_{T},
(2) $A_{j}-B_{j}$ if j is the intersection of an α-cycle and a β-cycle,
(3) $A_{j}-\gamma_{j} \gamma_{\gamma(j)} \ldots \gamma_{\gamma^{-1}(v)} D_{v} \gamma_{v} \ldots \gamma_{\gamma^{-1}(j)}$ if j is the intersection of an α-cycle and the γ-cycle,
(4) $A_{j}-\delta_{j} \delta_{\delta(j)} \ldots \delta_{\delta^{-1}(v)} C_{v} \delta_{v} \ldots \delta_{\delta^{-1}(j)}$ if j is the intersection of an α cycle and the δ-cycle,
(5) $B_{j}-\delta_{j} \delta_{\delta(j)} \ldots \delta_{\delta^{-1}(v)} C_{v} \delta_{v} \ldots \delta_{\delta^{-1}(j)}$ if j is the intersection of a β-cycle and the δ-cycle,
(6) $B_{j}-\gamma_{j} \gamma_{\gamma(j)} \ldots \gamma_{\gamma^{-1}(v)} D_{v} \gamma_{v} \ldots \gamma_{\gamma^{-1}(j)}$ if j is the intersection of a β-cycle and the γ-cycle,
(7) $\gamma_{\gamma^{-1}(v)} \gamma_{v}, \delta_{\delta^{-1}(v)} \delta_{v}, C_{v} D_{v}-D_{v} C_{v}$.

Example 1.4. Let T be the following Brauer graph with one loop:

Then Q_{T} is the quiver

and $\Lambda^{\prime}(T)$ is given by the above quiver and the ideal $I^{\prime}(T)$ generated by: $\delta_{1} \alpha_{2}, \alpha_{2} \delta_{2}, \delta_{2} \alpha_{3}, \alpha_{3} \delta_{3}, \delta_{3} \alpha_{4}, \alpha_{4} \delta_{4}, \gamma_{1} \alpha_{5}, \alpha_{5} \gamma_{5}, \gamma_{5} \alpha_{6}, \alpha_{6} \beta_{7}, \beta_{7} \alpha_{7}, \alpha_{7} \gamma_{6}$, $\delta_{4} \delta_{1}, \gamma_{6} \gamma_{1}, \alpha_{2}-\delta_{2} \delta_{3} \delta_{4} \gamma_{1} \gamma_{5} \gamma_{6} \delta_{1}, \alpha_{3}-\delta_{3} \delta_{4} \gamma_{1} \gamma_{5} \gamma_{6} \delta_{1} \delta_{2}, \alpha_{4}-\delta_{4} \gamma_{1} \gamma_{5} \gamma_{6} \delta_{1} \delta_{2} \delta_{3}$, $\alpha_{5}-\gamma_{5} \gamma_{6} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \gamma_{1}, \alpha_{6} \alpha_{7}-\gamma_{6} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \gamma_{1} \gamma_{5}, \beta_{7}-\alpha_{7} \alpha_{6} \delta_{1} \delta_{2} \delta_{3} \delta_{4} \gamma_{1} \gamma_{5} \gamma_{6}-$ $\gamma_{1} \gamma_{5} \gamma_{6} \delta_{1} \delta_{2} \delta_{3} \delta_{4}$.

Let T be a Brauer graph with exactly one cycle, and let the cycle have an even number of edges. Then the simple cycles of the Brauer quiver Q_{T} may be divided into two camps, the α-camp and β-camp, in such a way that any two cycles which intersect nontrivially belong to different camps. We define A_{i} and B_{i} as before. We let $\Lambda^{\prime \prime}(T)$ be the bound quiver algebra $K Q_{T} / I^{\prime \prime}(T)$, where $I^{\prime \prime}(T)$ is generated by:
(1) $\alpha_{i} \beta_{\alpha(i)}, \beta_{i} \alpha_{\beta(i)}$ for all vertices i of Q_{T},
(2) $A_{j}-B_{j}$ if j is the intersection of an α-cycle and a β-cycle.

Example 1.5. Let T be the following Brauer graph with one cycle:

Then Q_{T} is the quiver

and $\Lambda^{\prime \prime}(T)$ is given by the above quiver and the ideal $I^{\prime \prime}(T)$ generated by: $\alpha_{1} \beta_{1}, \beta_{1} \alpha_{2}, \alpha_{2} \beta_{2}, \beta_{2} \alpha_{3}, \alpha_{7} \beta_{3}, \beta_{3} \alpha_{4}, \alpha_{4} \beta_{4}, \beta_{4} \alpha_{1}, \alpha_{3} \beta_{5}, \beta_{5} \alpha_{6}, \alpha_{6} \beta_{6}$, $\beta_{6} \alpha_{5}, \alpha_{5} \beta_{8}, \beta_{8} \alpha_{9}, \alpha_{9} \beta_{9}, \beta_{9} \alpha_{7}, \alpha_{8} \beta_{7}, \beta_{7} \alpha_{8}, \alpha_{1}-\beta_{1} \beta_{2} \beta_{3} \beta_{4}, \alpha_{2}-\beta_{2} \beta_{3} \beta_{4} \beta_{1}$, $\alpha_{3} \alpha_{5} \alpha_{8} \alpha_{7}-\beta_{3} \beta_{4} \beta_{1} \beta_{2}, \alpha_{4}-\beta_{4} \beta_{1} \beta_{2} \beta_{3}, \alpha_{5} \alpha_{8} \alpha_{7} \alpha_{3}-\beta_{5} \beta_{6}, \alpha_{6}-\beta_{6} \beta_{5}, \alpha_{7} \alpha_{3} \alpha_{5} \alpha_{8}$ $-\beta_{7} \beta_{8} \beta_{9}, \alpha_{8} \alpha_{7} \alpha_{3} \alpha_{5}-\beta_{8} \beta_{9} \beta_{7}, \alpha_{9}-\beta_{9} \beta_{7} \beta_{8}$.
2. Cartan matrix of the algebra $\Lambda(T, V)$. Let T be a Brauer tree with e edges, V a set of distinguished vertices of T, and $t=|V|$. The main aim of this section is to prove the following formula for the determinant of the Cartan matrix of $\Lambda(T, V)$.

