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Abstract. Given a module M over a domestic canonical algebra A and a classi-
fying set X for the indecomposable A-modules, the problem of determining the vector
m(M) = (mz)zex € N¥ such that M = D.cx Xz'® is studied. A precise formula for
dimy Homa (M, X), for any postprojective indecomposable module X, is computed in
Theorem 2.3, and interrelations between various structures on the set of all postprojective
roots are described in Theorem 2.4. It is proved in Theorem 2.2 that a general method of
finding vectors m (M) presented by the authors in Colloqg. Math. 107 (2007) leads to algo-
rithms with the complexity O((dimy M)?*). A precise description of algorithms determin-
ing the multiplicities m(M), for postprojective roots x € X is given (Algorithms 6.1, 6.2
and 6.3).

INTRODUCTION

The problem of effective decomposition into a direct sum of indecompos-
able objects for modules over a fixed algebra of finite or tame representation
type seems to be a very natural and interesting question. It was intensively
studied in modular representation theory of groups. In representation theory
of finite-dimensional algebras over a field, it seems to be a method to obtain
classifications of indecomposable modules, rather than an independent re-
search task (see [17, 14, 11, 20, 21, 7]). In the last thirty years, several other
powerful research methods have been invented. Consequently the problem
of determining an efficient decomposition lost its importance, in some sense,
and not so many new results concerning this topic have been obtained. On
the other hand, the tools developed were oriented mainly towards the cate-
gorical approach, not quite adjusted to attack this kind of task.
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This paper is devoted to a question closely related to that discussed
above; namely, to its weaker version asking for a “normal form” of a module.
The paper is a natural continuation of [9], where this problem was precisely
formulated. Below, we recall this formulation in a slightly more general set-
ting.

Assume that a complete classification of all pairwise nonisomorphic inde-
composable A-modules is already known and it is given by means of a fixed
pair

X=(X,e),
where X is a so-called classifying set (of invariants for indecomposable A-
modules), € : X — ind A/2 a bijection between X and the set of isomor-
phism classes of all indecomposable finite-dimensional A-modules. Now we
can formulate the problem as follows:

Given a A-module M, we want to determine the sequence

m(M) = (m,) € NX

such that M = @, . x X]'*, where X, is a module from the isomorphism
class e(x) for every z € X.

The sequence m(M) = (my)zex is called the multiplicity vector of M
with respect to the classifying set X. Note that, by the Krull-Remak—
Schmidt theorem, m(M) is uniquely determined; moreover, it belongs to
N = (@, xZ) NNX.

The problem of determining the multiplicity vectors m(M) is strongly
related to that of description of orbits in the variety of A-modules with
a fixed dimension vector and to the question how to effectively decide if
M = M’ for a pair M, M’ of A-modules (see [3, 4], and also [10] which is the
continuation of this paper).

In [9], a general method of handling this problem is presented. It relies
on computing the sequence

h(M) = (h,) € NX

of dimensions h, = dimy Hom (M, X,), and the so-called Auslander-Reiten
matrix Ty € Mxxx(Z) for A; equivalently, the Auslander—Reiten quiver I’y
for A. (Under a suitable assumption on the algebra A, it is enough to find the
Cartan matrix C(A) € Mxy x(Z) of the Auslander category for A). Once we
know these two data and k is an algebraically closed field, the coordinates
m(M), = my of the vector m(M) can be computed by applying the formula

) hy +h =32, c(y)e-e(x) dyahy if Xz is nonprojective,
* My = ' . . L
r hy — Z%E(y)e_s(m) dy.zhy if X, is projective,

where dy , is the number of arrows e(y) — &(x) in the Auslander-Reiten
translation quiver I'y = (I'4,7), ~e(z) denotes the set of all direct predeces-
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sors of e(x) in I'y, and €(z) = [T Xz|~ (see [9, Corollary 2.3]). This method is
tested in [9] on the example of canonical hereditary algebras of type ,&p,q. In
this case precise algorithmic procedures for solving the multiplicity problem
are given, with pessimistic computational complexity (briefly, complexity)
O(n*), where n = dimy, M (see [9, Algorithms 4.5 and 5.5]). The main aim
of this paper is to present similar results for the whole class of domestic
canonical algebras over an algebraically closed field k.

In constructing the algorithms for domestic canonical algebras, and to
improve the efficiency of computations, we use general classical results on
the structure of the relevant module categories and information on roots of
the associated quadratic Euler form. However, a crucial role in our approach
is played by the following three main results.

The first, Theorem 2.2, states that there exist algorithms computing the
restricted multiplicity vector m(M) for any individual component of Iy,
with the same complexity as in the Ap,q case, where the classifying set X
consists of the postprojective roots, preinjective roots and the data called
tubular coordinates, encoding the indecomposable regular modules from the
1-parameter family of stable tubes (see 1.6 and 2.1). The problem for regular
components is reduced to an analogous one for algebras of type ,&p,q, already
solved in [9]. The reduction uses a certain functorial technique developed in
Section 3 (see Proposition 3.1 and Lemma 3.3). As a “side effect” we also
obtain a description of canonical forms for indecomposable regular modules
(see Remark 3.3(i) and Corollary 3.3, cf. [18]).

To handle the problem of computing the restricted multiplicity vector for
the postprojective (and preinjective) component we prove the second result,
Theorem 2.3, which yields precise formulas for the coordinates h(M), of
the vector h(M) for postprojective roots x € X. The result refers to the
specific structure of the set of all postprojective roots (see Lemma 2.3). In
the proof we apply, among other things, the description of the canonical
forms for indecomposable postprojective modules over domestic canonical
algebras, obtained recently in [18, 15].

The third result, Theorem 2.4, collects all necessary information on in-
terrelations between various combinatorial structures on the postprojective
component. In particular, it yields an alternative method (in comparison to
“knitting”) of computing consecutive dimension vectors in the postprojective
component, which together with formula (x) and Proposition 5.7 forms a ba-
sis for computing the multiplicities m(M), for postprojective roots x € X.

Section 6, containing Algorithms 6.1, 6.2 and 6.3, is in some sense the
most significant part of the paper, as it recapitulates all previous considera-
tions. There the algorithms are precisely formulated in an integrated pseudo-
code form. The presentation of the final part of the paper is intended to cre-
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ate a complete (“up to” [9]) and self-contained “computer algebra project”,
which is just ready for implementation. Therefore, in Section 7 we provide
tables containing initial parts of the postprojective components and the in-
verses of the Coxeter matrices, for all domestic canonical algebras A. (The
algorithms use the data from the theorems and from the tables.) We also
comment on the efficiency and memory management aspects. In particular,
we show how to decrease the complexity of Algorithm 6.2 and to achieve
the announced one, O(n*). To this end we apply a detailed analysis of some
computational linear algebra problems, strongly related with very specific
shapes of matrices which appear in the formulation of Theorem 2.3 (see 6.4
and 6.5).

