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RINGS WHOSE PROPER FACTORS ARE RIGHT PERFECT

BY

ALBERTO FACCHINI and CATIA PAROLIN (Padova)

Abstract. We show that practically all the properties of almost perfect rings, proved
by Bazzoni and Salce [Colloq. Math. 95 (2003)] for commutative rings, also hold in the
non-commutative setting.

1. Introduction. We say that a ring R is right almost perfect if R/I is a
right perfect ring for every proper non-zero two-sided ideal I of R. Similarly
we define left almost perfect rings. Commutative almost perfect rings were
defined by Bazzoni and Salce in [3]. The class of commutative almost perfect
rings has several interesting properties and characterizations, and has been
studied by Bazzoni, Fuchs, Sang Bum Lee, Salce, Zanardo and others. We
will show that most of the properties of these rings presented in [4] still hold
in the non-commutative setting: non-prime right almost perfect rings are
right perfect, over the prime rings the torsion modules in a suitable torsion
theory are semiartianian, etc. Our main results are Theorems 3.1 and 4.6
and Proposition 5.1.

We also introduce the notion of (non-commutative) h-local ring. This
is also an extension to non-commutative rings of the corresponding notion
studied in the commutative setting first by Jaffard [9, Theorem 6], and then
by Matlis [11] and others.

Bazzoni and Salce also proved that a commutative integral domain R is
almost perfect if and only if it is h-local and every localization of R at a
maximal ideal is almost perfect. As localization at maximal ideals is typical
of the commutative setting, this property clearly does not have an obvious
non-commutative counterpart. The next step now is to see whether other
properties of commutative almost perfect rings, for instance those in [3], also
hold in the non-commutative case. Some examples are given.

In this paper, all rings R are associative rings with identity 1 6= 0, and
J(R) denotes the Jacobson radical of the ring R.
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2. Bazzoni and Salce’s results. We will very frequently use the vari-
ous characterizations of right perfect rings that appear in the famous result
due to Bass and called Theorem P [1, Theorem 28.4]. We state it here for
later reference. Recall that a (not necessarily commutative) ring R is said
to be: (1) semilocal if R/J(R) is semisimple artinian; (2) a right max ring if
every non-zero right R-module has a maximal submodule; and, dually, (3)
right semiartinian if every non-zero right R-module has a simple submodule
(equivalently, if every right R-module is an essential extension of its socle).

Theorem 2.1 (Bass’s Theorem P). The following conditions are equiv-
alent for a ring R:

(1) R is right perfect.
(2) R is semilocal and its Jacobson radical J(R) is right T -nilpotent.
(3) R is semilocal and right max.
(4) Every flat right R-module is projective.
(5) R satisfies the descending chain condition on principal left ideals.
(6) R is left semiartinian and contains no infinite orthogonal set of idem-

potents.

We now briefly recall the main results on commutative almost perfect
rings obtained by Bazzoni and Salce in [4]. They defined in [3] almost perfect
rings as those commutative rings R for which R/I is a perfect ring for every
non-zero proper ideal I of R. Recall that a commutative integral domain
R is h-local [11] if (1) R/I is semilocal for every non-zero proper ideal I
of R, and (2) R/P is local for every non-zero prime ideal P of R. In the
commutative case, a ring R is perfect if and only if it is semilocal and every
localization of R at a maximal ideal is a perfect ring [4, Theorem 1.1]. The
following are the four main results that appear in the paper [4] by Bazzoni
and Salce.

Proposition 2.2 ([4, Proposition 1.3]). If R is an almost perfect com-
mutative ring and R is not an integral domain, then R is perfect.

Theorem 2.3 ([8, Theorem 4.4.1]). The following conditions are equiv-
alent for a commutative integral domain R:

(1) Every non-zero torsion module contains a simple module.
(2) Every torsion R-module is semiartinian.
(3) For every non-zero ideal I of R, R/I contains a simple module.
(4) For every non-zero proper R-submodule A of Q, Q/A contains a

simple module.
(5) Q/R is semiartinian.