Proposition 2.1. In the above notation, we have

$$
\operatorname{det} C_{\Lambda(T, V)}=2^{t}(e-t+1)+2^{t-1} t
$$

We need a technical lemma. For integers x, a_{1}, \ldots, a_{n} we denote by $\left[x, a_{1}, \ldots, a_{n}\right]$ the $n \times n$-matrix

$$
\left[\begin{array}{cccc}
a_{1}+x & x & \ldots & x \\
x & a_{2}+x & \ldots & x \\
\vdots & \vdots & \ddots & \vdots \\
x & x & \ldots & a_{n}+x
\end{array}\right]
$$

Lemma 2.2. We have the equality

$$
\operatorname{det}\left[x, a_{1}, \ldots, a_{n}\right]=a_{1} \ldots a_{n}+x \sum_{i=1}^{n} a_{1} \ldots \widehat{a}_{i} \ldots a_{n}
$$

where $\widehat{a}_{i}=1$.
Proof. We proceed by induction on n. For $n=1$, the claim is obvious. For $n \geq 2$, we have the equalities
$\operatorname{det}\left[x, a_{1}, \ldots, a_{n}, a_{n+1}\right]$

$$
\begin{aligned}
= & \left(a_{1}+x\right) \operatorname{det}\left[x, a_{2}, \ldots, a_{n}, a_{n+1}\right]-x \sum_{i=2}^{n+1} \operatorname{det}\left[x, a_{2}, \ldots, \widehat{a}_{i}, \ldots, a_{n}, a_{n+1}\right] \\
= & a_{1}\left(a_{2} \ldots a_{n+1}+x \sum_{i=2}^{n+1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n+1}\right) \\
& +x\left(a_{2} \ldots a_{n+1}+x \sum_{i=2}^{n+1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n+1}\right)-x^{2} \sum_{i=2}^{n+1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n+1} \\
= & a_{1} a_{2} \ldots a_{n+1}+x \sum_{i=2}^{n+1} a_{1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n+1}+x a_{2} \ldots a_{n+1} \\
& +x^{2} \sum_{i=2}^{n+1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n+1}-x^{2} \sum_{i=2}^{n+1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n+1} \\
= & a_{1} a_{2} \ldots a_{n+1}+x \sum_{i=1}^{n+1} a_{2} \ldots \widehat{a}_{i} \ldots a_{n+1} .
\end{aligned}
$$

Proof of Proposition 2.1. We argue in several steps, by induction on the number k of vertices of T having at least two neighbours.
(1) Assume $k=0$. Then the Brauer tree T consists of one edge, $0 \leq$ $t \leq 2$, and hence $C_{\Lambda(T, V)}$ is of the form either [2], [3], or [4]. Since $2=$ $2^{0}(1-0+1)+0,3=2^{1}(1-1+1)+1$ and $4=2^{2}(1-2+1)+2^{1} \cdot 2$, the required formula holds.
(2) Assume $k=1$. Then T is a star of the form

and Q_{T} is of the form

We have two cases to consider.
(a) Assume that the middle of the star T is a distinguished vertex. Then $C_{\Lambda(T, V)}$ is of the form

$$
\left[\begin{array}{llllll}
4 & & & t-1 & & \\
& \ddots & & & & 2 \\
& & 4 & & & \\
& & & 3 & & \\
2 & & & & & 3
\end{array}\right]
$$

with 2's everywhere off the main diagonal. From Lemma 2.2 we have the equalities

$$
\begin{aligned}
\operatorname{det} C_{\Lambda(T, V)} & =\operatorname{det}[2, \underbrace{2, \ldots, 2}_{t-1}, \underbrace{1, \ldots, 1}_{e-t+1}] \\
& =2^{t-1}+2\left(2^{t-1}(e-t+1)+2^{t-2}(t-1)\right) \\
& =2^{t-1}+2^{t}(e-t+1)+2^{t-1}(t-1)=2^{t}(e-t+1)+2^{t-1} t
\end{aligned}
$$

(b) Assume that the middle of the star T is an ordinary vertex. Then $C_{\Lambda(T, V)}$ is of the form

$$
\left[\begin{array}{llllll}
3 & & & & & \\
& \ddots & & & & 1 \\
& & 3 & & & \\
& & & 2 & & \\
1 & & & & \ddots & \\
1 & & & & 2
\end{array}\right]
$$

with 1's off the main diagonal. From Lemma 2.2 we have

$$
\begin{aligned}
\operatorname{det} C_{\Lambda(T, V)} & =\operatorname{det}[1, \underbrace{2, \ldots, 2}_{t}, \underbrace{1, \ldots, 1}_{e-t}] \\
& =2^{t}+2^{t}(e-t)+2^{t-1} t=2^{t}(e-t+1)+2^{t-1} t
\end{aligned}
$$

(3) Assume $k \geq 2$ and the required formula holds for the Brauer trees having at most $k-1$ vertices with at least two neighbours. Let T be a Brauer tree having k vertices with at least two neighbours and let r be the last vertex of T which is not an end, that is, T is of the form

Denote by p the neighbour of the vertex r which connects r with the second part of T. Then Q_{T} is of the form

Consider the following two subtrees of T :

The Brauer quivers $Q_{T_{1}}$ and $Q_{T_{2}}$ are

Then the Cartan matrix $C_{\Lambda(T, V)}$ is of the block form

$$
\left[\begin{array}{ccc}
X & \vdots & 0 \\
\cdots & z & \ldots \\
0 & \vdots & Y
\end{array}\right]
$$

where X is the Cartan matrix of $\Lambda\left(T_{1}, V_{1}\right), Y$ is the Cartan matrix of $\Lambda\left(T_{2}, V_{2}\right)$ and z is the only common nonzero coefficient of the matrices X and Y. Then, applying [1, Lemma 24.4], we obtain

$$
\operatorname{det} C_{\Lambda(T, V)}=\operatorname{det}(X) \operatorname{det}\left(Y_{0}\right)+\operatorname{det}\left(X_{0}\right) \operatorname{det}(Y)-z \operatorname{det}\left(X_{0}\right) \operatorname{det}\left(Y_{0}\right)
$$

where X_{0} is obtained from X by erasing the last row and last column, and Y_{0} is obtained from Y by erasing the first row and first column.