The paper is organized as follows. In Section 1 we recall basic definitions
and fix the notation used throughout. There we introduce, in particular, the
concept of tubular coordinates (1.3). We recall the definition of domestic
canonical algebras (1.4), and the classical theorems on the structure of mod-
ule categories and classification of indecomposables modules for this class of
algebras (see Theorems 1.5 and 1.6). In Section 2 we specify the classifying
set X (2.1) and formulate our main results: Theorems 2.2, 2.3 and 2.4. Sec-
tion 3 is devoted to determining the restricted multiplicity vector for regular
components. We prove the results on functorial reduction (Proposition 3.1,
Lemma 3.3) and Theorem 2.2(a-+b). Section 4 is devoted to the proof of
Theorem 2.3, preceded by several technical facts. In Section 5, the proof
of Theorem 2.4 is given. Section 6 contains the pseudo-code descriptions of
Algorithms 6.1, 6.2 and 6.3, a result that allows us to decrease complexity
of Algorithm 6.2 (Lemma 6.4), and the proof of Theorem 2.2(c) (see 6.5).
Section 7 consists of the tables containing the data for domestic canonical
algebras, mentioned above.

1. PRELIMINARIES AND NOTATION

The definitions and notation we use are standard. Nevertheless, for the
benefit of the reader, we briefly recall some of them. We also collect some
facts describing the module categories for domestic canonical algebras. For
basic information and notation concerning representation theory of algebras
(respectively, canonical algebras, categories, linear algebra, algorithm the-
ory) we refer to [2] (respectively, |22, 23], [1], [16], |6]).

1.1. For any positive n € N = {0,1,...}, we set [n] = {1,...,n} and
Zn = {0,...,n —1}; by Z;, = (Zp,Pn) we always mean the group of re-
mainders modulo n. For m € Z, the integral quotient and remainder of m
modulo n are denoted by quo,,(m) and rem,(m), respectively. Given a set S,
we write | S| for the cardinality of S. If G is a group and g € GG, we denote by
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(g) the cyclic subgroup of G generated by g, and by |g| (= |(g)|) the order
of g.

Throughout the paper, k£ always denotes a field, usually algebraically
closed. For any m,n € N, we denote by M,,x,(k) the set of all m x n-
matrices with coefficients in k. The identity matrix in M, (k) is denoted
by I,.

Given M € My, xn(k), we denote by r(M) the rank of M and by cor(M)
= m—r1(M) its corank. For any 1 <4 < m (resp. 1 < j < n), M|; (resp. M)
is the matrix in My (k) (resp. My, ;(k)) consisting of the first i rows (resp.
first j columns) of M. We denote by M the echelon upper triangular matrix
obtained by deleting all zero rows from the echelon matrix resulting from
the standard Gaussian row elimination procedure applied to M (see [16]).

1.2. By a k-algebra we always mean a finite-dimensional associative con-
nected basic unitary algebra over k. For a k-algebra A (respectively, locally
bounded category A, see [5]), we denote by mod A the category of all finite-
dimensional A-modules, by J = J(A) the Jacobson radical of A, and by
rady = rad(mod A) the Jacobson radical of the category mod A. If (@, ) is
a bound quiver (see [2]) and the algebra (resp. locally bounded category) A
has the form A = kQ/I, then we always identify mod A with the category of
all finite-dimensional representations of the quiver @ = (Qo, Q1), satisfying
the relations from the ideal I. For the definition of the path algebra kQ),
we refer to [2]. For any v € Qo, we denote by S(v) (resp. P(v), Q(v)) the
simple (resp. indecomposable projective, injective) module corresponding to
the vertex v.

Let Ko(A) = Ko(mod A) denote the Grothendieck group of A, or more
precisely, of the category mod A. The class of a finite-dimensional A-module
X in the Grothendieck group Ko(A) is denoted by [X]. In case A = kQ/I,
where (@, I) is a bound quiver, we use the standard identification Ko(A)
=~ 790 induced by associating to X the dimension vector dim X.

For any pair X,Y of modules in mod A, we set

[X,Y] = dimy, Hom(X,Y),

and we denote by m(Y)x the maximal integer n € N such that X™ is iso-
morphic to a direct summand of Y.

Throughout the paper D : mod A — mod A°P? means the standard duality
D(—) = Homg(—, k).

Given a class C of objects in mod A we denote by addC the additive
closure of C in mod A.

Let U be an abelian category. Recall that U is serial if it is a length
category and each of its indecomposable objects is uniquely determined,
up to isomorphism, by its length and socle. In contrast to the category
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mod A, the length (resp. socle) of an object X from U will be called its
U-length (resp. U-socle), and denoted by ¢4(X) (resp. socy(X)). (This is
especially important if ¢/ is a full proper exact subcategory of mod A). We
say that a serial category U is of type (n,00) if there exist exactly n pairwise
nonisomorphic simple objects in U, and for each pair consisting of a simple
object Xg in U and a positive integer [ € N, there exists an indecomposable
object X in U such that socy(X) = X and 4(X) =1 (cf. [12]).

By the Auslander—Reiten quiver 'y of A (A-R quiver, for short), we
always mean the translation quiver

= (ly,I,71)

defined in a standard way (the set of vertices Iy consists of the isoclasses
[X ]~ of indecomposable objects X in mod A, the sets I ([X]x~, [Y]x~) of all
arrows from [Y]x to [X]x consist of dimy,(rad (X, Y)/rad%(X,Y)) elements,
and 7[X|~ = [7X]~, where 7 is the Auslander—Reiten translate).

For any [X]~ € I, we denote by ~[X]~ (resp. [X]Z) the set of all im-
mediate predecessors (resp. successors) of [X]~ in Iy, i.e. the set of all
vertices [Y]~ € I such that there exists an arrow [Y]~ — [X]~ (resp.
[X]~ — [Y]~) in I'4. Similar notation is used for an arbitrary translation
quiver I' = (I, 7).

Let C be a connected component in I'4y. Then the additive closure
add(U;x)aec, [X]=) is denoted for simplicity by addC. For a A-module X
the phrase “X belongs to C” means “[X]~ belongs to Cy”.

Following 2|, a connected component C of I'y is called postprojective if it
is acyclic and for any indecomposable A-module M in C there exists ¢t € N
and an indecomposable projective module P such that M = r="P.

Finally, a connected convex acyclic full subquiver X' of the connected
translation quiver I' = (I, 7) is called a sectional subquiver (briefly, a sec-
tion) in I if for each x € Iy there exists a unique n € Z such that 77"z € X.