Theorem 2.4 ([4, Theorem 2.3]). The following conditions are equiva-
lent for a commutative integral domain R:
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(1) R is almost perfect.
(2) R is h-local and every localization of R at a maximal ideal is almost

perfect.
(3) R is h-local and satisfies one of the equivalent conditions of Theo-

rem 2.3.

Corollary 2.5. The following conditions are equivalent for a commu-
tative local integral domain R:

(1) R is almost perfect.
(2) Q/R is semiartinian.
(3) Every non-zero torsion module is semiartinian.

3. Non-commutative almost perfect rings. We will now see how
the previous results modify when the ring R is not commutative. As we have
already said in the Introduction, we call a ring R right almost perfect if R/I
is a right perfect ring for every proper two-sided ideal I 6= 0 of R.

Let us see some immediate examples of right almost perfect rings.

(1) Right perfect rings are right almost perfect [1, Corollary 28.7].
(2) Simple rings are trivially right and left almost perfect.
(3) For any ring R, the intersection of all non-zero two-sided ideals is

either 0 or the least non-zero two-sided ideal of R. Assume that this second
case holds, that is, that R has a least non-zero two-sided ideal, I say. Then
the ring R is right almost perfect if and only if R/I is right perfect. For
instance, assume that the ring R has exactly three ideals, necessarily 0, R
and I. Then R is right almost perfect if and only if the simple ring R/I is
right perfect. As simple rings are right perfect if and only if they are simple
artinian, it follows that a ring R with exactly three ideals 0, R and I is right
almost perfect if and only if R/I is simple artinian. In particular, such a
ring R is right almost perfect if and only if it is left almost perfect.

An interesting example of these rings with three ideals is given by the
nearly simple chain rings considered by Dubrovin [6, 7] and Puninski [13, 14].
A nearly simple chain ring R is a non-commutative right and left chain
ring (i.e., the right ideals and the left ideals are linearly ordered under
inclusion), with exactly three two-sided ideals, necessarily the ideals 0, R
and the maximal ideal J(R). As chain rings R are local, R/J(R) is a division
ring, hence a perfect ring. It follows that nearly simple chain rings are right
and left almost perfect. There are both examples of nearly simple chain
rings that are (non-commutative) integral domains, and examples of nearly
simple chain rings that are prime rings but not integral domains.

For another example of right and left almost perfect ring R with exactly
three ideals, see the example in Remark 5.2(2).
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(4) There are left almost perfect rings that are not right almost perfect.
For instance, let k be a field and let kω be the k-algebra of all matrices with
entries in k, countably many rows and columns, and in which each row has
only finitely many non-zero entries. Let N be the set of all strictly lower
triangular matrices in kω with only finitely many non-zero entries and let
R be the subalgebra k + N of kω. If we denote by Ei,j the matrix units,
where i and j are positive integers, one has Ei,j ∈ N if and only if i > j.
The Jacobson radical of R is N . It is known that R is left perfect but not
right perfect [2, Example (5), p. 476]. In particular, R is left almost perfect.
In order to show that R is not right almost perfect, consider the principal
two-sided ideal I of R generated by E2,1. It is easily seen that I is the vector
space generated by all products Ei,jE2,1Ek,`, with i ≥ j and k ≥ `, that is,
I is the vector space generated by all Ei,1 with i ≥ 2. Then I ⊆ J(R), so
that J(R/I) = J(R)/I = N/I. In the sequence . . . , E5,4, E4,3, E3,2, all the
elements are in N and the products En,n−1En−1,n−2 . . . E4,3E3,2 = En,2 are
not in I. This proves that N/I is not right T -nilpotent, and so R/I is not
right perfect. Thus R is left almost perfect, but not right almost perfect.

(5) There is no relation between being an almost perfect ring and being
a semiperfect ring. For instance, the ring Z of integers is almost perfect but
not semiperfect, and a commutative valuation domain of Krull dimension
≥ 2 is semiperfect but not almost perfect.

