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OPERATIONAL CALCULUS AND
FOURIER TRANSFORM ON BOEHMIANS

BY

V. KARUNAKARAN and R. ROOPKUMAR (Madurai)

Abstract. We define various operations on the space of ultra Boehmians like multi-
plication with certain analytic functions which are Fourier transforms of compactly sup-
ported distributions, polynomials, and characters (e’St, s,t € R), translation, differentia-
tion. We also prove that the Fourier transform on the space of ultra Boehmians has all
the operational properties as in the classical theory.

1. Introduction. The problem of defining a “product” of generalized
functions is an interesting one. See for example [1, 6, 7, 10]. A famous result
of L. Schwartz [10] says that a product of distributions cannot be defined so
as to have the usual properties. On the other hand, in [8, p. 144] the product
of a smooth function f € C* and a distribution u € D’ is defined by

where f - ¢ is the pointwise product of functions.

In the context of Boehmians it is proved in [6] that we cannot define
multiplication between the class of real analytic functions and the Boehmian
space By, as a map continuous in the second variable. In another paper [7],
the product of a continuous functions and a Boehmian is defined in a natural
way, and some usual properties of this product are verified.

In [2], we have constructed the space of ultra Boehmians B(Z’, Z, e, A)
and extended the Fourier transform as a continuous linear bijection. Since
the operation used in the construction of this Boehmian space is multipli-
cation, the product of ultra Boehmians by functions from multipliers of Z
is well-defined and has good properties as we shall see later, even though
defining convolution with functions will be difficult in this context.

Since the Fourier transform provides an isomorphism between (D', D, )
and (Z', Z,-), and delta sequences in Z are defined as Fourier transforms
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of delta sequences in D, the isomorphism extends in a natural way to the
corresponding Boehmian spaces, and the properties of multiplication mir-
ror the properties of convolution for C*°-Boehmians. The objective of the
present paper is to obtain an operational calculus for the Fourier transform
consistent with the classical theory.

2. Classical theory. Throughout the paper we use the normalized
Lebesgue measure [9] defined by dm.(t) = (27)~/2dt where dt is the Lebesgue
measure on R. Let C'*° be the space of smooth complex-valued functions on
R, and D be the subspace of C'*° consisting of functions with compact sup-
ports, with the usual locally convex topology [8].

Let Z(m) (m € N) be the collection of all entire functions on C satisfying

Ymi(f) = Sup{|zaf(z)|efm“mz| ze€C0<a<k}<oo, k=0,1,....

It is well known that each Z(m) is a multi-normed space with the collection
of seminorms {7, 1}7>,. The Zemanian space Z is defined as the union
Umen £(m) with the inductive limit topology [11]. The dual space Z’ of
Z is usually referred to as the space of wltra distributions. We use both
notations u(¢) and (u(t),¢(t)) to denote the value of u € V' at ¢ € V,
where V' is D, § or Z.

We say that u, — u as n — oo in 2’ if supsep [(un — u)(f)] — 0 as
n — oo for each bounded subset B of Z.

DEFINITION 2.1 (Operations on generalized function spaces). Let V' de-
note D, Sor Z,u € V', and s € R. Put

es(t) =e,  teR.
(i) The derivative v’ € V is defined by
(W'(),¥(t)) = (u(t), —¢'(t)), YeV.
(ii) The product es-u € V' of es and u is defined by
((es-u)(t), (1)) = (u(t), es(t) - (1)), Y eV
(iii) The operation Mu is defined by
(Mu)(@),9(t)) = (u(t),t-¢(t), eV
(iv) The translation 75u of u € V' is defined as a member of V' by
((rsu) (), (1)) = (u(t),(t+5)), eV
(v) If u € D' and ¢ € D, then u * ¢ € C*°, where
(ux @) (x) = (u(t), p(x —1)).
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The classical Fourier transform of an integrable function f on R is defined
by

foy=| f@e ™ dm(x), teR.
The theory of the Fourier transform on &, D, Z and on their dual spaces is
well known and can be found in [8, 12].
The following lemma is taken from [8].