1.3. Recall that a stable tube T (n) of rank n > 1 is a quiver ZA /(")
with the translation 7 induced from that in the translation quiver ZA .
(see [22, 23|). Stable tubes of rank 1 are called homogeneous. We fix a stan-
dard notation of vertices in 7 (n) by setting 7 (n)o={(s,l) : s€ Zy,, 1 > 1}.
Then 7 (n) has the following shape:

(s®nl,1) (s,1) (s6&n1,1)
NSNS
(s®nl,2) (s,2)
NS \

(s®n2,3) : . ,3)

(s®n1,3)
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Let 7 be a connected component of the A-R quiver I'4 of an algebra A,
which is a stable standard tube of rank n. Then the category add 7 is an
abelian serial category of type (n,o0) and each indecomposable module X
from add 7 is uniquely determined by its 7-socle and 7 -length, defined by

SOCT(X) = SOCaddT(X) and @]‘(X) = gaddT(X)-

The 7-simple modules (i.e. the simple objects in add 7") are exactly those
lying in the mouth of the tube 7. They correspond to the vertices (s,1) €
T(n)o, s € Zy. Moreover, the T-socle of the module corresponding to the
vertex (s,l) € 7(n)o is a 7-simple module corresponding to (s,1) € 7 (n)o,
and its 7 -length is [. This yields a precise encoding of indecomposable mod-
ules in 7. It suffices to write down the precise forms of the consecutive
modules from the mouth of 7 and to choose arbitrarily one of them to cor-
respond to the vertex (0,1) € 7 (n)o. We denote it by X (7,0, 1). In practice,
one has to describe only one of them, the remaining can be obtained as its
7-shifts. Then the isoclass of an idecomposable module X from 7 is uniquely
encoded in the form X = X(7,s,1); this means that X is a module such
that ¢7(X) =1 and socr(X) = X(7,s,1) = 7°X(7,0,1). It is clear that in
the above notation, the almost split sequences in 7 (more precisely, in the
subcategory add 7 of mod A) have the following shape:

0—X(7,s,1) = X(T,se, 1,l-1)® X(7T,s,1+1)
- (T,s6,1,1) =0
for any s € Zy, | > 1 (we assume that X(7,s,0) is a zero-module).

This encoding of indecomposable objects in add 7 is called the system of
tubular coordinates.

1.4. Consider a subclass of canonical algebras (see [22]| for the defini-
tion) consisting of the finite-dimensional k-algebras of the form A,,, =

ka,q7r/Ip7q7r, p,q,7 > 1, where @)p 4, is a quiver

a2 ap_1
al ap_l
)4 .
B B2 Bg—1 \,Bq\\
0 — b1 o > bq_l w
"N 72 Yr—1 %:
C1 Cr—1

and Ip 4, is the ideal generated by a + 8 — v, a = a1---ap, B = B1--- 4
and v = 71 - - - ,. (Later on, the composition o;a;q1---a; for i < j will be
denoted by «; j and analogously for § and «). Note that A, 41 is isomorphic
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to the hereditary algebra A, , of type A, 4, given by the quiver

a2 ap_1

al “ e > a/pil
Qpyg V w‘
b1 B2 Bg—1 Bq

0 by s by1 w

We often treat @, 4 as a full subquiver of @, ,, via the embedding (Q)pq)o
—(Qp,g,r)o-

Let A = Ap 4, for some triple (p,q,r). Then the finite-dimensional A-
modules can be interpreted as linear representations

M = ({M’U}UE(Qp,q,T)O’ {Mé}‘;E(QP,qJ)l)

of the quiver Q) 4, with dimension vector dim M = (dimy, M, ) € N(@p.a.r)o
satisfying the relation o + 3 = ~. For obvious reasons we will restrict
attention to matrix representations of the algebra A. More precisely, we
consider only those finite-dimensional A-modules M, with dim M = n =

(ny) € N(@r.a.r)o  for which the spaces M, over the vertices 0,ai, ... Ap—1,
bi,...,bg—1, C1,...,Cr_1,w are resp. k™0 kMo .. . k"1 kM1 Lo ka1,
kMer ... k"er—1 k™ and the maps My corresponding to the arrows
at, ..., 0p, B1,..., 08¢, M1,-..,7 are left multiplications by some matrices

At,..., Ay, B1,...,By, C1,...,C, of appropriate dimensions. We allow ma-
trices with zero columns or rows. In this situation, we simply say that a mod-
ule M is given by the triple (A, B,C), where A = (4;)icp), B = (Bi)ig|
C = (Ci)ig[)- Sometimes we identify M with (A, B, C).

Analogously, we consider only A, ;-modules that are pairs (A, B), where
A, B are as above. In both cases, A = A, ,, and A = A, ,, we will also use
the notation As; = AsAs—1... Ay for t < s, and A = Ay (and similarly
for B).

Following [23-25], a canonical algebra A is called domestic if A= A, 4,
where

(p,q,r) € D:={(p,q,1),p,q0>1; (p,2,2),p > 2; (3,3,2); (4,3,2); (5,3,2)}.

als

1.5. Let A = A, 4,2 be a domestic canonical algebra. The well-known
results of Ringel [22] yield a description of the category mod A, and the
classification of indecomposable A-modules, by use of the concept of rank
(see also [23, 13]).

Recall that the rank function

rk : Kog(A) — Z
on the Grothendieck group Ky(A) is given by the formula
rk(d) = d,, — do
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for d € Z(@ra2)0 under the standard identification Ko(A) = Z(@ra.2)o, We
also consider the so-called growth vector gr(d) € Z(@v.a2)1 | defined by three
sequences

Ta = (Tays- > Tay) = (day — dos - ., doo — da,_,),

rg=(rg,,. .- ,rﬁq) = (dp, — doy...,dy — dbq_l),

Ty = (Tyy,7y) = (de; — do, do — doe,).

The class ob(ind A) of all indecomposable A-modules splits naturally
into a disjoint union of three subclasses P = P(A4), Q = Q(A) and R =
R(A), consisting of all M such that rk(dim M) > 0, rk(dim M) < 0 and
rk(dim M) = 0, respectively. For reasons to be explained below, the modules
from these classes are called postprojective, preinjective and regular, respec-
tively (see the theorem).

It is proved in [22] that there is another description of the classes P
and Q, common for all canonical algebras. Namely, P (resp. Q) consists
of all indecomposable A-modules M such that all maps Ms, 0 € (Qpqr)1,
are monomorphisms and gr(dimM) # 0 (resp. epimorphisms and
gr(—dim M) # 0).

The following result furnishes important information on the structure of
the category mod A.

THEOREM ([22, 23]). Let A be a domestic canonical algebra.

(a) The isomorphism classes of all modules from P (resp. Q) form a
connected postprojective (resp. preinjective) component in the quiver
Iy containing the isoclasses of all indecomposable projective (resp.
injective) A-modules.

(b) add R is an abelian serial category closed under extensions, and

add R ~ ]_[ add 7y,
AekU{oo}

where T = {’T,\}Aeku{oo} 1s a l-parameter family of stable standard
tubes of (tubular) type (p,q,2), and add 7Ty is an abelian subcategory
of addR.

(c) Hom,(Q,P) =0; Homy(R,P) = 0; Hom,(Q,R) = 0.

From now on, the notation P and Q is used for the components of I'4
rather than for the classes of all postprojective and preinjective indecompos-
able A-modules, respectively.

1.6. We recall that gl.dim A = 2 and a crucial role in the precise clas-
sification of indecomposable modules over domestic canonical algebras A is
played by the Euler quadratic form

qg=qa:Ko(Ad) = Z
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associated to the Z-bilinear
(—,—) : Ko(A) x Ko(A) = Z
given by the formula
(dim M, dim N) = dimy, Homx (M, N)
— dimy, Ext} (M, N) + dimy, Ext% (M, N)

for M and N in mod A. The quadratic form ¢ is also defined in terms of the
Cartan matrix Cy € Mgy s(k) of the algebra A = A, , 2, by the formula

q(w) =2"(CY)~'w
for € Z*, under the identification Z(@ra.2)o = 75 where s = |[(Qp.4.2)0-
Let radq = {z € Z(@ra2)0 : g(z) = 0} denote the radical of the form g.