Our first result is the non-commutative analogue of Proposition 2.2. It
shows that, for non-prime rings, the notions of right almost perfect ring and
right perfect ring coincide.

Theorem 3.1. If a ring R is right almost perfect and not a prime ring,
then R is right perfect.

Proof. Let R be a right almost perfect ring that is not a prime ring. We
will distinguish two cases.

First case: R has a non-zero nilpotent two-sided ideal.
In this case, R has a two-sided ideal K 6= 0 with K2 = 0. In particu-

lar, K is nilpotent, hence K ⊆ J(R). Thus J(R) 6= 0, so that R/J(R) is
right perfect, hence semisimple artinian (Theorem 2.1). It follows that R is
semilocal, and so it has no infinite orthogonal set of idempotents. In order
to conclude, by Theorem 2.1(6), it suffices to show that every non-zero left
R-module contains a simple submodule. Let RM 6= 0 be a left R-module.
If KM = 0, then M is a left R/K-module. But R/K is right perfect, so
that M has a simple R/K-submodule, which is also a simple R-submodule.
If KM 6= 0, then KM is a non-zero left R/K-module. But R/K is right
perfect, so that KM has a simple R/K-submodule, which is also a simple
R-submodule. Thus M has a simple R-submodule. This shows that R is
right perfect in this first case.
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Second case: R has no non-zero nilpotent two-sided ideals.
Since R is not a prime ring, R has two non-zero two-sided ideals I and

J with IJ = 0. Then (I ∩ J)2 ⊆ IJ = 0, so that I ∩ J = 0 because
R has no non-zero nilpotent two-sided ideals. We will now show that R
contains no infinite orthogonal set of idempotents. Assume the contrary,
and let E be an infinite orthogonal set of distinct idempotents of R. Then
EI := {e + I | e ∈ E} is an orthogonal set of idempotents of R/I, which
is right perfect, so that EI must be a finite set. It follows that there is a
partition of E into finitely many subsets E1, . . . , En with the property that,
for every e, f ∈ E, e− f ∈ I if and only if e and f belong to the same block
Ei of the partition. Since E is infinite, one of the blocks, Et say, is an infinite
set. Thus Et is an infinite orthogonal set of distinct idempotents of R. The
set Et,J := {e + J | e ∈ Et} is an orthogonal set of idempotents of R/J ,
which is right perfect, so that Et,J must be a finite set. It follows that there
is a partition of Et into finitely many subsets E′1, . . . , E

′
m with the property

that, for every e, f ∈ Et, e − f ∈ J if and only if e and f belong to the
same block E′j of this partition of Et. As Et is infinite, one of these blocks,
E′` say, is infinite. But for every e, f ∈ E′`, we have e− f ∈ J because e and
f belong to the same block E′`, and e− f ∈ I because both e and f belong
to Et. Thus e − f ∈ I ∩ J = 0, i.e., e = f for every e, f ∈ E′`. This shows
that E′` has exactly one element, which contradicts what we have previously
proved. Thus R contains no infinite orthogonal set of idempotents. In order
to conclude, by Theorem 2.1(6), it suffices to show that every non-zero left
R-module contains a simple submodule. Let RM 6= 0 be a left R-module.
If IM = 0, then M is a left R/I-module. But R/I is right perfect, so that
M has a simple R/I-submodule, hence a simple R-submodule. If IM 6= 0,
then IM is a non-zero left R/J-module, because (JI)2 = J(IJ)J = 0
implies JI = 0 (R has no non-zero nilpotent two-sided ideals). But R/J
is right perfect, so that IM has a simple R/J-submodule, hence a simple
R-submodule. Thus M has a simple R-submodule. This proves that R is
right perfect in this second case also.

