COLLOQUIUM MATHEMATICUM

STRONG NO-LOOP CONJECTURE FOR ALGEBRAS WITH TWO SIMPLES AND RADICAL CUBE ZERO

BY
BERNT T. JENSEN (Leeds)

Abstract

Let Λ be an artinian ring and let \mathfrak{r} denote its Jacobson radical. We show that a simple module of finite projective dimension has no self-extensions when Λ is graded by its radical, with at most two simple modules and $\mathfrak{r}^{4}=0$, in particular, when Λ is a finite-dimensional algebra over an algebraically closed field with at most two simple modules and $\mathfrak{r}^{3}=0$.

1. Introduction. Let Λ be an artinian ring. Many important problems remain to be solved in connection with the homological properties of Λ-modules. We mention the finitistic dimension conjecture (see [7], [3]) and the Cartan determinant conjecture (see [2]). Both these problems deal with studying homological dimensions of Λ-modules. In this paper we will consider the so called no-loop conjectures (see [5], [4]). The (weak) no-loop conjecture says that if $\operatorname{Ext}_{\Lambda}^{1}(S, S) \neq 0$ for a simple Λ-module S, then the global dimension of Λ is infinite. The strong no-loop conjecture says that if $\operatorname{Ext}_{\Lambda}^{1}(S, S) \neq 0$ then the projective dimension of S is infinite.

The weak no-loop conjecture was proven in [5] for a large class of finitedimensional algebras over a field k, including all finite-dimensional algebras, if k is algebraically closed. The strong no-loop conjecture seems to be more difficult, in fact it has only been established for very special classes of algebras.

For a Λ-module U, let $\operatorname{pd}_{\Lambda} U$ denote the projective dimension of U. Let gldim Λ denote the global dimension of Λ. Let \mathfrak{r} denote the Jacobson radical of Λ. The strong no-loop conjecture holds if $\mathfrak{r}^{2}=0$. For in this case if $\operatorname{Ext}_{A}^{1}(S, S) \neq 0$ then S is a summand of its own syzygy and so $\operatorname{pd}_{\Lambda} S=\infty$. If Λ has only one simple module up to isomorphism then all non-projective modules have infinite projective dimension. So in this case $\operatorname{pd}_{\Lambda} S=\infty$ if $\operatorname{Ext}_{\Lambda}^{1}(S, S) \neq 0$. For algebras with two simple modules up to isomorphism and for radical cube zero algebras the situation is much more complicated.

[^0]The artinian ring Λ is a filtered ring using its radical filtration. Let $\operatorname{gr} \Lambda=\bigoplus_{i}(\operatorname{gr} \Lambda)_{i}$ denote the corresponding graded ring of Λ. We say that Λ is graded by its radical if the canonical isomorphisms $\mathfrak{r}^{i} / \mathfrak{r}^{i+1} \rightarrow(\mathrm{gr} \Lambda)_{i}$ lift to an isomorphism of rings $\Lambda \cong \operatorname{gr} \Lambda$. The following is our main result.

Theorem. Let Λ be an artinian ring graded by its radical with $\mathfrak{r}^{4}=0$ and with at most two simple modules up to isomorphism. If S is a simple module of finite projective dimension then $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$.

Now we only have to note that any basic finite-dimensional algebra over an algebraically closed field with radical cube zero is graded by its radical and we obtain the following

Corollary. Let Λ be a finite-dimensional k-algebra over an algebraically closed field with $\mathfrak{r}^{3}=0$ and with at most two simple modules up to isomorphism. If S is a simple module of finite projective dimension then $\operatorname{Ext}_{\Lambda}^{1}(S, S)=0$.

The paper is organized as follows. In Section 2 we recall some notation and prove some basic lemmas needed to establish our main result. In Section 3 we prove our main result.
2. Definitions and some basic results. Let Λ be an artinian ring graded by its radical. That is, Λ is a graded artinian ring

$$
\Lambda=\bigoplus_{i=0}^{L} \Lambda_{i}
$$

where Λ_{0} is semisimple and $\Lambda_{i} \Lambda_{j}=\Lambda_{i+j}$ for $i, j \in\{0, \ldots, L\}$ with $i+j \leq L$. Unless otherwise stated, from now on, all modules will be graded left Λ modules of finite length and all homomorphisms between Λ-modules will be graded of degree 0 . For a Λ-module $M=\bigoplus_{i} M_{i}$ we denote by $M[j]$ the shifted Λ-module given by $M[j]_{i}:=M_{i-j}$.