Since A is a concealed algebra of Euclidean type, it follows that radq is a
subgroup of Z(@r.a:2)0 ¢ is positive semidefinite of corank 1 and

() radg=7-1,
where 1 € Z(@r.a2)0 is the all-one vector.
According to Ringel’s classification [22], mod A is controlled by the

form ¢4. In more detail and in a slightly modified version, taking into account
() and Theorem 1.5(b), this can be phrased as follows:

THEOREM (|22, 23|). Let A be a domestic canonical algebra.
(a) For an indecomposable module X in add Ty, \ € kU {oo}, we have
dim X =m-1 if and only if {7, (X) = mny,

for m > 1, where ny is the rank of T.
(b) The function dim yields bijections of the vertex sets Py and Qg with

the sets
P:= {z € N@na2)o : ¢(z)

Q := {x e N(@a2)o ; ¢(z)
respectively. Moreover, the set
{z e N(@a2)o . g(z) =1, rk(z) = 0}

corresponds bijectively via dim to the set of isoclasses of all inde-
composable modules X in add Ty, A € kU {oo}, such that nxtlr, (X)
(ny >2).

1, rk(z) > 0},
1, rk(z) < 0}

We call P (resp. Q) the set of all postprojective (resp. preinjective) positive
roots of the quadratic Euler form ¢ = g4.

REMARK. From (b) and the description of postprojective (resp. prein-
jective) modules over canonical algebras in terms of the growth vector gr(z),
it follows that for any € N(@ra2)0 such that ¢(z) = 1, we have rk(z) > 0
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(resp. tk(z) < 0) if and only if gr(z) € N(@pa2)1\ {0} (resp. gr(—z) €
N@ra2)\ {0})

COROLLARY. The sets P and @ are classifying sets of invariants for
indecomposable modules from the components P and Q.

To define a full classifying set for the whole class of indecomposable A-
modules one has to specify tubular coordinates for the subcategories add 7y,
A € kU {oo}. To this end we have in fact to fix those A\ € kU {oo} for
which n) takes the values 2, p and g, respectively, and next to give a precise
description of one selected module in the mouth, for each tube 7).

2. THE MAIN RESULTS

Before we formulate our main results we need to establish some extra
notation and first of all to complete the process of precise encoding for in-
decomposable modules over domestic canonical algebras, i.e. to specify the
classifying set X.

2.1. To fix the encoding for regular indecomposable modules by tubu-
lar coordinates, we apply the tubular structure of the category add R (see
Theorem 1.5(b)).

Let A = A, 4,2 be a domestic canonical algebra. As already stated in 1.5,
the regular A-modules form a 1-parameter family 7 = {7} }xcrufoo} Of stable
tubes of type (p, q,2) and each of the categories add 7, A € kU{oo}, is serial
of type (ny,00), where n) denotes the rank of 7). Additionally, one can as-
sume that 7, = ’Z:\p’q’2, where 7P42 = {7;\1)’(]’2},\eku{oo} is a 1-parameter fam-

ily of tubular type (p, g, 2) such that %p,q,2, Tlp’q’2, TL?, T)\p’q’z, A€ k\{0,1},
are stable tubes of rank p, 2, ¢ and 1, respectively. Moreover, indecompos-
able modules from the exceptional tubes can be encoded, according to 1.3,
as described below (see also [18, 23]).

We can set:

000
0 0
X(75,0,1) = et L dog

I

and X (7p,s,1) = S(as) for s € Zy, \ {0}, where X (7, s',1) is the module in
the tube 7y corresponding to the vertex (s',1) € 7 (p)o, for all s’ € Z, and
[ >1;

1 1

1/—(11 1\i

X(7,0,1) = =L ke k
0

k - —
0 /0'
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and X (71,1,¢1) = S(c1), where X (77,5,1) is the module in the tube T7q
corresponding to the vertex (s',1) € 7 (2 )0, for all s’ € Zy and | > 1;

e "'$'“N

X(TOO,O,l) = 0.

\/’

and X (7, s,1) = S(bs) for s € Zg\ {0}, where X (7, ¢, 1) is the module in
the tube T, corresponding to the vertex (s',1) € T(q)o, for all s’ € Z, and
[>1.

To establish the encoding for indecomposable regular modules from the
tubes 7y, A € k\ {0,1}, of rank 1, it suffices to give a precise description of
the unique 7-simple module, for each A.

For A € k\ {0, 1}, we can set

Vk—>—>k .
X(7,0,1) = 5L L iy

A, T

Here X(7),0,1) is the module of 7)-length [ in the tube 7, for all { > 1.
Further, for simplicity, we will use the abbreviate notation: X (A, s, 1) =
X(Ty,s,1) for A=0,1,00, and X(\, 1) = X(7,,0,1) for A € k\ {0,1}.
As a consequence, indecomposable regular modules modules are precisely
encoded by the following classifying set:

T= |_| T,

AekU{oo}
where
{l0,s,]: s€Zy, 1 >1} for A=0,
{lL,8,l]:s€Zy, 1 >1} for A=1,
T = {loo,8,l] : s € Zg, 1 > 1} for A = o0,
{IN]:1>1} for A € £\ {0,1}.

Since postprojective and preinjective modules are fully described in terms
of their dimension vectors by the sets P and @, we have the following.

PROPOSITION. The set
X=PUTUQ

(with the obvious map €) is a classifying set of invariants for indecomposable
A-modules.

2.2. Now fix integers p > 1, ng, Mgy - - - Nay_y, Mw > 0. Let D € My, xn, (k)
and A = (Ay,...,A,) be a system of matrices of size ng, X ng, Mgy X Ny,
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ceey May_y X Mgy 5y N X Ng,_;, respectively. Then for any 2 < 4
p+1,0<j<p—-1,n > —1, we define a block matrix M*»/"(D, A)
M(n41)n0-+10,) % (n+Dno+na,_,) (K) DY setting

<
€

[ A,i0 D 0 0 - 0
o -A D 0 - 0
- 0 0 -A D ... 0
MWD, A) = _
0 —A D
i 0 —Aj1 |
if n > 0, and

MLNL([)?A) — Ajfi—l
if n =—1. We set ng, = no, ./‘_1071 = In,.

Moreover, for a given collection n, ng,n,1>0, A€k and E, F€ M, xn,(k)
we define a block matrix MY (E, F) € Myp,, xnno (k) by setting

(¢ 0 0 - 0

F G 0 0
MYE,F)=| 0 F G - 0 |,

(00 - F G|

where G = G(\) = E+ \F.
For some technical reasons (explained in the proof of Theorem 2.2), we
also need the indexing map

pp:Zy x (N\{0}) = {2,...,p+1} xZ, x (NU{-1})
defined by
(s—=1+4+2,s—-1), [ <s,
Hp(s,1) = {(p—remp(l —s—=1)+1,s,quo,(l —s—1)), [>s.

Now, using the above notation, we formulate the main theorem of this
paper.

THEOREM. Let A = A, 492 be a domestic canonical algebra, X a classify-
ing set for indecomposable A-modules defined above, M a finite-dimensional
A-module, with n = dimy M and dim M = n, given by a triple (A, B,C),
A= (Aiiep)y B = (Bi)iegy C = (Ci)icpy (see 1.4).

