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SOME RESULTS ON THE KERNELS OF HIGHER DERIVATIONS
ON k[x, y] AND k(x, y)

BY

NORIHIRO WADA (Niigata)

Abstract. Let k be a field and k[x, y] the polynomial ring in two variables over k.
Let D be a higher k-derivation on k[x, y] and D the extension of D on k(x, y). We prove
that if the kernel of D is not equal to k, then the kernel of D is equal to the quotient field
of the kernel of D.

1. Introduction. Let R be an integral domain with unit and let A be
an R-algebra. We recall some definitions on higher derivations. A higher
R-derivation on A is a set of R-linear endomorphisms D = {Dn}∞n=0 of A
satisfying the following conditions:

(i) D0 is the identity map of A.
(ii) For any a, b ∈ A and for any integer n ≥ 0,

Dn(ab) =
∑

i+j=n

Di(a)Dj(b).

For a higher R-derivation D = {Dn}∞n=0 on A, we define the kernel AD

of D by {a ∈ A | Dn(a) = 0 for any n ≥ 1} =
⋂

n≥1 KerDn. It is then
clear that AD is an R-subalgebra of A. A higher R-derivation D is said to
be non-trivial if AD 6= A.

Derivations and their kernels play an important role and have been stud-
ied by many mathematicians (see, e.g., [3] for an excellent account). Recently,
several mathematicians have studied the kernels of higher derivations. For
example, Kojima and the author [2] proved that the kernel of a non-trivial
higher R-derivation D on the polynomial ring R[x, y] in two variables over
an HCF-ring R has the form R[h] for some h ∈ R[x, y] (cf. [2, Theorem 1.1]).
When R is a field of characteristic zero and D is an R-derivation, Nowicki
and Nagata [4] obtained a similar result (cf. [4, Theorem 2.8]).

In this paper, we study relations between the quotient field of the kernel
of a higher k-derivation on k[x, y] and the kernel of D, the extension of D
on k(x, y) (for the precise definition, see Section 2). The main result is the
following theorem.
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Theorem 1.1. Let k be a field and let D be a higher k-derivation on the
polynomial ring A = k[x, y] in two variables over k. Let D be the extension
of D on the quotient field Q(A) of A. If AD 6= k, then Q(A)D = Q(AD).

By using the proof of Theorem 1.1, we have the following theorem.

Theorem 1.2. Let k be a field and let D be a non-trivial higher k-
derivation on the polynomial ring A = k[x, y]. Then there exists h ∈ A
such that AD = k[h].

Theorem 1.2 is a special case of [2, Theorem 1.1]. However, the argument
as in Section 3 gives an elementary proof of [2, Theorem 1.1] in the case
where R is a field.

2. Preliminary results. Let k be a field of characteristic p ≥ 0 and
let A = k[x1, . . . , xn] be the polynomial ring in n variables over k. In this
section, we recall some results on higher k-derivations on A and their kernels.

The following lemma is clear from the definition of higher k-derivations.

Lemma 2.1 (cf. [2, Lemma 2.1]). Let D = {Dn}∞n=0 be a set of endo-
morphisms of A, where we assume that D0 is the identity map. Then the
following conditions are equivalent:

(1) D is a higher k-derivation on A.
(2) The mapping ϕD : A→ A[[t]], where A[[t]] is the formal power series

ring in one variable t over A, given by ϕD(a) =
∑

i≥0Di(a)ti, is a
homomorphism of k-algebras.

For a higher k-derivation D, we call the mapping ϕD as in (2) of Lem-
ma 2.1 the homomorphism associated to D.

Let D = {Dn}∞n=0 be a higher k-derivation on A and ϕD the morphism
associated to D. Let K = Q(A) be the quotient field of A. Then the k-
algebra homomorphism ϕD : A→ A[[t]] is naturally extended to a k-algebra
homomorphism Φ : K → K[[t]] by setting

Φ

(
b

a

)
=
ϕD(b)
ϕD(a)

for a, b ∈ A with a 6= 0. By Lemma 2.1, the homomorphism Φ defines a
higher k-derivation D = {Dn}∞n=0 on K such that Φ(λ) =

∑
i≥0Di(λ)ti for

λ ∈ K and Di|A = Di for every i ≥ 0. We call the higher k-derivation D the
extension of D on K. We set KD := {λ ∈ K | Di(λ) = 0 for any i ≥ 1},
which is the kernel of D. We can easily see that KD is a subfield of K and
that for λ ∈ K, λ ∈ KD if and only if Φ(λ) = λ. The following lemmas are
proved in [2].
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Lemma 2.2 (cf. [2, Lemma 2.3]). With the same notations and assump-
tions as above, the following assertions hold true:

(1) KD is algebraically closed in K.
(2) KD ∩A = AD.

Lemma 2.3 (cf. [2, Lemma 2.4]). Let D be a non-trivial higher k-deriva-
tion on the polynomial ring A = k[x1, . . . , xn]. Then tr.degk A

D ≤ n− 1.

Remark 2.4. The following examples show that the assumption AD 6= k
is important in Theorem 1.1 and the assertion of Theorem 1.1 does not hold
in general in three (or more) variables.

(1) Let D be the higher k-derivation on the polynomial ring A = k[x, y]
defined by a k-algebra homomorphism ϕD such that ϕD(x) = x +∑n

i=1 xt
i, ϕD(y) = y+

∑n
i=1 yt

i. Then AD = k and x/y ∈ Q(A)D \k.
In particular, Q(AD) = k 6= Q(A)D.