Note that the finiteness of the projective dimension of a simple Λ-module S is independent of whether we use graded projective resolutions or not. Moreover the extension group $\operatorname{Ext}_{\Lambda}^{1}(S, T[1])$ of two simple Λ-modules S and T generated in the same degree may be identified with the group of extensions of S by T we get by forgetting the grading. So for the questions we are interested in we have not lost any generality by considering graded modules over a graded ring.

Let S_{1}, \ldots, S_{n} be a complete set of representatives of simple Λ-modules generated in degree 0 . Let P_{1}, \ldots, P_{n} be a corresponding set of representatives of indecomposable projective Λ-modules. That is, $P_{i} / \mathfrak{r} P_{i} \cong S_{i}$ for $i=1, \ldots, n$.

Let $\left[S_{i}\right]$ denote the element of $\mathbb{Z}[t]^{n}$ given by $\left[S_{i}\right]_{j}=\delta_{i j}$ where $\delta_{i j}$ denotes the Kronecker delta. To every P_{i} we associate the element $\left[P_{i}\right]$ in $\mathbb{Z}[t]^{n}$ given by

$$
\left[P_{i}\right]=\sum_{r=0}^{L} \sum_{j=1}^{n} \mathcal{C}_{i j}^{(r)}\left[S_{j}\right] t^{r}
$$

where $\mathcal{C}_{i j}^{(r)}$ is the largest integer m such that $\mathfrak{r}^{r} P_{i} / \mathfrak{r}^{r+1} P_{i} \cong S_{j}[r]^{m} \oplus U$. Let $\mathcal{C}=\mathcal{C}(\Lambda)$ be the graded Cartan matrix of Λ (see [6]). That is, \mathcal{C} is an n by n matrix with coefficients in $\mathbb{Z}[t]$ given by

$$
\mathcal{C}=\sum_{r=0}^{L} \mathcal{C}^{(r)} t^{r}
$$

where $\mathcal{C}^{(r)}$ is a matrix with coefficients in \mathbb{Z} and where $\mathcal{C}_{i j}^{(r)}$ was defined above. In other words, the i th column of \mathcal{C} is $\left[P_{i}\right]$. Note that $\mathcal{C}^{(0)}$ is the identity matrix.

Example 1. Let Λ be the algebra with quiver

and relations $\beta \gamma, \alpha^{2}-\gamma \beta, \beta \alpha \gamma$. Then Λ is graded by its radical. A basis of the projective P_{1} at vertex 1 is $e_{1}, \alpha, \beta, \beta \alpha, \alpha^{2}, \alpha^{3}$. Thus

$$
\left[P_{1}\right]=\binom{1+t+t^{2}+t^{3}}{t+t^{2}}
$$

A basis of the projective P_{2} at vertex 2 is $e_{2}, \gamma, \alpha \gamma$. Thus

$$
\left[P_{2}\right]=\binom{t+t^{2}}{1}
$$

Hence the graded Cartan matrix of Λ is given by

$$
\mathcal{C}=\left(\begin{array}{cc}
1+t+t^{2}+t^{3} & t+t^{2} \\
t+t^{2} & 1
\end{array}\right)
$$

If N and M are two n by n matrices of integers we write $M \geq N$ if all entries of $M-N$ are non-negative.

Lemma 2. The matrices $\mathcal{C}^{(r)}$ satisfy the following inequalities:
(i) $\mathcal{C}^{(i)} \geq 0$ for all $i=0, \ldots, L$,
(ii) $\mathcal{C}^{(l)} \mathcal{C}^{(m)} \geq \mathcal{C}^{(l+m)}$ for all $l, m \in\{0, \ldots, L\}$ with $l+m \leq L$.

