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OPERATIONAL CALCULUS AND
FOURIER TRANSFORM ON BOEHMIANS

BY

V. KARUNAKARAN and R. ROOPKUMAR (Madurai)

Abstract. We define various operations on the space of ultra Boehmians like multi-
plication with certain analytic functions which are Fourier transforms of compactly sup-
ported distributions, polynomials, and characters (eist, s, t ∈ R), translation, differentia-
tion. We also prove that the Fourier transform on the space of ultra Boehmians has all
the operational properties as in the classical theory.

1. Introduction. The problem of defining a “product” of generalized
functions is an interesting one. See for example [1, 6, 7, 10]. A famous result
of L. Schwartz [10] says that a product of distributions cannot be defined so
as to have the usual properties. On the other hand, in [8, p. 144] the product
of a smooth function f ∈ C∞ and a distribution u ∈ D′ is defined by

(f · u)(φ) = u(f · φ), ∀φ ∈ D,
where f · φ is the pointwise product of functions.

In the context of Boehmians it is proved in [6] that we cannot define
multiplication between the class of real analytic functions and the Boehmian
space B∞ as a map continuous in the second variable. In another paper [7],
the product of a continuous functions and a Boehmian is defined in a natural
way, and some usual properties of this product are verified.

In [2], we have constructed the space of ultra Boehmians B(Z ′,Z, •, ∆̂)
and extended the Fourier transform as a continuous linear bijection. Since
the operation used in the construction of this Boehmian space is multipli-
cation, the product of ultra Boehmians by functions from multipliers of Z
is well-defined and has good properties as we shall see later, even though
defining convolution with functions will be difficult in this context.

Since the Fourier transform provides an isomorphism between (D′,D, ∗)
and (Z ′,Z, ·), and delta sequences in Z are defined as Fourier transforms
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of delta sequences in D, the isomorphism extends in a natural way to the
corresponding Boehmian spaces, and the properties of multiplication mir-
ror the properties of convolution for C∞-Boehmians. The objective of the
present paper is to obtain an operational calculus for the Fourier transform
consistent with the classical theory.

2. Classical theory. Throughout the paper we use the normalized
Lebesgue measure [9] defined by dm(t)=(2π)−1/2dt where dt is the Lebesgue
measure on R. Let C∞ be the space of smooth complex-valued functions on
R, and D be the subspace of C∞ consisting of functions with compact sup-
ports, with the usual locally convex topology [8].

Let Z(m) (m ∈ N) be the collection of all entire functions on C satisfying

γm,k(f) = sup{|zαf(z)|e−m| Im z| : z ∈ C, 0 ≤ α ≤ k} <∞, k = 0, 1, . . . .

It is well known that each Z(m) is a multi-normed space with the collection
of seminorms {γm,k}∞k=0. The Zemanian space Z is defined as the union⋃
m∈NZ(m) with the inductive limit topology [11]. The dual space Z ′ of
Z is usually referred to as the space of ultra distributions. We use both
notations u(φ) and 〈u(t), φ(t)〉 to denote the value of u ∈ V ′ at φ ∈ V ,
where V is D, S or Z.

We say that un → u as n → ∞ in Z ′ if supf∈B |(un − u)(f)| → 0 as
n→∞ for each bounded subset B of Z.

Definition 2.1 (Operations on generalized function spaces). Let V de-
note D, S or Z, u ∈ V ′, and s ∈ R. Put

es(t) = eist, t ∈ R.
(i) The derivative u′ ∈ V is defined by

〈u′(t), ψ(t)〉 = 〈u(t),−ψ′(t)〉, ψ ∈ V.
(ii) The product es · u ∈ V ′ of es and u is defined by

〈(es · u)(t), ψ(t)〉 = 〈u(t), es(t) · ψ(t)〉, ψ ∈ V.
(iii) The operation Mu is defined by

〈(Mu)(t), ψ(t)〉 = 〈u(t), t · ψ(t)〉, ψ ∈ V.
(iv) The translation τsu of u ∈ V ′ is defined as a member of V ′ by

〈(τsu)(t), ψ(t)〉 = 〈u(t), ψ(t+ s)〉, ψ ∈ V.
(v) If u ∈ D′ and φ ∈ D, then u ∗ φ ∈ C∞, where

(u ∗ φ)(x) = 〈u(t), φ(x− t)〉.
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The classical Fourier transform of an integrable function f on R is defined
by

f̂(t) =
∞�
−∞

f(x)e−ixt dm(x), t ∈ R.

