VOL. 108

2007

NO. 2

ON THE CRITICAL NEUMANN PROBLEM WITH LOWER ORDER PERTURBATIONS

ΒY

JAN CHABROWSKI (Brisbane) and BERNHARD RUF (Milano)

Abstract. We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent and lower order perturbations in bounded domains. Solutions are obtained by min max methods based on a topological linking. A nonlinear perturbation of a lower order is allowed to interfere with the spectrum of the operator $-\Delta$ with the Neumann boundary conditions.

1. Introduction. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a smooth boundary $\partial \Omega$. In this paper we investigate the nonlinear Neumann problem

(1.1)
$$\begin{cases} -\Delta u = |u|^{2^* - 2} u + g(x, u) & \text{in } \Omega, \\ \frac{\partial}{\partial \nu} u(x) = 0 & \text{on } \partial \Omega, \end{cases}$$

where $2^* = 2N/(N-2)$, $N \ge 3$, is a critical Sobolev exponent.

It is assumed that the nonlinearity g(x, u) satisfies the following three basic assumptions:

$$\begin{array}{l} (g_1) \ g: \ \Omega \times \mathbb{R}^N \to \mathbb{R} \ \text{is a Carathéodory function and for every } M > 0, \\ & \sup\{|g(x,s)|; \ x \in \Omega, \ |s| \leq M\} < \infty, \end{array}$$

 (g_2) there exist constants $a_1, a_2 > 0$ and $\sigma \in (0, 2)$ such that

$$\frac{1}{2}g(x,s)s - G(x,s) \ge -a_1 - a_2|s|^{\sigma}$$

for all $(x,s) \in \Omega \times \mathbb{R}$, where $G(x,t) = \int_0^t g(x,s) \, ds$,

(g₃) $\lim_{|s|\to\infty} \frac{g(x,s)}{|s|^{2^*-1}} = 0$ uniformly in x a.e. in Ω .

Further assumptions will be given in the next sections.

The Neumann problem in bounded domains with g(x, u) = 0 has an extensive literature [1]–[3], [5], [16], [19]–[24].

²⁰⁰⁰ Mathematics Subject Classification: 35B33, 35J65, 35Q55.

Key words and phrases: Neumann problem, critical Sobolev exponent, topological linking.

To motivate our approach we briefly recall the main results for the Neumann problem in the bounded domain Ω ,

(1.2)
$$\begin{cases} -\Delta u + \lambda u = |u|^{2^* - 2} u & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega, u > 0 \text{ on } \Omega. \end{cases}$$

First existence results for problem (1.2) are due to Adimurthi–Mancini [1], Adimurthi–Yadava [6] and X. J. Wang [19]. Solutions to problem (1.2) were obtained as the minimizers of the variational problem

(1.3)
$$m_{\lambda} = \inf_{u \in H^{1}(\Omega) - \{0\}} \frac{\int_{\Omega} (|\nabla u|^{2} + \lambda u^{2}) dx}{(\int_{\Omega} |u|^{2^{*}} dx)^{2/2^{*}}} \\ = \inf_{u \in H^{1}(\Omega), \int_{\Omega} |u|^{2^{*}} dx = 1} \int_{\Omega} (|\nabla u|^{2} + \lambda u^{2}) dx.$$

The existence of a minimizer for m_{λ} is closely related to the best Sobolev constant S. We recall that

$$S = \inf_{u \in D^{1,2}(\mathbb{R}^N) - \{0\}} \frac{\int_{\mathbb{R}^N} |\nabla u|^2 \, dx}{(\int_{\mathbb{R}^N} |u|^{2^*} dx)^{2/2^*}},$$

where $D^{1,2}(\mathbb{R}^N)$ is the Sobolev space defined by

$$D^{1,2}(\mathbb{R}^N) = \{u; \nabla u \in L^2(\mathbb{R}^N), u \in L^{2^*}(\mathbb{R}^N)\}.$$

The best Sobolev constant is achieved by

$$U(x) = \frac{c_N}{(N(N-2) + |x|^2)^{(N-2)/2}},$$

where $c_N > 0$ is a constant depending on N. The function U, called an *instanton*, satisfies the equation

$$-\Delta U = U^{2^* - 1} \quad \text{in } \mathbb{R}^N.$$

We have $\int_{\mathbb{R}^N} |\nabla U|^2 dx = \int_{\mathbb{R}^N} U^{2^*} dx = S^{N/2}$. For future use we introduce the notation

$$U_{\varepsilon,y}(x) = \varepsilon^{-(N-2)/2} U\left(\frac{x-y}{\varepsilon}\right), \quad y \in \mathbb{R}^N, \, \varepsilon > 0.$$

If y = 0 we write $U_{\varepsilon} = U_{\varepsilon,0}$.

The main step in establishing the existence of a minimizer for m_{λ} is to show that

(1.4)
$$m_{\lambda} < \frac{S}{2^{2/N}}.$$

This can be established by testing m_{λ} with $U_{\varepsilon,y}$, where $y \in \partial \Omega$ is a point where $\partial \Omega$ has the mean curvature H(y) > 0. Solutions of the minimization problem (1.3) are called the *least energy solutions*. These results were extended to the critical Neumann problems involving indefinite weights in the papers [8] and [9].

226

In [10] the above existence result has been extended to (1.1) with $g(x, u) = \lambda u$ and with λ lying between two consecutive eigenvalues of the operator $-\Delta$ with the Neumann boundary conditions. The purpose of this paper is to obtain the existence of solutions with a more general perturbation g(x, u). In our approach we use a modified topological linking from the paper [12]. In the proofs of our existence results the use of the instanton plays an essential role. In particular, we use some asymptotic properties of $U_{\varepsilon,y}$ with $y \in \partial \Omega$ in terms of the mean curvature of $\partial \Omega$ at y. The influence of the mean curvature on the existence of a solution disappears in the case of the problem involving an indefinite weight in a situation where its global maximum is larger than its maximum on the boundary $\partial \Omega$. It is worth mentioning that the resonance case for the dimensions N = 3, 4 requires a condition which controls the growth of the perturbation g in the vicinity of at least one boundary point with a positive mean curvature.

The paper is organized as follows. In Section 2 we find the energy level below which the Palais–Smale condition holds for the variational functional associated with problem (1.1). In Sections 3 and 4 we consider nonresonance and resonance cases. Section 5 is devoted to the critical Neumann problem with an indefinite weight.

Throughout this paper we denote strong convergence by " \rightarrow " and weak convergence by " \rightarrow ". The norms in the Lebesgue spaces $L^p(\Omega)$ are denoted by $\|\cdot\|_p$. By $H^1(\Omega)$ we denote a standard Sobolev space on Ω equipped with the norm

$$||u||^2 = \int_{\Omega} (|\nabla u|^2 + u^2) \, dx.$$

2. Palais–Smale condition. We set

$$J_{\lambda}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \int_{\Omega} G(x, u) \, dx - \frac{1}{2^*} \int_{\Omega} |u|^{2^*} dx$$

where $G(x, u) = \int_0^u g(x, s) \, ds$. It is easy to check that J_λ is a C^1 -functional on $H^1(\Omega)$. Solutions of problem (1.1) are sought as critical points of J_λ through the topological linking. The important step in this approach is to find the energy level of the functional J_λ below which the Palais–Smale condition holds.

We recall that the functional J_{λ} satisfies the Palais–Smale condition at level c ((PS)_c condition for short) if each sequence $\{u_n\} \subset H^1(\Omega)$ such that (*) $J_{\lambda}(u_n) \to c$ and (**) $J'_{\lambda}(u_n) \to 0$ in $H^{-1}(\Omega)$ is relatively compact in $H^1(\Omega)$. Any sequence $\{u_n\} \subset H^1(\Omega)$ satisfying (*) and (**) is called a Palais–Smale sequence for J_{λ} at level c (a (PS)_c sequence for short). PROPOSITION 2.1. Suppose $(g_1)-(g_3)$ hold. Let $\{u_n\} \subset H^1(\Omega)$ be a $(PS)_c$ sequence for J_{λ} . Then, up to a subsequence, $u_n \rightharpoonup u$ in $H^1(\Omega)$ and $J'_{\lambda}(u) = 0$. The weak limit u is nonzero if $g(x,0) \neq 0$ or g(x,0) = 0 and $c \in (0, S^{N/2}/2N)$.

