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THE SPECTRUM OF CHARACTERS OF ULTRAFILTERS ON ωBYSAHARON SHELAH (Jerusalem and Pisataway, NJ)Abstrat. We show the onsisteny of the statement: �the set of regular ardinalswhih are the haraters of ultra�lters on ω is not onvex�. We also deal with the set of
π-haraters of ultra�lters on ω.0. Introdution. Some ardinal invariants of the ontinuum are atu-ally the minimum of a natural set of ardinals ≤ 2ℵ0 whih an be alledthe spetrum of the invariant. Suh a ase is Spχ, the set of haraters χ(D)of non-prinipal ultra�lters D on ω (the minimal number of generators). Onthe history see [BnSh:642℄; there this spetrum and others were investigatedand it was asked if Spχ an be non-onvex (formally 0.1(2) below).The main result here is 1.1, it solves the problem (starting with a mea-surable). This was presented at a onferene in honor of I. Juhász, quite�tting as he had started the investigation of onsisteny on χ(D). In �2 wenote what we an say on the strit π-harater of ultra�lters.The investigation is ontinued in [Sh:915℄ trying to get more �disorderly�behaviours in smaller ardinals and in partiular answering negatively theoriginal question, 0.2(2).Reall0.1. Definition.(1) Spχ = Sp(χ) is the set of ardinals θ suh that θ = χ(D) for somenon-prinipal ultra�lter D on ω where(2) For D an ultra�lter on ω let θ = χ(D) be the minimal ardinality θsuh that D is generated by some family of θ members, i.e. Min{|A | :

A ⊆ D and (∀B ∈ D)(∃A ∈ A )[A ⊆∗ B]}; it does not matter if weuse �A ⊆ B�.2000 Mathematis Subjet Classi�ation: Primary 03E05, 03E17.Key words and phrases: haraters, ultra�lter, foring, set theory.I would like to thank Alie Leonhardt for the beautiful typing.Partially supported by the Binational Siene Foundation and the Canadian ResearhChair; 613-943-9382. Publiation 846. [213℄ © Instytut Matematyzny PAN, 2008
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Now, Brendle and Shelah [BnSh:642, Problem 5℄ asked the question for-mulated in 0.2(2) below, but it seems to me, at least now, that the questionis really 0.2(1)+(3).0.2. Problem.(1) Can Sp(χ)∩Reg have gaps, i.e., an it be that θ < µ < λ are regular,

θ ∈ Sp(χ), µ /∈ Sp(χ), λ ∈ Sp(χ)?(2) In partiular, does ℵ1,ℵ3 ∈ Sp(χ) imply ℵ2 ∈ Sp(χ)?(3) Are there any restritions on Sp(χ) ∩ Reg?We thank the referee for helpful omments and in partiular 2.5(1).
Discussion. This relies on [Sh:700, �4℄; there is no point to repeat itbut we try to give a desription. Let ℵ0 < κ < µ < λ be regular ardinalsand κ be a measurable ardinal.Let S = {α < λ : cf(α) 6= κ} or any unbounded subset of it. We de�ne([Sh:700, 4.3℄) the lass K = Kλ,S of objets t approximating our �nal foring.Eah t ∈ K onsists mainly of a �nite support iteration 〈Pt

i, Q
t
i : i < µ〉 of... foring of ardinality ≤ λ with limit P∗

t = Pt = Pt
µ, but also Qt

i-names
τ
˜

t
i (i < µ), so it is a Pt

i+1 satisfying a strong version of the ... and for i ∈ S,also D
˜

t
i, a Pt

i-name of a non-prinipal ultra�lter on ω from whih Qt
i is nielyde�ned, and A

˜

t
i, a Q

˜

t
i-name (so Pt

i+1-name) of a pseudo-intersetion (and Qi,
i ∈ S, niely de�ned) of D

˜

t
i suh that i < j ∈ S ⇒ A

˜

t
i ∈ Dt

j . So {A
˜

i : i ∈ S}witness u ≤ µ in VPt ; we do not neessarily have to use niely de�ned Qi,though for i ∈ S we do.The order ≤K is the natural order; we prove the existene of the so-alledanonial limit.Now a major point of [Sh:700℄ is: for s ∈ K, letting D be a uniform κ-omplete ultra�lter on κ (or just κ1-omplete ℵ0 < θ < κ), we an onsider
t = s