The theory of the Fourier transform on S, D, Z and on their dual spaces is
well known and can be found in [8, 12].

The following lemma is taken from [8].

Lemma 2.2. Let u ∈ S ′ and s ∈ R. Then

(i) (−iMu)∧ = (û)′;
(ii) (u′)∧ = iMû;
(iii) (es · u)∧ = τsû;
(iv) (τsu)∧ = e−sû.

Lemma 2.3. The conclusions of Lemma 2.2 also hold for u ∈ Z ′ and
s ∈ R.

The proof is very similar to that of the previous lemma and we omit it.

3. Boehmian spaces. For f ∈ C∞ and φ ∈ D we define the convolution
by

(f ∗ φ)(x) =
∞�
−∞

f(x− t)φ(t) dm(t).

We call a sequence (δn) in D a delta sequence if

(i) � ∞−∞ δn(t) dm(t) = 1 for all n ∈ N;

(ii) � ∞−∞ |δn(t)| dm(t) ≤M for all n ∈ N for some M > 0;
(iii) s(δn) = sup{|t| : t ∈ R, δn(t) 6= 0} → 0 as n→∞.

The collection of all delta sequences is denoted by ∆.
We denote by A the collection of all pairs ((fn), (δn)) of sequences sat-

isfying
fn ∗ δm = fm ∗ δn, ∀m,n ∈ N.

The space B∞ of C∞-Boehmians is defined to be the collection of all

equivalence classes
[
fn
δn

]
given by the equivalence relation ∼ defined on A

by
((fn), (δn)) ∼ ((gn), (εn)) if fn ∗ εm = gm ∗ δn, ∀m,n ∈ N.

The space of Schwartz distributions can be identified with a proper sub-

space of B∞ by the identification u 7→
[
u ∗ δn
δn

]
, where (δn) ∈ ∆ is arbitrary.

In addition to the operations of addition and scalar multiplication the
following operations have been defined on B∞. See [3, 4, 5, 7].
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Definition 3.1. Let X =
[
fn
δn

]
∈ B∞, u ∈ D′ with compact support ,

s ∈ R and α ∈ C. Then define

(i) X ′ =
[
f ′n
δn

]
.

(ii) MX =
[

(Mfn) ∗ δn − fn ∗ (Mδn)
δn ∗ δn

]
, where (Mf)(t) = t · f(t) for

t ∈ R.

(iii) τsX =
[
τsfn
δn

]
, where τsfn(t) = fn(t− s) for t ∈ R.

(iv) eα ·X =
[
λneαfn
λneαδn

]
, where eα(t) = eαt for t ∈ R and

λn = ( � ∞−∞ eα(t)δn(t) dt)−1.

(v) u ∗X =
[
u ∗ fn
δn

]
, where (u ∗ fn)(x) = 〈u(t), fn(x− t)〉 for x ∈ R.

The space BF of ultra Boehmians is the quadruple (Z ′,Z, •, ∆̂), where
the operation • : Z ′ × Z → Z ′ is defined by

(u • f)(g) = u(f · g), g ∈ Z,
and ∆̂ = {(δ̂n) : (δn) ∈ ∆}, where ∆ is defined as above.

We say that Xn
δ→ X as n → ∞ in BF if there exist un,k, uk ∈ Z ′ and

(δ̂k) ∈ ∆̂ such that Xn =
[
un,k

δ̂k

]
, X =

[
uk

δ̂k

]
and for each k ∈ N,

un,k → uk as n→∞ in Z ′.
Definition 3.2. The Fourier transform of an ultra Boehmian is defined

by

F
([

un

δ̂n

])
=
[
ûn ∗ δ̌n
δ̌n ∗ δ̌n

]
∈ B∞.

For more details we refer the reader to [2].

4. Auxiliary results. Now we state and prove a few lemmas which will
be useful in what follows. The first two were proved in [2].

Lemma 4.1. Let m,n ∈ N and k ∈ N0. If f ∈ Z(m) and g ∈ Z(n) then

γm+n,k(f · g) ≤ γm,k(f) · γn,0(g).

