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THE DETERMINANT OF ORIENTED ROTANTS

BY

ADAM H. PIWOCKI (Warszawa)

Abstract. We study the determinant of pairs of rotants of Anstee, Przytycki and
Rolfsen. We consider various notions of rotant orientations.

0. Introduction. We recall the definition of generalized mutation as
given in [APR]. Let D be a diagram of an unoriented link. Assume that
the boundary of a regular n-gon intersects D transversally in such a way
that the interior of each face of the n-gon contains exactly two points of D.
Denote by R the part of D located inside the n-gon. If R has n-fold rotational
symmetry, then it is called a rotor of order n, or briefly an n-rotor, while
the complement S of R in D is called a stator. A new diagram D’ may be
constructed in the following manner: we cut out R, flip it over (m-rotate in
3-space about an axis of symmetry of the n-gon) and glue it back to S. This
construction does not depend on the choice of the symmetry axis. Denote the
flipped rotor by R’. If links L and L’ have diagrams D and D’ respectively,
then we say L and L’ are a pair of rotants, or that one is a rotant of the
other.

(N ()

7
~—
o

Acknowledgements. This paper is based on my Master thesis, written
at Warsaw University in 2003. I would like to thank my advisor, Pawel
Traczyk, for his help and guidance.

2000 Mathematics Subject Classification: Primary 57M27.
Key words and phrases: determinant, rotant, rotor, Kauffman bracket, Jones polyno-
mial, Conway polynomial.

[183] © Instytut Matematyczny PAN, 2007



184 A. H. PIWOCKI

1. Orientation. We will consider various versions of orientations of pairs
of rotants. Any orientation of a rotant diagram involves an orientation of
the stator and an orientation of the rotor. Of course the two orientations
should match on the boundary. In our considerations we will always keep
the orientation of the stator fixed, while (possibly) changing the orientation
of the flipped rotor.

We will say a rotor is regularly oriented if inputs and outputs appear
alternately along the boundary as in Figure 1.1. This is called an orientation-
preserving rotor in [DIPY].

Fig. 1.1 Fig. 1.2

When R is flipped to obtain R’ the orientations on the boundary do not
match the (unchanged) orientation of the stator (Figure 1.2). To obtain an
oriented diagram we reverse all orientations in R'. A pair of links obtained
in this way are called regularly oriented rotants. These are known to have
coinciding Conway polynomials (V) for any order n of rotation ([Tr]). Re-
stricted versions of the above are true for the Jones (n < 5), Homfly (n < 4)
and Kauffman (n < 3) polynomials ([APR], [JR]).

In this paper we will consider determinants (V(—2i)) of pairs of rotants.
Obviously the determinants coincide for regularly oriented rotants (because
their Conway polynomials coincide). We will study to what extent this prop-
erty is preserved when the orientation requirement is relaxed in various ways.
In this section we will look at other possible orientations of rotant pairs. In
Section 2 we first show how to define the determinant of a link by an eval-
uation of either the Conway polynomial or the Jones polynomial. We then
introduce the Kauffman bracket of an unoriented link and prove that pairs
of rotants have the same Kauffman bracket evaluation at a certain point d.
In Section 3 we apply our results to rotors which do not contain closed com-
ponents. Section 4 deals with more complicated rotors. The Appendix gives
an example of a pair of nonregularly oriented rotants with different Conway
polynomials.

A bireqular orientation of a pair of rotants of even order is any orientation
of the rotor such that the inputs and outputs are grouped in pairs as in
Figure 1.3. This rotor is called orientation-reversing in [DIPY]. To obtain
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an orientation of the modified diagram we either change all orientations in
R’ or none of them. This depends on the choice of the rotation axis. It will
be shown that the determinants of a pair of biregularly oriented rotants do
coincide. On the other hand, it is known that their Conway polynomials may
differ ([DIPY]).

This may be further generalized by allowing any orientation of the initial
diagram. It leads to a pair of nonregularly oriented rotors (Figure 1.4). Here,
the rules for changing or preserving the orientations are more complicated.
When R is flipped, the orientation of an arc in R’ may or may not agree with
the orientation of the stator. We simply choose the orientation for every arc
in R’ to match the orientation of S. We will show later that it is always
possible.

It should be stressed that the orientation of the rotor part of the diagram
is not always determined by the orientation on the boundary. This is because
a rotor may contain closed components of the relevant link. However, if this
is not the case, then for any given orientation of the original diagram D we
can consider the boundary induced orientation on its rotant D’ as described
above. We will show that in such a case the determinants do coincide.

We will discuss cases involving components contained in the rotor later.

2. Kauffman bracket. To prove the results described above we will
use both the Conway polynomial and the Jones polynomial. In [APR], skein
theoretic methods were used to prove the results concerning the Kauffman,
Homfly and Jones polynomials for rotants. In [Tr|, it was the linear alge-
braic approach to the Conway polynomial that solved the problem for any
order of rotation. Here, we will combine the result concerning the Conway
polynomial with skein theoretic methods to get the result for the determi-
nant. This is possible because the determinant can be obtained by suitable
substitutions from both the Conway and the Jones polynomial (see (2.6.1)
and (2.6.2)).
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We begin by describing the Kauffman bracket of an unoriented link dia-
gram, (L) € Z[A*!], calculated according to the recursions:

(2.1) (X)=AX)+A47()(),
(2.2) O) =1,
(2.3) (OUL) = (—4% — A72)(L).