Proof. First, we show that $\{u_n\}$ is bounded in $H^1(\Omega)$. For large n we have

$$c + 1 + ||u_n|| \ge J(u_n) - \frac{1}{2} \langle J'(u_n), u_n \rangle$$

= $\frac{1}{N} \int_{\Omega} |u_n|^{2^*} dx + \int_{\Omega} \left[\frac{1}{2} g(x, u_n) u_n - G(x, u_n) \right] dx$

It follows from (g_2) that

(2.1)
$$c+1+||u_n|| \ge \frac{1}{N} \int_{\Omega} |u_n|^{2^*} dx - a_1|\Omega| - a_2 \int_{\Omega} |u_n|^{\sigma} dx.$$

In what follows we always denote by C a positive constant independent of n which may change from one inequality to another. Using the Young inequality we obtain

$$\int_{\Omega} |u_n|^{\sigma} \, dx \le \kappa \int_{\Omega} |u_n|^{2^*} dx + C$$

for every $\kappa > 0$, where C > 0 is a constant depending on κ and $|\Omega|$. Inserting this inequality with $\kappa = 1/2Na_2$ into (2.1) we obtain

(2.2)
$$\int_{\Omega} |u_n|^{2^*} dx \le C(||u_n||+1).$$

We now use the equality

(2.3)
$$J_{\lambda}(u_n) - \frac{1}{2^*} \langle J'_{\lambda}(u_n), u_n \rangle \\ = \frac{1}{N} \int_{\Omega} |\nabla u_n|^2 \, dx + \int_{\Omega} \left[\frac{1}{2^*} g(x, u_n) u_n - G(x, u_n) \right] dx.$$

This combined with (g_1) and (g_3) gives the estimate

$$\int_{\Omega} |\nabla u_n|^2 dx \le C \Big(\int_{\Omega} |u_n|^{2^*} dx + ||u_n|| + 1 \Big).$$

Then it follows from (2.2) that

(2.4)
$$\int_{\Omega} |\nabla u_n|^2 \, dx \le C(||u_n||+1).$$

We now consider the decomposition $H^1(\Omega) = \mathbb{R} \oplus V$, where $V = \{v \in H^1(\Omega); \int_{\Omega} v \, dx = 0\}$. We equip $H^1(\Omega)$ with the equivalent norm

$$||u||_V = \left(\int_{\Omega} |\nabla v|^2 \, dx + t^2\right)^{1/2}$$

for u = t + v, $v \in V$, $t \in \mathbb{R}$. Using this decomposition we can write $u_n = v_n + t_n$, $v_n \in V$, $t_n \in \mathbb{R}$. We claim that $\{t_n\}$ is bounded. Arguing by contradiction we may assume $t_n \to \infty$. The case $t_n \to -\infty$ is similar. We put $w_n = v_n/t_n$. It then follows from (2.4) that

$$\int_{\Omega} |\nabla w_n|^2 \, dx \le C \Big[t_n^{-2} + t_n^{-1} \Big(\int_{\Omega} (|\nabla w_n|^2 \, dx + 1) \Big)^{1/2} \Big].$$

This yields $\int_{\Omega} |\nabla w_n|^2 dx \to 0$ and hence $w_n \to 0$ in $L^p(\Omega)$ for every $2 \leq p \leq 2^*$. (Here we used the fact that the space V equipped with the norm $(\int_{\Omega} |\nabla v|^2 dx)^{1/2}$ is continuously embedded into $L^p(\Omega)$ for $2 \leq p \leq 2^*$.) We now observe that

$$t_n^{-2^*} \left[J_{\lambda}(u_n) - \frac{1}{2} \langle J_{\lambda}'(u_n), u_n \rangle \right]$$

= $\frac{1}{N} \int_{\Omega} |w_n + 1|^{2^*} dx + t_n^{-2^*} \left(\frac{1}{2} \int_{\Omega} g(x, u_n) u_n \, dx - \int_{\Omega} G(x, u_n) \, dx \right).$

Using (g_3) and letting $n \to \infty$ in this equality we get $N^{-1} \int_{\Omega} dx = 0$. This is a contradiction.

Since $\{t_n\}$ is bounded, we deduce from (2.4) that $\{|\nabla v_n|\}$ is bounded in $L^2(\Omega)$. Consequently, $\{u_n\}$ is bounded in $H^1(\Omega)$. We may assume that $u_n \to 0$ in $H^1(\Omega)$. Since g is subcritical it is clear that $J'_{\lambda}(u) = 0$. If we have $g(x,0) \neq 0$, then $u \neq 0$. So it remains to consider the case g(x,0) = 0 on Ω . Arguing by contradiction assume $u \equiv 0$ on Ω . Hence

$$\int_{\Omega} |\nabla u_n|^2 dx = \int_{\Omega} |u_n|^{2^*} dx + o(1)$$

and also

$$\int_{\Omega} |\nabla u_n|^2 \, dx \to Nc \quad \text{and} \quad \int_{\Omega} |u_n|^{2*} \, dx \to Nc.$$

We now apply the following inequality: there exists a constant $A(\Omega) > 0$ such that

$$\frac{S}{2^{2/N}} \left(\int_{\Omega} |u|^{2^*} dx \right)^{2/2^*} \le \int_{\Omega} |\nabla u|^2 dx + A(\Omega) \left(\int_{\Omega} |u|^{2N/(N-1)} dx \right)^{(N-1)/N}$$

for every $u \in H^1(\Omega)$ (see [25]). We use this inequality with $u = u_n$. Since $2N/(N-1) < 2^*$, letting $n \to \infty$ we deduce that $S(Nc)^{2/2^*}/2^{2/N} \leq Nc$. This yields $S^{N/2}/2N \leq c$, which is a contradiction.

3. Existence theorem for the nonresonance case near 0. We denote by $0 = \lambda_1 < \lambda_2 < \cdots$ the sequence of the eigenvalues for $-\Delta$ with Neumann boundary conditions. The first eigenvalue is simple and has constant eigenfunctions.

We assume that there exist $k \in \mathbb{N}$, $\delta > 0$, $\sigma > 0$ and $\mu \in (\lambda_k, \lambda_{k+1})$ such that

$$(g_4) \ \frac{1}{2}(\lambda_k + \sigma)s^2 \le G(x, s) \le \frac{1}{2}\mu s^2 \text{ for a.e. } x \in \Omega \text{ and all } |s| \le \delta, (g_5) \ G(x, s) \ge \frac{1}{2}(\lambda_k + \sigma)s^2 - \frac{1}{2^*}|s|^{2^*} \text{ for a.e. } x \in \Omega \text{ and all } s \in \mathbb{R}.$$

For simplicity we assume $0 \in \partial \Omega$. For every $m \in \mathbb{N}$ we define the function $\zeta_m : \Omega \to \mathbb{R}$ by

$$\zeta_m(x) = \begin{cases} 0 & \text{if } x \in \Omega \cap B(0, 1/m), \\ m|x| - 1 & \text{if } x \in A_m = \Omega \cap (B(0, 2/m) - B(0, 1/m)), \\ 1 & \text{if } x \in \Omega - B(0, 2/m). \end{cases}$$

Let $\{e_i\}$ be the orthonormal sequence of eigenfunctions for $-\Delta$ with Neumann boundary conditions. We put $e_i^m = \zeta_m e_i$, $i = 1, 2, \ldots$, and define the spaces H^- , H_m^- and H^+ by

$$\begin{split} H^{-} &= \operatorname{span}\{e_{i}; i = 1, \dots, k\}, \quad H_{m}^{-} = \operatorname{span}\{e_{i}^{m}; i = 1, \dots, k\}, \quad H^{+} = (H^{-})^{\perp}, \\ &\text{so that } H^{1}(\Omega) = H^{-} \oplus H^{+}. \end{split}$$

Lemma 3.1, below, is a modification of Lemma 2 from [12].

LEMMA 3.1. We have
$$e_i^m \to e_i$$
 in $H^1(\Omega)$ as $m \to \infty$ and

$$\max_{u \in H_m^-, \int_{\Omega} u^2 \, dx = 1} \|\nabla u\|_2^2 \le \lambda_k + c_k m^{2-N},$$

where $c_k > 0$ are constants independent of m.

Proof. Following the proof of Lemma 2 from [12] we have

$$\int_{\Omega} |\nabla (e_i^m - e_i)|^2 \, dx \le C[\|e_i\|_{\infty}^2 m^{2-N} + \|\nabla e_i\|_{\infty} \|e_i\|_{\infty} m^{1-N} + \|\nabla e_i\|_{\infty}^2 m^{-N}]$$

and similarly

$$\int_{\Omega} |e_i^m - e_i|^2 \, dx = \int_{\Omega} (\zeta_m - 1)^2 e_i^2 \, dx \le C ||e_i||_{\infty}^2 m^{-N}$$

These two estimates give the first part of our assertion. We now use the notation $\partial B = \{u \in H^1(\Omega); \int_{\Omega} u^2 dx = 1\}$. If $v \in H^- \cap \partial B$, then $v = \sum_{j=1}^k \alpha_j e_j$ with $\sum_{j=1}^k \alpha_j^2 = 1$. If $v \in H^- \cap \partial B$, then $v_m = \zeta_m v = \sum_{j=1}^k \alpha_j \zeta_m e_j = \sum_{j=1}^k \alpha_j e_j^m$. Hence $v_m \in H_m^-$. Let $w \in H_m^- \cap \partial B$. Then $w = \sum_j \beta_j^m e_j^m$ and

$$\|w\|_{2}^{2} = \int_{\Omega} \sum_{j,k} \beta_{j}^{m} \beta_{k}^{m} e_{j}^{m} e_{k}^{m} dx$$
$$= \int_{\Omega} \beta_{j}^{m} \beta_{k}^{m} e_{j} e_{k} dx + \int_{\Omega} \sum_{j,k} \beta_{j}^{m} \beta_{k}^{m} (e_{j}^{m} e_{k}^{m} - e_{j}^{m} e_{k} + e_{j}^{m} e_{k} - e_{j} e_{k}) dx.$$