Assume that T_{2} has m distinguished vertices. We have four cases to consider.
(a) Assume that p and r are ordinary vertices. Then $z=2$, and using our inductive assumption, we obtain

$$
\begin{aligned}
\operatorname{det} C_{\Lambda(T, V)}= & \operatorname{det}(X) \operatorname{det}\left(Y_{0}\right)+\operatorname{det}\left(X_{0}\right) \operatorname{det}(Y)-2 \operatorname{det}\left(X_{0}\right) \operatorname{det}\left(Y_{0}\right) \\
= & \left(2^{t-m}(e-d-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
& +\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d+1-m+1)+2^{m-1} m\right) \\
& -2\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
= & 2^{t}(e-t+1)+2^{t-1} t
\end{aligned}
$$

(b) Assume that p is an ordinary vertex and r is a distinguished vertex. Then $z=3$, and using our inductive assumption, we obtain

$$
\begin{aligned}
\operatorname{det} C_{\Lambda(T, V)}= & \left(2^{t-m+1}(e-d-(t-m+1)+1)+2^{t-m}(t-m+1)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
& +\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d+1-m+1)+2^{m-1} m\right) \\
& -3\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
= & 2^{t}(e-t+1)+2^{t-1} t
\end{aligned}
$$

(c) Assume that p is a distinguished vertex and r is an ordinary vertex. Then $z=3$, and using our inductive assumption, we obtain

$$
\begin{aligned}
\operatorname{det} C_{\Lambda(T, V)}= & \left(2^{t-m}(e-d-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
& +\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m+1}(d+1-(m+1)+1)+2^{m}(m+1)\right) \\
& -3\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
= & 2^{t}(e-t+1)+2^{t-1} t
\end{aligned}
$$

(d) Assume finally that p and r are distinguished vertices. Then $z=4$, and invoking our inductive assumption, we obtain

$$
\begin{aligned}
\operatorname{det} C_{\Lambda(T, V)}= & \left(2^{t-m+1}(e-d-(t-m+1)+1)+2^{t-m}(t-m+1)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
& +\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m+1}(d+1-(m+1)+1)+2^{m}(m+1)\right) \\
& -4\left(2^{t-m}(e-d-1-(t-m)+1)+2^{t-m-1}(t-m)\right) \\
& \times\left(2^{m}(d-m+1)+2^{m-1} m\right) \\
= & 2^{t}(e-t+1)+2^{t-1} t .
\end{aligned}
$$

We record some immediate consequences of Proposition 2.1:
Corollary 2.3. Let T be a Brauer tree with two distinguished vertices v_{1} and v_{2} and with e edges. Then

$$
\operatorname{det} C_{\Lambda\left(T, v_{1}, v_{2}\right)}=4 e
$$

Corollary 2.4. Let T be a Brauer tree with one distinguished vertex v and with e edges. Then

$$
\operatorname{det} C_{\Lambda(T, v)}=2 e+1
$$

Corollary 2.5. Let T be a Brauer tree without distinguished vertices and with e edges. Then

$$
\operatorname{det} C_{\Lambda(T)}=e+1
$$

3. Cartan matrices of the algebras $\Lambda^{\prime}(T)$ and $\Lambda^{\prime \prime}(T)$. The aim of this section is to prove the following formulas on the determinant of the Cartan matrices of the algebras $\Lambda^{\prime}(T)$ and $\Lambda^{\prime \prime}(T)$.

Proposition 3.1. Let T be a Brauer graph with exactly one cycle. Then:
(1) $\operatorname{det} C_{\Lambda^{\prime}(T)}=4$ if the number of edges on the cycle is odd.
(2) $\operatorname{det} C_{\Lambda^{\prime \prime}(T)}=0$ if the number of edges on the cycle is even.

In order to prove the proposition we need several technical facts.
Let $n \geq 4$. Denote by $E_{0}(n)$ the Cartan matrix of the algebra $\Lambda(T)=$ $\Lambda(T, \emptyset)$, where T is a tree, without distinguished vertices, of the shape

We define two square $n \times n$ matrices:

$$
\begin{aligned}
& E_{1}(n)=\left[\begin{array}{cccccccc}
1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 2 & 1 \\
1 & 0 & 0 & 0 & \ldots & 0 & 1 & 2
\end{array}\right], \\
& E_{2}(n)=\left[\begin{array}{cccccccc}
1 & 2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 2 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Lemma 3.2. In the above notation:
(1) $\operatorname{det} E_{1}(n)=(-1)^{n+1}+n$,
(2) $\operatorname{det} E_{2}(n)=1+(-1)^{n+1} n$.

Proof. (1) Applying the Laplace formula to the first row of $E_{1}(n)$, we obtain

$$
\operatorname{det} E_{1}(n)=\operatorname{det} E_{0}(n-1)-\operatorname{det} D
$$

where

$$
D=\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 1 & 2 & 1 \\
1 & 0 & 0 & 0 & \ldots & 0 & 1 & 2
\end{array}\right]
$$

It is easy to check that $\operatorname{det} D=(-1)^{n}$. Then we conclude from Corollary 2.5 that $\operatorname{det} E_{1}(n)=n-(-1)^{n}=(-1)^{n+1}+n$.
(2) Applying the Laplace formula to the first column of $E_{2}(n)$, we obtain

$$
\operatorname{det} E_{2}(n)=\operatorname{det} D+(-1)^{n+1} \operatorname{det} E_{0}(n-1)
$$

where

$$
D=\left[\begin{array}{cccccccc}
1 & 2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right]
$$

It is clear that $\operatorname{det} D=1$. Then we conclude from Corollary 2.5 that $\operatorname{det} E_{2}(n)=1+(-1)^{n+1} n$.

Lemma 3.3. Let T be the Brauer graph with exactly one cycle of the form

Then:
(1) $\operatorname{det} C_{A^{\prime}(T)}=4$ if the cycle has an odd number of edges.
(2) $\operatorname{det} C_{A^{\prime \prime}(T)}=0$ if the cycle has an even number of edges.