Let us call crossings of type X positive, while those of type X negative.
The writhe of an oriented link L, w(L), is defined as the number of
positive crossings in a diagram of L minus the number of negative crossings.
If the diagram of a link L is oriented, then
(2.4) fr(A) = (=A4)7* (L) (4)

is an invariant of oriented links. We obtain the Jones polynomial of L by
substitution

(2.5) Vi(t) = fr(t™ V4.

The determinant of an oriented link L is a certain evaluation of the link’s
Conway polynomial or Jones polynomial:

(2.6.1) Dp =Vr5(—2i),

(2.6.2) Dy = V(—1) (more precisely v/t = —1).

Other definitions include:

Dy = A(—1), where A is the Alexander polynomial,

determinant of the symmetrized Seifert form,

)
)
2.6.5)  rank of the first homology of the double branched cover,
)  determinant of the Goeritz matrix.

Note: In |[BZ] the determinant is defined as the absolute value of (2.6.3)—
2.6.6), but in this paper we will need only (2.6.1) and (2.6.2).) From (2.5)
and (2.6.2) we get

(2.7) Dp = fr(d) ford=+Vi= i(? +i ?)
From (2.4) and (2.7) we obtain
(2.8) Dy, = (=)~ " (L)(d).

As can be seen from (2.8) we can study the determinat Dy by considering
the exponent —3w(L) and the evaluation (L)(d) of the bracket polynomial
at d quite separately. In this section we will study (L)(d). Our aim is to
prove the following theorem.

THEOREM 2.9. If L, L’ are a pair of unoriented rotants, then
(2.10) (LY(d) = (L')(d), where d = +/i.
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Since the bracket polynomial is defined for unoriented link diagrams, we
may temporarily forget the orientation.

To calculate (L)(d) we will use the substitution A = d in (2.1)—(2.3).
This implies that the right side of (2.3) is 0, since —d? —d™2 = —i —i~! =
—i4+1=0.

Using these new recursions we open all the crossings in the stator part
of the diagram, leaving the rotor R intact. We obtain trivial stators—ones
with no crossings or closed components, which we denote g1, ..., gr. We let
R; = RU g;. Then we have

(2.11) (L)(d) = Z fi(d)(Ri)(d),

for certain f; € Z[A*!]. If we do the same for L/, we get
(2.12) (L')(d) = fild){R)(d),

where R, = R'Ug;. The coeflicients f; are identical in both (2.11) and (2.12),
since L and L' have the same stators.

To prove Theorem 2.9 it is sufficient to prove that (R;)(d) = (R})(d).
We will obtain this directly from Traczyk’s theorem [Tr] about the Conway
polynomial of oriented rotants. In order to do this we will now consider R;
endowed with regular orientation.

LEMMA 2.13. Trwial (crossing-free) stators may be given a regular bound-
ary orientation.

Proof. Suppose the diagram has regular orientation and number the
boundary points consecutively. The numbers of all inputs are obviously of
the same parity, and similarly for the outputs. Now, consider a stator di-
agram with no crossings. It consists of several arcs, and it is obvious that
all of them connect even points to odd points (otherwise an odd number of
inputs/outputs would be trapped in a single area). m

Using the rotor’s n-fold rotational symmetry it can be shown that:
LEMMA 2.14. The rotor R can be given a regular boundary orientation.

The above two lemmas imply that any pair of rotants with trivial stators
may be viewed as a regularly oriented pair. In particular we can consider
R; and R to be a pair of regularly oriented rotants. By Traczyk’s theorem
they have the same Conway polynomial and (more specifically) the same
determinant

(2.15) Dr, = Vg, (~2i) = V (~2i) = Dp.

This completes the proof of Theorem 2.9 because regularly oriented pairs
of rotors have the same writhe and because (2.8) holds.
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3. Determinant. Throughout this section we will assume that the ro-
tors have no closed components. We shall prove the following theorem.

THEOREM 3.1. If L, L' are a pair of nonregularly oriented rotants and
their rotors have no closed components, then Dy = Dyp,.

The determinant of a link L can be calculated from (2.8). In the previous
section we showed that rotant pairs with no orientation have the same Kaufl-
man bracket evaluation (2.10). Now we will look at the coefficient (—d) 3% (L)
in (2.8). For this we will need our links’ orientation again.

Since a rotant L is the union RU.S of the rotor and stator, both of which
have disjoint sets of crossings, the writhe may be written as the sum
(3.2) w(L) =w(RUS) =w(R) + w(S).

Of course w(S) is the same for both L and L' = R’ U S, so we need only
investigate w(R) and w(R').