Proof. Part (i) is obvious. By the Wedderburn-Artin theorem we have an isomorphism

$$
\Lambda_{0} \cong \bigotimes_{i=1}^{n} \mathrm{M}_{n_{i}}\left(D_{i}\right)
$$

where $\mathrm{M}_{n_{i}}\left(D_{i}\right)$ is the full matrix ring over a division ring D_{i}. We view this isomorphism as an identification and let e_{i} denote the identity matrix of the matrix ring $\mathrm{M}_{n_{i}}\left(D_{i}\right)$. Let $l, m \in\{0, \ldots, L\}$ with $l+m \leq L$. We have $\Lambda_{m} \Lambda_{l}=\Lambda_{l+m}$ and so we get a surjective Λ_{0} - Λ_{0}-homomorphism $e_{j} \Lambda_{m} \otimes_{\Lambda_{0}}$ $\Lambda_{l} e_{i} \rightarrow e_{j} \Lambda_{l+m} e_{i}$ induced by multiplication. Now

$$
e_{j} \Lambda_{m} \otimes_{\Lambda_{0}} \Lambda_{l} e_{i} \cong \bigoplus_{r=1}^{n} e_{j} \Lambda_{m} e_{r} \otimes_{\mathrm{M}_{n_{r}}\left(D_{r}\right)} e_{r} \Lambda_{l} e_{i}
$$

The number of indecomposable left summands of $e_{j} \Lambda_{m} e_{r} \otimes_{\mathrm{M}_{n_{r}\left(D_{r}\right)}} e_{r} \Lambda_{l} e_{i}$ is $\mathcal{C}_{i r}^{(l)} \mathcal{C}_{r j}^{(m)} n_{i}$. The number of indecomposable left summands of $e_{j} \Lambda_{l+m} e_{i}$ is $\mathcal{C}_{i j}^{(l+m)} n_{i}$. Therefore $\mathcal{C}_{i j}^{(l+m)} \leq\left(\mathcal{C}^{(l)} \mathcal{C}^{(m)}\right)_{i j}$. This concludes the proof of the lemma.

The following lemma is well known; see for example [1, Chapter III].
Lemma 3. We have $\mathcal{C}_{i j}^{(1)}>0$ if and only if $\operatorname{Ext}_{\Lambda}^{1}\left(S_{i}, S_{j}[1]\right) \neq 0$.
Let $Q=Q(\Lambda)$ be the quiver given by the matrix $\mathcal{C}^{(1)}$. That is, Q is an oriented graph with vertices $1, \ldots, n$ and $\mathcal{C}_{i j}^{(1)}$ arrows from vertex i to vertex j. Thus, by the previous lemma, $\operatorname{Ext}_{\Lambda}^{1}\left(S_{i}, S_{i}[1]\right)$ is non-zero for some simple S_{i} if and only if Q has a loop at vertex i.

Let $\Delta=\sum_{i=0}^{n \cdot L} \Delta_{i} t^{i}=: \operatorname{det} \mathcal{C}$ denote the graded Cartan determinant of Λ. Let $M_{i j}$ be the $i j$ th cofactor of the matrix \mathcal{C}. That is, $M_{i j}$ is $(-1)^{i+j}$ times the determinant of the matrix obtained by removing the i th column and the j th row from \mathcal{C}. Then

$$
\mathcal{C}^{-1}=\frac{1}{\Delta}\left(M_{j i}\right)_{i j}
$$

is a matrix over the field of rational functions $\mathbb{Q}(t)$. For non-zero polynomials $a_{1}, \ldots, a_{n} \in \mathbb{Z}[t]$ let $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ denote their greatest common factor. We let the coefficient of the lowest degree term of $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)$ be positive.

Lemma 4. Let Δ, \mathcal{C} and Q be as above. Then
(i) $\Delta_{0}=1$.
(ii) Δ_{1} is the number of loops of Q.
(iii) $\operatorname{gcd}\left(M_{1 j}, \ldots, M_{n j}\right) \mid \Delta$ for all $j=1, \ldots, n$.
(iv) If $\operatorname{gldim} \Lambda<\infty$ then $\Delta=1$.
(v) If $\operatorname{pd}_{\Lambda} S_{j}<\infty$ then $\Delta=\operatorname{gcd}\left(M_{1 j}, \ldots, M_{n j}\right)$.

Proof. We have $\Delta_{0}=\operatorname{det} \mathcal{C}^{(0)}$. Now $\mathcal{C}^{(0)}$ is the identity matrix and so (i) follows. The constant terms in the polynomials off the diagonal of \mathcal{C} are all zero. Hence Δ_{1} is the trace of $\mathcal{C}^{(1)}$. This proves (ii). We have $\Delta=$ $\sum_{i=1}^{n} \mathcal{C}_{i j} M_{i j}$, which proves (iii).