Proof. We have four cases to consider.
(a) Assume $e=1$. Then T consists of one loop and hence $C_{\Lambda^{\prime}(T)}$ is of the form [4]. So $\operatorname{det} C_{\Lambda^{\prime}(T)}=4$.
(b) Assume $e=2$. Then T is a cycle having two edges and $C_{\Lambda^{\prime \prime}(T)}=$ $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$. Hence $\operatorname{det} C_{\Lambda^{\prime \prime}(T)}=0$.
(c) Assume $e=3$. Then

$$
C_{A^{\prime}(T)}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right],
$$

and hence $\operatorname{det} C_{A^{\prime}(T)}=4$.
(d) Assume $e \geq 4$. Set $A(e)=\Lambda^{\prime}(T)$ for e odd and $A(e)=\Lambda^{\prime \prime}(T)$ for e even. Then

$$
C_{A(e)}=\left[\begin{array}{cccccccc}
2 & 1 & 0 & 0 & \ldots & 0 & 0 & 1 \\
1 & 2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & \cdots & 1 & 2 & 1 \\
1 & 0 & 0 & 0 & \ldots & 0 & 1 & 2
\end{array}\right] .
$$

We apply the Laplace formula to the first row and Lemma 3.2 to obtain

$$
\begin{aligned}
\operatorname{det} C_{A(e)} & =2 \operatorname{det} E_{0}(e-1)-\operatorname{det} E_{1}(e-1)+(-1)^{e+1} \operatorname{det} E_{2}(e-1) \\
& =2 e-\left((-1)^{e}+e-1\right)+(-1)^{e+1}\left(1+(-1)^{e}(e-1)\right) \\
& =2+2(-1)^{e+1}= \begin{cases}4 & \text { if } e \text { is odd, } \\
0 & \text { if } e \text { is even. }\end{cases}
\end{aligned}
$$

Let T be a Brauer graph (with exactly one cycle) of the form
(*)

Denote by e the number of edges of T, by \mathcal{R} the unique cycle in T, and by t the number of edges in \mathcal{R}. For each vertex v of T we denote by $l(v)$ the number of edges having v as one of its ends. Define

$$
s=\max \{l(v) \mid v \text { is a vertex of } \mathcal{R}\} .
$$

Then the Cartan matrix of $A(e)=\Lambda^{\prime}(T)$ (for t odd) or $A(e)=\Lambda^{\prime \prime}(T)$ (for t even) is of the form

$$
C_{A(e)}=\left[\begin{array}{ccccccccc}
2 & 1 & 1 & \ldots & 1 & 1 & a_{1} & \ldots & a_{e-s} \\
1 & 2 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 2 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots \\
1 & 1 & 1 & \ldots & 2 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 1 & 2 & b_{1} & \ldots & b_{e-s} \\
a_{1} & 0 & 0 & \ldots & 0 & b_{1} & * & \ldots & * \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{e-s} & 0 & 0 & \ldots & 0 & b_{e-s} & * & \ldots & *
\end{array}\right],
$$

where $a_{i}, b_{j} \in\{0,1\}$ for $i, j=1, \ldots, e-s$. Let $C_{A(e)}=\left(\alpha_{i, j}\right)_{i, j=1}^{e}$. For $t \geq 3$ and $s \geq 2$, we define the matrix $E_{3}(e)=\left(\gamma_{i, j}\right)_{i, j=1}^{e}$, where

$$
\gamma_{i, j}= \begin{cases}\alpha_{i, j} & \text { if } i \neq 1 \text { or }(i=1 \text { and } 2 \leq j \leq s), \\ 1 & \text { if } i=j=1, \\ 0 & \text { if } i=1 \text { and } s+1 \leq j \leq e\end{cases}
$$

Thus

$$
E_{3}(e)=\left[\begin{array}{ccccccccc}
1 & 1 & 1 & \ldots & 1 & 1 & a_{1} & \ldots & a_{e-s} \\
1 & 2 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 2 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots \\
1 & 1 & 1 & \ldots & 2 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 1 & 2 & b_{1} & \ldots & b_{e-s} \\
0 & 0 & 0 & \ldots & 0 & b_{1} & * & \ldots & * \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 & b_{e-s} & * & \ldots * & *
\end{array}\right] .
$$

Lemma 3.4.

$$
\operatorname{det} E_{3}(e)= \begin{cases}2 & \text { if } t \text { is odd }, \\ 0 & \text { if } t \text { is even } .\end{cases}
$$

Proof. We prove the lemma by induction on the number k of edges of T which are not in \mathcal{R}. If $k=0$ then

$$
E_{3}(e)=\left[\begin{array}{ccccccc}
1 & 1 & 0 & \ldots & 0 & 0 & 1 \\
1 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 1 & 2 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 2 & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & 2 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & 2
\end{array}\right]
$$

We apply the Laplace formula to the first row to obtain

$$
\operatorname{det} E_{3}(e)=\operatorname{det} E_{0}(e-1)-\operatorname{det} E_{0}(e-2)+(-1)^{e+1} \operatorname{det} D
$$

where

$$
D=\left[\begin{array}{cccccccc}
1 & 2 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1
\end{array}\right]
$$

Since $t=e$ and $\operatorname{det} D=1$, from Corollary 2.5 we have

$$
\begin{aligned}
\operatorname{det} E_{3}(e) & =e-(e-1)+(-1)^{e+1}=1+(-1)^{e+1} \\
& = \begin{cases}2 & \text { if } t \text { is odd } \\
0 & \text { if } t \text { is even } .\end{cases}
\end{aligned}
$$

Assume $k \geq 1$ and the lemma holds for all Brauer graphs of the form (\star) having $k-1$ edges which are not in \mathcal{R}. Let T be a Brauer graph of the form (\star) having k edges which are not in \mathcal{R}. Then

$$
\begin{aligned}
\operatorname{det} E_{3}(e) & =\operatorname{det}\left[\begin{array}{ccccccccc}
1 & 0 & 1 & \ldots & 1 & 1 & a_{1} & \ldots & a_{e-s} \\
1 & 1 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
1 & 0 & 2 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots \\
1 & 0 & 1 & \ldots & 2 & 1 & 0 & \ldots & 0 \\
1 & 0 & 1 & \ldots & 1 & 2 & b_{1} & \ldots & b_{e-s} \\
0 & 0 & 0 & \ldots & 0 & b_{1} & * & \ldots & * \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 & b_{e-s} & * & \ldots & *
\end{array}\right] \\
& =\operatorname{det} E_{3}(e-1)=\left\{\begin{array}{ccc}
2 & \text { if } t \text { is odd, } \\
0 & \text { if } t \text { is even. }
\end{array}\right.
\end{aligned}
$$