(a) The coordinates of the restricted multiplicity vector

m(M)jp = (m(M)z)zeT
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of M with respect to T are:

(i) m(M)jo,e0 =h(s,1)+h(sSp1,1) =h(s©p 1,1—-1) = h(s,1+1),
(ii) ( )[1s’l (S/7l)+f(5/@2 17l)_f(s/@2 171_1)_f(8,71+1)7
(i) (M) = 9(5" D95 S 1, 1)~ g(s" S 1,1=1)—g(s", 1+1),
(iv) m(M)py = 2£010) = Ll =1) = Al + 1),
where h(u,t) = cor MW (B, A), f(u/,t) = cor M#2WH (B, C),
g(u" t) =cor MHa(W" V(A B) and f)(t)=cor M4 (A, B), A€ k\ {0, 1},
u € Ly, v € Lo, ' € Zq and t > 1 (we set f(*,0) = g(x,0) =
h(x,0) = fA(0) = 0). Moreover, if the finite set o(M) consisting of
all X € k\{0,1} such that M contains a direct summand from add 7T,

1s known, then there exists an algorithm with pessimistic complezity
O(n), determining m(M),r.

(b) A scalar Ao € k\{0,1} belongs to o(M) if and only if Ao is a common

(c)

root of all (ny, — tkp(M))-minors of the matriz A + B, regarded as
polynomials in k[\], where rkp(M) denotes the rank of the maximal
postprojective direct summand of M. Moreover, rkp(M) is equal to
the number of all postprojective summands in a decomposition of the
Kronecker module M = (A, —B) into a direct sum of indecomposables
in mod Ay 1. Consequently, the number of summands from the tube
Ty, 1 a decomposition of M into a direct sum of indecomposables is
equal to

cor(A + X\oB) — tkp (M)
and there exists an algorithm computing the integer rkp (M) with pes-
simistic complexity O(n*), which does not require (!) any knowledge
of the vector m(M) p (see Remark 3.5).
There exists an algorithm with pessimistic complewity O(n*) which
determines the vector

m(M)|PuQ = (m(M)x)zePuQ-

The proofs of (a) and (b) are given in Section 3. The proof of (c) needs
a much deeper analysis and preparation; it will be completed at the end of
Section 6. In fact, we not only prove the existence of algorithms with the
required properties, but we also give a detailed description in the integrated
pseudo-code form (cf. [9], see Section 6). In particular, we precisely describe
an algorithm computing m (M) p (see Algorithms 6.1 and 6.2 in Section 6),
but we only explain how to reduce the computation of m (M) ¢ to the anal-
ogous problem for the Kronecker algebra A;; and hereditary algebras A, o

of type Aplvq/ (see 3.4, cf. also [9]).

2.3. The most difficult problem is to determine the restricted multiplicity
vector for the postprojective component. To do this, given a A-module M,
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we give precise formulas for the positive integers h(M), for d € P. We start
by fixing some extra notation.

For any vector d € Z(@ra2)0 = Ky(A), we set d = d — dol. We say that
d is reduced provided d = d, equivalently dy = 0. Clearly, rk(d) = rk(d) and
gr(d) = gr(d). We denote by Kq(A)req the subgroup of Ko(A) consisting of
all reduced vectors. Clearly, Ko(A) = Ko(A)ea @ Z[S(0)]. It is easily seen
that the mapping d — (d, dpl) yields another decomposition

Ko(4) = Ko(A)uea ©7 -1
(1= Zve(Qp \ 2)O[S(v)]). Following [18], for d as above, we denote by d’ the

contraction of d “along 1dent1t1es’ i.e. the vector in Z(Q;d; 2)0 obtained in a
natural way from d, where Q )2 is constructed from @, 42 by contracting
all arrows 0 with r5 = 0 (see [18])

Let Q' = @,,o be the full subquiver of Qg2 formed by the set
(@p.g2)0 \ {0} of Vertlces and let A" = kQ'. Then @' is a Dynkin quiver of
type A = (p,q,2). It is clear that Ko(A') = Z0 can be naturally identified
with KO(A)red Then Ko(/l) Ko(/l,) D Z[S(O)] and K[)(/l) = KO(A/) PZ-1.
We denote by L the set of all positive roots d € NO of the quadratic form
q' = qa, such that all components 7q,, ..., a,, "8, -, 78, T, of gr(d) are
nonnegative.

Now we restrict our attention to the set P. It is clear that for any
d e P = P(A), A= A,,» we have tk(d) > 0, gr(d) € N@n.a2)1\ {0}
and d € N@a2)0\ {0}, Weset P = {d € P: dy = 0} (clearly, P =
P Ko(A)ea).

The following fact summarizes the most essential properties of P (cf.
also [18]).

LEMMA.

(a) The mappings d — dig, and d — (do,d) yield bijections (i) P « L
and (ii) P < N x P of sets, respectively; in particular, the set P is
finite.

(b) rk(P(A)) :={rk(d) : de€ P(A)} C{1,...,6}; moreover, 6 € rk(P (A))
if and only if A= As32.

(c) The set Con := U, 0)ep{d + d € P(Apq2)} has |Con| = 18 (see
Table 1 below).

Proof. Assertion (a) follows from the facts that 4@ g0 = ¢’ and that

1 € rad ¢, where ¢ = g4, A = Ay, 42. Assertions (b) and (c) are consequences
of the respective properties of root sets for Dynkin diagrams. =
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From now on we will identify the sets L and P using the bijection (i).
Note, in particular, that the bijection (ii) equips the set P with some extra
“coordinate system”.

To formulate our result we need some technical notation. Given N €
My, xn (), for positive i € N, we form the m x in-matrix

NOD = [N|=N|N|=N|..] € Mpxin(k).
Then, for any ¢ € N, we set

where j € N is an arbitrary positive integer such that jn > 1.
Analogously, for any i € N, we define N(;) € Miyxn (k) and N, €
M« (k), by setting

Nyy = (NH)O)E and Nicoy) = (Nigy)pis

where j € N is such that jm > . Clearly, we have Ny ) = ((N?)(n))t,

Let N € My, xm (k). For any i € N, we denote by i+ N the block diagonal
matrix

N 0 0
ixN=| O N O | & Mimsim (k).
0 O N

Let P = [pij] € My, xn, (k) and @ € My, xn, (k). Then we denote by
P ® @ the matrix in My, myxnyn, (k) that, under the standard identifica-
tion

Mm1m2 Xn1n2 (k) = Mml Xny (Mm2 Xn2 (k))7
has the form
P®Q = [pi; - Qlici<mi,1<j<n-

P ® @ can be interpreted as the matrix of the tensor product (P-) ® (Q-) :
k™M ®k™ — k™ k™2 of the linear maps P- : k™ — k™! and Q- : k"2 — k™2,

with respect to the standard bases of k™ ® k™2 and k™! ® k™2, respectively,
ordered lexicographically.