Lemma 4.2. If u ∈ Z ′, v ∈ D′, φ ∈ D then

(i) (u • φ̂)∧ = û ∗ φ̌ in D′;
(ii) (v ∗ φ)∧ = v̂ • φ̂ in Z ′.
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Lemma 4.3. Let u ∈ D′, φ ∈ D and s ∈ R. Then

(i) (u ∗ φ)′ = u′ ∗ φ = u ∗ φ′;
(ii) τs(u ∗ φ) = τsu ∗ φ;
(iii) M(u ∗ φ) = (Mu) ∗ φ+ u ∗ (Mφ);
(iv) es · (u ∗ φ) = (es · u) ∗ (es · φ).

Lemma 4.4. Let u ∈ Z ′, f ∈ Z and s ∈ R. Then

(i) (u • f)′ = u′ • f + u • f ′;
(ii) τs(u • f) = τsu • τsf ;
(iii) M(u • f) = (Mu) • f ;
(iv) es · (u • f) = (es · u) • f .

Lemma 4.5. Let un → u as n → ∞ in Z ′ and fn → fas n → ∞ in Z.
Then

(i) un • fn → u • f as n→∞ in Z ′;
(ii) u′n → u′ as n→∞ in Z ′.
Proof. (i) Let B be a bounded subset of Z. For g ∈ B,

|(un • fn − u • f)(g)| ≤ |(un • fn − u • fn)(g)|+ |(u • fn − u • f)(g)|
= |(un − u)(fn · g)|+ |u((fn − f) · g)|.

Since (fn) is a convergent sequence, {fn : n ∈ N} is a bounded subset of Z.
Hence using Lemma 4.1, we can prove that {fn · g : n ∈ N, g ∈ B} is also
a bounded subset of Z. Since un → u as n → ∞ uniformly on bounded
subsets of Z we deduce that supg∈B |(un − u)(fn · g)| → 0 as n→∞.

Next we choose m, p ∈ N such that {fn − f : n ∈ N} ⊂ Z(m) and
B ⊂ Z(p). Now for each k ∈ N0 there exists Cp,k > 0 such that γp,k(g) ≤ Cp,k
for all g ∈ B. By using the continuity of u and Lemma 4.1, we have

|u((fn − f) · g)| ≤Mkγm+p,k((fn − f) · g) for some k ∈ N, Mk > 0

≤Mkγm,0(fn − f) · γp,k(g)

≤MkCp,kγm,0(fn − f)→ 0 as n→∞.
(ii) Let B be a bounded subset of Z. Then it is easy to verify that

{f ′ : f ∈ B} is also a bounded subset of Z. Since un → u as n→∞ in Z ′,
sup
f∈B
|(u′n − u′)(f)| = sup

f∈B
|(un − u)(f ′)| → 0 as n→∞,

hence (ii) follows.

Let A denote the collection of entire functions ψ called multipliers for
Z [12, p. 198] satisfying |ψ(z)| ≤ Cem| Im z|(1 + |z|n) for all z ∈ C, for some
positive real C and m,n ∈ N. It is easy to verify that γm+l,k(ψ · f) ≤
2Cγl,k(f) for all f ∈ Z(l) and hence we can define ψ ·u ∈ Z ′ for u ∈ Z ′ and
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ψ ∈ A by
(ψ · u)(f) = u(ψ · f), ∀f ∈ Z.

It is clear from the Paley–Wiener theorem [8, Theorem 7.23] that the Fourier
transform from the space of compactly supported distributions onto A is
a bijection. Hence we can say that the Fourier transform of ψ ∈ A is a
compactly supported distribution v̌, where v̂ = ψ. (Recall that 〈v̌(t), f(t)〉 =
〈v(t), f(−t)〉 for all f ∈ C∞.)

Lemma 4.6. If ψ ∈ A and u ∈ Z ′ then (ψ · u)∧ = ψ̂ ∗ û.

Proof. First we note that ψ̂ ∗ û is meaningful since ψ̂ is compactly sup-
ported. Now for φ ∈ D,

(ψ̂ ∗ û)(φ) = ((ψ̂ ∗ û) ∗ φ̌)(0) = (û ∗ (ψ̂ ∗ φ̌))(0) = (û ∗ (ψ̂ ∗ φ̌)(0) = û( ˇ̂
ψ ∗ φ)

= u(ψ · φ̂) = (ψ · u)(φ̂) = (ψ · u)∧(φ).

5. Operational calculus

Definition 5.1. For X =
[
un

δ̂n

]
∈ BF and ψ ∈ A, define

ψ ·X =
[
ψ · un
δ̂n

]
∈ BF .