Let $\operatorname{pd}_{A} S_{j}<\infty$. We have a graded projective resolution

$$
0 \rightarrow Q_{m} \rightarrow \cdots \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow S_{j} \rightarrow 0
$$

of S_{j}. Thus $\left[S_{j}\right]=\sum_{i=0}^{m}(-1)^{i}\left[Q_{i}\right]=\sum_{i=1}^{n} f_{i j}(t)\left[P_{i}\right]$ for polynomials $f_{i j}(t) \in$ $\mathbb{Z}[t]$. Here

$$
f_{i j}=\frac{M_{i j}}{\Delta}
$$

for $i=1, \ldots, n$ and so $\Delta=\operatorname{gcd}\left(M_{1 j}, \ldots, M_{n j}\right)$ by (iii). This proves (v).
If gldim $\Lambda<\infty$, then again by the graded projective resolution of the simples we see that \mathcal{C}^{-1} is a matrix with entries in $\mathbb{Z}[t]$ and consequently Δ is a unit in $\mathbb{Z}[t]$. Hence $\Delta=1$ by (i). This proves (iv).

Example 5. Let Λ be as in Example 1. Then

$$
\mathcal{C}^{-1}=\frac{1}{\Delta}\left(M_{j i}\right)_{i j}=\frac{1}{\Delta}\left(\begin{array}{cc}
1 & -t-t^{2} \\
-t-t^{2} & 1+t+t^{2}+t^{3}
\end{array}\right)
$$

Moreover $\operatorname{gcd}\left(M_{11}, M_{21}\right)=\operatorname{gcd}\left(1,-t-t^{2}\right)=1$ and $\operatorname{gcd}\left(M_{12}, M_{22}\right)=$ $\operatorname{gcd}\left(-t-t^{2}, 1+t+t^{2}+t^{3}\right)=1+t$. We see that $\Delta=1+t-t^{3}-t^{4}$. Consequently $\operatorname{pd}_{\Lambda} S_{1}=\infty$ and $\mathrm{pd}_{\Lambda} S_{2}=\infty$ by Lemma $4(\mathrm{v})$.
3. Proof of the Theorem. Let Λ be an artinian ring graded by its radical with at most two simple modules up to isomorphism such that $\mathfrak{r}^{4}=0$. That is, $\Lambda=\bigoplus_{i=0}^{3} \Lambda_{i}$ where Λ_{0} is semisimple and $\Lambda_{i} \Lambda_{j}=\Lambda_{i+j}$ for $i, j \in$ $\{0, \ldots, 3\}$ with $i+j \leq 3$. We may also assume that $\Lambda_{2} \neq 0$ and that Λ has exactly two simple modules S_{1}, S_{2} up to isomorphism. We assume that $\operatorname{Ext}_{\Lambda}^{1}\left(S_{1}, S_{1}[1]\right) \neq 0$ and that $\operatorname{pd}_{\Lambda} S_{1}<\infty$. We will obtain a contradiction, which proves the theorem.

Let

$$
\mathcal{C}=\sum_{i=0}^{3} \mathcal{C}^{(i)} t^{i}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

be the graded Cartan matrix of Λ. We have $\Delta=a d-b c$ and

$$
\mathcal{C}^{-1}=\frac{1}{\Delta}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

where Δ is the graded Cartan determinant of Λ. Thus by Lemma 4(v) we have $\operatorname{gcd}\left(M_{11}, M_{21}\right)=\operatorname{gcd}(d,-c)=a d-b c$. So there exist polynomials λ
and μ such that $d=\lambda \Delta, c=\mu \Delta$ and $a \lambda-b \mu=1$. Let $a=\sum_{i} a_{i} t^{i}$ and similarly for b, c and d. Then $a_{0}=1=d_{0}$ and $b_{0}=0=c_{0}$. If $b_{1}=0$ then $b=0$ by Lemma 2(ii). Similarly if $c_{1}=0$ then $c=0$. In either case $\operatorname{pd}_{\Lambda} S_{1}=\infty($ see $[3])$ so we may assume that $b_{1}, c_{1}>0$. By Lemma 3 we see that $a_{1}>0$. Since $\operatorname{pd}_{\Lambda} S_{1}<\infty$ at least one of the projectives has radical length less than 4 . Hence we have two cases to consider, either $c_{3}=0=a_{3}$ or $d_{3}=0=b_{3}$.