It is easy to see that if there is an arc in R connecting two points, say
p and ¢, then there is also an arc connecting their images p’ and ¢’ under
flipping. Of course, the same is true for R’. So we have two arcs which trade
ends in the transition R <> R, unless p = ¢’ (and so ¢ = p’), in which case
there is one arc. The former pair of arcs will be called symmetric partners
or m-arcs (m for moving), while the latter arc is called an s-arc (for stable).

ExAMPLE. Figure 3.1 shows three arcs in a 6-rotor. The respective ends
of the arcs p1g1 and poge are symmetric, so they are m-arcs. The arc r173 is
an s-arc.

1 T2

a1 q2

Fig. 3.1

It can be shown that:

LEMMA 3.4. (i) If n is odd, then the rotor has exactly one s-arc.
(ii) If n is even, then the rotor either has two s-arcs, or none at all. =

Generally, an m-arc keeps or changes its orientation in R’ iff the same is
true for the orientation of the arc’s symmetric partner, so the orientations of
m-arcs are changed in pairs. S-arcs always have their orientation changed.
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Now we return to the writhe. In the rotor we will look at six types of arc
crossings:

(1) two s-arcs,

(2) two m-arcs which do not change orientation,

(3) two m-arcs which both change orientation,

(4) an s-arc and an m-arc which changes orientation,

(5) two m-arcs, only one of which changes orientation,

(6) an s-arc and an m-arc which does not change orientation.

Since s-arcs always change their orientation, crossings of type (1)-(4) have
the same signs in both links of a rotant pair, and so do not change the
writhe. In case (5) the sum of the signs of the crossings involved does change.
However, this change is obviously compensated by the change for symmetric
partners of the relevant arcs. Case (6) is similar. This proves

LEMMA 3.5. If L, L' are a pair of oriented rotants and their rotors have
no closed components, then w(L) = w(L’).

Proof of Theorem 3.1. Using formula (2.8), Theorem 2.9 and Lemma 3.4
we obtain

Dy, = (=d)7"NL)(d) = (=d) " NL)(d) = Dy w

4. Closed components. In this section we will look at the determinants
of rotant pairs which have closed components in their rotors. The following
example shows that the assumption about closed components in Theorem 3.1
is necessary.

Fig. 4.1

ExaMmpLE 4.1. Figure 4.1 shows diagrams of a pair of rotants. If un-
oriented, they would represent the same link, so (L) = (L'). But with ori-
entation the rotor contains one pair of m-arcs, one s-arc, and one closed
component, which after flipping looks as if it had changed its orientation.



190 A. H. PIWOCKI

Since the stator controls only the orientations of the rotor arcs, and not those
of the closed components, the latter retain their orientations after flipping.
Below we calculate the determinants of the two links:

w(l)=4—-4=0 = Dp=(-d)L)(d) = —30i,
w(l')=2—-6=—-4 = Dy = (=d)"2( L' )(d) = 30i.
We see that Dy, = —Dy, # Dy.

As was shown in Example 4.1, pairs of oriented rotants do not always
have identical determinants. Looking at (2.8) and (2.10) we see that the
problem must be in the writhe of the rotors with closed components. With
d = +v/i we have
(4.2) (=d)* = -1,

(4.3) (—a)® =1,
so we look at w(R) and w(R') mod 8.

It can be shown that the determinants of pairs of rotants of even order
coincide, while this is not necessarily so for rotants of odd order. This is a
consequence of Lemma 3.3. All is not lost, though. It turns out that if the
determinants do not coincide, then they only differ in sign. If w(|JO;,1)

is the sum of all crossings between the rotor’s single s-arc [; and closed
components O;, then

Dy {—1 if w(JO;,11) =4 (mod8y),
Dy |41 fwlJOi 1) =0 (mod8).

(4.4)

This gives us
THEOREM 4.5. If L, L' are a pair of oriented rotants of order n then:

(i) if 2| n then Dy = Dy,
(ii) if 2tn and the rotors have no closed components then Dy, = Dy,
(iii) Zf 2J(n and ’LU(U OZ‘, ll) =0 (mod8) then DL = DL/,

(iv) if 2¢n and w(J Oi, 1) =4 (mod8) then Dy, = —Dy,.

5. Appendix. In this paper we relied on Traczyk’s theorem [Tr|, which
states that pairs of regularly oriented rotants have the same Conway poly-
nomial. This brings up a natural question: can Traczyk’s theorem be gener-
alized to cover nonregularly oriented rotants? The following example gives a
negative answer.

ExampPLE 5.1. The following figures show a pair of nonregularly ori-
ented 6-rotants. The first five nonzero coefficients (mod 256) of the Conway
polynomial for L are as follows:

—32 — 223 +132° + 327 — 242°,
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while the coefficients for L’ are
—3z — 1423 — 142° — 3127 — 7127,

This proves that nonregularly oriented rotant pairs may have different Con-
way polynomials.

Recently Dabkowski, Ishiwata, Przytycki and Yasuhara discovered a pair
of biregularly oriented rotants with different Conway polynomials (see
[DIPY]), which further proves that Traczyk’s theorem cannot be improved.
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