κ/D ; by the �o± theorem, more exatly by Hanf's Ph.D. thesis, (theparallel of) the �o± theorem for Lκ,κ applies; it gives that t ∈ K, well if
λ = λκ/D ; and moreover s ≤K t under the anonial embedding.The e�et is that, e.g., being �a linear order having o�nality θ 6= κ�is preserved, even by the same witness, whereas having ardinality θ < λis not neessarily preserved, and sets of ardinality ≥ κ are inreased. As
d is the o�nality (not of a linear order, but) of a partial order, there areompliations; anyhow, as d is de�ned by o�nality whereas a by ardinalityof sets, this helps in [Sh:700℄, noting that as we deal with ... foring, namesof reals are represented by ω-sequenes of onditions, the relevant things arepreserved. So we use a ≤K-inreasing sequene 〈tα : α ≤ λ〉 suh that forunboundedly many α < λ, tα+1 is essentially (tαα)κ/D .What does �nie� Q = Q(D) mean, for D a non-prinipal ultra�lterover ω? We need that
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(α) Q satis�es a strong version of the ...,
(β) the de�nition ommutes with the ultrapower used,
(γ) if P is a foring notion then we an extend D to an ultra�lter D

˜

+for every (or at least some) P-name of an ultra�lter D
˜
extending D,and we have Q(D) ⋖ P ∗ Q(D

˜

+) (used for the existene of anoniallimit).Suh a foring is ombining Laver foring and Mathias foring for an ultra-�lter D on ω, that is: p ∈ D i� p is a subtree of ω with trunk tr(p) ∈ psuh that for η ∈ p we have lg(η) < lg(tr(p)) ⇒ (∃!n)(ηˆ〈n〉 ∈ p) and
lg(η) ≥ lg(tr(p)) ⇒ {n : ηˆ〈n〉 ∈ p} ∈ D.1. Using measurables and FS iterations with non-transitivememory. We use [Sh:700℄ in 1.1 heavily. We use measurables (we ouldhave used extenders to get more). The question on ℵ1,ℵ2,ℵ3, i.e. Problem0.2(2) remains open.1.1. Theorem. There is a ... foring notion P of ardinality λ suhthat in VP we have a = λ, b = d = µ, u = µ, {µ, λ} ⊆ Spχ but κ2 /∈ Sp(χ) if

⊛ κ1, κ2 are measurable and κ1 < µ = cf(µ) < κ2 < λ = λµ = λκ2 =
cf(λ).Proof. Let Dl be a normal ultra�lter on κl for l = 1, 2. Repeat [Sh:700,�4℄ with (κ1, µ, λ) here standing for (κ, µ, λ) there, getting tα ∈ K for α ≤ λwhih is ≤K-inreasing. Letting Pα

i = Ptα
i we see that Q

α
= 〈Pα

ε : ε < µ〉is a ⋖-inreasing ontinuous sequene of ... foring notions, Pα
µ = Pα =

Ptα := Lim(Qα) =
⋃
{Pα

ε : ε < µ}; in fat 〈Pα
ε , Qα

ε : ε < µ〉 is an FS iteratedforing et., but we add the demand that for unboundedly many α < λ,
⊠1

α Pα+1 is isomorphi to the ultrapower (Pα)κ2/D2, by an isomorphismextending the anonial embedding.More expliitly, we hoose tα by indution on α ≤ λ suh that
⊛1 (a) tα ∈ K (see [Sh:700, De�nition 4.3℄), so the foring notion Ptα

i for
i ≤ µ is well de�ned and is ⋖-inreasing with i,(b) 〈tβ : β ≤ α〉 is ≤K-inreasing ontinuous, whih means that:
(α) γ ≤ β ≤ α ⇒ tγ ≤K tβ (see [Sh:700, De�nition 4.6(1)℄), so

Ptγ

i ⋖ P
tβ

i for i ≤ µ,
(β) if α is a limit ordinal then tα is a anonial ≤K-u.b. of 〈tβ :

β < α〉 (see [Sh:700, De�nition 4.6(2)℄),() if α = β + 1 and cf(β) 6= κ2 then tα is essentially t
κ1