Let M be a A, ;module with dim M = n, defined by the pair (A4, B),
A= (Ai)iepp), B = (Bj)jelq, and d € N(@r.a)o be a vector such that its growth

vector gr(d) € Z(@v.a)1 which is given by sequences ro and rg as above,
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belongs to N(@r.a)1, For the pair (M, d) as above, we denote by W (A, B, d)
the matrix W = [W; | Wy | W3] € Mg _n, xc(k) of the form

73, * Bggq Apa
ﬂl * Bq71

Ap,l
Taq ¥ Ap1

—Bga Tay * App, i

where all entries lying outside the two block diagonals are zero and ¢ =
(Tﬁqan,l + -+ Tﬁlno) + dong + (Talno + -+ Tapnap_l).

Now we can formulate the announced result.

THEOREM. Let A = A, 49 be a domestic canonical algebra and M a A-
module with dim M = n, given by the triple (A, B,C), where A = (A;)ic[y];
B = (Bi)je|q and C = (C1,C2) are sequences of matrices defining the struc-
ture maps in M corresponding to arrows {i}icpp), {Bitjelq and {71,72},
respectively. Then for any d € P (A) we have

h(M)q = cor M(M,d)

where

M(M,d) = {W(A,B,de,q)) ’ ({;@;](mldw)) ®Cg}

dipg) = A(@y)y> and U(d) € My

Moreover:

(a) If 1k(d) = 1, equivalently d’ = [0,1], then U(d) depends only on d.,,
de;, = 0 or 1, and it is a trivial matriz in Mox1(k) or in Moxo(k),
respectively.

(b) If char(k) # 2 and 2 < rk(d), or char(k) = 2 and 2 < rk(d) < 5, then
U(d) depends only on d’, and U(d) = U(d’) belongs to the 17-element,
in fact 13-element, list consisting of all matrices U(e), e € Con (see
Table 1).

(c) If char(k) =2 and rk(d) = 6 (consequently, A = As32), then U(d)
depends only on the pair (d',remg(dp)), and U(d) = U(d',remg(dp))
belongs to the 30-element list consisting of all matrices U (e, ), (e, i) €

{f € Con : rk(f) = 6} x Zg (see Table 2).

(k) is uniquely determined by d.

dey XTyy



U(d')
[1]
111
010

1
o —H O

~ o~

dl
2 3 4

1

2 3 4
4

[11]

11

10
010
111

P. DOWBOR AND A. MROZ
U(d’)

Table 1. The shapes of the matrices U(d’)

dl
01

3
2 3 4

1

238

11 -1
00
-1 -1
-1 -1
=d®
Us
U,
Uy
Us
Uy
U,

d/

@

Us
Us
U,
Us
Us
Us

5
d

2 3 4

3 4 5

2 3
a®)

U1
Uz
Uy
Us
U1
Uz

1

d/

d®

Ua
Ur
Us
Ur
Ua
Ur

1
d

0 -1
1 -1
0
-1 -1
-1 —1
-1 -1
dm
Uy

U,
Uy
Us
U,
U,

d/

0
2
4
5

Table 2. The shapes of the matrices U(d’, remg(do))

2 3 4

3 4 5

2 3 4
remg(do)
remsg(do)
I‘ema(do)
remg (do)
remg(do)
remsg(do)

1
1
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The matrices Uy, ..., Us are defined as follows:
01 1 111 110 101 111
Ui={10 1|, Us=lo1 1|, U3=|10 1|, Usy=|1 1 1|, Us=|0 1 0|;
110 101 111 010 111

whereas d, ..., d® denote the last five vectors d’ in Table 1, which as
vectors from Kg(A532) are distinguished by the conditions rk(d(i)) =6 and
Ta,(dPD)=2,i=1,...,5.

The full proof of the theorem is given in Section 4.

2.4. Now we consider the problems essential for computing the vector
m(M)p for a A-module M. We formulate a long theorem collecting very
specific, detailed properties of the set of all positive postprojective roots.
These properties are mainly connected with the shape of the component
P and with the various structures P is equipped with (cf. Lemma 2.3(a)
and the considerations below). In particular, we give formulas controlling
the “changes of coordinates” resulting from individual structures. The theo-
rem determines the nature and scheme of the algorithms, discusses the stop
problem for them and indicates how to improve their efficiency.

Let A= A, 2 be a domestic canonical algebra. Then, as already stated,
the component P in I'4 containing all indecomposable projective A-modules
is postprojective in the sense of 1.2. It is also infinite, since A is a concealed
algebra of Euclidean type (see [23]). In particular, P admits sections and all
of them are Euclidean quivers of the same type. For each section X in P we
have |Xp| = |(Qp,q,2)0l, and P is isomorphic, as a translation quiver, to the
full subquiver of ZX, formed by all vertices (n,z) € (ZX)o = Zx Xy such
that 7"x is defined in P. Moreover, under the identification 7"x — (n,z),
each choice of a section X yields a disjoint splitting Py = (P°)g U (P')o,
where P? = PO(X) and P’ = P'(X) are full subquivers of ZX such that P°
is the finite full translation subquiver of (N'\ {0})X and P’ = —NX| since
there are no injective modules in P (see [23]).

We know that dim yields a bijection

Py P

(see Theorem 1.6(b)). Consequently, P is endowed with the canonical struc-
ture of translation quiver, transported from P along dim. (The translation in
P is denoted by the same letter 7.) We assume that all notions and notations
introduced above for P are automatically transported to P.

Let

¢ = ¢4 : Ko(A) — Ko(A)

be the Coxeter transformation for A. Recall that ¢ is a Z-linear map, which
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can be interpreted as the map
¢ =(-Ctc™Y).: 725 — 77,

under the identification Ko(A) = Z*, where C' = Cy € My s(k) is the Cartan
matrix of A and s = |(Qp,q,2)0|- Note that ¢ is an isomorphism, since gl.dim A
is finite and C' is nonsingular (see [2, Section IIL.3| and [22]).

We set Kog(A) = Ko(A)/rad g4, where rad g4 is the radical of g4. Since
#(1) = 1 (and radgq = Z - 1), ¢ induces the so-called reduced Coxeter
transformation, which is a Z-isomorphism

(Z . K()(A) — Ko(/l)

defined by the formula

¢(x +radga) = ¢(x) +radqa
for x € Ko(A) (see [8] and [23, Section XI.1]). Observe that 7 : Ko(A)rea —

Ko(A) is an isomorphism, where 7 : Ko(A) — Ko(A) denotes the canonical
projection; the inverse of 7| is induced by the epimorphism ~ : Ko(A) —
Ko(A)ed, * — T = x — xol. We often use the identifications Ko(A') =
Ko(A)req = Ko(A) (see also 2.3). In this way we view ¢ as a map Ko(A)req —
Ko(A)req given by the formula

¢(z) = ¢(x)
for x € Ko(A) (similarly for Ko(A4')).
It turns out that ¢ furnishes some important extra structure on the set
L = P, and consequently, on the set P (cf. Lemma 2.3(a)).

THEOREM. Let A = Ay, 42 be a domestic canonical algebra, ¢ = ¢, :
Ko(A) — Ko(A) the Cozeter transformation for A, ¢ : Ko(A) — Ko(A) the

reduced Coxeter transformation for A, and let the subsets L (= P), P C
Ko(A) be as before. Then:

(a) The set L is ¢-invariant and, for any fived section X in P,

L=0E1)U---U0(x(s)),

where Yo = {x(1),...,2(s)} and O(x(i)) is the orbit of the reduced
vector M under the action of the finite cyclic group G = (¢) on
Ko(A).