(2) LetD be the higher k-derivation on the polynomial ring A = k[x, y, z]
defined by a k-algebra homomorphism ϕD such that ϕD(x) =
x +

∑n
i=1 xt

i, ϕD(y) = y +
∑n

i=1 yt
i, ϕD(z) = z. Then AD = k[z]

(so AD 6= k) but x/y ∈ Q(A)D \ k(z). In particular, Q(AD) = k(z)
6= Q(A)D.

3. Proof of the results

Proof of Theorem 1.1. Let ϕD : A→ A[[t]] be the homomorphism associ-
ated to D. We note that, for a ∈ A, a ∈ AD if and only if ϕD(a) = a. If D is
trivial, then it is clear that KD = K. Therefore KD = K = Q(A) = Q(AD).
From now on, we assume that D is non-trivial. The subsequent argument is
almost the same as the proof of [5, Theorem 1.1]. By the condition AD 6= k,
we have tr.degk K

D ≥ 1. Since tr.degk K
D ≤ 1 by Lemma 2.3, we have

tr.degk K
D = 1. By Lüroth’s theorem, we know that KD = k(h) for some

h ∈ K \ k. Let us set h = F/G for relatively prime elements F,G of A. We
may assume that degy F ≥ degy G because k(h) = k(1/h). Since AD 6= k,
there exists an element r ∈ AD \ k. If degy r = degx r = 0, then r ∈ k. This
is a contradiction. Thus, we may assume that degy r > 0. Let

F = fny
n + fn−1y

n−1 + · · ·+ f0, G = gmy
m + gm−1y

m−1 + · · ·+ g0,

where n = degy F , m = degy G and fi, gj ∈ k[x] for i = 0, . . . , n and
j = 0, . . . ,m. Now, we consider the following two cases.

Case 1: n = m and degx fn = degx gn = l. Then let

fn = clx
l + · · ·+ c0, gn = dlx

l + · · ·+ d0,



188 N. WADA

where ci, di ∈ k for i = 0, . . . , l. Consider the element h − cl/dl in K. It
is not equal to zero because h 6∈ k. We have h − cl/dl = H/G, where H
is the polynomial in A equal to F − (cl/dl)G. Since F and G are relatively
prime in A, so are H and G. We also see that either degy H < degy G, or
they are equal but the coefficients of the highest power of y in H and G are
polynomials in k[x] of different degrees. Then we replace h with 1/(h−cl/dl)
and we are in the following second case.

Case n > m, or n = m but degx fn 6= degx gn. Since r ∈ AD ⊆ KD =
k(h), we can write

r =
∑t

i=0 aih
i∑s

i=0 bih
i

=
∑t

i=0 ai(F/G)i∑s
i=0 bi(F/G)i

=
∑t

i=0 aiG
t−iF i∑s

i=0 biG
s−iF i

Gs−t

for ai, bi ∈ k and at, bs 6= 0. In this case, we show that

(3.1) degy r = (t− s)(degy F − degy G) = (t− s)(n−m).

It is clear that degy G
s−t = −(t − s)m. So, it is sufficient to prove that

degy(
∑t

i=0 aiG
t−iF i) = tn and degy(

∑s
i=0 biG

s−iF i) = sn. If n > m, then
each term of the form Gt−iF i has a different degree with respect to y. Since
the highest degree (equal to nt) terms are contained in G0F t and at 6= 0,
the equality degy(

∑t
i=0 aiG

t−iF i) = tn holds true. If n = m and degx fn 6=
degx gn, then it is clear that degy(

∑t
i=0 aiG

t−iF i) ≤ tn. Suppose that the
inequality is strict. Then the coefficient polynomial of ynt in

∑t
i=0 aiG

t−iF i

is equal to 0. Therefore
∑t

i=0 aig
t−i
n f i

n = 0. Since degx fn 6= degx gn, all
polynomials of the form gt−i

n f i
n have different degrees with respect to x. Since

at least one of the elements a0, . . . , at is non-zero, it follows that the above
sum cannot be equal to 0. This is a contradiction. Thus, the equality (3.1)
is proved. Because degy r > 0, we have n > m and t > s.

The equality

rGt−s
( s∑

i=0

biG
s−iF i

)
=

t∑
i=0

aiG
t−iF i

in A implies that the polynomial atF
t +

∑t−1
i=0 aiG

t−iF i is divisible by G
and hence F t is divisible by G. Since F and G are relatively prime, we have
G ∈ k and h ∈ A. This completes the proof.

Proof of Theorem 1.2. The assertion is clear if AD = k. Let D be the
extension of D on the quotient field K of A. As seen from the proof of
Theorem 1.1, if AD 6= k, then there exists an h ∈ A such that KD = k(h).
Here we note the following claim stated in [1, Lemma 2.1], which holds in
any characteristic. For the reader’s convenience, we reproduce the proof.
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Claim 3.1. Let k be a field and let R = k[x1, . . . , xn]. If f ∈ R, then
k(f) ∩R = k[f ].

Proof. The “⊇” part is clear. We prove the “⊆” part. Assume that u =
u(x1, . . . , xn) ∈ k(f) ∩ R. Then we can write u = p(f)/q(f) for relatively
prime elements p(t), q(t) of k[t], where k[t] is the polynomial ring in one
variable. There exist α(t), β(t) ∈ k[t] such that 1 = α(t)p(t) + β(t)q(t).
Hence, we have

1 = α(f)p(f) + β(f)q(f) = α(f)u(x1, . . . , xn)q(f) + β(f)q(f)
= (α(f)u(x1, . . . , xn) + β(f))q(f)

in R. This implies that the polynomial q(f) is invertible in R. Thus, q(f) ∈ k,
i.e., u = p(f)/q(f) ∈ k[f ].

By Lemma 2.2(2) and Claim 3.1, k[h] = k(h) ∩A = KD ∩A = AD.
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