Using the Hölder inequality and the estimates from the first part of the proof we derive

$$1 + O(m^{-N}) = ||w||_2^2 = \int_{\Omega} \sum_j (\beta_j^m)^2 e_j^2 \, dx = \sum_j (\beta_j^m)^2.$$

We put

$$\gamma_j^m = \frac{\beta_j^m}{(\sum_j (\beta_j^m)^2)^{1/2}}.$$

Then we have

$$\|w\|^{2} = \left\|\sum_{j} \beta_{j}^{m} e_{j}^{m}\right\|^{2} = \left\|\sum_{j} \beta_{j}^{m} e_{j}\right\|^{2} + O(m^{-N+2})$$
$$= (1 + O(m^{-N})) \left\|\sum_{j} \gamma_{j}^{m} e_{j}\right\|^{2} + O(m^{-N+2})$$
$$\leq \lambda_{k} (1 + O(m^{-N})) + O(m^{-N+2})$$

and the second assertion follows. \blacksquare

In order to apply the Rabinowitz linking theorem [18] we use a family of modified instantons. Let $\eta \in C_c^{\infty}(B(0, 1/m))$ be such that $\eta(x) = 1$ in $B(0, 1/2m), 0 \leq \eta \leq 1$ in B(0, 1/m) and $\|\nabla \eta\|_{\infty} \leq 4m$. We put $\overline{U}_{\varepsilon}(x) =$ $\eta(x)U_{\varepsilon}(x)$. We need the following properties of $\overline{U}_{\varepsilon}$:

$$(3.1) \qquad \frac{\int_{\Omega} |\nabla \overline{U}_{\varepsilon}|^2 \, dx}{(\int_{\Omega} \overline{U}_{\varepsilon}^{2^*} dx)^{2/2^*}} \leq \begin{cases} 2^{-2/N} S - A_N H(0) \varepsilon \log(1/\varepsilon) + O(\varepsilon) & \text{if } N = 3, \\ 2^{-2/N} S - A_N H(0) \varepsilon + O(\varepsilon^2 \log(1/\varepsilon)) & \text{if } N = 4, \\ 2^{-2/N} S - A_N H(0) \varepsilon + O(\varepsilon^2) & \text{if } N \ge 5, \end{cases}$$

where H(0) denotes the mean curvature of $\partial \Omega$ at 0 and $A_N > 0$ is a constant depending on N. We will also need asymptotic expansions of integrals of $\overline{U}_{\varepsilon}$. These expansions are taken from [19]. We recall that $0 \in \partial \Omega$. The boundary $\partial \Omega$ near 0 can be represented by

$$x_N = h(x') = \frac{1}{2} \sum_{i=1}^{N-1} \alpha_i^2 x_i^2 + o(|x'|^2) = g(x') + o(|x'|^2) \quad \text{for } x' \in D(0, \delta)$$

for some $\delta > 0$, where $D(0, \delta) = B(0, \delta) \cap (x_N = 0)$ and α_i are the principal curvatures of $\partial \Omega$ at 0. For $N \ge 4$ we have

(3.2)
$$\overline{K}_1(\varepsilon) = \int_{\Omega} |\nabla \overline{U}_{\varepsilon}|^2 \, dx = \frac{1}{2} \, K_1 - I(\varepsilon) + o(\varepsilon),$$

(3.3)
$$\overline{K}_2(\varepsilon) = \int_{\Omega} \overline{U}_{\varepsilon}^{2^*} dx = \frac{1}{2} K_2 - \Pi(\varepsilon) + o(\varepsilon),$$

where

$$K_{1} = (N-2)^{2} \int_{\mathbb{R}^{N}} \frac{|x|^{2}}{(1+|x|^{2})^{N}} dx, \quad K_{2} = \int_{\mathbb{R}^{N}} \frac{dx}{(1+|x|^{2})^{N}},$$
$$\lim_{\varepsilon \to 0} \varepsilon^{-1} I(\varepsilon) = (N-2)^{2} \int_{\mathbb{R}^{N-1}} \frac{|y'|^{2} g(y')}{(1+|y'|^{2})^{N}} dy',$$
$$\lim_{\varepsilon \to 0} \varepsilon^{-1} \Pi(\varepsilon) = \int_{\mathbb{R}^{N-1}} \frac{g(y')}{(1+|y'|^{2})^{N}} dy'.$$

For N = 3 we have

(3.4)
$$\overline{K}_1(\varepsilon) \le \frac{1}{2} K_1 - C_0 \varepsilon |\log \varepsilon| + o(\varepsilon)$$

for some constant $C_{\circ} > 0$ and

(3.5)
$$\overline{K}_2(\varepsilon) \ge \frac{1}{2} K_2 - O(\varepsilon)$$

We now define

$$Q_m^{\varepsilon} = (B(0,R) \cap H_m^-) \oplus [0,R] \{ \overline{U}_{\varepsilon} \}.$$

THEOREM 3.2. Let $N \geq 3$. Suppose that $G(x,s) \geq 0$ for $(x,s) \in \Omega \times \mathbb{R}$ and that $(g_1), \ldots, (g_5)$ hold. Then problem (1.1) has a solution.

Proof. STEP 1. We show that there exist constants $\alpha > 0$ and $\varrho > 0$ such that

$$J(u) \ge \alpha$$
 for every $u \in \partial B(0, \varrho) \cap H^+$.

This follows from assumptions (g_3) and (g_4) . Indeed, we have

$$J(u) \ge \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{\mu}{2} \int_{\Omega} u^2 \, dx - A \int_{\Omega} |u|^{2^*} dx$$

for some constant A > 0. We choose $\varepsilon > 0$ so that $\mu + \varepsilon < \lambda_{k+1}$. From the above inequality we derive

$$\begin{split} J(u) &\geq \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{\varepsilon}{2} \int_{\Omega} u^2 \, dx - \frac{\mu + \varepsilon}{2} \int_{\Omega} u^2 \, dx - A \int_{\Omega} |u|^{2^*} dx \\ &\geq \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx + \frac{\varepsilon}{2} \int_{\Omega} u^2 \, dx - \frac{\mu + \varepsilon}{2\lambda_{k+1}} \int_{\Omega} |\nabla u|^2 \, dx - A \int_{\Omega} |u|^{2^*} dx \\ &= \left(\frac{1}{2} - \frac{\mu + \varepsilon}{2\lambda_{k+1}}\right) \int_{\Omega} |\nabla u|^2 \, dx + \frac{\varepsilon}{2} \int_{\Omega} u^2 \, dx - A \int_{\Omega} |u|^{2^*} dx. \end{split}$$

Letting

$$C_1 = \min\left(\frac{1}{2} - \frac{\mu + \varepsilon}{2\lambda_{k+1}}, \frac{\varepsilon}{2}\right)$$

and using the Sobolev inequality we derive the estimate

$$J(u) \ge c_1 \|u\|^2 - \bar{A} \|u\|^2$$

for some constant $\overline{A} > 0$. The claim follows by taking $\rho > 0$ sufficiently small.

STEP 2. There exists $R > \rho$ such that

(3.6)
$$\max_{v \in \partial Q_m^{\varepsilon}} J(v) \le \omega_m \quad \text{with } \omega_m \to 0 \text{ as } m \to \infty.$$

It follows from (g_5) that for $u \in H_m^-$ we have

$$J(v) \leq \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx - \frac{1}{2} (\lambda_k + \sigma) \int_{\Omega} v^2 dx$$

$$\leq \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx + \varepsilon \int_{\Omega} v^2 dx - \left(\frac{1}{2} + \frac{\sigma}{4\lambda_k}\right) \int_{\Omega} |\nabla v|^2 dx - \left(\varepsilon + \frac{\sigma}{4}\right) \int_{\Omega} v^2 dx.$$

Then, if $v \in \partial B(0, R) \cap H_m^-$, we have $J(v) \to -\infty$ as $R \to \infty$. The above inequality also shows that $\lim_{m\to\infty} \max_{v\in H_m^-} J(v) = 0$. Since $G(x, u) \ge 0$ we have

$$J(r\overline{U}_{\varepsilon}) \leq \frac{r^2}{2} \int_{\Omega} |\nabla \overline{U}_{\varepsilon}|^2 \, dx - \frac{r^{2^*}}{2^*} \int_{\Omega} \overline{U}_{\varepsilon}^{2^*} dx.$$

Hence by (3.2) and (3.3) ((3.4) and (3.5) if N = 3) we get $J(r\overline{U}_{\varepsilon}) < 0$ for r = R sufficiently large. We now observe that if $u \in H_m^- \oplus R\{\overline{U}_{\varepsilon}\}$, then $u = w + R\overline{U}_{\varepsilon}$ and $\operatorname{supp} w \cap \operatorname{supp} \overline{U}_{\varepsilon} = \emptyset$. Consequently, $J(u) \leq \omega_m$ for $u \in H_m^- \oplus R\{\overline{U}_{\varepsilon}\}$. Since $\max_{0 < r < R} J(r\overline{U}_{\varepsilon}) < \infty$ we see that if $u \in (\partial B(0, R) \cap H_m^-) \oplus [0, R]\{\overline{U}_{\varepsilon}\}$, then $J(u) \leq 0$ for R sufficiently large. This justifies our claim.