β /D1 (i.e. wehave to identify P
tβ
ε with its image under the anonial embed-
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ding of it into (P

tβ
ε )κ1/D1, in partiular this holds for ε = µ, see[Sh:700, Sublaim 4.9℄),(d) if α = β + 1 and f(β) = κ2 then tα is essentially t

κ2

β /D2.So we need
⊛2 [Sh:700, Sublaim 4.9℄ also applies to the ultrapower t

κ2

β /D.[Why? The same proof applies as µκ2/D2 = µ, i.e., the anonialembedding of µ into µκ2/D2 is one-to-one and onto (and λκ1/D1 =
λκ2/D2 = λ, of ourse).℄Let Pα

ε = Ptα
ε for ε ≤ µ so Pα =

⋃
{Pα

ε : ε < µ} and P = Pλ. It is proved in[Sh:700, 4.10℄ that in VP, by onstrution,
µ ∈ Sp(χ), a ≤ λ, u = µ, 2ℵ0 = λ.By [Sh:700, 4.11℄ we have a ≥ λ, hene a = λ, and always 2ℵ0 ∈ Sp(χ),hene λ = 2ℵ0 ∈ Sp(χ). So what is left to prove is κ2 /∈ Sp(χ). Assumetoward a ontradition that p∗  “D

˜
is a non-prinipal ultra�lter on ω and

χ(D
˜
) = κ2, and let it be exempli�ed by 〈A

˜
ε : ε < κ2〉�.Without loss of generality p∗ P �for eah ε < κ2, A

˜
ε ∈ D

˜
does notbelong to the �lter on ω generated by {A

˜
ζ : ζ < ε} ∪ {ω \ n : n < ω}, andtrivially also ω \ A

˜
ε does not belong to this �lter�.As λ is regular > κ2 and the foring notion Pλ satis�es the ..., learlyfor some α < λ we have p∗ ∈ Pα and ε < κ2 ⇒ A

˜
ε is equivalently a Pα-name.So for every β ∈ [α, λ) we have

⊠2
β p∗ Pβ �for eah i < κ2 the set A

˜
i ∈ [ω]ℵ0 is not in the �lter on ωgenerated by {A

˜
j : j < i}∪{ω\n : n < ω}, and also the omplementof A

˜
i is not in this �lter (as D

˜
exempli�es)�.But for some suh β, the statement ⊠1

β holds, i.e. ⊛1(d) applies, so in Pβ+1whih is essentially a (Pβ)κ2/D2 we get a ontradition. That is, let jβ bean isomorphism from Pβ+1 onto (Pβ)κ2/D2 whih extends the anonial em-bedding of Pβ into (Pβ)κ2/D2. Now jβ indues a map ĵβ from the set of
Pβ+1-names of subsets of ω into the set of (Pβ)κ2/D2-names of subsets of ω,and let

A
˜

∗ = ĵ−1
β (〈A

˜
i : i < κ2〉/D2),so p∗ Pβ+1 �A

˜

∗ ∈ [ω]ℵ0 and the sets A
˜

∗, ω \ A
˜

∗ do not inlude any �niteintersetion of some members of {A
˜

ε : ε < κ2} ∪ {ω \ n : n < ω}�. So
p∗ Pβ+1 �{A

˜
ε : ε < κ2} does not generate an ultra�lter on ω�, but Pβ+1 ⋖P,a ontradition.1.2. Remark. (1) As the referee pointed out, if we waive �u < a� in1.1, we an forget κ1 (and D1) so not take ultrapowers by D1 so µ = ℵ0 isallowed, but we have to start with t0 suh that Pt0

0 is adding κ2-Cohen.
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(2) Moreover, in this ase we an demand that Q
˜

t
α = Q

˜
(D

˜

t
α) and so wedo not need the τ

˜

t
α. Still this way was taken in [Sh:915, �1℄. But this gainin simpliity has a prie in lak of �exibility in hoosing the t. We use thismildly in �2, only for P1. See more in [Sh:915, ��2, 3℄.2. Remarks on π-bases2.1. Definition.(1) A is a π-base if:(a) A ⊆ [ω]ℵ0 ,(b) for some ultra�lter D on ω, A is a π-base of D (see below; notethat D is neessarily non-prinipal).(A) We say A is a π-base of D if (∀B ∈ D)(∃A ∈ A )(A ⊆∗ B).(B) πχ(D) = Min{|A | : A is a π-base of D}.(2) A is a strit π-base if:(a) A is a π-base of some D,(b) no subset of A of ardinality < |A | is a π-base.(3) D has a strit π-base when D has a π-base A whih is a strit π-base.(4) Sp∗

