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THE DETERMINANT OF ORIENTED ROTANTSBYADAM H. PIWOCKI (Warszawa)Abstra
t. We study the determinant of pairs of rotants of Anstee, Przyty
ki andRolfsen. We 
onsider various notions of rotant orientations.0. Introdu
tion. We re
all the de�nition of generalized mutation asgiven in [APR℄. Let D be a diagram of an unoriented link. Assume thatthe boundary of a regular n-gon interse
ts D transversally in su
h a waythat the interior of ea
h fa
e of the n-gon 
ontains exa
tly two points of D.Denote by R the part of D lo
ated inside the n-gon. If R has n-fold rotationalsymmetry, then it is 
alled a rotor of order n, or brie�y an n-rotor, whilethe 
omplement S of R in D is 
alled a stator. A new diagram D′ may be
onstru
ted in the following manner: we 
ut out R, �ip it over (π-rotate in3-spa
e about an axis of symmetry of the n-gon) and glue it ba
k to S. This
onstru
tion does not depend on the 
hoi
e of the symmetry axis. Denote the�ipped rotor by R′. If links L and L′ have diagrams D and D′ respe
tively,then we say L and L′ are a pair of rotants, or that one is a rotant of theother.
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1. Orientation. We will 
onsider various versions of orientations of pairsof rotants. Any orientation of a rotant diagram involves an orientation ofthe stator and an orientation of the rotor. Of 
ourse the two orientationsshould mat
h on the boundary. In our 
onsiderations we will always keepthe orientation of the stator �xed, while (possibly) 
hanging the orientationof the �ipped rotor.We will say a rotor is regularly oriented if inputs and outputs appearalternately along the boundary as in Figure 1.1. This is 
alled an orientation-preserving rotor in [DIPY℄.

Fig. 1.1 Fig. 1.2When R is �ipped to obtain R′ the orientations on the boundary do notmat
h the (un
hanged) orientation of the stator (Figure 1.2). To obtain anoriented diagram we reverse all orientations in R′. A pair of links obtainedin this way are 
alled regularly oriented rotants. These are known to have
oin
iding Conway polynomials (∇) for any order n of rotation ([Tr℄). Re-stri
ted versions of the above are true for the Jones (n ≤ 5), Hom�y (n ≤ 4)and Kau�man (n ≤ 3) polynomials ([APR℄, [JR℄).In this paper we will 
onsider determinants (∇(−2i)) of pairs of rotants.Obviously the determinants 
oin
ide for regularly oriented rotants (be
ausetheir Conway polynomials 
oin
ide). We will study to what extent this prop-erty is preserved when the orientation requirement is relaxed in various ways.In this se
tion we will look at other possible orientations of rotant pairs. InSe
tion 2 we �rst show how to de�ne the determinant of a link by an eval-uation of either the Conway polynomial or the Jones polynomial. We thenintrodu
e the Kau�man bra
ket of an unoriented link and prove that pairsof rotants have the same Kau�man bra
ket evaluation at a 
ertain point d.In Se
tion 3 we apply our results to rotors whi
h do not 
ontain 
losed 
om-ponents. Se
tion 4 deals with more 
ompli
ated rotors. The Appendix givesan example of a pair of nonregularly oriented rotants with di�erent Conwaypolynomials.A biregular orientation of a pair of rotants of even order is any orientationof the rotor su
h that the inputs and outputs are grouped in pairs as inFigure 1.3. This rotor is 
alled orientation-reversing in [DIPY℄. To obtain
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Fig. 1.3 Fig. 1.4an orientation of the modi�ed diagram we either 
hange all orientations in
R′ or none of them. This depends on the 
hoi
e of the rotation axis. It willbe shown that the determinants of a pair of biregularly oriented rotants do
oin
ide. On the other hand, it is known that their Conway polynomials maydi�er ([DIPY℄).This may be further generalized by allowing any orientation of the initialdiagram. It leads to a pair of nonregularly oriented rotors (Figure 1.4). Here,the rules for 
hanging or preserving the orientations are more 
ompli
ated.When R is �ipped, the orientation of an ar
 in R′ may or may not agree withthe orientation of the stator. We simply 
hoose the orientation for every ar
in R′ to mat
h the orientation of S. We will show later that it is alwayspossible.It should be stressed that the orientation of the rotor part of the diagramis not always determined by the orientation on the boundary. This is be
ausea rotor may 
ontain 
losed 
omponents of the relevant link. However, if thisis not the 
ase, then for any given orientation of the original diagram D we
an 
onsider the boundary indu
ed orientation on its rotant D′ as des
ribedabove. We will show that in su
h a 
ase the determinants do 
oin
ide.We will dis
uss 
ases involving 
omponents 
ontained in the rotor later.2. Kau�man bra
ket. To prove the results des
ribed above we willuse both the Conway polynomial and the Jones polynomial. In [APR℄, skeintheoreti
 methods were used to prove the results 
on
erning the Kau�man,Hom�y and Jones polynomials for rotants. In [Tr℄, it was the linear alge-brai
 approa
h to the Conway polynomial that solved the problem for anyorder of rotation. Here, we will 
ombine the result 
on
erning the Conwaypolynomial with skein theoreti
 methods to get the result for the determi-nant. This is possible be
ause the determinant 
an be obtained by suitablesubstitutions from both the Conway and the Jones polynomial (see (2.6.1)and (2.6.2)).
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We begin by des
ribing the Kau�man bra
ket of an unoriented link dia-gram, 〈L〉 ∈ Z[A±1], 
al
ulated a