Step 3. We put

$$\Gamma = \{ h \in C(\overline{Q}_m^{\varepsilon}, H^1(\Omega)); h(v) = v \text{ for every } v \in \partial Q_m^{\varepsilon} \}$$

and

$$c = \inf_{h \in \Gamma} \max_{v \in Q_m^{\varepsilon}} J(h(v)).$$

This energy level of J generates the $(PS)_c$ sequence. To complete the proof we must show that

(3.7)
$$c < \frac{1}{2N} S^{N/2}.$$

Since id $\in \Gamma$, we have $c \leq \max_{v \in Q_m^{\varepsilon}} J(v)$. Therefore it is sufficient to show that

(3.8)
$$\sup_{v \in Q_m^{\varepsilon}} J(v) < \frac{1}{2N} S^{N/2}$$

for $\varepsilon > 0$ sufficiently small. We argue by contradiction. Assume

(3.9)
$$\sup_{v \in Q_m^\varepsilon} J(v) \ge \frac{1}{2N} S^{N/2}$$

for every $\varepsilon > 0$. Since the set $\{v \in Q_m^{\varepsilon}; J(v) \ge 0\}$ is compact for every $\varepsilon > 0$, there exist $w_{\varepsilon} \in H_m^-$ and $t_{\varepsilon} \ge 0$ such that

(3.10)
$$J(v_{\varepsilon}) = \max_{v \in Q_m^{\varepsilon}} J(v) \ge \frac{1}{2N} S^{N/2}, \quad v_{\varepsilon} = w_{\varepsilon} + t_{\varepsilon} \overline{U}_{\varepsilon}.$$

This means that

(3.11)
$$\frac{1}{2} \int_{\Omega} |\nabla v_{\varepsilon}|^2 dx - \int_{\Omega} G(x, v_{\varepsilon}) dx - \frac{1}{2^*} \int_{\Omega} |v_{\varepsilon}|^{2^*} dx \ge \frac{1}{2N} S^{N/2}.$$

It follows from Lemma 3.1 and (g_5) that

$$J(w_{\varepsilon}) \leq \frac{\lambda_k + c_k m^{2-N}}{2} \int_{\Omega} w_{\varepsilon}^2 dx - \int_{\Omega} G(x, w_{\varepsilon}) dx - \frac{1}{2^*} \int_{\Omega} |w_{\varepsilon}|^{2^*} dx$$
$$\leq \frac{c_k m^{2-N} - \sigma}{2} \int_{\Omega} w_{\varepsilon}^2 dx.$$

We now choose m so large that

$$c_k m^{2-N} \le \sigma.$$

With this choice of m we get $J(w_{\varepsilon}) < 0$. Consequently, since $G \ge 0$, we derive from (3.1) that

$$J(v_{\varepsilon}) = J(w_{\varepsilon}) + J(t_{\varepsilon}U_{\varepsilon}) \le J(t_{\varepsilon}U_{\varepsilon})$$

$$\le \max_{t \ge 0} J(t\overline{U}_{\varepsilon}) = \frac{1}{N} \left(\frac{\int_{\Omega} |\nabla \overline{U}_{\varepsilon}|^2 dx}{(\int_{\Omega} \overline{U}_{\varepsilon}^{2^*} dx)^{(N-2)/N}} \right)^{N/2} < \frac{1}{2N} S^{N/2}$$

for $\varepsilon>0$ small enough. This contradicts inequality (3.11) and so the proof is complete. \blacksquare

4. Resonance near the origin. In the case of the resonance near the origin we replace assumptions (g_4) and (g_5) by

 (g_6) there exist constants $\delta > 0$ and $\mu \in (\lambda_k, \lambda_{k+1})$ such that

$$\frac{1}{2}\lambda_k s^2 \le G(x,s) \le \frac{1}{2}\,\mu s^2$$

for a.e. $x \in \Omega$ and every $|s| \leq \delta$, (g₇) there exists $\sigma \in (0, 1/2^*)$ such that

$$G(x,s) \ge \frac{1}{2} \lambda_k s^2 - \left(\frac{1}{2^*} - \sigma\right) |s|^{2^*}$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$.

We need asymptotic estimates for $\|\nabla \overline{U}_{\varepsilon}\|_{2}^{2}$ and $\|\overline{U}_{\varepsilon}\|_{2^{*}}^{2^{*}}$ emphasizing the dependence on m.

LEMMA 4.1. For $N \ge 5$ we have

(4.1)
$$\overline{K}_1(\varepsilon) = \int_{\Omega} |\nabla(\eta U_{\varepsilon})|^2 dx \le \frac{K_1}{2} - I(\varepsilon) + o(\varepsilon) + C\varepsilon^{N-2}m^N,$$

(4.2)
$$\overline{K}_2(\varepsilon) = \int_{\Omega} |\eta U_{\varepsilon}|^{2^*} dx = \frac{K_2}{2} - \Pi(\varepsilon) + o(\varepsilon) + \varepsilon^N m^{2N}$$

Proof. To show (4.1) we write

(4.3)
$$\overline{K}_{1}(\varepsilon) = \int_{\Omega} |\nabla \eta U_{\varepsilon} + \eta \nabla U_{\varepsilon}|^{2} dx$$
$$\leq \int_{\Omega} \eta^{2} |\nabla U_{\varepsilon}|^{2} dx + \int_{\Omega} (\eta^{2} + |\nabla \eta|^{2}) U_{\varepsilon}^{2} dx + \int_{\Omega} |\nabla \eta|^{2} |\nabla U_{\varepsilon}|^{2} dx.$$

We now estimate terms on the right-hand side of this inequality. It follows from (3.2) (see also [19]) that

T 7

$$\int_{\Omega} \eta^2 |\nabla U_{\varepsilon}|^2 \, dx \le \int_{\Omega} |\nabla U_{\varepsilon}|^2 \, dx = \frac{K_1}{2} - I(\varepsilon) + o(\varepsilon)$$

and

(4.4)
$$\int_{\Omega} \eta^2 U_{\varepsilon}^2 \, dx \leq \int_{\Omega} U_{\varepsilon}^2 \, dx = O(\varepsilon^2)$$

We also have

$$(4.5) \qquad \int_{\Omega} |\nabla \eta|^2 |\nabla U_{\varepsilon}|^2 \, dx \le Cm^2 \int_{\Omega \cap (1/2m \le |x| \le 1/m)} \frac{|x|^2 \varepsilon^{N-2}}{(\varepsilon^2 + |x|^2)^N} \, dx$$
$$\le Cm^2 \varepsilon^{N-2} \int_{1/2m}^{1/m} r^{1-N} \, dr = C\varepsilon^{N-2} m^N$$

and

(4.6)
$$\int_{\Omega} |\nabla \eta|^2 U_{\varepsilon}^2 \, dx = \int_{\Omega \cap (1/2m \le |x| \le 1/m)} \frac{m^2 \varepsilon^{N-2}}{(\varepsilon^2 + |x|^2)^{N-2}} \, dx \le C \varepsilon^{N-2} m^{N-2}.$$

Combining (4.3)–(4.6) we get (4.1). In a similar way we derive (4.2). \blacksquare

THEOREM 4.2. Let $N \geq 5$. Suppose (g_1) , (g_2) , (g_3) , (g_6) and (g_7) hold. Then problem (1.1) admits a solution.

Proof. We argue as in the proof of Theorem 3.2. The main point is to establish inequality (3.7). Arguing by contradiction we assume (3.9). We now stress the dependence on m which comes from the definition of η . Therefore for large m and all $\varepsilon > 0$ there exist $v_{\varepsilon}^m \in Q_m^{\varepsilon}, v_{\varepsilon}^m = w_{\varepsilon}^m + t_{\varepsilon}^m \overline{U}_{\varepsilon}^m$, such that

$$\frac{1}{2} \int_{\Omega} |\nabla v_{\varepsilon}^{m}|^{2} dx - \int_{\Omega} G(x, v_{\varepsilon}^{m}) dx - \frac{1}{2^{*}} \int_{\Omega} |v_{\varepsilon}^{m}|^{2^{*}} dx \ge \frac{1}{2N} S^{N/2}.$$

As in [12] we show that $\{t_{\varepsilon}^m\}$ and $\{w_{\varepsilon}^m\}$ satisfy $t_{\varepsilon}^m \ge C_1$ and $\|w_{\varepsilon}^m\| \le C_2$ for some constants $C_1 > 0$ and $C_2 > 0$ independent of ε and m provided $\varepsilon = m^{-(N+2)}$. With this choice of ε we have $\varepsilon^{N-2}m^{2N} \to 0$ as $m \to \infty$ (see Lemma 4.1). Also, with this choice we have

$$\frac{\varepsilon^{N-2}m^{2N}}{m^{-(N+2)}} = m^{-N^2+3N+6} \to 0 \quad \text{as } m \to \infty$$

and

$$\frac{m^{(-N^2+2N)/2}}{m^{-(N+2)}} = m^{(-N^2+4N+4)/2} \to 0 \quad \text{as } m \to \infty$$

if $N \geq 5$. From Lemma 3.1 and assumption (g_7) (see also the proof of Lemma 8 in [12]) we derive the estimate

$$J(w_{\varepsilon}^m) \le Cm^{-N(N-2)/2}$$
 for large m .

