COLLOQUIUM MATHEMATICUM

ON SETS WHICH CONTAIN A qTH POWER RESIDUE FOR ALMOST ALL PRIME MODULES

By
MARIUSZ SKAŁBA (Warszawa)

Abstract

A classical theorem of M . Fried [2] asserts that if non-zero integers $\beta_{1}, \ldots, \beta_{l}$ have the property that for each prime number p there exists a quadratic residue $\beta_{j} \bmod p$ then a certain product of an odd number of them is a square. We provide generalizations for power residues of degree n in two cases: 1) n is a prime, 2) n is a power of an odd prime. The proofs involve some combinatorial properties of finite Abelian groups and arithmetic results of [3].

Our starting point is the following theorem of M. Fried [2] (rediscovered much later by other writers [1], [3]).

Theorem. Let $\beta_{1}, \ldots, \beta_{l}$ be rational integers. The following two conditions are equivalent:
(L) for each sufficiently large prime number p there exists j such that the congruence

$$
x^{2} \equiv \beta_{j}(\bmod p)
$$

is solvable,
(G) there exists $J \subseteq\{1, \ldots, l\}$ of odd cardinality such that

$$
\prod_{j \in J} \beta_{j}=\gamma^{2} \quad \text { for some } \gamma \in \mathbb{Z}
$$

The generalization of the above theorem to power residues of degree n, where n is any fixed exponent, is provided in [3]. But the counterpart of the above condition (G) has a quite complex combinatorial structure (condition (ii) of Lemma 3). The aim of this paper is to replace it by a condition which resembles the above condition (G) for $n=2$. We succeed in two special cases: $n=q$ is a prime (Theorem 1) and $n=q^{m}, q \neq 2$ (Theorem 2).

Theorem 1. Let K be an algebraic number field, $\beta_{1}, \ldots, \beta_{l} \in K^{*}$ and q a rational prime. The following two conditions are equivalent:

[^0](L) for almost all prime ideals \mathfrak{p} of K at least one of the congruences
$$
x^{q} \equiv \beta_{j}(\bmod \mathfrak{p})
$$
is solvable,
(G) for each sequence of integers $\left(c_{j}\right), j=1, \ldots, l$, there exists a sequence of integers $\left(f_{j}\right), j=1, \ldots, l$, satisfying
$$
\sum_{j=1}^{l} f_{j} \not \equiv 0(\bmod q) \quad \text { and } \quad \prod_{j=1}^{l} \beta_{j}^{c_{j} f_{j}}=\gamma^{q}
$$
with some $\gamma \in K^{*}$.
For the case of q^{m} th power residues, but only for $q \neq 2$, we have
THEOREM 2. Let K be an algebraic number field, $\beta_{1}, \ldots, \beta_{l} \in K^{*}$, $n=q^{m}$ where q is an odd prime. The following two conditions are equivalent:
(L) for almost all prime ideals \mathfrak{p} of K at least one of the congruences
$$
x^{n} \equiv \beta_{j}(\bmod \mathfrak{p})
$$
is solvable,
(G) for each sequence of integers $\left(c_{j}\right), j=1, \ldots, l$, there exist two subsets A, B of $\{1, \ldots, l\}$ satisfying
$$
|A| \not \equiv|B|(\bmod q) \quad \text { and } \quad \prod_{j \in A} \beta_{j}^{c_{j}}=\gamma^{n} \prod_{j \in B} \beta_{j}^{c_{j}}
$$
with some $\gamma \in K^{*}$.
Lemma 1. Let q be a natural number and consider a system of $q-1$ integers $c^{(1)}, \ldots, c^{(q-1)}$. If for each non-empty subset $C \subseteq\{1, \ldots, q-1\}$ we have $\sum_{i \in C} c^{(i)} \not \equiv 0(\bmod q)$ then there exists an integer c such that
$$
c^{(1)} \equiv c^{(2)} \equiv \cdots \equiv c^{(q-1)} \equiv c(\bmod q)
$$

Proof. Without any claim for priority we prove the lemma for completeness of presentation. For any permutation τ of $\{1, \ldots, q-1\}$ the sequence

$$
c^{(\tau(1))}, c^{(\tau(1))}+c^{(\tau(2))}, \ldots, c^{(\tau(1))}+\ldots+c^{(\tau(q-1))}
$$

gives all non-zero residue classes $\bmod q$. This observation implies

$$
\sum_{j=1}^{q-2} c^{(\tau(j))} \equiv \sum_{j=1}^{q-3} c^{(\tau(j))}+c^{(\tau(q-1))}(\bmod q)
$$

hence $c^{(\tau(q-2))} \equiv c^{(\tau(q-1))}(\bmod q)$, which finishes the proof.
Lemma 2. Let G be a finite Abelian group, \widehat{G} its group of characters and $g_{j} \in G(1 \leq j \leq l)$. The following conditions are equivalent:
(C1) for each $\chi \in \widehat{G}$ there exists j such that $\chi\left(g_{j}\right)=1$,
(C2) there exists an involution σ of the family \mathcal{F} of all subsets of $\{1, \ldots, l\}$ such that for each $A \in \mathcal{F}$,

$$
|\sigma(A)| \not \equiv|A|(\bmod 2) \quad \text { and } \prod_{j \in \sigma(A)} g_{j}=\prod_{j \in A} g_{j}
$$