LEMMA 2.2. Letu € 8" and s € R. Then
(i) (=iMu)" = (a)";
(ii) (W) =iMi;
(iif) (es - u)" = 75;
(iv) (Tsu)" = e_si.
LEMMA 2.3. The conclusions of Lemma 2.2 also hold for v € Z' and
seR.

The proof is very similar to that of the previous lemma and we omit it.

3. Boehmian spaces. For f € C* and ¢ € D we define the convolution
by

(fx o) (@)= | flz—1)o(t)dm(t).

We call a sequence (6,) in D a delta sequence if
(i) §=_6n(t)dm(t) =1 for all n € N;

(i) § |6n(t)| dm(t) < M for all n € N for some M > 0;
(iii) s(dp) =sup{|t| : t € R, 6,(t) #0} — 0 as n — oo.
The collection of all delta sequences is denoted by A.
We denote by A the collection of all pairs ((fy), (0n)) of sequences sat-
isfying
fn*(sm:fm*(sna Vm,nEN.
The space By, of C°°-Boehmians is defined to be the collection of all

equivalence classes [5—71} given by the equivalence relation ~ defined on A

by "
((fn); (6n)) ~ ((gn), (€n)) if fo* €m = gm * 6n, Ym,n € N.

The space of Schwartz distributions can be identified with a proper sub-
U * Oy,

space of B, by the identification u — } , where (6,) € A is arbitrary.

n
In addition to the operations of addition and scalar multiplication the

following operations have been defined on By. See [3, 4, 5, 7].
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DEFINITION 3.1. Let X = &] € By, u € D' with compact support,

On
s € R and a € C. Then define

TL

(i) X' = [fé}

) MX = [ Mfn) *(35 *;n*(Mén)], where (M f)(t) =t - f(t) for
tER. T
(iii) 17X = { , where 75 frn(t) = fu(t —s) fort € R.
)\nzzf:} , where eq(t) = e fort € R and
An = ea(t)on(t) dt)™"
ur fn} , where (u* fr)(x) = (u(t), fu(x —t)) for z € R.

The space Bp of ultra Boehmians is the quadruple (Z', Z, o, A), where
the operation e : Z’ x Z — Z’ is defined by

(u.f)(g):u(fg)v gEZ,
and A = {(3,) : (6,) € A}, where A is defined as above.

We say that X, LR X as n — oo in B if there exist u, i, u; € Z' and

(1) € A such that X, = [ugk], X = [gk} and for each k € N,
k k

. /
Upk — Up aSnN — 00in Z'.

DEFINITION 3.2. The Fourier transform of an ultra Boehmian is defined

For more details we refer the reader to [2]

4. Auxiliary results. Now we state and prove a few lemmas which will
be useful in what follows. The first two were proved in [2].

LEMMA 4.1. Let m,n € N and k € Ng. If f € Z(m) and g € Z(n) then
Ymtnk(f - 9) < Ymi(f) - m0(9)-
LEMMA 4.2. If ue Z', ve D', ¢ € D then

(i) (ue @) ﬂ*quD’
(i) (vxPp) =ve¢ in Z'.
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LEMMA 4.3. Let u € D', ¢ € D and s € R. Then
(i) (ux¢) =u x¢=ux*d

(i) 7s(u* @) = Tou * ¢;

(iii) M(ux* ¢) = (Mu) * ¢ + u* (Mop);

(iv) es- (ux @) = (es-u) * (es - @).

LEMMA 4.4. Let ue Z', f € Z and s € R. Then
(i) (uef) =u'of+uef’;

(il) 7s(u e f) = Tsu o T f;

(ii) M(u e f) = (Mu) o f;

(iv) es-(ue f) = (es-u)eof.

LEMMA 4.5. Let u, — u asn — oo in 2" and f, — fasn — oo in Z.