It can be easily verified that the product is well defined.

Theorem 5.2. If ψ ∈ A and X ∈ BF then F(ψ ·X) = ψ̂ ∗ F(X).

Proof. Let X =
[
un

δ̂n

]
. Using Lemma 4.6 we get

F(ψ ·X) = F
([

ψ · un
δ̂n

])
=
[

(ψ · un)∧ ∗ δ̌n
δ̌n ∗ δ̌n

]
=
[
ψ̂ ∗ ûn ∗ δ̌n
δ̌n ∗ δ̌n

]

= ψ̂ ∗
[
ûn ∗ δ̌n
δ̌n ∗ δ̌n

]
= ψ̂ ∗ F(X).

Definition 5.3 (Differentiation). Given X =
[
un
φn

]
∈ BF we define the

derivative of X by

X ′ =
[
u′n • φn − un • φ′n

φn • φn

]
.

Lemma 5.4. The derivative of a Boehmian is well defined.

Proof. It is well known that if (φn) ∈ ∆̂ then (φn • φn) ∈ ∆̂. First we

show that
u′n • φn − un • φ′n

φn • φn
is a quotient. Using Lemma 4.4(i) we get
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(u′n • φn − un • φ′n) • φm • φm
= u′n • φn • φm • φm − un • φ′n • φm • φm
= u′n • φm • φn • φm − un • φm • φ′n • φm
= (un • φm)′ • φn • φm − un • φ′m • φn • φm − un • φm • φ′n • φm
= (um • φn)′ • φn • φm − um • φn • φ′m • φn − um • φn • φ′n • φm
= (um • φn)′ • φn • φm − um • φ′n • φn • φm − um • φ′m • φn • φn
= u′m • φn • φn • φm − um • φ′m • φn • φn
= (u′m • φm − um • φ′m) • φn • φn.

If
[
un
φn

]
=
[
vn
ψn

]
in BF then un •ψm = vm •φn for all m,n ∈ N. Again using

Lemma 4.4(i) we get

(u′n • φn − un • φ′n) • ψm • ψm
= u′n • φn • ψm • ψm − un • φ′n • ψm • ψm
= u′n • ψm • φn • ψm − un • ψm • φ′n • ψm
= (un • ψm)′ • φn • ψm − un • ψ′m • φn • ψm − un • ψm • φ′n • ψm
= (vm • φn)′ • φn • ψm − vm • φn • ψ′m • φn − vm • φn • φ′n • ψm
= (vm • φn)′ • φn • ψm − vm • φ′n • φn • ψm − vm • ψ′m • φn • φn
= v′m • φn • φn • ψm − vm • ψ′m • φn • φn
= (v′m • ψm − vm • ψ′m) • φn • φn.

This shows that the derivative of a Boehmian is well defined.
Inductively we can define all higher order derivatives of X.

Lemma 5.5 (Consistency). Let u ∈ Z ′. If X =
[
u • φn
φn

]
for any (φn) ∈

∆̂ then

X ′ =
[
u′ • φn
φn

]
.

Since

(u • φn)′ • φn − u • φn • φ′n = (u • φn)′ • φn − u • φ′n • φn
= u′ • φn • φn, ∀n ∈ N,

we get [
u′ • φn
φn

]
=
[
u′ • φn • φn
φn • φn

]
=
[

(u • φn)′ • φn − u • φn • φ′n
φn • φn

]
.

Theorem 5.6. If X ∈ BF and f ∈ Z then (X • f)′ = X • f ′ +X ′ • f .
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Proof. Let X =
[
un
φn

]
. Since

(un • f)′ • φn − un • f • φ′n = un • f ′ • φn + u′n • f • φn − un • f • φ′n
= (u′n • φn − un • φ′n) • f + un • φn • f ′,

we get[
(un • f)′ • φn − un • f • φ′n

φn • φn

]
=
[

(u′n • φn − un • φ′n) • f
φn • φn

]
+
[
un • φn • f ′
φn • φn

]
.

Hence (X • f)′ = X ′ • f +X • f ′.
Theorem 5.7. If X ∈ BF then F(X ′) = iMF(X).