Puninski’s example of a nearly simple chain domain R [13] immediately
shows that the conditions of Theorem 2.3 do not hold for the right almost
perfect Ore domain R if we consider on R the natural torsion theory in
which the torsion modules are those in which every element is annihilated
by a non-zero element of R and Q is the classical ring of fractions of R, which
is a division ring. In order to recall the definition of the ring R considered
by Puninski, let G be the group of affine linear functions on Q,

G = {αa,b : Q→ Q | a, b ∈ Q, a > 0},
where αa,b(t) = at + b and the group operation on G is the composition of
functions. Fix a positive irrational number ε in the field of real numbers.
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It is possible to define a right order on G with generalized positive cone
P := {αa,b ∈ G | ε ≤ αa,b(ε)} [5]. Let k be a division ring, k[P ] the semigroup
ring, and consider M :=

∑
α∈P+ αk[P ] ⊆ k[P ], where P+ = {αa,b ∈ P | ε <

αa,b(ε)}. Then M is a maximal ideal in k[P ]. The subset k[P ] \M is a right
and left Ore set in k[P ]. Let R denote the localization of k[P ] with respect
to k[P ] \M . The ring R is a nearly simple chain domain, hence it is a right
and left almost perfect ring. In particular, R is a local ring and is an Ore
domain. The valuation group of R is G. This group is not a discrete group.
It follows that Q/R, where Q is the division ring of fractions of R, is a
torsion R-module with zero socle, so that the conditions of Theorem 2.3 do
not hold for the almost perfect ring R with the torsion theory natural for an
Ore domain. In the next section, we will see that we need a different torsion
theory, which is more natural for prime rings.

4. Prime rings. Let us pass to the structure of right perfect rings. We
begin with an elementary lemma.

Lemma 4.1. Every prime right perfect ring is a simple artinian ring.

Proof. If R is a prime right perfect ring, then R satisfies the descending
chain condition on principal left ideals by Theorem 2.1(5), so that R is
semisimple artinian by [10, Theorem 10.24]. Since R is prime, it must be a
simple ring.

Corollary 4.2. A non-zero two-sided ideal of a right almost perfect
ring R is a maximal ideal if and only if it is a prime ideal, if and only if it
is a right primitive ideal.

Proof. Every maximal ideal is prime. If I 6= 0 is a prime ideal, then R/I
is a prime right perfect ring, so that R/I is simple artinian by the previous
lemma. Thus I is the right annihilator of the unique simple right R/I-
module. In particular, I is a right primitive ideal. Finally, let I 6= 0 be a right
primitive ideal. Then R/I is a right perfect ring with a faithful simple right
module. In particular, J(R/I) = 0. But right perfect rings are semisimple
artinian modulo their Jacobson radical, so that R/I is a semisimple artinian
ring. Since it has a faithful simple right module, it follows that R/I is simple
artinian. Thus I is maximal in R.

We say that a ring R is h-local if: (1) for every non-zero proper two-sided
ideal I of R, the factor ring R/I is semilocal; and (2) every non-zero prime
two-sided ideal of R is contained in a unique maximal two-sided ideal of R.

Clearly, local rings are h-local. From Theorem 2.1 and Lemma 4.1, we
immediately deduce:

Corollary 4.3. Every right almost perfect ring is h-local.



RINGS WITH RIGHT PERFECT FACTORS 197

Any prime ring R has a natural topology with respect to which it is a
topological ring that is right and left linearly topological [16, p. 144]. This
natural topology on R is defined as follows. Let B be the set of all non-zero
two-sided ideals of R. The topology on the prime ring R has B as a basis
of neighborhoods of 0. This is not a Hausdorff topology in general. For
instance, if R is a nearly simple prime chain ring, the closure of zero in this
topology is the maximal ideal of R. Moreover, the left ideals of a prime ring
R that are open in this linear topology do not form a left Gabriel topology
in general, but only a divisible left Oka family [15]. More precisely, recall
that if I is a left ideal of a ring R, the core of I, denoted core(I), is the
largest two-sided ideal of R contained in I. It coincides with the annihilator
in R of the left R-module RR/I. If R is a prime ring, the class P of all
left R-modules whose elements are annihilated by an element of B is closed
under submodules, homomorphic images and direct sums. That is, P is a
hereditary pretorsion class [16, Proposition VI.4.2].