Then

(i) up® fn ~ue fasn — oo in Z';
(ii) u), — v’ asn — oo in Z'.
Proof. (i) Let B be a bounded subset of Z. For g € B,

|(un @ fro—ue f)(g)] < [(un o frn—ue fu)(g)l+[(ue fn—uef)(g)
= [(un = w)(fn - 9)[ + [u((fn = [) - 9)]-

Since (fy,) is a convergent sequence, {f, : n € N} is a bounded subset of Z.
Hence using Lemma 4.1, we can prove that {f, -g:n € N, g € B} is also
a bounded subset of Z. Since uw, — u as n — oo uniformly on bounded
subsets of Z we deduce that supgep |[(un — u)(fn - g)| — 0 as n — oo.

Next we choose m,p € N such that {f, — f : n € N} C Z(m) and
B C Z(p). Now for each k € Ny there exists C), , > 0 such that v, x(g9) < Cp
for all g € B. By using the continuity of v and Lemma 4.1, we have

[u((fr = f) - 9)| < MiYmap((fn —f)-g) forsomek €N, My >0
< Mk;'Ym,O(fn - f) : ’Vp,k(g)
< MpCp e Ymo(fn—f) =0 asn — oo.

(ii) Let B be a bounded subset of Z. Then it is easy to verify that
{f': f € B} is also a bounded subset of Z. Since u, — u as n — oo in 2,

sup | (uz, — u')(f)] = sup [(un —u)(f)| =0 asn — oo,
feB feB

hence (ii) follows.

Let A denote the collection of entire functions v called multipliers for
Z [12, p. 198] satisfying [¢(z)] < Ce™™2[(1 4 |z|") for all z € C, for some
positive real C' and m,n € N. It is easy to verify that v, k(¢ - f) <

2C7,,(f) for all f € Z(l) and hence we can define ¢ -u € Z’ for u € Z’ and
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¥ € A by
(-u)(f)=ul®-f), VfeZ
It is clear from the Paley—~Wiener theorem [8, Theorem 7.23] that the Fourier
transform from the space of compactly supported distributions onto A is
a bijection. Hence we can say that the Fourier transform of ¢ € A is a
compactly supported distribution v, where v = 9. (Recall that (0(t), f(t)) =
(v(t), f(—=t)) for all f € C*.)
LEMMA 4.6. If 9 € A and u € Z' then (¢ - u)" =

*
Proof. First we note that w * ¢ is meaningful since 1/} is compactly sup-
ported. Now for ¢ € D,

~

U.

(xa)(¢) = (¥ *a = (a* (i é)><0>=<a*<«&*¢>(0)=a<w*qb)
=u(ip-9) = (¥ -u)(9) = (¢-u

5. Operational calculus

DEFINITION 5.1. For X = [g—”] € Br and ¢ € A, define

n

v X = [wsun} € Br.

n

It can be easily verified that the product is well defined.
THEOREM 5.2. If ¢ € A and X € Bp then F(¢- X) = ¢ » F(X).

Proof. Let X = [

F-X)=F ([w D - [W] B [1/}5”75

—12)*,7:()().

} Using Lemma 4.6 we get

n

DEFINITION 5.3 (Differentiation). Given X = [Z—n} € Br we define the
derivative of X by

/ u;z°¢n_un’¢;z
X = .
[ On ® On ]

LEMMA 5.4. The derivative of a Boehmian is well defined.

Proof. Tt is well known that if (¢,) € A then (¢, ® ¢,,) € A. First we
U, ® $n = Un @ Py,

show that
¢n ° P,

is a quotient. Using Lemma 4.4(i) we get
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(1), ® G — tn ® $1,) ® G ® O
= Uy, ® P @ iy @ by — U ® P, @ Dy @ Dy
= U, @Dy @Dy, @ Dy — Up @ Py @ DL @ Dy

= (Un @ om)' ® Pp @ Py — U ® By, @ By @ Py — U @ iy @ By, @ Dy

= (Um ® Pn)' ® P ® P — U, ® P, ® By, ® By — Uy @ D @ By, @ Py

= (U ® On)' @ P @ Py — U, © By, © By @ By — Ui @ D, @ Py @ Py
Dn ® Dp ® P — U, @ P, @ D @ Py