If we assume additionally that G is a q-group, where q is a prime, then both conditions are equivalent to
(C3) for each sequence of integers $\left(c_{j}\right), j=1, \ldots, l$, there exist subsets $A, B \in \mathcal{F}$ satisfying

$$
\begin{equation*}
|A| \not \equiv|B|(\bmod q) \quad \text { and } \quad \prod_{j \in A} g_{j}^{c_{j}}=\prod_{j \in B} g_{j}^{c_{j}} \tag{1}
\end{equation*}
$$

If additionally G is an elementary q-group then these conditions are equivalent to
(C4) for each sequence of integers $\left(c_{j}\right), j=1, \ldots, l$, there exists a sequence of integers $\left(f_{j}\right), j=1, \ldots, l$, satisfying

$$
\sum_{j=1}^{l} f_{j} \not \equiv 0(\bmod q) \quad \text { and } \quad \prod_{j=1}^{l} g_{j}^{c_{j} f_{j}}=1
$$

Proof. The equivalence of (C1) and (C2) is proved in [3]. We will show first that (C 1) and (C 2) imply (C 3). Let c_{1}, \ldots, c_{l} be arbitrary integers. Obviously the system $\left(g_{j}^{c_{j}}\right)$ of elements of G satisfies (C1), hence (C2) as well. Therefore there exists an involution σ of the family \mathcal{F} such that for each $A \in \mathcal{F}$,

$$
|\sigma(A)| \equiv|A|+1(\bmod 2) \quad \text { and } \quad \prod_{j \in \sigma(A)} g_{j}^{c_{j}}=\prod_{j \in A} g_{j}^{c_{j}}
$$

Now let $\zeta_{q}=\exp (2 \pi i / q) \in \mathbb{C}$. Then

$$
\left(1-\zeta_{q}\right)^{l}=\sum_{A \in \mathcal{F}}(-1)^{|A|} \zeta_{q}^{|A|}=\sum_{A \in \mathcal{F},|A| \text { even }}\left\{\zeta_{q}^{|A|}-\zeta_{q}^{|\sigma(A)|}\right\}
$$

and since the left hand side is not 0 there must exist $A \in \mathcal{F}$ such that

$$
|\sigma(A)| \not \equiv|A|(\bmod q)
$$

So we can put $B=\sigma(A)$.
We owe to A. Schinzel the proof that (C3) implies (C1). Assume to the contrary that there exists $\chi \in \widehat{G}$ such that for each $1 \leq j \leq l$ we have

$$
\chi\left(g_{j}\right) \neq 1
$$

Denoting by e the exponent of the group G we can write

$$
\chi\left(g_{j}\right)=\zeta_{e}^{d_{j}}, \quad \text { where } \quad d_{j} \not \equiv 0(\bmod e)
$$

Now we define the sequence c_{1}, \ldots, c_{l} by the conditions

$$
c_{j} d_{j} \equiv e / q(\bmod e), \quad j=1, \ldots, l .
$$

By (C3) there exist $A, B \in \mathcal{F}$ such that (1) is satisfied. Hence we obtain

$$
\prod_{j \in A} \chi\left(g_{j}\right)^{c_{j}}=\prod_{j \in B} \chi\left(g_{j}\right)^{c_{j}}
$$

and further

$$
\prod_{j \in A} \zeta_{e}^{d_{j} c_{j}}=\prod_{j \in B} \zeta_{e}^{d_{j} c_{j}},
$$

which gives $\zeta_{e}^{(e / q)|A|}=\zeta_{e}^{(e / q)|B|}$ and finally $(e / q)|A| \equiv(e / q)|B|(\bmod e)$, hence $|A| \equiv|B|(\bmod q)$, a contradiction. Hence for each $\chi \in \widehat{G}$ there exists $1 \leq j \leq l$ such that $\chi\left(g_{j}\right)=1$ and we have shown (C1).