Proof. Let X =
[
un
φn

]
, where (φn) = (δ̂n) and (δn) ∈ ∆. We note that

F(X ′) = F
([

u′n • φn − un • φ′n
φn • φn

])

=
[

(u′n • φn − un • φ′n)∧ ∗ δ̌n ∗ δ̌n
δ̌n ∗ δ̌n ∗ δ̌n ∗ δ̌n

]

=
[

(u′n)∧ ∗ δ̌n ∗ δ̌n ∗ δ̌n − ûn ∗ (φ′n)∧ ∗ δ̌n ∗ δ̌n
δ̌n ∗ δ̌n ∗ δ̌n ∗ δ̌n

]

=
[

(iMûn) ∗ δ̌n ∗ δ̌n ∗ δ̌n − ûn ∗ (iMδ̌n) ∗ δ̌n ∗ δ̌n
δ̌n ∗ δ̌n ∗ δ̌n ∗ δ̌n

]

and

iMF(X) = iM

[
ûn ∗ δ̌n
δ̌n ∗ δ̌n

]

= i

[
(M(ûn ∗ δ̌n)) ∗ δ̌n ∗ δ̌n − (ûn ∗ δ̌n) ∗ (M(δ̌n ∗ δ̌n))

δ̌n ∗ δ̌n ∗ δ̌n ∗ δ̌n

]
.

By using Lemma 4.3(iii), we get

i[(M(ûn ∗ δ̌n)) ∗ δ̌n ∗ δ̌n − (ûn ∗ δ̌n) ∗ (M(δ̌n ∗ δ̌n))]

= i((Mûn) ∗ δ̌n + ûn ∗ (Mδ̌n)) ∗ δ̌n ∗ δ̌n
− ûn ∗ δ̌n ∗ ((Mδ̌n) ∗ δ̌n + δ̌n ∗ (Mδ̌n))]

= (iMûn) ∗ δ̌n ∗ δ̌n ∗ δ̌n − ûn ∗ δ̌n ∗ (iMδ̌n) ∗ δ̌n.
Hence the theorem follows.

Definition 5.8. If X =
[
un

δ̂n

]
∈ BF then define

MX =
[
Mun

δ̂n

]
∈ BF .
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It is easy to verify (by using Lemma 4.4(iii)) that MX is well defined
and consistent with operation (iii) of Definition 2.1 on ultra distributions.

Theorem 5.9. If X ∈ BF , then F(−iMX) = (F(X))′.

Proof. Let X =
[
un

δ̂n

]
∈ BF . Using Lemma 4.3(i), we get

F(−iMX) = F
([−iMun

δ̂n

])
=
[

(−iMun)∧ ∗ δ̌n
δ̌n ∗ δ̌n

]
=
[

(ûn)′ ∗ δ̌n
δ̌n ∗ δ̌n

]

=
[

(ûn ∗ δ̌n)′

δ̌n ∗ δ̌n

]
=
[
ûn ∗ δ̌n
δ̌n ∗ δ̌n

]′
= (F(X))′.

Definition 5.10. For s ∈ R,
[
un

δ̂n

]
∈ BF , we define

es ·
[
un

δ̂n

]
=
[
es · un
δ̂n

]
.

By an application of Lemma 4.4(iv) we see that this product is well
defined and consistent with multiplication of es with an ultra distribution
u ∈ Z ′.

Theorem 5.11. Let X ∈ BF and s ∈ R. Then F(es · X) = τsF(X),
where τs is the translation operator defined on C∞-Boehmians.

Proof. Let X =
[
un

δ̂n

]
. Then by Lemma 4.3(ii) we get

F(es ·X) =
[

(es · un)∧ ∗ δ̌n
δ̌n ∗ δ̌n

]
=
[

(τsûn) ∗ δ̌n
δ̌n ∗ δ̌n

]
=
[
τs(ûn ∗ δ̌n)

δ̌n ∗ δ̌n

]

= τs

[
ûn ∗ δ̌n
δ̌n ∗ δ̌n

]
= τsF(X).

Definition 5.12. Let s ∈ R and and X =
[
un

δ̂n

]
. We define the trans-

lation τsX of X by
τsX =

[
λnτsun

λnτsδ̂n

]

where λn = (δ̂n(−s))−1 for n ∈ N.