ording to the re
ursions:

〈 〉 = A〈≍〉 + A−1〈
)(

〉,(2.1)

〈©〉 = 1,(2.2)

〈© ⊔ L〉 = (−A2 − A−2)〈L〉.(2.3)Let us 
all 
rossings of type positive, while those of type negative.The writhe of an oriented link L, w(L), is de�ned as the number ofpositive 
rossings in a diagram of L minus the number of negative 
rossings.If the diagram of a link L is oriented, then
(2.4) fL(A) = (−A)−3w(L)〈L〉(A)is an invariant of oriented links. We obtain the Jones polynomial of L bysubstitution
(2.5) VL(t) = fL(t−1/4).The determinant of an oriented link L is a 
ertain evaluation of the link'sConway polynomial or Jones polynomial:(2.6.1) DL = ∇L(−2i),(2.6.2) DL = VL(−1) (more pre
isely √

t = −i).Other de�nitions in
lude:(2.6.3) DL = ∆(−1), where ∆ is the Alexander polynomial,(2.6.4) determinant of the symmetrized Seifert form,(2.6.5) rank of the �rst homology of the double bran
hed 
over,(2.6.6) determinant of the Goeritz matrix.(Note: In [BZ℄ the determinant is de�ned as the absolute value of (2.6.3)�(2.6.6), but in this paper we will need only (2.6.1) and (2.6.2).) From (2.5)and (2.6.2) we get
(2.7) DL = fL(d) for d = ±

√
i = ±

(
√

2

2
+ i

√
2

2

)

.From (2.4) and (2.7) we obtain
(2.8) DL = (−d)−3w(L)〈L〉(d).As 
an be seen from (2.8) we 
an study the determinat DL by 
onsideringthe exponent −3w(L) and the evaluation 〈L〉(d) of the bra
ket polynomialat d quite separately. In this se
tion we will study 〈L〉(d). Our aim is toprove the following theorem.Theorem 2.9. If L, L′ are a pair of unoriented rotants, then
(2.10) 〈L〉(d) = 〈L′〉(d), where d = ±

√
i.
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Sin
e the bra
ket polynomial is de�ned for unoriented link diagrams, wemay temporarily forget the orientation.To 
al
ulate 〈L〉(d) we will use the substitution A = d in (2.1)�(2.3).This implies that the right side of (2.3) is 0, sin
e −d2 − d−2 = −i − i−1 =
−i + i = 0.Using these new re
ursions we open all the 
rossings in the stator partof the diagram, leaving the rotor R inta
t. We obtain trivial stators�oneswith no 
rossings or 
losed 
omponents, whi
h we denote g1, . . . , gk. We let
Ri = R ∪ gi. Then we have
(2.11) 〈L〉(d) =

∑

i

fi(d)〈Ri〉(d),for 
ertain fi ∈ Z[A±1]. If we do the same for L′, we get
(2.12) 〈L′〉(d) =