We consider first the case $d_{3}=0=b_{3}$. We see that $\operatorname{deg} \Delta \leq 2$, where $\operatorname{deg} \Delta$ denotes the degree of the polynomial Δ. If $\operatorname{deg} \Delta=2$ then $d=\Delta$, which is a contradiction since the linear term of Δ is $a_{1}+d_{1}$ and $a_{1}>0$. Thus $\operatorname{deg} \Delta=1$ and $\Delta=1+\left(a_{1}+d_{1}\right) t$. Consequently, $\lambda=1-a_{1} t$ since $a \lambda-b \mu=1$. Thus $d=\lambda \Delta=1+d_{1} t+\left(-a_{1}^{2}-a_{1} d_{1}\right) t^{2}$. But this is a contradiction since $d_{2} \geq 0$. This concludes the proof in the case where $d_{3}=0=b_{3}$.

We now consider the case $c_{3}=0=a_{3}$. As before, $\Delta=1+\left(a_{1}+d_{1}\right) t$. Thus $\mu=c_{1} t$ and $\lambda=1-a_{1} t+\lambda_{2} t^{2}$ for some integer λ_{2}. Since $d=\lambda \Delta$ we get $d_{2}=\lambda_{2}-a_{1}^{2}-a_{1} d_{1}$ and $d_{3}=\left(a_{1}+d_{1}\right) \lambda_{2}$. Similarly,

$$
c_{2}=c_{1}\left(a_{1}+d_{1}\right) .
$$

Since $a \lambda-b \mu=1$ we see that $\lambda_{2}=b_{1} c_{1}+a_{1}^{2}-a_{2}$. Thus

$$
d_{2}=b_{1} c_{1}-a_{2}-a_{1} d_{1}, \quad d_{3}=a_{1} b_{1} c_{1}+a_{1}^{3}-a_{1} a_{2}+b_{1} c_{1} d_{1}+a_{1}^{2} d_{1}-a_{2} d_{1} .
$$

Moreover, again by $a \lambda-b \mu=1$, we get

$$
b_{2}=a_{1} b_{1}+\frac{a_{1}^{3}-2 a_{1} a_{2}}{c_{1}}, \quad b_{3}=a_{2} b_{1}+\frac{a_{1}^{2} a_{2}-a_{2}^{2}}{c_{1}}
$$

By Lemma 2(ii) we have $\mathcal{C}^{(1)} \mathcal{C}^{(2)} \geq \mathcal{C}^{(3)}$ and so $d_{3} \leq c_{1} b_{2}+d_{1} d_{2}$. Thus we get $a_{1} a_{2}+a_{1}^{2} d_{1}+a_{1} d_{1}^{2} \leq 0$ and so $a_{2}=0$ and $d_{1}=0$. Again by Lemma 2(ii) we have $\mathcal{C}^{(2)} \mathcal{C}^{(1)} \geq \mathcal{C}^{(3)}$ and so $d_{3} \leq c_{2} b_{1}+d_{2} d_{1}$. But then $a_{1}^{3} \leq 0$, which is a contradiction since $a_{1}>0$. This completes the proof of the theorem.

REFERENCES

[1] M. Auslander, I. Reiten and S. O. Smalø, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, Cambridge, 1995.
[2] K. R. Fuller, The Cartan determinant and global dimension of Artinian rings, in: Azumaya Algebras, Actions, and Modules (Bloomington, IN, 1990), Contemp. Math. 124, Amer. Math. Soc., Providence, RI, 1992, 51-72.
[3] K. R. Fuller and M. Saorin, On the finitistic dimension conjecture for Artinian rings, Manuscripta Math. 74 (1992), 117-132.
[4] E. L. Green, \varnothing. Solberg and D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. 353 (2001), 2915-2939.
[5] K. Igusa, Notes on the no loops conjecture, J. Pure Appl. Algebra 69 (1990), 161-176.
[6] K. Igusa and D. Zacharia, On the cyclic homology of monomial relation algebras, J. Algebra 151 (1992), 502-521.
[7] B. Zimmermann Huisgen, The finitistic dimension conjectures - a tale of 3.5 decades, in: Abelian Groups and Modules (Padova, 1994), Math. Appl. 343, Kluwer, Dordrecht, 1995, 501-517.

Department of Pure Mathematics
University of Leeds
Leeds LS2 9JT, United Kingdom
E-mail: bjensen@maths.leeds.ac.uk

Received 9 March 2004;
revised 28 September 2004

[^0]: 2000 Mathematics Subject Classification: 16D10, 16E10.
 Key words and phrases: artinian ring, ring graded by radical, projective dimension, Cartan determinant.