For the Cartan matrix $C_{A(e)}, t \geq 3$ and $s \geq 2$, we define $E_{4}(e)=$ $\left(\delta_{i, j}\right)_{i, j=1}^{e}$, where

$$
\delta_{i, j}= \begin{cases}\alpha_{i, j} & \text { if } i \neq s \text { or }(i=s \text { and } 2 \leq j \leq s), \\ 1 & \text { if } i=j=s, \\ 0 & \text { if } i=s \text { and } s+1 \leq j \leq e .\end{cases}
$$

Then $E_{4}(e)$ is of the form

$$
\left[\begin{array}{ccccccccc}
2 & 1 & 1 & \ldots & 1 & 1 & a_{1} & \ldots & a_{e-s} \\
1 & 2 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 2 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots \\
1 & 1 & 1 & \ldots & 2 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 1 & 1 & b_{1} & \ldots & b_{e-s} \\
a_{1} & 0 & 0 & \ldots & 0 & 0 & * & \ldots & * \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{e-s} & 0 & 0 & \ldots & 0 & 0 & * & \ldots & *
\end{array}\right] .
$$

Lemma 3.5.

$$
\operatorname{det} E_{4}(e)= \begin{cases}2 & \text { if } t \text { is odd } \\ 0 & \text { if } t \text { is even } .\end{cases}
$$

Proof. We have

$$
\begin{aligned}
\operatorname{det} E_{4}(e) & =\operatorname{det}\left[\begin{array}{ccccccccc}
1 & 1 & 1 & \ldots & 1 & 1 & b_{1} & \ldots & b_{e-s} \\
1 & 2 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 2 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots \\
1 & 1 & 1 & \ldots & 2 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 1 & 2 & a_{1} & \ldots & a_{e-s} \\
0 & 0 & 0 & \ldots & 0 & a_{1} & * & \ldots & * \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0 & a_{e-s} & * & \ldots & *
\end{array}\right] \\
& =(-1)^{s-2} \operatorname{det} E_{3}(e)=\left\{\begin{array}{ccc}
2 & \text { if } t \text { is odd, } \\
0 & \text { if } t \text { is even. }
\end{array}\right.
\end{aligned}
$$

For the Cartan matrix $C_{A(e)}, t \geq 3$ and $s \geq 3$, we define $E_{5}(e)=$ $\left(\varepsilon_{i, j}\right)_{i, j=1}^{e}$, where

$$
\varepsilon_{i, j}= \begin{cases}\alpha_{i, j} & \text { if } i \neq 2 \text { or } j \neq 2, \\ 1 & \text { if } i=j=2 .\end{cases}
$$

Thus

$$
E_{5}(e)=\left[\begin{array}{ccccccccc}
2 & 1 & 1 & \ldots & 1 & 1 & a_{1} & \ldots & a_{e-s} \\
1 & 1 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
1 & 1 & 2 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots \\
1 & 1 & 1 & \ldots & 2 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & \ldots & 1 & 2 & b_{1} & \ldots & b_{e-s} \\
a_{1} & 0 & 0 & \ldots & 0 & b_{1} & * & \ldots & * \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{e-s} & 0 & 0 & \ldots & 0 & b_{e-s} & * & \ldots & *
\end{array}\right] .
$$

Lemma 3.6.
(1) $\operatorname{det} C_{A(e)}= \begin{cases}4 & \text { if } t \text { is odd, }, \\ 0 & \text { if } t \text { is even },\end{cases}$
(2) $\operatorname{det} E_{5}(e)=0$.

Proof. The proof is divided into three parts.
(a) Assume $t=1$. Then

$$
C_{A(e)}=\left[\begin{array}{ccccccc}
4 & 2 & 2 & 2 & \ldots & 2 & 2 \\
2 & 2 & 1 & 1 & \ldots & 1 & 1 \\
2 & 1 & 2 & 1 & \ldots & 1 & 1 \\
2 & 1 & 1 & 2 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
2 & 1 & 1 & 1 & \ldots & 2 & 1 \\
2 & 1 & 1 & 1 & \ldots & 1 & 2
\end{array}\right],
$$

and we have $\operatorname{det} C_{A(e)}=4$.
(b) Assume $t=2$. Then

$$
C_{A(e)}=\left[\begin{array}{cccccc}
2 & 1 & 1 & \ldots & 1 & 2 \\
* & * & * & \ldots & * & * \\
* & * & * & \ldots & * & * \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
* & * & * & \ldots & * & * \\
2 & 1 & 1 & \ldots & 1 & 2
\end{array}\right]
$$

and obviously $\operatorname{det} C_{A(e)}=0$.
(c) Assume $t \geq 3$. We prove the lemma by induction on the number k of edges of T which are not in \mathcal{R}. For $k=0$, the statement (1) follows from Lemma 3.3, and the matrix $E_{5}(e)$ is not defined. Assume $k \geq 1$ and the lemma holds for all Brauer graphs of the form (\star) having $k-1$ edges which are not in \mathcal{R}. Let T be a Brauer graph having k edges which are not in \mathcal{R}.

The Laplace formula applied to the second row of $C_{A(e)}$ and Lemmas 3.4 and 3.5 yield

$$
\begin{aligned}
\operatorname{det} C_{A(e)}= & -\operatorname{det} E_{3}(e-1)+2 \operatorname{det} C_{A(e-1)} \\
& +(s-3) \operatorname{det} E_{5}(e-1)+(-1)^{s+2} \operatorname{det} E_{4}(e-1) \\
= & \left\{\begin{array}{l}
-2+8+0+2(-1)^{s+2} \\
0
\end{array}=\left\{\begin{array}{l}
6-2 \\
0
\end{array}= \begin{cases}4 & \text { if } t \text { is odd }, \\
0 & \text { if } t \text { is even. }\end{cases} \right.\right.
\end{aligned}
$$

Therefore, it remains to prove that $\operatorname{det} E_{5}(e)=0$. If $s=3$, then

$$
\begin{aligned}
\operatorname{det} E_{5}(e) & =-\operatorname{det} E_{3}(e-1)+\operatorname{det} C_{A(e-1)}-\operatorname{det} E_{4}(e-1) \\
& =\left\{\begin{array}{l}
-2+4-2=0 \\
0
\end{array}\right.
\end{aligned}
$$