∑

i

fi(d)〈R′

i〉(d),where R′
i = R′∪gi. The 
oe�
ients fi are identi
al in both (2.11) and (2.12),sin
e L and L′ have the same stators.To prove Theorem 2.9 it is su�
ient to prove that 〈Ri〉(d) = 〈R′

i〉(d).We will obtain this dire
tly from Tra
zyk's theorem [Tr℄ about the Conwaypolynomial of oriented rotants. In order to do this we will now 
onsider Riendowed with regular orientation.Lemma 2.13. Trivial (
rossing-free) stators may be given a regular bound-ary orientation.Proof. Suppose the diagram has regular orientation and number theboundary points 
onse
utively. The numbers of all inputs are obviously ofthe same parity, and similarly for the outputs. Now, 
onsider a stator di-agram with no 
rossings. It 
onsists of several ar
s, and it is obvious thatall of them 
onne
t even points to odd points (otherwise an odd number ofinputs/outputs would be trapped in a single area).Using the rotor's n-fold rotational symmetry it 
an be shown that:Lemma 2.14. The rotor R 
an be given a regular boundary orientation.The above two lemmas imply that any pair of rotants with trivial statorsmay be viewed as a regularly oriented pair. In parti
ular we 
an 
onsider
Ri and R′

i to be a pair of regularly oriented rotants. By Tra
zyk's theoremthey have the same Conway polynomial and (more spe
i�
ally) the samedeterminant
(2.15) DRi

= ∇Ri
(−2i) = ∇R′

i
(−2i) = DR′

i
.This 
ompletes the proof of Theorem 2.9 be
ause regularly oriented pairsof rotors have the same writhe and be
ause (2.8) holds.
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3. Determinant. Throughout this se
tion we will assume that the ro-tors have no 
losed 
omponents. We shall prove the following theorem.Theorem 3.1. If L, L′ are a pair of nonregularly oriented rotants andtheir rotors have no 
losed 
omponents , then DL = DL′.The determinant of a link L 
an be 
al
ulated from (2.8). In the previousse
tion we showed that rotant pairs with no orientation have the same Kau�-man bra
ket evaluation (2.10). Now we will look at the 
oe�
ient (−d)−3w(L)in (2.8). For this we will need our links' orientation again.Sin
e a rotant L is the union R∪S of the rotor and stator, both of whi
hhave disjoint sets of 
rossings, the writhe may be written as the sum

(3.2) w(L) = w(R ∪ S) = w(R) + w(S).Of 
ourse w(S) is the same for both L and L′ = R′ ∪ S, so we need onlyinvestigate w(R) and w(R′).It is easy to see that if there is an ar
 in R 
onne
ting two points, say
p and q, then there is also an ar
 
onne
ting their images p′ and q′ under�ipping. Of 
ourse, the same is true for R′. So we have two ar
s whi
h tradeends in the transition R ↔ R′, unless p = q′ (and so q = p′), in whi
h 
asethere is one ar
. The former pair of ar
s will be 
alled symmetri
 partnersor m-ar
s (m for moving), while the latter ar
 is 
alled an s-ar
 (for stable).
Example. Figure 3.1 shows three ar
s in a 6-rotor. The respe
tive endsof the ar
s p1q1 and p2q2 are symmetri
, so they are m-ar
s. The ar
 r1r2 isan s-ar
.

Fig. 3.1It 
an be shown that:Lemma 3.4. (i) If n is odd , then the rotor has exa
tly one s-ar
.(ii) If n is even, then the rotor either has two s-ar
s, or none at all.Generally, an m-ar
 keeps or 
hanges its orientation in R′ i� the same istrue for the orientation of the ar
's symmetri
 partner, so the orientations ofm-ar
s are 
hanged in pairs. S-ar
s always have their orientation 
hanged.
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Now we return to the writhe. In the rotor we will look at six types of ar