:(u;n°¢m_um°¢;n)‘¢n‘¢n'

If {%} = [Z—"} in Br then u,, ® 1, = v, ® ¢, for all m,n € N. Again using

Lemma 4.4(i) we get

(ty, ® b — U ® §1,) ® UV @ Uiy
= Uy, ® G ® Vi @ Yy — U ® Gy, @ Yy @ Uy
= Uy, @ P @ P @ Yy — Up © Yy © By, @ Yy
= (Un ® Ym)" ® Pn @ Uy — Un @1, © Py @ Yy — Uy @ Py @ By, @ Yy
= (Un @ D)’ @ G @ Uiy — Uy @ B, @ Uiy © iy — Uy @ P @ Dy @ Uiy
= (Um ® Pn)" @ Pn @ iy — Vi @ B}, @ Dy @ Yy — Uy @ Uy, @ Dy @ D
=0, 0D, @Dy @y — Uy @Y @Dy @Dy
= (v, @ Ym — Vi @ Y) @ by @ Py

This shows that the derivative of a Boehmian is well defined.
Inductively we can define all higher order derivatives of X.

LEmMA 5.5 (Consistency). Let w e Z'. If X = [u;qbn] for any (én) €
A then »
X' = [“ ° "}
P
Since

(u.gbn)/.ﬁi)n_u.gi)n.qb;z:(u.ﬁbn)/'ﬁbn_u.ﬁb;.ﬁbn
:ul.¢n.¢na Vn €N,

we get

l:u,.¢n:| _ l:ul.¢n.¢n] _ |:(u.¢n),.¢n_u.¢n.¢;z
®n On @ Op On ® On .
THEOREM 5.6. If X € Br and f € Z then (X o f)) =X o f'+ X o f.
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Proof. Let X = [ " } Since

(Un.f)/.¢n_Un.f.¢;1:un.f/.(ﬁn"i‘uéz.f.(ﬁn_Un.f.qséz
:(uln'ﬁbn_un.¢;1)'f+un°¢n°flv
we get
(Un.f)/.qbn_un.f.ﬁb;z] _ [(u%.qsn_un.d);z).f]_f_{Un.¢n.f/]
On ® On On ® Pp On ® Op ‘
Hence (X o f) =X'of+ X o f'.
THEOREM 5.7. If X € Bp then F(X') =iMF(X).

Proof. Let X = [¢ } where (¢,) = (8,) and (8,) € A. We note that

o ([

_ -(U%'an—unogb’n)/\*én*gn]
| O % Oy % Oy % O,
Tl 0 by by — i K (B) % O n}

Oy % O % Opy % Ony
B (zMun)*(S % Op * Oy, s (1M 6y,) * Oy * 5n]
B 5n*5n*5n*5n
and
an*Sn
iIMF(X)=1iM |- v]

By using Lemma 4.3(iii), we get
i[(M (G, % 85)) % O % Oy — (T % 0) % (M (0 % 6))]

—ﬂn*én*((Mén)* n (
= (iMy,) * Oy, * O % Oy — Ty * Oy * (iM6y,) * 6.
Hence the theorem follows.

DEFINITION 5.8. If X = {%] € Br then define

n
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It is easy to verify (by using Lemma 4.4(iii)) that M X is well defined
and consistent with operation (iii) of Definition 2.1 on ultra distributions.

THEOREM 5.9. If X € Bp, then F(—iMX) = (F(X))".

Proof. Let X = [ELH} € Br. Using Lemma 4.3(i), we get

G )= [ -

- [ 5 T
Un

Uy * O,
] [ ] — (F(X)).
DEFINITION 5.10. For s € R, [5

Qm

S % O,

- [
Es | =— | = = .
On On

By an application of Lemma 4.4(iv) we see that this product is well
defined and consistent with multiplication of e; with an ultra distribution
ueZz.