If $s \geq 4$, then

$$
\begin{aligned}
\operatorname{det} E_{5}(e) & =\operatorname{det}\left[\begin{array}{cccccccccc}
2 & 1 & 1 & 1 & \ldots & 1 & 1 & a_{1} & \ldots & a_{e-s} \\
1 & 1 & 1 & 1 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\
1 & 1 & 1 & 2 & \ldots & 1 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ldots & \vdots \\
1 & 1 & 1 & 1 & \ldots & 2 & 1 & 0 & \ldots & 0 \\
1 & 1 & 1 & 1 & \ldots & 1 & 2 & b_{1} & \ldots & b_{e-s} \\
a_{1} & 0 & 0 & 0 & \ldots & 0 & b_{1} & * & \ldots & * \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \ddots & \vdots \\
a_{e-s} & 0 & 0 & 0 & \ldots & 0 & b_{e-s} & * & \ldots & *
\end{array}\right] \\
& =\operatorname{det} E_{5}(e-1)=0 .
\end{aligned}
$$

Proof of Proposition 3.1. The proofs of (1) and (2) are similar. Let \mathcal{R} be the unique cycle in T. Denote by $d(T)$ the maximal distance of the vertices of T to the cycle \mathcal{R}, so $d(T)=0$ if and only if $T=\mathcal{R}$. For Brauer graphs T such that $d(T)=0$, the proposition follows from Lemma 3.3. Assume that $d(T) \geq 1$. Let T^{\prime} be the maximal subgraph of T such that $d\left(T^{\prime}\right)=1$. Then T^{\prime} is of the form (\star) and T is the union of T^{\prime} and (connected) Brauer trees $T_{1}, \ldots, T_{k(T)}$ having exactly one common vertex with \mathcal{R}. We prove the proposition by induction on $k(T)$. For $k(T)=0$, the proposition follows from Lemma 3.6. Let T be a Brauer graph having $k(T) \geq 1$ and assume that the required formula holds for all Brauer graphs $T^{\prime \prime}$ such that $k\left(T^{\prime \prime}\right)<k(T)$. Let T^{\prime} be the maximal subgraph of T with $d\left(T^{\prime}\right)=1$ and $T_{1}, \ldots, T_{k(T)}$ the Brauer trees having exactly one common vertex with \mathcal{R}, such that T is the union of $T^{\prime}, T_{1}, \ldots, T_{k(T)}$. We denote by T_{0} the Brauer graph which is the union of $T^{\prime}, T_{2}, \ldots, T_{k(T)}$. The Cartan matrix $C_{A^{\prime}(T)}\left(\right.$ resp. $\left.C_{\Lambda^{\prime \prime}(T)}\right)$ is of the block form

$$
\left[\begin{array}{ccc}
X & \vdots & 0 \\
\cdots & 2 & \cdots \\
0 & \vdots & Y
\end{array}\right]
$$

where X is the Cartan matrix of $\Lambda^{\prime}\left(T_{0}\right)$ (resp. $\Lambda^{\prime \prime}\left(T_{0}\right)$), Y is the Cartan matrix of $\Lambda\left(T_{1}\right)$ and 2 is the only common nonzero coefficient of the matrices X and Y. Then, applying [1, Lemma 24.4], we obtain for both $\operatorname{det} C_{\Lambda^{\prime}(T)}$ and $\operatorname{det} C_{\Lambda^{\prime \prime}(T)}$ the formula

$$
\operatorname{det}(X) \operatorname{det}\left(Y_{0}\right)+\operatorname{det}\left(X_{0}\right) \operatorname{det}(Y)-2 \operatorname{det}\left(X_{0}\right) \operatorname{det}\left(Y_{0}\right),
$$

where X_{0} is obtained from X by erasing the last row and last column, and Y_{0} is obtained from Y by erasing the first row and first column. Let r be the number of edges in T_{1}. Then

$$
\begin{aligned}
\operatorname{det} C_{\Lambda^{\prime}(T)} & =4 \cdot r+4 \cdot(r+1)-8 \cdot r=4, \\
\operatorname{det} C_{\Lambda^{\prime \prime}(T)} & =0 \cdot r+0 \cdot(r+1)-2 \cdot 0 \cdot 4=0 .
\end{aligned}
$$

4. Proofs of the main results. Recall from [14, (4.9)] that an algebra B is a representation-infinite tilted algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$ if and only if B is a tubular extension or a tubular coextension of a hereditary algebra of type $\widetilde{\mathbb{A}}_{p}$ for some $p \leq m$. Moreover, we know from [2] that the class of repetitive algebras \widehat{B} of representation-infinite tilted algebras B of Euclidean types $\widetilde{\mathbb{A}}_{m}, m \geq 1$, coincides with the class of repetitive algebras \widehat{B} of tubular extensions B (equivalently, tubular coextensions) of hereditary algebras of Euclidean types $\widetilde{\mathbb{A}}_{p}, p \geq 1$.

Let B be a representation-infinite tilted algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$ and e_{1}, \ldots, e_{n} a complete set of primitive orthogonal idempotents of B such that $1_{B}=e_{1}+\ldots+e_{n}$. Then we have the canonical set $\mathcal{E}=\left\{e_{k, i} \mid 1 \leq i \leq n\right.$, $k \in \mathbb{Z}\}$ of primitive orthogonal idempotents of the repetitive algebra \widehat{B} such that $e_{k, 1}+e_{k, 2}+\ldots+e_{k, n}$ is the identity of the diagonal algebra $B_{k}=B$ of \widehat{B}. By an automorphism of \widehat{B} we mean a K-algebra automorphism of \widehat{B} which fixes the set \mathcal{E}. A group G of automorphisms of \widehat{B} is called admissible if G acts freely on the set \mathcal{E} and has finitely many orbits. Then the orbit algebra \widehat{B} / G is defined (see [7] for details) and is a (finite-dimensional) selfinjective algebra. The action of the Nakayama automorphism $\nu_{\widehat{B}}$ of \widehat{B} on the set \mathcal{E} is given by $\nu_{\widehat{B}}\left(e_{k, i}\right)=e_{k+1, i}$ for $(k, i) \in \mathbb{Z} \times\{1, \ldots, n\}$, the infinite cyclic group $\left(\nu_{\hat{B}}\right)$ is admissible, and $\widehat{B} /\left(\nu_{\hat{B}}\right)$ is isomorphic to the trivial extension $T(B)=B \ltimes D(B)$. An automorphism σ of \widehat{B} is said to be rigid $[16]$ if for any $(k, i) \in \mathbb{Z} \times\{1, \ldots, n\}$ there exists $j \in\{1, \ldots, n\}$ such that $\sigma\left(e_{k, i}\right)=e_{k, j}$. Following [16] the tilted algebra B is said to be exceptional if there exists
an automorphism φ of \widehat{B} such that $\varphi^{2}=\varrho \nu_{\widehat{B}}$ for a rigid automorphism ϱ of \widehat{B}.