rossings:(1) two s-ar
s,(2) two m-ar
s whi
h do not 
hange orientation,(3) two m-ar
s whi
h both 
hange orientation,(4) an s-ar
 and an m-ar
 whi
h 
hanges orientation,(5) two m-ar
s, only one of whi
h 
hanges orientation,(6) an s-ar
 and an m-ar
 whi
h does not 
hange orientation.Sin
e s-ar
s always 
hange their orientation, 
rossings of type (1)�(4) havethe same signs in both links of a rotant pair, and so do not 
hange thewrithe. In 
ase (5) the sum of the signs of the 
rossings involved does 
hange.However, this 
hange is obviously 
ompensated by the 
hange for symmetri
partners of the relevant ar
s. Case (6) is similar. This provesLemma 3.5. If L, L′ are a pair of oriented rotants and their rotors haveno 
losed 
omponents , then w(L) = w(L′).Proof of Theorem 3.1. Using formula (2.8), Theorem 2.9 and Lemma 3.4we obtain
DL = (−d)−3w(L)〈L〉(d) = (−d)−3w(L′)〈L′〉(d) = DL′ .4. Closed 
omponents. In this se
tion we will look at the determinantsof rotant pairs whi
h have 
losed 
omponents in their rotors. The followingexample shows that the assumption about 
losed 
omponents in Theorem 3.1is ne
essary.

Fig. 4.1
Example 4.1. Figure 4.1 shows diagrams of a pair of rotants. If un-oriented, they would represent the same link, so 〈L〉 = 〈L′〉. But with ori-entation the rotor 
ontains one pair of m-ar
s, one s-ar
, and one 
losed
omponent, whi
h after �ipping looks as if it had 
hanged its orientation.
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Sin
e the stator 
ontrols only the orientations of the rotor ar
s, and not thoseof the 
losed 
omponents, the latter retain their orientations after �ipping.Below we 
al
ulate the determinants of the two links:

w(L) = 4 − 4 = 0 ⇒ DL = (−d)0〈L〉(d) = −30i,

w(L′) = 2 − 6 = −4 ⇒ DL′ = (−d)−12〈 L′ 〉(d) = 30i.We see that DL′ = −DL 6= DL.As was shown in Example 4.1, pairs of oriented rotants do not alwayshave identi
al determinants. Looking at (2.8) and (2.10) we see that theproblem must be in the writhe of the rotors with 
losed 
omponents. With
d = ±

√
i we have

(−d)4 = −1,(4.2)

(−d)8 = 1,(4.3)so we look at w(R) and w(R′) mod 8.It 
an be shown that the determinants of pairs of rotants of even order
oin
ide, while this is not ne
essarily so for rotants of odd order. This is a
onsequen
e of Lemma 3.3. All is not lost, though. It turns out that if thedeterminants do not 
oin
ide, then they only di�er in sign. If w(
⋃

Oi, l1)is the sum of all 
rossings between the rotor's single s-ar
 l1 and 
losed
omponents Oi, then
(4.4)

DL′

DL
=

{−1 if w(
⋃

Oi, l1) ≡ 4 (mod8),

+1 if w(
⋃

Oi, l1) ≡ 0 (mod8).This gives usTheorem 4.5. If L, L′ are a pair of oriented rotants of order n then:(i) if 2 |n then DL = DL′ ,(ii) if 2 ∤ n and the rotors have no 
losed 
omponents then DL = DL′ ,(iii) if 2 ∤ n and w(
⋃

Oi, l1) ≡ 0 (mod8) then DL = DL′ ,(iv) if 2 ∤ n and w(
⋃

Oi, l1) ≡ 4 (mod8) then DL = −DL′ .5. Appendix. In this paper we relied on Tra
zyk's theorem [Tr℄, whi
hstates that pairs of regularly oriented rotants have the same Conway poly-nomial. This brings up a natural question: 
an Tra
zyk's theorem be gener-alized to 
over nonregularly oriented rotants? The following example gives anegative answer.
Example 5.1. The following �gures show a pair of nonregularly ori-ented 6-rotants. The �rst �ve nonzero 
oe�
ients (mod 256) of the Conwaypolynomial for L are as follows:

−3z − 2z3 + 13z5 + 3z7 − 24z9,
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while the 
oe�
ients for L′ are
−3z − 14z3 − 14z5 − 31z7 − 71z9.This proves that nonregularly oriented rotant pairs may have di�erent Con-way polynomials.Re
ently D¡bkowski, Ishiwata, Przyty
ki and Yasuhara dis
overed a pairof biregularly oriented rotants with di�erent Conway polynomials (see[DIPY℄), whi
h further proves that Tra
zyk's theorem 
annot be improved.
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