We now observe that the quantities $\varepsilon^{N-2}m^{2N}$ and $m^{(-N^2+2N)/2}$ behave as $o(\varepsilon)$ and can be incorporated into the $o(\varepsilon)$ appearing in the asymptotic estimates for $\overline{K}_1(\varepsilon)$ and $\overline{K}_2(\varepsilon)$ (see (3.2) and (3.3)). Hence

$$J(v_{\varepsilon}^{m}) = J(w_{\varepsilon}^{m}) + J(t_{\varepsilon}^{m}U_{\varepsilon}^{m}) \leq Cm^{(-N^{2}+2N)/2} + \frac{(t_{\varepsilon}^{m})^{2}}{2} \overline{K}_{1}(\varepsilon) - \frac{(t_{\varepsilon}^{m})^{2^{*}}}{2^{*}} \overline{K}_{2}(\varepsilon)$$
$$\leq \max_{t \geq 0} \left(\frac{t^{2}}{2} \overline{K}_{1}(\varepsilon) - \frac{t^{2^{*}}}{2^{*}} \overline{K}_{2}(\varepsilon)\right) < \frac{S^{N/2}}{2N}$$

for sufficiently small ε . This contradiction completes the proof.

To extend Theorem 4.2 to the cases N = 3, 4 we additionally assume that

(A) if N = 3, then

$$\lim_{s \to \infty} \frac{G(x,s)}{s^{17/3}} = \infty$$

uniformly in $x \in B(0, \rho_{\circ}) \cap \Omega$, and if N = 4, then

$$\lim_{s \to \infty} \frac{G(x,s)}{s^{11/3}} = \infty$$

uniformly in $x \in B(0, \rho_{\circ}) \cap \Omega$, for some $\rho_{\circ} > 0$.

Notice that if N = 3, then $17/3 < 2^*|_{N=3} = 6$, and if N = 4, then $11/3 < 2^*|_{N=4} = 4$. Therefore under this assumption G has a subcritical growth at infinity.

THEOREM 4.3. Let N = 3, 4 and suppose that the assumptions of Theorem 4.2 hold. If, additionally, assumption (A) is satisfied, then problem (1.1) has a solution.

Proof. CASE N = 3. In this case, using the argument from the proof of Lemma 4.1, we have

$$\overline{K}_1(\varepsilon) \leq \frac{1}{2} K_1 - C_{\circ}\varepsilon |\log \varepsilon| + o(\varepsilon) + C\varepsilon m^3, \quad \overline{K}_2(\varepsilon) \geq \frac{1}{2} \overline{K}_2 - O(\varepsilon) + \varepsilon^3 m^6.$$

We choose $\varepsilon = m^{-8}$. Then $\varepsilon m^3 \to 0$ and $\varepsilon^3 m^6 \to 0$ as $m \to \infty$ and we can show that $t_{\varepsilon}^m \geq C > 0$. We now modify the argument from [12] (see Lemmas 5 and 6 there). Assume that $\varepsilon \leq \varrho_{\circ}$. Let h be the function giving a local representation of $\partial \Omega$ around 0. By taking ε smaller if necessary we

derive from assumption (A) that

$$(\varepsilon^2 - |x'|^2)^{1/2} - h(x') \ge C\varepsilon$$

for $x' \in D(0, \varepsilon/2)$, where C > 0 is a constant independent of ε . We then have

$$\begin{split} &\int_{\Omega} G(x, t_{\varepsilon}^{m} \overline{U}_{\varepsilon}^{n}) \, dx \\ &\geq \int_{D(0, \varepsilon/2)} dx' \int_{h(x')}^{(\varepsilon^{2} - |x'|^{2})^{1/2}} \left(\frac{\varepsilon^{1/2}}{(\varepsilon^{2} + |x|^{2})^{1/2}} \right)^{17/3} \phi\left(c \frac{\varepsilon^{1/2}}{(\varepsilon^{2} + |x|^{2})^{1/2}} \right) dx_{3} \\ &\geq C \int_{D(0, \varepsilon/2)} \varepsilon(\varepsilon^{-1/2})^{17/3} \phi(c\varepsilon^{-1/2}) \, dx' = C \int_{0}^{\varepsilon/2} \varepsilon(\varepsilon^{-1/2})^{17/3} r \, dr \, \phi(c\varepsilon^{-1/2}) \\ &= C \varepsilon^{1/6} \phi(c\varepsilon^{-1/2}), \end{split}$$

where $D(0, \varepsilon/2) = B(0, \varepsilon/2) \cap (x_3 = 0)$ and ϕ is an increasing function such that $\phi(s) \to \infty$ as $s \to \infty$. Letting $\varepsilon = m^{-8}$ we get

$$\int_{\Omega} G(x, t_{\varepsilon}^m \overline{U}_{\varepsilon}^m) \, dx \ge Cm^{-4/3} \phi(cm^4).$$

We put

$$\widetilde{K}_1(\varepsilon) = \frac{1}{2} K_1 - C_0 \varepsilon |\log \varepsilon| + o(\varepsilon), \quad \widetilde{K}_2(\varepsilon) = \frac{1}{2} K_2 - O(\varepsilon)$$

and

$$A(\varepsilon) = \max_{t \ge 0} \left(\frac{t^2}{2} \widetilde{K}_1(\varepsilon) - \frac{t^{2^*}}{2^*} \widetilde{K}_2(\varepsilon) \right).$$

If $\varepsilon = m^{-8}$, then $A(\varepsilon) < S^{3/2}/6$ for large m. As in [12] we can show that $J(w_{\varepsilon}^m) \leq Cm^{-3/2}$ for large m.

Hence

$$\begin{split} J(v_{\varepsilon}^{m}) &= J(w_{\varepsilon}^{m}) + J(t_{\varepsilon}^{m}\overline{U}_{\varepsilon}^{m}) \leq Cm^{-3/2} + Cm^{-5} \\ &\quad - Cm^{-4/3}\phi(cm^{4}) + A(m^{-1/8}) \\ &= A(m^{-1/8}) + m^{-4/3}(Cm^{-3/2+4/3} + Cm^{-5+4/3} - C\phi(cm^{4})). \end{split}$$

Since $\phi(cm^4) \to \infty$, the last expression becomes negative for large m. Hence $J(v_{\varepsilon}^m) < S^{3/2}/6$ for large m and we have arrived at a contradiction.

CASE N = 4. In this case we have

$$\overline{K}_1(\varepsilon) = \frac{1}{2} K_1 - I(\varepsilon) + o(\varepsilon) + c\varepsilon^2 m^4, \quad \overline{K}_2(\varepsilon) = \frac{1}{2} K_2 - \Pi(\varepsilon) + o(\varepsilon) + \varepsilon^4 m^8.$$

We commence with the estimate

$$\begin{split} &\int_{\Omega} G(x, t_{\varepsilon}^{m} \overline{U}_{\varepsilon}^{m}) \, dx \\ &\geq C \int_{D(0, \varepsilon/2)} dx' \int_{h(x')}^{(\varepsilon^{2} - |x'|^{2})^{1/2}} \left(\frac{\varepsilon}{(\varepsilon^{2} + |x|^{2})}\right)^{11/3} \phi\left(c \frac{\varepsilon}{(\varepsilon^{2} + |x|^{2})}\right) \, dx_{4} \\ &\geq C \int_{D(0, \varepsilon/2)} \varepsilon(\varepsilon^{-1})^{11/3} \phi(c\varepsilon^{-1}) \, dx' = C\varepsilon^{1/3} \phi(c\varepsilon^{-1}). \end{split}$$

We choose $\varepsilon = m^{-6}$. Then $\varepsilon^2 m^4 \to 0$ and $\varepsilon^4 m^8 \to 0$ as $m \to \infty$. Let

$$\widetilde{K}_1(\varepsilon) = \frac{1}{2}K_1 - I(\varepsilon) + o(\varepsilon), \quad \widetilde{K}_2(\varepsilon) = \frac{1}{2}K_2 - \Pi(\varepsilon) + o(\varepsilon)$$

and put

$$A(\varepsilon) = \max_{t \ge 0} \left(\frac{t^2}{2} \widetilde{K}_1(\varepsilon) - \frac{t^4}{4} \widetilde{K}_2(\varepsilon) \right).$$

If $\varepsilon = m^{-6}$, then $A(\varepsilon) < S^2/8$ for m large. We also have $J(w_{\varepsilon}^m) \le Cm^{-4}$ for m large.