We need the following special case of the description of admissible groups of automorphisms of the repetitive algebras of tilted algebras of Euclidean types established in [16, 2.13].

Proposition 4.1. Let B be a representation-infinite tilted algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$ and G an admissible group of automorphisms of \widehat{B}. Then G is an infinite cyclic group generated by an automorphism $\sigma \varphi^{k}$ for some $k \geq 1$, where σ is a rigid automorphism of \widehat{B} and φ is an automorphism of \widehat{B} such that $\varphi^{d}=\varrho \nu_{\widehat{B}}$ for some $d \in\{1,2\}$ and a rigid automorphism ϱ of \widehat{B}. Moreover, if B is not exceptional, we may take $\varphi=\nu_{\widehat{B}}$.

Let B be a representation-infinite tilted algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$, G an admissible group of automorphisms of \widehat{B}, and $A=\widehat{B} / G$ the associated selfinjective algebra of type $\widetilde{\mathbb{A}}_{m}$. Without loss of generality we may assume B is a tubular extension of a hereditary algebra H of type $\widetilde{\mathbb{A}}_{p}$ for some $p \leq m$.

Assume that A is weakly symmetric. Since for any indecomposable projective A-module P the socle of P is isomorphic to the top of P, invoking Proposition 4.1 we conclude that one of the following two cases holds:
(1) B is exceptional, $G=(\sigma \psi)$ for a rigid automorphism σ of \widehat{B} and an automorphism ψ of \widehat{B} such that $\psi^{2}=\varrho \nu_{\widehat{B}}$ for some rigid automorphism ϱ of \widehat{B}, and moreover $(\sigma \psi)^{2}$ acts trivially on the set \mathcal{E}.
(2) $G=\left(\sigma \nu_{\widehat{B}}\right)$ for some rigid automorphism σ of \widehat{B}, and G acts trivially on \mathcal{E}.

If (2) holds, then since B is a tubular extension of a hereditary algebra H of Euclidean type $\widetilde{\mathbb{A}}_{p}$ for some p, we easily deduce that $A=$ $\widehat{B} /\left(\sigma \nu_{\widehat{B}}\right) \cong \widehat{B} /\left(\nu_{\widehat{B}}\right) \cong T(B)$. Similarly, if (1) holds and A is not local, then $A=\widehat{B} /(\sigma \psi) \cong \widehat{B} /(\varphi)$ for an automorphism φ of \widehat{B} such that $\varphi^{2}=\nu_{\widehat{B}}$. Assume now that A is local. Then (1) holds, $B=H$ is the hereditary algebra of type $\widetilde{\mathbb{A}}_{1}$, given by the Kronecker quiver $\bullet \rightrightarrows \cdot$, and consequently $A=\widehat{B} /(\sigma \varphi)$ is isomorphic to the four-dimensional algebra $A_{\lambda}=K\langle x, y\rangle /\left(x^{2}, y^{2}, x y-\lambda y x\right)$ for some $\lambda \in K \backslash\{0\}$. Moreover, $A \cong A_{\lambda}$ is symmetric if and only if $\lambda=1$ (see [5, Chapter III]).

Assume now that $A=\widehat{B} /(\varphi)$ for an automorphism φ of \widehat{B} such that $\varphi^{2}=\nu_{\widehat{B}}$. It follows from [3] that \widehat{B} is special biserial, and hence A is selfinjective and special biserial. Further, since $\varphi^{2}=\nu_{\widehat{B}}$, it follows from [16] that the stable Auslander-Reiten quiver Γ_{A}^{s} consists of one component of the form $\mathbb{Z} \widetilde{\mathbb{A}}_{m}$ and a $\mathbb{P}_{1}(K)$-family of stable tubes. Moreover, the one-parameter
families of indecomposable modules are given by the images of the oneparameter families of indecomposable modules over the hereditary algebra H of type $\widetilde{\mathbb{A}}_{p}$ under the push-down functor $F_{\lambda}: \bmod \widehat{B} \rightarrow \bmod A$ associated to the Galois covering $F: \widehat{B} \rightarrow \widehat{B} /(\varphi)=A$. In fact, the bound quiver, say (Q, I), of A admits a unique primitive walk (in the sense of $[18]$) which is the image of the unique cycle (with underlying graph $\widetilde{\mathbb{A}}_{p}$) of the Gabriel quiver of B. This primitive walk in (Q, I) is formed by the corresponding paths of one of the bound quivers

with the relations $A_{1}^{2}-A_{2}, A_{n}-A_{n+1}^{2}, A_{j}-A_{j+1}$ for $j=2, \ldots, n$ if $n \geq 2, A_{1}^{2}-A_{2}^{2}$ if $n=1$, and $\alpha_{n_{j}, j} \alpha_{1, j+1}, \alpha_{n_{j+1}, j+1} \alpha_{1, j}$ for $j=1, \ldots, n$, $\alpha_{i, j} \alpha_{i+1, j} \ldots \alpha_{n_{j}, j} \alpha_{1, j} \ldots \alpha_{i-1, j} \alpha_{i, j}$ for $i=1, \ldots, n_{j}, j=2, \ldots, n, \alpha_{i, j} \alpha_{i+1, j}$ $\ldots \alpha_{n_{j}, j} A_{j} \alpha_{1, j} \ldots \alpha_{i-1, j} \alpha_{i, j}$ for $i=1, \ldots, n_{j}, j=1, n+1$, where n_{j} is the number of arrows on the cycle A_{j} and $\alpha_{i, j}$ is the arrow on the cycle A_{j} starting at the vertex i, or

with the relations $A_{j}-A_{j+1}$ for $j=1, \ldots, n($ and $n+1=1), \alpha_{n_{j}, j} \alpha_{1, j+1}$, $\alpha_{n_{j+1}, j+1} \alpha_{1, j}$ for $j=1, \ldots, n, \alpha_{i, j} \alpha_{i+1, j} \ldots \alpha_{n_{j}, j} \alpha_{1, j} \ldots \alpha_{i-1, j} \alpha_{i, j}$ for $i=$ $1, \ldots, n_{j}$, where n_{j} is the number of arrows on the cycle $A_{j}, \alpha_{i, j}$ is the
arrow on the cycle A_{j} starting at the vertex i, and the number of simple cycles is odd. The first algebra is an algebra of the form $\Lambda\left(T_{0}, v_{1}, v_{2}\right)$ for the Brauer tree T_{0} of the form