(b) Given a section X as above, fix a sequence i1,...,i, such that L =
O(x(i1)) U--- U O(x(iy)) is a disjoint union. Set y;; = ()~ (x(i;))
for any pair (1,j) € {0,...,v;} x [r], and Kj = w1 + - +uy, ; for

any j € [r], where v; = |O(x(i;))| and the integers w; ; are defined by
the equalities cZ)‘l(yl_l’j) =y; +w ;1. Then:
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e O(x(i5)) = {Y0,>--->Yv;—1,5} and Yy, j = Yo for every j € [r];
hence the mapping (1, j) — y;; yields a bijection

L~ {(l,j):jelr], ey}

Moreover, for any i € [s|, there exist unique j = j(i) € [r] such

that O(z(i)) = O(x(i;)) and l = (i) € Z,,; such that x(i) =y ;.

evs = v = lem{y; : j € [r]}, where v = |¢|, vs = |bx| and
by is the reduced Coxzeter transformation for the Euclidean type
quiver 3.

e rj > 0 and k; = |[s];| for every j € [r], where [s]; = {i € [s] :

j(i) = j}; consequently, 23:1 Kj = s. Moreover, set 09;(l,i) =
remy; (0j(1,1)) for any j = 1,...,7 and (l,i) € Z,; x [s];, where

0;(l,9)
z(i)o if 1=1(i),
=< z(i)o + wiyp1,; + o+ U if 1>1(1),
2(i)o + wyyp1,y + ot Uy UL+ if T<I(i).
Then
() {o;(l,9) - i € [s];} = Zu,

Jor every l € Z,,.
(c) Set x(n,i) =7 ™(x(i)) for any pair (n,i) € N x [s]. Then

2(n.i) = Ynoi(i),j() T 26y (n @ 1(3), 1)1 if n <V,
; z(rem,, , (n),4) + quo,, M)kl if n > v,
where ® denotes addition in Zyj(i).

(d) Let x € N?0 be a vector from P, and (j,1,i) € [r] x Zy; % [s]; the
triple uniquely determined by the equalities T = y; ; and Ej(l,i) =
remy; (vo), where Q = Qp q2. Then:

e z € P’ if and only if zo > 0;(l,1).
o If v € P then
o {x(l—l(i)+(xo—Qj(l,i))l/j//ij,i) if 1>1(1),
a(l=1(i) + v + (w0 — 0; (1, 9))vj /K5, 1) if 1< 1(d).
(e) For any m,m’ € N, the inequality
Z z(n,i)y >m  (resp. z(n,i)y, >m', v € Qp),
vEQo
holds for all i € Xy and n > m/sn+v (resp. n > m'/n+ v), where
n =min{x;/v;: j € [r]}.
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(f) There exists a section X in P with the property that for any pair
x=x(n,i),y=x(n',i') in P' = P'(X) such that T =7 the following
hold:

e The inequalities n < n' and xo < yo are equivalent.
o If n<n and z # 7 for all z = x(n”,i") with n <n” < n', then
Yo = o + 1.

A complete proof of Theorem 2.4 is given in Section 5.

3. THE RESTRICTED MULTIPLICITY VECTOR
FOR REGULAR COMPONENTS

The first part of this section (Subsections 3.1-3.3) is devoted to prepa-
rations for the proof of Theorem 2.2(a+b). Subsections 3.4 and 3.5 contain
the proofs of assertions (a) and (b), respectively.

3.1. We start by proving a useful general fact.

PROPOSITION. Let k be a field, R, S two finite-dimensional k-algebras,
C a connected component of the quiver I'r, and let

@
mod R ? mod S

be a pair of k-linear functors such that ¥ is left adjoint for ®. Assume that
P 1s exact and the restricted functor ®|,qq¢ : addC — mod S “preserves the
Auslander—Reiten structure”, i.e.:

(a) (X)) is indecomposable for any indecomposable X in addC,

(b) for any indecomposable X in addC, &(f) is a right (resp. left)
minimal almost split homomorphism in mod .S provided that so is
f:Y = X (resp. f: X —Y) in modR,

(c) for any indecomposable X in addC, ®(X) is a simple projective in
mod S provided that so is X in mod R.

Then

m(M)gx)y =m(¥(M))x
for any M in mod S and any indecomposable X in addC.
Proof. For any nonprojective X in C there exists an almost split sequence
0—717X — @ 7%x . X =0
ze—X
in mod R. Since ®,qqc is exact and satisfies (a) and (b), the sequence
0— &(rX) = P 8(2)"x - &(X) -0
ze—X
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is almost split in mod S. Therefore, for any S-module M,

m(W(M))x = [W(M), X] + (M), 7X] = > dyx[#(M), 2],
ze™ X
m(M)g(x) = [M, S(X)] + [M,(rX)] = D dy x[M.9(2)]
ze X
(see formula (%) in the Introduction). Since (¥, ®) is a pair of adjoint functors,
we get m(M)gx) = m(¥(M))x.
It remains to prove the assertion for X projective in C. In this case there
exists a right minimal almost split homomorphism

P zx=2ix - X
ze X
in mod R. By similar arguments to those above, applying (a)—(c), we get

m(@(M))x = [B(M),X] - Y dyx[W(M),Z]
ze X
= M 2(X)] = ) dyx[M,2(Z)] = m(M)gx)
zZe X
for any S-module M, and the proof is complete. =
REMARK.

(i) Let (¥, ®) be as in Proposition 3.1. Then there exists a unique con-
nected component C’ in I's such that #(X) € add(’, for any X in
C, and the induced functor @|,qq¢ : addC — addC’ is dense. More-
over, the problem of determining the restricted multiplicity vector
of an S-module M for the subcategory addC’ C mod S can be re-
duced to the analogous one for the module ¥ (M) and the subcategory
addC C mod R.

(ii) Assume that there are no projective (resp. injective) modules in C
and, in addition, the functor @,qq¢ is full and faithful. Then the
assertion of the proposition remains valid if instead of the assump-
tion on preserving the Auslander—Reiten structure, we require that
B(TRX) = 79P(X) (resp. (1, X) =2 75 ®(X)) for any indecompos-
able module X in C. (This follows by the properties of almost split
sequences, in particular from [2, Corollary 3.2(a)].)

3.2. Now we introduce four pairs of special functors which satisfy the
assumptions of Proposition 3.1. Given a module M over a domestic canonical
algebra A, we use them to reduce the problem of determining the restricted
multiplicity vectors m(M)c for all regular components C in I to the anal-



244 P. DOWBOR AND A. MROZ

ogous one for algebras of type &pyq for p,q > 2, in some cases even 1&171 (the
Kronecker algebra). For this class of algebras, the problem is already solved
in [9].

Let A = A, 2 be a domestic canonical algebra with p,q > 2. We define
the functors

Do b1
— —
mod A, 4 Y mod A, 42, modAy, o mod A, .2,

Do ]
mod A, , — mod A, ;2 mod A; 1 —mod A, ;5.
q,p w p,4q,4> ) v P,q,
oo

Without loss of generality, we can restrict our attention to matrix represen-
tations (see 1.4 for the precise definition).