The hereditary torsion class generated by P is the class T consisting of
all left R-modules RM such that each non-zero homomorphic image of RM
has a non-zero submodule in P [16, Proposition VI.2.5]. The left Gabriel
topology corresponding to the hereditary torsion class T is J(B) = {I ≤
RR | for every I ′ ≤ RR with I ⊂ I ′ ⊂ RR, there exists a ∈ R \ I ′ such that
core(I ′ : a) 6= 0} [16, Proposition VI.5.4]. In the rest of the paper, whenever
we say a torsion module over a prime ring we mean a module in T . The
module RR is torsion-free in this torsion theory, otherwise it would contain
a non-zero cyclic submodule Rr that is torsion, that is, Rr ∈ T . Thus Rr
would contain a non-zero submodule in P. Therefore Rr would contain a
non-zero element annihilated by a non-zero two-sided ideal of R, which is
impossible because R is prime.

Lemma 4.4. In a prime ring R, every left ideal with a non-zero core is
essential in RR.

Proof. Let I and J be left ideals of R with core(I) 6= 0 and J 6= 0. We
must prove that I ∩ J 6= 0. Now core(I)J 6= 0 because R is prime, and
core(I)J ⊆ core(I) ∩ J ⊆ I ∩ J . This proves that I is essential in RR.

Thus the left Gabriel topology J(B) is contained in the Goldie topology
of R [16, Section VI.6.2].

Proposition 4.5 gives the non-commutative analogue of Theorem 2.3.

Proposition 4.5. The following conditions are equivalent for a prime
ring R:

(1) Every non-zero torsion left R-module contains a simple submodule.
(2) Every torsion left R-module is semiartinian.
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(3) R/I is a left semiartinian ring for every non-zero proper two-sided
ideal I of R.

(4) For every proper left ideal L with a non-zero core, the cyclic left
R-module R/L contains a simple submodule.

Proof. (1)⇒(2) follows immediately from the fact that every homomor-
phic image of a torsion module is a torsion module.

(2)⇒(3). Assume that (2) holds. Let I 6= 0 be a proper ideal of R. We
must prove that every non-zero left R/I-module has a simple submodule.
Let M be a non-zero left R/I-module. Then M is a non-zero left R-module
in which every element is annihilated by I, which is in B. Therefore M ∈
P ⊆ T , that is, M is a non-zero torsion left R-module. By (2), M is a
semiartinian R-module, hence a semiartinian R/I-module. This proves that
R/I is left semiartinian.

(3)⇒(4). Suppose that (3) holds. Let L be a proper left ideal with a
non-zero core. By (3), R/core(L) is a left semiartinian ring. Therefore R/L
is a semiartinian left R/core(L)-module. Thus R/L is a semiartinian left
R-module, that is, it contains a simple R-submodule.

(4)⇒(1). Let RM be a non-zero module in T . Then RM contains a
non-zero submodule RN in P. Let x be a non-zero element in RN . There
exists an ideal I ∈ B with Ix = 0. If L is the annihilator of x in R, then L
is a proper left ideal of L containing I. In particular, L has a non-zero core.
By (4), the cyclic left R-module R/L ∼= Rx contains a simple submodule.
Thus RM contains a simple submodule. This proves that (1) holds.

We are ready to state and prove the non-commutative analogue of The-
orem 2.4.

Theorem 4.6. The following statements are equivalent for a prime ringR:

(1) The ring R is right almost perfect.
(2) The ring R is h-local and satisfies one of the equivalent conditions

of Proposition 4.5.

Proof. (1)⇒(2). We have already shown in Corollary 4.3 that (1) implies
that R is h-local. It suffices to show that condition (3) of Proposition 4.5
holds. Let I be a non-zero proper two-sided ideal of R. Then R/I is right
perfect, so that R/I is left semiartinian by Theorem 2.1(6).