while the second one is of the form $\Lambda^{\prime}\left(T_{0}^{\prime}\right)$ for the Brauer graph T_{0}^{\prime}
(*)

with one cycle, and the cycle has an odd number of edges. Since $A=K Q / I$ is special biserial, and (Q, I) contains exactly one primitive walk (described above), we deduce that $Q=Q_{T}$ and $I=I\left(T, v_{1}, v_{2}\right)$ for a Brauer tree T with two distinguished vertices v_{1} and v_{2}, containing the Brauer tree T_{0} as a full convex subtree, or that $Q=Q_{T^{\prime}}$ and $I=I^{\prime}\left(T^{\prime}\right)$ for a Brauer graph T^{\prime} with one cycle containing the Brauer graph T_{0}^{\prime} as a full convex subgraph.

Assume now that $A=T(B)=\widehat{B} /\left(\nu_{\widehat{B}}\right)$. Then again $T(B)$ is a selfinjective (even symmetric) special biserial algebra but the stable AuslanderReiten quiver consists of two components of type $\mathbb{Z} \widetilde{\mathbb{A}}_{m}$ and two $\mathbb{P}_{1}(K)$ families of stable tubes (see [2]). Then the bound quiver (Q, I) of $A=T(B)$ contains exactly two primitive walks, and both contain all sources and sinks of the unique cycle of B (of type $\widetilde{\mathbb{A}}_{p}$) as vertices. Hence these primitive walks are formed by the corresponding paths of the quiver of the form ($\star \star$) and an even number of simple cycles. Clearly, this is an algebra of the form $\Lambda^{\prime \prime}\left(T_{0}^{\prime \prime}\right)$ for a Brauer graph (\star) with one cycle, and the cycle has an even number of edges. Since A is a symmetric special biserial algebra with exactly two primitive walks (described above) we infer that $A=K Q_{T} / I^{\prime \prime}(T)$ for a Brauer graph $T^{\prime \prime}$ with one cycle containing the Brauer graph $T_{0}^{\prime \prime}$ as a full convex subgraph.

Finally, assume that A is an algebra of one of the forms $\Lambda\left(T, v_{1}, v_{2}\right)$, $\Lambda^{\prime}(T)$, or $\Lambda^{\prime \prime}(T)$. Then clearly A is a special biserial algebra whose bound quiver contains at most two primitive walks, and consequently A is of domestic type (see [6], [16]). Applying now [16] we infer that A is a selfinjective algebra of Euclidean type $\widetilde{\mathbb{A}}_{m}$. Moreover, A is symmetric, because we have canonical symmetrizing linear forms $\varphi: \Lambda\left(T, v_{1}, v_{2}\right) \rightarrow K$, $\varphi^{\prime}: \Lambda^{\prime}(T) \rightarrow K, \varphi^{\prime \prime}: \Lambda^{\prime \prime}(T) \rightarrow K$ assigning 1 to any maximal nonzero path and 0 to the remaining paths of the bound quiver $\left(Q_{T}, I\left(T, v_{1}, v_{2}\right)\right)$, $\left(Q_{T}, I^{\prime}(T)\right),\left(Q_{T}, I^{\prime \prime}(T)\right)$, respectively (see [5] and [19] for characterizations of symmetric algebras). We also know from Propositions 2.1 and 3.1 that the Cartan matrices of the algebras $\Lambda\left(T, v_{1}, v_{2}\right)$ and $\Lambda^{\prime}(T)$ are nonsingular while that of $\Lambda^{\prime \prime}(T)$ is singular.

Summing up our considerations above, we obtain the assertions of Theorems 1 and 2 , and obviously also of Corollary 3 .

References

[1] J. L. Alperin, Local Representation Theory, Cambridge Stud. Adv. Math. 11, Cambridge Univ. Press, 1986.
[2] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72.
[3] I. Assem and A. Skowroński, Iterated tilted algebras of type $\widetilde{\mathbb{A}}_{m}$, Math. Z. 195 (1987), 269-290.
[4] E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. 84 (1966), 20-48.
[5] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer, 1990.
[6] K. Erdmann and A. Skowroński, On Auslander-Reiten components of blocks and selfinjective biserial algebras, Trans. Amer. Math. Soc. 330 (1982), 165-189.
[7] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105.
[8] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364.
[9] G. J. Janusz, Indecomposable modules for finite groups, Ann. of Math. 89 (1969), 209-241.
[10] M. Kauer, Derived equivalence of graph algebras, in: Trends in Representation Theory of Finite Dimensional Algebras, Contemp. Math. 229, Amer. Math. Soc., 1998, 201-213.
[11] H. Kupisch, Projektive Moduln endlicher Gruppen mit zyklischer p-Sylow-Gruppe, J. Algebra 10 (1968), 1-7.
[12] H. Lenzing and A. Skowroński, On selfinjective algebras of Euclidean type, Colloq. Math. 79 (1999), 71-76.
[13] Z. Pogorzały and A. Skowroński, Selfinjective biserial standard algebras, J. Algebra 138 (1991), 491-504.
[14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[15] K. W. Roggenkamp, Biserial algebras and graphs, in: Algebras and Modules II, CMS Conf. Proc. 24, CMS/AMS, 1998, 481-496.
[16] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199.
[17] A. Skowroński and J. Waschbüsch, Representation-infinite biserial algebras, J. Reine Angew. Math. 345 (1983), 172-181.
[18] B. Wald and J. Waschbüsch, Tame biserial algebras, J. Algebra 95 (1985), 480-500.
[19] K. Yamagata, Frobenius algebras, in: Handbook of Algebra, Vol. 1, Elsevier, 1996, 841-887.

Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, Poland
E-mail: rafalb@mat.uni.torun.pl skowron@mat.uni.torun.pl

Received 4 November 2002;
revised 13 January 2003
(4283)

[^0]: 2000 Mathematics Subject Classification: 16D50, 16G20, 16G60, 16G70.
 Supported by the Foundation for Polish Science and Polish Scientific Grant KBN No. 5 P03A 00821.