Now we show that (C3) implies (C4). By (C3) for each sequence of integers $\left(c_{j}\right), j=1, \ldots, l$, there exist disjoint subsets $A, B \in \mathcal{F}$ satisfying (1). We put $f_{j}=1$ for $j \in A, f_{j}=-1$ for $j \in B$, and $f_{j}=0$ for $j \notin A \cup B$.

Now we will close the circle of implications by showing that (C4) implies (C1). It is obvious that it is sufficient to prove (C1) for the following system of elements:

$$
\begin{equation*}
\underbrace{g_{1}, \ldots, g_{1}}_{q-1 \text { times }}, \underbrace{g_{2}, \ldots, g_{2}}_{q-1 \text { times }}, \ldots \underbrace{g_{l}, \ldots, g_{l}}_{q-1 \text { times }} . \tag{2}
\end{equation*}
$$

We will now verify that the system (2) satisfies (C3). Take an arbitrary sequence of integers

$$
c_{1}^{(1)}, \ldots, c_{1}^{(q-1)}, c_{2}^{(1)}, \ldots, c_{2}^{(q-1)}, \ldots, c_{l}^{(1)}, \ldots, c_{l}^{(q-1)}
$$

Two cases can occur.
(1) There exists $j \in\{1, \ldots, l\}$ and a non-empty subset $C \subseteq\{1, \ldots, q-1\}$ such that $\sum_{i \in C} c_{j}^{(i)} \equiv 0(\bmod q)$. Then we put simply $A=C$ and $B=\emptyset$.
(2) For each $j \in\{1, \ldots, l\}$ and each non-empty subset $C \subseteq\{1, \ldots, q-1\}$ we have $\sum_{i \in C} c_{j}^{(i)} \not \equiv 0(\bmod q)$. By Lemma 1, for each $j \in\{1, \ldots, l\}$ there exists c_{j} such that

$$
c_{j}^{(1)} \equiv c_{j}^{(2)} \equiv \cdots \equiv c_{j}^{(q-1)} \equiv c_{j}(\bmod q) .
$$

By (C4) there exist integers f_{1}, \ldots, f_{l} such that

$$
\begin{equation*}
\prod_{j=1}^{l}\left(g_{j}^{c_{j}}\right)^{f_{j}}=1 \tag{3}
\end{equation*}
$$

and we can assume that $0 \leq f_{j} \leq q-1$ for $j=1, \ldots, l$. We put

$$
A=\bigcup_{j=1}^{l}\left((j-1)(q-1),(j-1)(q-1)+f_{j}\right], \quad B=\emptyset .
$$

By (3) condition (C3) holds for the system (2) and the exponents $\left(c_{j}^{(i)}\right)$.

Lemma 3. Let $w_{n}(K)$ be the number of nth roots of unity contained in a number field K and assume that

$$
\begin{equation*}
\left(w_{n}(K), \text { l.c.m. }\left[K\left(\zeta_{q}\right): K\right]\right)=1 \tag{4}
\end{equation*}
$$

where the least common multiple is over all prime divisors q of n and additionally $q=4$ if $4 \mid n$. Let $\beta_{1}, \ldots, \beta_{l} \in K^{*}$. Then the following two conditions are equivalent:
(i) for almost all prime ideals \mathfrak{p} of K there exists $1 \leq j \leq l$ such that the congruence

$$
x^{n} \equiv \beta_{j}(\bmod \mathfrak{p})
$$

is solvable in K,
(ii) there exists an involution σ of the family of all subsets of $\{1, \ldots, l\}$ such that for each $A \subset\{1, \ldots, l\}$,

$$
|\sigma(A)| \equiv|A|+1(\bmod 2)
$$

and

$$
\begin{equation*}
\prod_{j \in \sigma(A)} \beta_{j}=\gamma_{A}^{n} \prod_{j \in A} \beta_{j} \tag{5}
\end{equation*}
$$

where $\gamma_{A} \in K^{*}$.
Proof. This is a special case of Corollary 1 of [3], for $k=0$.
Proof of Theorems 1 and 2. The equivalence of both conditions (L) and (G) follows immediately from Lemmas 3 and 2.

REFERENCES

[1] M. Filaseta and D. R. Richman, Sets which contain a quadratic residue mod p for almost all p, Math. J. Okayama Univ. 31 (1989), 1-8.
[2] M. Fried, Arithmetical properties of value sets of polynomials, Acta Arith. 15 (1969), 91-115.
[3] A. Schinzel and M. Skałba, On power residues, ibid. 108 (2003), 77-94.

Institute of Mathematics
Polish Academy of Sciences
P.O. Box 21

00-956 Warszawa, Poland
E-mail: skalba@impan.gov.pl

[^0]: 2000 Mathematics Subject Classification: 11R20, 11A15.
 Key words and phrases: power residue, finite Abelian group.