Thus

$$J(w_{\varepsilon}^{m} + t_{\varepsilon}^{m}\overline{U}_{\varepsilon}^{m}) \leq A(m^{-4}) + Cm^{-4} - Cm^{-2}\phi(cm^{6})$$

= $A(m^{-6}) + Cm^{-2}(m^{-2} - \phi(cm^{6})) < S^{2}/8,$

which is impossible. \blacksquare

5. Extension to a problem with weight. In this section we will examine the effect of a weight in the critical nonlinearity on the existence of a solution. We consider the problem

(5.1)
$$\begin{cases} -\Delta u = Q(x)|u|^{2^*-2}u + g(x,u) & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$

We assume that Q(x) is continuous and positive on $\overline{\Omega}$. Solutions to problem (5.1) will be obtained as critical points of the functional

$$I(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx - \frac{1}{2^*} \int_{\Omega} Q(x) |u|^{2^*} \, dx - \int_{\Omega} G(x, u) \, dx.$$

Obviously, I is a C¹-functional on $H^1(\Omega)$. Let $Q_m = \max_{x \in \partial \Omega} Q(x)$ and $Q_M = \max_{x \in \overline{\Omega}} Q(x)$.

PROPOSITION 5.1. Suppose that $(g_1)-(g_3)$ hold. Let $\{u_m\} \subset H^1(\Omega)$ be a (PS)_c sequence for I. Then, up to a subsequence, $u_m \rightharpoonup u$ in $H^1(\Omega)$ and I'(u) = 0. The weak limit u is nonzero if $g(x,0) \neq 0$ or g(x,0) = 0 and $c \in (0, s_{\infty})$ with

$$s_{\infty} = \min\left(\frac{S^{N/2}}{2NQ_{\rm m}^{(N-2)/2}}, \frac{S^{N/2}}{NQ_{\rm M}^{(N-2)/2}}\right)$$

Proof. As in Proposition 2.1 we show that $\{u_m\}$ is bounded in $H^1(\Omega)$. Hence, up to a subsequence, $u_m \rightharpoonup u$ in $H^1(\Omega)$. Consider the case g(x, 0) = 0and $c \in (0, s_\infty)$. Arguing by contradiction assume u = 0. By P.-L. Lions' concentration-compactness principle [15] there exist at most countable collections of points $\{x_j\} \subset \overline{\Omega}, j \in J$, and positive numbers $\{\mu_j\}, \{\nu_j\}, j \in J$, such that

$$|u_m|^{2^*} \rightharpoonup d\nu = \sum_{j \in J} \nu_j \delta_{x_j}, \quad |\nabla u|^2 \, dx \rightharpoonup d\mu = \sum_{j \in J} \mu_j \delta_{x_j}$$

in the sense of measures. Moreover,

$$\frac{S}{2^{2/N}}\nu_i^{2/2^*} \le \mu_i \quad \text{if } x_i \in \partial \Omega \quad \text{and} \quad S\nu_i^{2/2^*} \le \mu_i \quad \text{if } x_i \in \Omega.$$

We also have $\mu_i = Q(x_i)\nu_i$. We write

(5.2)
$$c + o(1) = I(u_m) - \frac{1}{2} \langle I'(u_m), u_m \rangle$$

$$= \frac{1}{N} \int_{\Omega} Q(x) |u_m|^{2^*} dx + \int_{\Omega} \left(\frac{1}{2} g(x, u_m) u_m - G(x, u_m) \right) dx.$$

Since g is subcritical, letting $m \to \infty$ in (5.2), we get

$$c = \frac{1}{N} \sum_{j \in J} Q(x_j) \nu_j.$$

If $x_i \in \partial \Omega$ and $\nu_i > 0$, then $\nu_i \geq S^{N/2}/2Q(x_i)^{N/2}$. If $x_i \in \Omega$ and $\nu_i > 0$, then $\nu_i \geq S^{N/2}/Q(x_i)^{N/2}$. Assuming that one of the ν_i 's is not 0 we derive that

$$c \ge \begin{cases} \frac{1}{2N} \frac{S^{N/2}}{Q(x_i)^{(N-2)/2}} \ge \frac{1}{2N} \frac{S^{N/2}}{Q_{\mathrm{m}}^{(N-2)/2}} & \text{if } x_i \in \partial \Omega\\ \frac{1}{N} \frac{S^{N/2}}{Q(x_i)^{(N-2)/2}} \ge \frac{1}{N} \frac{S^{N/2}}{Q_{\mathrm{M}}^{(N-2)/2}} & \text{if } x_i \in \Omega. \end{cases}$$

In both cases we have a contradiction. Hence $\nu_i = \mu_i = 0$ for all $i \in J$. This means that $u_m \to 0$ in $H^1(\Omega)$. This yields $I(u_m) \to 0$, which is again a contradiction.

CASE $Q_{\rm M} > 2^{2/(N-2)}Q_{\rm m}$. In this case we have

$$s_{\infty} = \frac{S^{N/2}}{NQ_{\rm M}^{(N-2)/2}}$$

First we consider the nonresonance case. Without loss of generality we may assume that $0 \in \Omega$ and $Q(0) = Q_{\rm M}$. We replace assumption (g_5) by

 (g_5') there exist constants $\sigma>0$ and $0<\alpha\leq Q_*=\min_{x\in \bar\Omega}Q(x)$ such that

$$G(x,s) \ge \frac{1}{2} (\lambda_k + \sigma) s^2 - \frac{\alpha}{2^*} |s|^2$$

for all $(x, s) \in \Omega \times \mathbb{R}$.

THEOREM 5.2. Let $Q_{\rm M} > 2^{2/(N-2)}Q_{\rm m}$. Suppose that assumptions $(g_1)-(g_4)$ and (g_5') hold. Moreover assume that

$$(5.3) |Q(x) - Q(0)| = \begin{cases} O(|x|^{(1-\alpha)(N-2)}) & \text{for some } \alpha \in (0, \frac{N-4}{2(N-2)}) \\ & \text{if } N \ge 5, \\ O(|x|^2) & \text{if } N = 4, \\ O(|x|) & \text{if } N = 3. \end{cases}$$

If N = 3, additionally assume that

$$\lim_{s \to \infty} \frac{G(x,s)}{s^4} = \infty$$

uniformly in $B(0, \rho_{\circ}) \subset \Omega$ for some $\rho_{\circ} > 0$. Then problem (5.1) has a solution.

Proof. It is clear that the assumptions of the linking theorem [18] are satisfied. We choose m so large that

$$(5.4) c_k m^{2-N} < \sigma.$$

We must show that

(5.5)
$$\sup_{v \in Q_m^{\varepsilon}} I(v) < \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}}.$$

Arguing by contradiction assume that for every $\varepsilon > 0$ we have

$$\sup_{v \in Q_m^{\varepsilon}} I(v) \ge \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}}.$$

As the set $\{v \in Q_m^{\varepsilon}; I(v) \ge 0\}$ is compact, the above supremum is attained. Therefore for every $\varepsilon > 0$ there exist $w_{\varepsilon} \in H_m^-$ and $t_{\varepsilon} > 0$ such that

$$I(v_{\varepsilon}) = \max_{v \in Q_m^{\varepsilon}} I(v) \ge \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}}, \quad v_{\varepsilon} = w_{\varepsilon} + t_{\varepsilon}\overline{U}_{\varepsilon},$$

that is,

(5.6)
$$\frac{1}{2} \int_{\Omega} |\nabla v_{\varepsilon}|^2 dx - \int_{\Omega} G(x, v_{\varepsilon}) dx - \frac{1}{2^*} \int_{\Omega} Q(x) |v_{\varepsilon}|^{2^*} dx \ge \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}}.$$

Since $\{t_{\varepsilon}\}$ and $\{w_{\varepsilon}\}$ are bounded we may assume that $t_{\varepsilon} \to t_{\circ} \ge 0$ and $w_{\varepsilon} \to w_{\circ} \in H_m^-$. By (5.4), (g'_5) and Lemma 3.1, we have $I(w_{\varepsilon}) \le 0$. We now show that $t_{\circ} = Q_{\mathrm{M}}^{-(N-2)/4}$. Since G is subcritical we have

$$\lim_{\varepsilon \to 0} \int_{\Omega} G(x, t_{\varepsilon} \overline{U}_{\varepsilon}) \, dx = 0.$$

Since $\|\nabla \overline{U}_{\varepsilon}\|_{2}^{2} = S^{N/2} + O(\varepsilon^{N-2})$ and $\|\overline{U}_{\varepsilon}\|_{2^{*}}^{2^{*}} = S^{N/2} + O(\varepsilon^{N})$, and since $\lim_{\varepsilon \to 0} \int_{\Omega} Q(x) |\overline{U}_{\varepsilon}|^{2^{*}} dx = S^{N/2} Q_{\mathrm{M}}$, we get

$$I(t_{\varepsilon}\overline{U}_{\varepsilon}) \leq S^{N/2} \left(\frac{t_{\circ}^2}{2} - \frac{Q_{\mathrm{M}}t_{\circ}^{2^*}}{2^*}\right) + o(1) = S^{N/2} \Phi(t_{\circ}) + o(1).$$