THEOREM 5.11. Let X € Bp and s € R. Then F(es - X) = 1.F(X),
where Ts is the translation operator defined on C°°-Boehmians.

} € Bp, we define

Proof. Let X = [ELH
n

B [(es'un)/\*gn] _ [(Tsan)*én} B [Ts@n*sn)]

} . Then by Lemma 4.3(ii) we get

Sn*5n

DEFINITION 5.12. Let s € R and and X = [ig_n] We define the trans-
lation 7, X of X by !

X = |:)\n7_57fn:|

AnTsOn
where A, = (8,(—s))~! for n € N.
We show that the translation is well defined. Since (Anes - n) € A (see
[7]) and A\, 750, = (Anes - 0,)", it follows that (AnTs0n) € A. Since
(AnTstin) ® AmTs0m) = An A (Tstin ® Ts0m)

= M (7s(tn 0 0,n))  (by Lemma 4.4(ii))
= A An (75 (U ® 5y ))
= A (Tsu ) = AmTstim) ® (AnTsor),

TsU .7'5
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A AnTsl
we see that — is a quotient and hence [ ne An] € Br. By a similar

nTsOn . . LAnTsO0n .
argument we can show that the definition is independent of the choice of

the representative.

nTsln

LEMMA 5.13. The translation operator defined on B is consistent with
that on Z'.

Proof. Let u € 2" and s € R. Using the equalities
AnTs(u® Sn) 00, = \yTsll ® TsOp, ® Oy, (by Lemma 4.4(ii)
=Tu® 5m ° )\nngn, m,n €N,

we get

{)\nrs(u . 5,1)} _ [Tsu . 5n] .

AnTsOn

On

THEOREM 5.14. If s € R and X = [z—”] € Bp then

n

F(1sX) =e_s- F(X).
Proof. We have

) (z]) e
! [ (:Szjn Nk (Ane—s - 0n)Y }
[(Ane—s = 0n)" % (Ane—s - n)"

(A

n€—s* 5n):|
( n€—s * Sn)
[ A2e_g - (i, * 0p) .
= e (5, 5n)v] (by Lemma 4.3(iv))
=e_s  F(X)

since A2 = (§7°_ (6, * 6n) Ve st dt) ™!

_ [(Ane—s - un)
L (Ane—s - 0n) *

THEOREM 5.15. Let X, LA X asn — oo inBp and fr, — f asn — oo
in Z. Then
(i) Xn.fniX.f as n — o0;
(i) X}, 2 X' asn — oo.
Proof. Choose uy, ,ur € 2" and (¢y,) € A such that X, = {ng} X =
k
ug

Lb_] and for each & € N, u,, — ux as n — oo in Z’. Now by using
k

Lemma 4.5, our theorem follows.
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6. A comparative study. In [6], it is proved that one cannot define a
product between the collection of all real analytic functions and the space
of Boehmians as a continuous operator on the space of Boehmians for each
fixed real analytic function. With our choice of the Boehmian space, we
can multiply its elements by some entire functions, polynomials in one real
variable and also by characters in a simple and natural way by taking the top
space as a dual space and defining the product as the usual multiplication.

The product of a continuous function ¢ and a Boehmian X = |:§_n:| € By

n
is defined in [7] by ¢ - X = §-limy, o ¢ - f,, whenever the limit exists for
each representative 5—" of X. Though this definition is consistent with the
classical product, andnall polynomials and functions like e (o € C, t € R)
can be multiplied with Boehmians in By, it is difficult to answer the question
whether the product ¢ - X exists for any given continuous function ¢ other
than polynomials and characters and a Boehmian X € Bo.

In our theory there is no such complexity. We have also proved that
whenever X,, - X asn — oo in Bp and f,, — f asn — o0 in Z, X, e f, —
X o f as n — oo, and these definitions together with our Fourier transform
on Br have all the classical properties of the Fourier transform. This shows
that the space of ultra Boehmians and the usual product of elements of Z’
and entire functions in Z is the right choice for developing an operational
calculus for the theory of Fourier transform in the context of Boehmians.
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