πχ = {|A | : there is a non-prinipal ultra�lter D on ω suh that
A is a strit π-base of D}.2.2. Definition. For A ⊆ [ω]ℵ0 let IdA = {B ⊆ ω : for some n < ωand partition 〈Bl : l < n〉 of B, for no A ∈ A and l < n do we have

A ⊆∗ Bl}.2.3. Observation. For A ⊆ [ω]ℵ0 we have:(a) IdA is an ideal on P(ω) inluding the �nite sets , though it may beequal to P(ω),(b) if B ⊆ ω then: B ∈ [ω]ℵ0\IdA i� there is a (non-prinipal) ultra�lter
D on ω to whih B belongs and A is a π-base of D,() A is a π-base i� ω /∈ IdA .Proof. (a) Obvious.(b) �if�: Let D be a non-prinipal ultra�lter on ω suh that B ∈ D and

A is a π-base of D. Now for any n < ω and partition 〈Bl : l < n〉 of B, as
B ∈ D and D is an ultra�lter, learly there is l < n suh that Bl ∈ D, heneby De�nition 2.1(1A) there is A ∈ A suh that A ⊆∗ Bl. By the de�nitionof IdA it follows that B /∈ IdA ; but [ω]<ℵ0 ⊆ IdA so we are done.�only if�: We are assuming B /∈ IdA , so as IdA is an ideal of P(ω) thereis an ultra�lter D on ω disjoint from IdA suh that B ∈ D. So if B′ ∈ D
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then B′ ⊆ ω ∧ B′ /∈ IdA , hene by the de�nition of IdA it follows that
(∃A ∈ A )(A ⊆∗ B′). By De�nition 2.1(1A) this means that A is a π-baseof D.() Follows from lause (b). 2.32.4. Observation.(1) If D is an ultra�lter on ω then D has a π-base of ardinality πχ(D).(2) A is a π-base i� for every n ∈ [1, ω) and partition 〈Bl : l < n〉 of ωinto �nitely many sets , for some A ∈ A and l < n we have A ⊆∗ Bl.(3) Min{πχ(D) : D a non-prinipal ultra�lter on ω} = Min{|A | : A isa π-base} = Min{|A | : A is a strit π-base}.Proof. (1) By the de�nition.(2) For the �only if� diretion, assume A is a π-base of D. Then IdA ⊆
P(ω) \ D (see the proof of 2.2) so ω /∈ IdA and we are done.For the �if� diretion, use 2.2.(3) Easy. 2.42.5. Theorem. In VP as in 1.1, we have {µ, λ} ⊆ Sp∗

πχ and κ2 /∈ Sp∗

πχ.Proof. Similar to the proof of 1.1 but with some additions. De�ning Kin [Sh:700, 4.1℄ we allow Q0 = Qt
0 = Pt

1 to be any ... foring notion ofardinality ≤ λ (this makes no hange). The main hange is in the proof of
P �λ ∈ Spχ�. The main addition is that hoosing tα by indution on α wealso de�ne Aα suh that

⊛′
1 (a), (b) as in ⊛1 in the proof of 1.1,() as in ⊛1() but only if α 6= 2 mod ω (and α = β + 1),(d) A

˜
α is a Ptα

0 -name of an in�nite subset of ω,(e) if α 6= 2 mod ω then Ptα A
˜

α = ω (or do not de�ne A
˜

α),(f) if α < β are = 2 mod ω then 
P

tβ
µ

“A
˜

β ⊆∗ A
˜

α�,(g) if β = α + 1 and β = 2 mod ω and B
˜
is a Ptα

µ -name of an in�nitesubset of ω then 
P

tβ
µ

“B
˜

*∗ Aα�.This addition requires that we also prove
⊛3 if s ∈ K and D

˜
is a Ps

1-name of a �lter on ω inluding all o-�nitesubsets of ω (suh that ∅ /∈ D) then for some (t, A
˜
) we have(a) s ≤K t,(b) P

t
1

“A
˜
is an in�nite subset of ω�,() if B

˜
is a Ps-name of an in�nite subset of ω then Pt “B

˜
*∗ A

˜
�.[Why ⊛3 holds? Without loss of generality P

s
1

“D
˜
is an ultra�lter on ω�.
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We an �nd a pair (P′, A
˜