We now observe that $\Phi(t)$ attains its maximum at $\overline{t} = Q_{\mathrm{M}}^{-(N-2)/4}$ and $\Phi(\overline{t}) = N^{-1}Q_{\mathrm{M}}^{-(N-2)/2}$. So if $t_{\circ} \neq \overline{t}$ we get a contradiction. We only consider the case $N \geq 5$. To proceed further we need an analogue of Lemma 4 from [12]. We claim that

$$\frac{t_{\varepsilon}^2}{2} \int\limits_{\Omega} |\nabla \overline{U}_{\varepsilon}|^2 \, dx - \frac{t_{\varepsilon}^{2^*}}{2^*} \int\limits_{\Omega} Q(x) |\overline{U}_{\varepsilon}|^{2^*} dx \leq \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}} + O(\varepsilon^l),$$

where $l = (1 - \alpha)(N - 2)$. The following inequalities are easy to verify:

$$\frac{t_{\varepsilon}^2}{2} \|\nabla \overline{U}_{\varepsilon}\|_2^2 \le \frac{S^{N/2}}{2Q_{\mathrm{M}}^{(N-2)/2}} + \frac{t_{\varepsilon}^2 - Q_{\mathrm{M}}^{-(N-2)/2}}{2} S^{N/2} + O(\varepsilon^{N-2})$$

and

$$\begin{split} \frac{t_{\varepsilon}^{2^*}}{2^*} & \int_{\Omega} Q(x) |\overline{U}_{\varepsilon}|^{2^*} dx \\ & \geq \frac{Q_{\mathrm{M}} S^{N/2} t_{\varepsilon}^{2^*}}{2^*} + \frac{t_{\varepsilon}^{2^*}}{2^*} \int_{\Omega} (Q(x) - Q(0)) |\overline{U}_{\varepsilon}|^{2^*} dx + O(\varepsilon^N) \\ & = \frac{Q_{\mathrm{M}} S^{N/2}}{2^*} Q_{\mathrm{M}}^{-N/2} + \frac{Q_{\mathrm{M}} S^{N/2}}{2^*} (t_{\varepsilon}^{2^*} - Q_{\mathrm{M}}^{-N/2}) + O(\varepsilon^N) + O(\varepsilon^l). \end{split}$$

Hence

$$\begin{split} \frac{t_{\varepsilon}^{2}}{2} & \int_{\Omega} |\nabla \overline{U}_{\varepsilon}|^{2} \, dx - \frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\Omega} Q |\overline{U}_{\varepsilon}|^{2^{*}} \, dx \\ & \leq \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}} + S^{N/2} \frac{t_{\varepsilon}^{2} - Q_{\mathrm{M}}^{-(N-2)/2}}{2} - \frac{Q_{\mathrm{M}}S^{N/2}}{2^{*}} \left(t_{\varepsilon}^{2^{*}} - Q_{\mathrm{M}}^{-N/2}\right) + O(\varepsilon^{l}). \end{split}$$

Since

$$\max_{x \ge 0} \left[\frac{x^2 - Q_{\rm M}^{-(N-2)/2}}{2} - \frac{Q_{\rm M}}{2^*} \left(x^{2^*} - Q_{\rm M}^{-N/2} \right) \right] = 0,$$

the claim follows. To estimate $\int_{\Omega} G(x, t_{\varepsilon} \overline{U}_{\varepsilon}) dx$ we use Lemma 5 from [12] (formula (24)). We then have

$$\begin{split} I(v_{\varepsilon}) &= I(w_{\varepsilon}) + I(t_{\varepsilon}U_{\varepsilon}) \\ &\leq \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}} + O(\varepsilon^{(1-\alpha)(N-2)}) - c\varepsilon^{N-2}\varepsilon^{-(N-4)/2} \\ &= \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}} + \varepsilon^{(1-\alpha)(N-2)}(C - c\varepsilon^{\alpha(N-2)-(N-4)/2}) < \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}} \end{split}$$

for $\varepsilon > 0$ small enough and we have arrived at a contradiction.

REMARK 5.3. The flatness condition (5.3) can be replaced by the condition |Q(x) - Q(0)| = O(|x|) (locally Lipschitz around 0) if we add the assumption

$$\lim_{s \to \infty} \frac{G(x,s)}{s^{2(N-1)/(N-2)}} = \infty$$

uniformly in $x \in B(0, \rho_{\circ})$ (if N = 3, we get assumption (8) from [12]).

Indeed, we only need to observe that Lemmas 5 and 6 from [12] give

$$\begin{split} \int_{\Omega} G(x, t_{\varepsilon} \overline{U}_{\varepsilon}) \, dx &\geq C \int_{0}^{\varepsilon} \left(\frac{\varepsilon^{\frac{N-2}{2}}}{(\varepsilon^{2}+r^{2})^{\frac{N-2}{2}}} \right)^{\frac{2(N-1)}{N-2}} \tau \left(c \frac{\varepsilon^{\frac{N-2}{2}}}{(\varepsilon^{2}+r^{2})^{\frac{N-2}{2}}} \right) r^{N-1} \, dr \\ &\geq C (\varepsilon^{-\frac{N-2}{2}})^{\frac{2(N-1)}{N-2}} \tau (c\varepsilon^{-\frac{N-2}{2}}) r^{N} |_{0}^{\varepsilon} = C \varepsilon^{-(N-1)} \varepsilon^{N} \tau (c\varepsilon^{-\frac{N-2}{2}}) \\ &= C \varepsilon \tau (c\varepsilon^{-\frac{N-2}{2}}), \end{split}$$

with $\tau(s) \to \infty$ as $s \to \infty$.

We now turn our attention to the resonance case. Assumption (g_7) is replaced by

 (g'_7) there exists $\alpha \in (0, Q_*)$ such that

$$G(x,s) \ge \frac{\lambda_k s^2}{2} - \frac{\alpha}{2^*} |s|^{2^*}$$

for a.e. $x \in \Omega$ and every $s \in \mathbb{R}$.

THEOREM 5.4. Let $Q_{\rm M} > 2^{2/(N-2)}Q_{\rm m}$ and let $Q(x_{\circ}) = Q_{\rm M}$ with $x_{\circ} \in \Omega$ and

(5.7) $|Q(x) - Q(x_{\circ})| = O(|x - x_{\circ}|^{l})$

for x close to x_{\circ} and l > N(N-2)/(N+2). Furthermore, assume that

$$(g_1)-(g_3), (g_6) \text{ and } (g'_7) \text{ hold and that}$$

$$(5.8) \qquad \lim_{s \to \infty} \frac{G(x,s)}{s^{8N/(N^2-2)}} = \infty \quad uniformly \text{ in } x \in B(0, \varrho_\circ) \subset \Omega$$

for some $\rho_{\circ} > 0$. Then problem (5.1) has a solution.

Proof. For simplicity we assume that $x_{\circ} = 0$. We proceed as in Theorem 5.2. By Lemma 6 in [12] we have

$$\|\nabla \overline{U}_{\varepsilon}^{m}\|_{2}^{2} = S^{N/2} + O((\varepsilon m)^{N-2}), \quad \|\overline{U}_{\varepsilon}^{m}\|_{2^{*}}^{2^{*}} = S^{N/2} + O((\varepsilon m)^{N}).$$

Repeating the argument from the proof of Theorem 5.2 we show that $t_{\varepsilon} = Q_{\rm M}^{-(N-2)/4}$. We now notice that assumption (5.7) yields

$$\begin{split} \int_{\Omega} Q(x) (\overline{U}_{\varepsilon}^m)^{2^*} dx &= \int_{\Omega} Q_{\mathrm{M}} (\overline{U}_{\varepsilon}^m)^{2^*} dx + \int_{\Omega} (Q(x) - Q_{\mathrm{M}}) (\overline{U}_{\varepsilon}^m)^{2^*} dx \\ &= Q_{\mathrm{M}} S^{N/2} + O(\varepsilon^l) + O((\varepsilon m)^N). \end{split}$$

Hence

$$\begin{split} & \frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\Omega} Q(x) (\overline{U}_{\varepsilon}^{m})^{2^{*}} dx \\ & = \frac{Q_{\mathrm{M}} S^{N/2}}{2^{*}} Q_{\mathrm{M}}^{-N/2} + Q_{\mathrm{M}} \frac{S^{N/2}}{2^{*}} \left(t_{\varepsilon}^{2^{*}} - Q_{\mathrm{M}}^{-N/2}\right) + O((\varepsilon m)^{N}) + O(\varepsilon^{l}). \end{split}$$

Similarly we have

$$\frac{t_{\varepsilon}^2}{2} \int_{\Omega} |\nabla \overline{U}_{\varepsilon}|^2 \, dx = \frac{S^{N/2}}{2Q_{\rm M}^{(N-2)/2}} + S^{N/2} \frac{t_{\varepsilon}^2 - Q_{\rm M}^{-(N-2)/2}}{2} + O((\varepsilon m)^{N-2}).$$