(2)⇒(1). Let R be an h-local ring and suppose that every torsion left
R-module is semiartinian. In particular, every left R-module with a non-
zero annihilator is semiartinian. We want to show that R is right almost
perfect. Let I be a proper non-zero two-sided ideal of R. Then every non-
zero left R/I-module is a left R-module annihilated by I, hence is semiar-
tinian. This proves that R/I is left semiartinian. Moreover, the ring R/I
is semilocal because R is h-local. Semilocal rings have no infinite orthog-
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onal set of idempotents. By Theorem 2.1(6), it follows that R/I is right
perfect.

The following result is the non-commutative analogue of [4, Corollary 2.4].

Corollary 4.7. Let R be a local ring. Then R right almost perfect if
and only if it satisfies one of the equivalent conditions of Proposition 4.5.

We conclude this section with a further characterization of right almost
perfect rings. Recall that the radical rad(MR) of a right module MR is the
intersection of all maximal submodules of MR. Thus rad(MR) = MR if and
only if MR has no maximal submodule. For instance, this trivially holds for
the zero module.

Proposition 4.8. A ring R is a right almost perfect ring if and only if
it satisfies the following two conditions:

(1) R is h-local;
(2) every non-zero right R-module MR with rad(MR) = MR is faithful.

Proof. Let R be a right almost perfect ring. We have already seen in
Corollary 4.3 that R is h-local. Let MR be a non-zero right R-module with
rad(MR) = MR. Let I be the annihilator of MR in R, so that I is a two-sided
ideal of R. If I 6= 0, then M is a right module over R/I, which is right perfect,
hence right max (Theorem 2.1(3)). Thus M has a maximal submodule as
an R/I-module, which implies rad(MR) 6= MR, a contradiction. This proves
that I = 0, i.e., MR is faithful.

Conversely, suppose that (1) and (2) hold. Let I be a non-zero proper
two-sided ideal of R. By (1), the factor ring R/I is semilocal. By Theo-
rem 2.1(3), in order to conclude it suffices to show that R/I is right max.
Let MR/I be a non-zero right R/I-module. Then M , viewed as a right R-
module, is not faithful, so that rad(MR) 6= MR by (2). It follows that MR/I

has a maximal submodule. This proves that R/I is right max.

5. Left noetherian rings and final remarks. For left noetherian
prime rings, the situation is much better than in the case of arbitrary prime
rings. Recall that a left noetherian ring is right perfect if and only if it is left
artinian. (To see this, let R be a left noetherian right perfect ring. Then R
right perfect implies R semilocal and J(R) right T -nilpotent. In particular,
J(R) is nil, hence nilpotent by Levitzki’s Theorem [1, Theorem 15.22]. By
Hopkins’s Theorem [1, Theorem 15.20], R is left artinian.)

Let R be a left noetherian prime ring. Let B be the set of all non-zero
two-sided ideals of R. By [16, Proposition 6.10], the set B now is a basis for
a left Gabriel topology, so that, when R is a left noetherian prime ring, the
left Gabriel topology J(B) turns out to be the linear topology with B as a
basis of neighborhoods of zero, and P = T .
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Over a left noetherian ring, Proposition 4.5 and Theorem 4.6 have the
following improvement.

Proposition 5.1. The following conditions are equivalent for a left
noetherian prime ring R:

(1) Every non-zero torsion left R-module contains a simple module.
(2) Every torsion left R-module is semiartinian.
(3) For every non-zero proper two-sided ideal I of R, the ring R/I is left

semiartinian.
(4) For every non-zero proper two-sided ideal I of R, the ring R/I is left

artinian.
(5) R is a right almost perfect ring.

Proof. The equivalence of (1)–(3) has been proved in Proposition 4.5.
(3)⇒(4). Since R is left noetherian, the left Gabriel topology corre-

sponding to semiartinian modules consists of the left ideals A of R with
R/A of finite length [16, Corollary VIII.2.2]. If I is two-sided and R/I is
left semiartinian, then 1 + I is annihilated by I, hence I belongs to the left
Gabriel topology corresponding to semiartinian modules, and so R/I is a
left R-module of finite length. Thus R/I is a left artinian ring.