′) suh that
(α) P′ is a ... foring notion,
(β) Ps

1 ⋖ P′, moreover P′ = Ps
1 ∗ Q(D

˜
),

(γ) |P′| ≤ λ,
(δ) P′ “A

˜
is an almost intersetion of D

˜
(i.e. A

˜
∈ [ω]ℵ0 and (∀B ∈

D
˜
)(A ⊆∗ B))�,

(ε) η
˜

′ ∈ ωω is the generi of Q[D
˜
] and A

˜

′ = Rang(η) so both are P′-names.Now we de�ne t
′: for t ≤K t

′ and Pt′

1 = P′ , we do it by de�ning Qt′

i byindution on i as in the proof of [Sh:700, 4.8℄ and we hoose τ
˜

t′i naturally.Let 〈nρ
˜

: ρ ∈ ω>2〉 be a Pt′

0 -name listing the members of A
˜
.Now we hoose t suh that t

′ ≤K t and for some Pt
0-name ρ

˜
of a memberof ω2 we have Pt

“ρ
˜
6= ν

˜
� for any Pt′-name (learly exists, e.g. when (t, t′) islike (t′, s) above, e.g. do as above with P′ adding λ+ suh reals and re�et).Now A

˜
:= {n

˜
ρ
˜
↾k : k < ω} is fored to be an in�nite subset of A

˜

′, and if itinludes a member of P(ω)V[Ps ] or even P(ω)V[Pt ] we �nd that ρ
˜
is from

(ω2)V[P
t′

], a ontradition.℄
(∗)1 µ ∈ Sp∗

πχ, in VP, of ourse.[Why? As there is a ⊆∗-dereasing sequene 〈Bα : α < µ〉 of sets whihgenerates a (non-priniple) ultra�lter. We an use Bα as the generi of Qtλ =
Ptλα+1 /Ptλα .℄

(∗)2 κ2 /∈ Sp∗

πχ.[Why? Toward a ontradition assume p∗ ∈ P and p∗ P “D
˜

is a non-prinipal ultra�lter on ω and {U
˜

ε : ε < κ2} is a sequene of in�nite subsetsof ω whih is a strit π-base of D
˜

′′; so p∗ P “{U
˜

ε : ε < ζ} is not a π-baseof any ultra�lter on ω� for every ζ < κ2, hene for some 〈B
˜

ζ,l : l < n
˜

ζ〉we have p∗  “n
˜

l < ω and 〈B
˜

ζ,l : l < n
˜

l〉 is a partition of ω and ε <
ζ ∧ l < n

˜
ζ ⇒ Uε *∗ B

˜
ζ,l�. Now, as in the proof of 1.1, we hoose suitable

β < λ and onsider 〈B
˜

∗

l : l < n
˜
〉 = ĵ−1

β (〈B
˜

ζ,l : l < n
˜

ζ〉 : ζ < κ2〉/D2)so p∗ Pβ+1 “〈B
˜

∗

l : l < n
˜
〉 is a partition of ω into �nitely many sets and

ε < κ2 ∧ l < n
˜
⇒ U

˜
ε *∗ B

˜

∗

l �. But this ontradits p∗ P “{U
˜

ε : ε < κ2} is a
π-base�.℄

(∗)3 λ ∈ Sp∗

π.[Why? Clearly it is fored (i.e. Pλ
) that 〈A

˜
ωα+2 : α < λ〉 is a ⊆∗-dereasingsequene of in�nite subsets of ω, hene there is an ultra�lter of D on ωinluding it. Now A

˜
ωα+2 witness that P(ω)V[Ptωα+2

] is not a π-base of D
˜(realling lause (g) of ⊛′

1). As λ is regular, we are done.℄ 2.5
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