The last two relations yield

$$(5.9) \quad \frac{t_{\varepsilon}^2}{2} \int_{\Omega} |\nabla \overline{U}_{\varepsilon}|^2 dx - \frac{t_{\varepsilon}^{2^*}}{2^*} \int_{\Omega} Q(\overline{U}_{\varepsilon}^m)^{2^*} dx$$
$$\leq \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}} + S^{N/2} \frac{t_{\varepsilon}^2 - Q_{\mathrm{M}}^{-(N-2)/2}}{2}$$
$$- \frac{Q_{\mathrm{M}} S^{N/2}}{2^*} (t_{\varepsilon}^{2^*} - Q_{\mathrm{M}}^{-N/2}) + O(\varepsilon^l) + O((\varepsilon m)^{N-2}).$$

We now observe that the function

$$f(x) = x^2 - Q_{\rm M}^{-(N-2)/2} - \frac{Q_{\rm M}(N-2)}{N} \left(x^{2^*} - Q_{\rm M}^{-N/2}\right)$$

has $\max_{x\geq 0} f(x) = 0$. Therefore we derive from (5.9) that

$$(5.10) \quad \frac{t_{\varepsilon}^{2}}{2} \int_{\Omega} |\nabla \overline{U}_{\varepsilon}^{m}|^{2} dx - \frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\Omega} Q(\overline{U}_{\varepsilon}^{m})^{2^{*}} dx \\ \leq \frac{S^{N/2}}{NQ_{\mathrm{M}}^{(N-2)/2}} + O(\varepsilon^{l}) + O((\varepsilon m)^{N-2}).$$

Assumption (g'_7) allows us to establish the analogue of Lemma 8 from [12], that is, the estimate

(5.11)
$$I(w_{\varepsilon}^m) \le Cm^{-N(N-2)/2}$$

for large m. It is easy to show that assumption (5.8) implies the estimate (see Lemma 6 in [12])

(5.12)
$$\int_{\Omega} G(x, \overline{U}_{\varepsilon}^{m}) \, dx \ge \varepsilon^{N(N-2)/(N+2)} \phi(\varepsilon^{-1}),$$

where $\phi(\varepsilon^{-1}) \to \infty$ as $\varepsilon \to 0$. Combining (5.9)–(5.12) we have

$$I(v_{\varepsilon}^{m}) = I(w_{\varepsilon}^{m}) + I(t_{\varepsilon}^{m}\overline{U}_{\varepsilon}^{m})$$

$$\leq c_{k}m^{-N(N-2)/2} + \frac{S^{N/2}}{NQ_{M}^{(N-2)/2}} + O(\varepsilon^{l})$$

$$+ O((\varepsilon m)^{N-2}) - c\varepsilon^{N(N-2)/(N+2)}\phi(\varepsilon^{-1})$$

We now put $\varepsilon = m^{-(N+2)/2}$. With this choice of ε the above relation becomes

$$\begin{split} I(v_{\varepsilon}^{m}) &\leq c_{k}m^{-N(N-2)/2} + \frac{S^{N/2}}{NQ_{M}^{(N-2)/2}} + O(\varepsilon^{-l(N+2)/2}) \\ &+ O(m^{-(N^{2}-4)/2+N-2}) - cm^{-N(N-2)/2}\phi(cm^{(N+2)/2}) \\ &= \frac{S^{N/2}}{NQ_{M}^{(N-2)/2}} + m^{-N(N-2)/2}[c_{k} + O(m^{-l(N+2)/2+N(N-2)/2}) \\ &+ O(m^{(-N^{2}+2N)/2+N(N-2)/2}) - c\phi(m^{(N+2)/2})]. \end{split}$$

Since -l(N+2)/2 + N(N-2)/2 < 0, we see that

$$I(v\varepsilon^m) < \frac{1}{N} \frac{S^{N/2}}{Q_{\mathrm{M}}^{(N-2)/2}}$$

for large m. This contradiction completes the proof.

CASE $Q_{\rm M} \leq 2^{2/(N-2)}Q_{\rm m}$. In this case we have

$$s_{\infty} = \frac{S^{N/2}}{2NQ_{\rm m}^{(N-2)/2}}.$$

We now formulate two theorems dealing with nonresonance and resonance cases.

THEOREM 5.5. Let $Q_{\rm M} \leq 2^{2/(N-2)}Q_{\rm m}$ and $Q(x_{\circ}) = Q_{\rm m}$ with $x_{\circ} \in \partial \Omega$ and $H(x_{\circ}) > 0$. Suppose that $(g_1)-(g_4)$ and (g'_5) hold and that

(5.13)
$$|Q(x) - Q(x_{\circ})| = o(|x - x_{\circ}|)$$

for x close to x_{\circ} . Then problem (5.1) has a solution.

THEOREM 5.6. Let $N \geq 5$, $Q_{\rm M} \leq 2^{2/(N-2)}Q_{\rm m}$ and $Q_{\rm m} = Q(x_{\rm o})$ with $x_{\rm o} \in \partial \Omega$ and $H(x_{\rm o}) > 0$. Suppose that assumptions $(g_1)-(g_3)$, (g_6) and (g'_7) hold. Moreover assume that (5.13) is satisfied. Then problem (5.1) admits a solution.

The proofs of these two theorems are similar to those of Theorems 3.2, 4.2 and are omitted.

REFERENCES

- Adimurthi and G. Mancini, *The Neumann problem for elliptic equations with critical nonlinearity*, in: Nonlinear Analysis, Scuola Norm. Sup. Pisa, 1991, 9–25.
- [2] —, —, Geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1–18.
- [3] Adimurthi, G. Mancini and S. L. Yadava, The role of the mean curvature in semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations 20 (1995), 591–631.
- [4] Adimurthi, F. Pacella and S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal. 113 (1993), 318–350.
- [5] —, —, —, Characterization of concentration points and L[∞]-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Differential Integral Equations 8 (1995), 31–68.
- [6] Adimurthi and S. L. Yadava, Critical Sobolev exponent problem in \mathbb{R}^N $(N \ge 4)$ with Neumann boundary condition, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 275–284.
- [7] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.
- [8] J. Chabrowski, Mean curvature and least energy solutions for the critical Neumann problem with weight, Boll. Un. Mat. Ital. (8) 5-B (2002), 715–733.
- J. Chabrowski and M. Willem, Least energy solutions of a critical Neumann problem with a weight, Calc. Var. Partial Differential Equations 15 (2002), 421–431.
- [10] J. Chabrowski and S. S. Yan, On the nonlinear Neumann problem at resonance with critical Sobolev nonlinearity, Colloq. Math. 94 (2000), 141–150.
- [11] J. F. Escobar, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Comm. Pure Appl. Math. 40 (1987), 623–657.
- [12] F. Gazzola and B. Ruf, Lower-order perturbations of critical growth nonlinearities in semilinear elliptic equations, Adv. Differential Equations 2 (1997), 555–572.
- [13] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, 2nd ed., Springer, Berlin, 1983.
- [14] C. Gui and N. Ghoussoub, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z. 229 (1998), 443–474.
- [15] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Rev. Math. Iberoamer. 1 (1985), no. 1, 145–201, and no. 2, 45–120.
- [16] W. M. Ni, X. B. Pan and L. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J. 67 (1992), 1–20.

[17]	W. M. Ni and L. Takagi, On the sha	pe of least-energy solutions to a semilinear
f 1	Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819–851.	
[18]	P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications	
	to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc.,	
	Providence, RI, 1986.	
[19]	X. J. Wang, Neumann problems of se	milinear elliptic equations involving critical
	Sobolev exponents, J. Differential Equa	tions 93 (1991) , 283–310.
[20]	Z. Q. Wang, Remarks on a nonlinear Neumann problem with critical exponent,	
	Houston J. Math. 20 (1994), 671–694.	
[21]	-, High-energy and multi-peaked solutions for a nonlinear Neumann problem with	
	critical exponents, Proc. Roy. Soc. Edinburgh Sect. A 125 (1995), 1003–1029.	
[22]	-, The effect of the domain geometry on the number of positive solutions of Neu-	
	mann problems with critical exponents, Differential Integral Equations 8 (1995),	
	1533 - 1554.	
[23]	—, Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in summetric domains, Nonlinear Anal, 27 (1996), 1281–1306.	
[24]	Existence and nonexistence of G-least energy solutions for a nonlinear Neumann	
	problem with critical exponent in symmetric domains, Calc. Var. Partial Differential	
	Equations 8 (1999), 109–122.	
[25]	M. Zhu, Sharp Sobolev inequalities with interior norms, ibid. 8 (1999), 27–43.	
Department of Mathematics		Dipartimento di Matematica "F. Enriques"
University of Queensland Univers		Università degli Studi di Milano
St. Lucia 4072, Qld, Australia Via Saldini 50		
E-mail: jhc@maths.uq.edu.au 20133 Milano, Italy		
		E-mail: Bernhard.Ruf@mat.unimi.it

J. CHABROWSKI AND B. RUF

246

Received 18 June 2006; revised 9 October 2006

(4769)