(4)⇒(5) follows immediately from the fact that every left artinian ring
is right perfect.

(5)⇒(1). If RM is a non-zero torsion module over the right almost per-
fect ring R, then RM has a non-zero element x, and Rx is not faithful
because it is annihilated by the two-sided ideal that annihilates x. There-
fore Rx, hence RM , contains a simple module (Theorem 2.1(6)).

Remarks 5.2. (1) One could think that over an h-local ring R, ev-
ery torsion module RM decomposes into its primary components, one for
each maximal ideal, like for commutative h-local rings, but this is not true,
not even in the best of the cases we are dealing with. In our example,
the ring R will be right and left artinian, hence right and left noethe-
rian, right and left perfect, and semilocal. In particular, it is h-local. Let
k be a field and R :=

(
k 0
k k

)
the ring of all lower triangular 2 × 2 matri-

ces, so that R has all the properties mentioned in the previous sentence.
This ring R has exactly two maximal two-sided ideals. The cyclic projec-
tive module RM := R

(
1 0
0 0

)
=
(
k 0
k 0

)
has its endomorphism ring isomor-

phic to k, hence RM is an indecomposable R-module and is the exten-
sion of two non-isomorphic simple modules. Therefore RM does not de-
compose into two primary components corresponding to the two simple left
R-modules.

(2) Let R be an arbitrary ring. There are two mutually exclusive cases
according to whether or not the ideal 0 is maximal. Also, a ring R can
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be semilocal or not. Correspondingly, right almost perfect rings belong to
exactly one of the following three classes:

First class: simple rings. It corresponds to the case in which 0 is a max-
imal ideal. We already know that simple rings are right and left almost
perfect.

Second class: corresponds to the case in which 0 is not a maximal ideal
and R is semilocal. A ring R belongs to this class if and only if it is a
semilocal non-simple ring, the factor rings R/P are simple artinian for all
non-zero prime ideals P of R and every non-zero non-faithful left R-module
is semiartinian. Notice that these conditions are either two-sided conditions
on the ring or conditions on left R-modules, and they characterize semilocal
non-simple right almost perfect rings. For instance, nearly simple chain rings
belong to this class.

Third class: corresponds to the case in which 0 is not a maximal ideal
and R is not semilocal. A ring R belongs to this class if and only if it is
a non-simple ring, J(R) = 0, every non-zero element of R belongs to only
finitely many maximal ideals of R, the factor rings R/P are simple artinian
for all non-zero prime ideals P of R and every non-zero non-faithful left
R-module is semiartinian.

Here is an example of a ring which belongs to this third class. It is due to
Faith and Michler-Villamayor [12, Remark 4.5]. It is a von Neumann regular
ring that is a right V -ring but not a left V -ring. Recall that right V -rings
are right max rings [12, Theorem 2.1].

Let k be a field and let Vk be an infinite-dimensional vector space over k.
Consider the endomorphism ring E := End(Vk) and its two-sided ideal S
consisting of endomorphisms of finite rank. It is easily seen that the k-
subalgebra R := k + S of E has just three two-sided ideals: 0, R and S.
In particular, R is prime. Trivially, the ring R is right and left almost per-
fect. The Jacobson radical J(R) of R is zero. In fact, J(R) is a proper
two-sided ideal, so it can only be 0 or S. But the element 1 − E11 ∈ 1 + S
is not invertible. Thus J(R) = 0. In particular, R is not semilocal, oth-
erwise R/J(R) ∼= R would be semisimple artinian, which is not. Finally,
R not semilocal implies that R is not right perfect and is not left per-
fect.

(3) In order to continue the investigation of right almost perfect rings,
it is now necessary to introduce an analogue of the field of fractions Q of an
integral domain for an arbitrary (right almost perfect) prime ring. The nat-
ural candidate for Q is the ring of quotients lim−→Hom(RI,RR), RI ∈ J(B),
of the prime ring R with respect to the Gabriel topology J(B).
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