We show that the translation is well defined. Since (λnes · δn) ∈ ∆ (see
[7]) and λnτsδ̂n = (λnes · δn)∧, it follows that (λnτsδ̂n) ∈ ∆̂. Since

(λnτsun) • (λmτsδ̂m) = λnλm(τsun • τsδ̂m)

= λnλm(τs(un • δ̂m)) (by Lemma 4.4(ii))

= λmλn(τs(um • δ̂n))

= λmλn(τsum • τsδ̂n) = (λmτsum) • (λnτsδ̂n),
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we see that
λnτsun

λnτsδ̂n
is a quotient and hence

[
λnτsun

λnτsδ̂n

]
∈ BF . By a similar

argument we can show that the definition is independent of the choice of
the representative.

Lemma 5.13. The translation operator defined on BF is consistent with
that on Z ′.

Proof. Let u ∈ Z ′ and s ∈ R. Using the equalities

λnτs(u • δ̂n) • δ̂m = λnτsu • τsδ̂n • δ̂m (by Lemma 4.4(ii)

= τsu • δ̂m • λnτsδ̂n, m, n ∈ N,
we get [

λnτs(u • δ̂n)

λnτsδ̂n

]
=
[
τsu • δ̂n
δ̂n

]
.

Theorem 5.14. If s ∈ R and X =
[
un

δ̂n

]
∈ BF then

F(τsX) = e−s · F(X).

Proof. We have

F
(
τs

[
un

δ̂n

])
= F

([
λnτsun

λnτsδ̂n

])
where λn = (δ̂n(−s))−1

=
[
λn(τsun)∧ ∗ (λne−s · δn)∨

(λne−s · δn)∨ ∗ (λne−s · δn)∨

]

=
[

(λne−s · ûn) ∗ (λne−s · δ̌n)
(λne−s · δ̌n) ∗ (λne−s · δ̌n)

]

=
[
λ2
ne−s · (ûn ∗ δ̌n)

λ2
ne−s · (δn ∗ δn)∨

]
(by Lemma 4.3(iv))

= e−s · F(X)

since λ2
n = ( � ∞−∞(δn ∗ δn)∨e−ist dt)−1.

Theorem 5.15. Let Xn
δ→ X as n → ∞ in BF and fn → f as n → ∞

in Z. Then

(i) Xn • fn δ→ X • f as n→∞;

(ii) X ′n
δ→ X ′ as n→∞.

Proof. Choose un,k, uk ∈ Z ′ and (φk) ∈ ∆̂ such that Xn =
[
un,k
φk

]
,X =

[
uk
φk

]
and for each k ∈ N, un,k → uk as n → ∞ in Z ′. Now by using

Lemma 4.5, our theorem follows.
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6. A comparative study. In [6], it is proved that one cannot define a
product between the collection of all real analytic functions and the space
of Boehmians as a continuous operator on the space of Boehmians for each
fixed real analytic function. With our choice of the Boehmian space, we
can multiply its elements by some entire functions, polynomials in one real
variable and also by characters in a simple and natural way by taking the top
space as a dual space and defining the product as the usual multiplication.

The product of a continuous function φ and a Boehmian X =
[
fn
δn

]
∈ B∞

is defined in [7] by φ · X = δ- limn→∞ φ · fn whenever the limit exists for

each representative
fn
δn

of X. Though this definition is consistent with the

classical product, and all polynomials and functions like eαt (α ∈ C, t ∈ R)
can be multiplied with Boehmians in B∞, it is difficult to answer the question
whether the product φ ·X exists for any given continuous function φ other
than polynomials and characters and a Boehmian X ∈ B∞.

In our theory there is no such complexity. We have also proved that
whenever Xn → X as n→∞ in BF and fn → f as n→∞ in Z, Xn•fn →
X • f as n→∞, and these definitions together with our Fourier transform
on BF have all the classical properties of the Fourier transform. This shows
that the space of ultra Boehmians and the usual product of elements of Z ′
and entire functions in Z is the right choice for developing an operational
calculus for the theory of Fourier transform in the context of Boehmians.

Acknowledgments. The authors would like to thank the referee for his
valuable comments towards the improvement of the content of the paper.

REFERENCES

[1] J. F. Colombeau, A multiplication of distributions, J. Math. Anal. Appl. 94 (1983),
357–360.

[2] V. Karunakaran and R. Roopkumar, Ultra Boehmians and their Fourier transforms,
Fract. Calc. Appl. Anal. 5 (2002), 181–194.

[3] P. Mikusiński, Convergence of Boehmians, Japan J. Math. 9 (1983), 159 – 179.
[4] —, Boehmians and generalized functions, Acta Math. Hungar. 51 (1988), 271–281.
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