For a module M given by a triple (A4, B,C), with A = (4;)cp), B =
(Bi)ielq), and C = (C);ef2), we set

Wo(M):(A,B), WOO(M):(BvA)v
!pl(M) :(CvB,)v EP(M) = (A’ _E)’
where B’ = (Bj);c[q with B] = —B; and B; = B; for i > 2.

To define the remaining four functors we need some extra notation. For
any D € My, (k) and integer i > 2, we set 1)(D) = (Dy, ..., D;), where
Dy =D and D; = I, for all j =2,...,4. If the value of i is obvious then we
omit the upper index and write simply I(D).

Now, for a A’-module N given by the pair (A, B), where A’ is equal to
Ay gy A2.g, Agp and Aq 1, respectively, we set

Po(N) = (A, B,I(A+ B)), &:1(N)=(l(A+B),B,4),

Doo(N) = (B, A, 1(A+ B)), ®(N)=(I(A1),1(—B1),I(A1 — B1)),
where B’ is as above.

The eight mappings introduced above can be extended to k-linear func-

tors by defining their values on morphisms in an obvious way. These functors
have the following properties.

LEMMA.

(a) The functors ®1,Pgy, P, P are full, faithful and ezxact.
(b) (Wo, Do), (¥1,P1), Voo, Poo), (W, P) are pairs of adjoint k-linear func-
tors.

Proof. An easy check on the definitions. m
3.3. By Remark 3.1(ii), to apply Proposition 3.1 for regular components,

it suffices to show that the functors @, P, P, P, restricted to appropriate
subcategories, commute with the Auslander—Reiten translate. We show this
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by proving that ®g|,qq 771, @1‘add%2,q, Poo|add 797 qj\addTA“’ A€ k\{0,1},
yield, respectively, the equivalences

add TP ~ add 7P%*,  add 7% ~ add T2,
add TfP ~ add 7292,  add 7,"' ~add 7%%, Xek\{0,1},

of serial categories, where 7’ = {7:\p/’q/}>\eku{oo}a for p’, ¢’ > 1, denotes the

1-parameter family of stable tubes of type (p/, ¢'), containing all regular in-

decomposable modules over the hereditary algebra A’ = Ay o of type &pgq/.
The following fact plays a crucial role in the proof of (x).

LEMMA. Let T : mod R — mod S be a full faithfull exact functor and U
(resp. U') a full subcategory of mod R (resp. mod S) closed under isomor-
phisms, which as an exact subcategory is a serial (and abelian) category of
type (n,00) for some n > 1. Assume that:

(a) U’ is closed under extensions,
(b) for any simple object X in U, T(X) is a simple object in U'.

Then Ty yields an equivalence U =~ U’ of abelian categories. In particular,
if an object X in U with U-socle X1 has U-length | then T(X) has U'-length
l and its U'-socle is isomorphic to 1 (X1).

Proof. We first prove that 7’(X) € U’ for any X in Y. We apply induction
onl = {y(X).If l = 1 then the claim holds by (b). Assume that [ > 2 and the
claim holds for all X’ in U with ¢,(X’) < [. For any fixed X with ¢,(X) =,

there exists an exact sequence
0—-X —-X—-X"-0
in U such that £(X’), 44(X") < I. Then the sequence
0-7X")—-TX)—->7X")—0

is exact in U’ since 7" is an exact functor. The objects 7 (X’) and 7' (X")
belong to U’ by the inductive assumption. Hence, by (a), so does 1(X),
and the proof of the claim is complete. Consequently, 7" induces a functor
Y : U — U'. We have to show that 1), is dense.

Denote by Xo, ..., X,—1 all (up to isomorphism) pairwise nonisomorphic
simple objects in U. We can assume that their numbering is such that all
pairwise nonisomorphic objects X(s,1), s € Zy, of U-length [ > 1 in U
are uniquely determined by composition series of the form (X, ..., Xs_141),
where X; = Xiem,(s) for @ > n. Then applying (b) and the fact that 7" is
full and faithful, we infer that the objects Ys; := 17(Xs), s € Z,, are all
nonisomorphic simple objects in U’. Next, we show by induction on [ that
the pairwise nonisomorphic indecomposable objects Y (s,l) := 1 (X (s,1)),
$ € Zy, in U" have U'-length | and are determined by composition series of
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the form (Ys,...,Ys y11), s € Zy, where Y; = Yiem, (i) for ¢ > n. This follows,
by exactness of 1", from the existence of exact sequences

0— X(s,1) = X(s,]) = X(so, 1,1 —1) = 0,

§ € ZLn, for any | > 2. Consequently, 1y : U — U’ is dense and yields
the required equivalence of abelian categories. Now the final assertion is
straightforward. =

Let A" = A, 4 be a hereditary algebra of type &p/7q/, where p/, ¢ > 1.
As already mentioned, the regular A-modules form a 1l-parameter family
T' = {T{ "% } xckufoo) Of stable tubes of type (p', ¢') and each of the categories
add 77, X € kU{oo}, is serial of type (ny, 00), where n) is the rank of 7”7 .
Assume that ’ZE)p,’q,, To%,’q, and T)\p,’ql, A € k\ {0}, are stable tubes of rank p, ¢
and 1, respectively. Below we list all, consecutive with respect to the “cyclic

order”, regular simple modules from the mouth of each tube Tfl’ql, according
to the convention of 1.3. The list yields the encodings of all indecomposable
regular A’-modules given by tubular coordinates.

We set:
0—>—>0
0 0
p',q’ _
1 1 1 1

and X(’Zap/’q/,s, 1) = S(as) for s € Zy \ {0}, where X(’]E)pl’ql,s’,l) is the
module in the tube %p/’q/ corresponding to the vertex (s',1) € T (p')g for all
s' € Zy and | > 1;

1
k — —k
1 1
v',q’
X(727,0,1) = kéo_»“__o_,k
0 0

and X(Tog’q/,s,l) = S(bs) for s € Zy \ {0}, where X(To%,’q,,s’,l) is the
module in the tube 727 corresponding to the vertex (s',1) € 7(¢')o for all
s' € Zy and | > 1.

To fix a precise list of regular simple A’-modules lying in homogeneous
tubes, we simply give a description of all indecomposable regular modules

from tubes ’Z:\p/’q/, A € k\ {0}, of rank 1. We set

oD
Jl(A)/k—’ IREAN?
X('T)\,O,l) SR N R S ¥ SRR ¥
I, I I, I

where X(T/\p,’q,, 0,1) is the module of add ’Z:\p/’q/—length [ in the tube T)\p/’ql for
all 1 > 1.
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Further on, for A € k\{0} we use the abbreviated notation X?¢'(\, s,1) =
X (TP s,1) for A = 0,00, and X?4'(\,1) = X(TF7,0,1) for A € k \ {0}.
COROLLARY.
(a) The functors Pojaqq7r, él‘add%lq, Pos|add T ¢|addT)\l‘l yield the
equivalences ().
(b) We have the isomorphisms
(i) @o(XP1(0,s,1)) = X(0,s,1),
(i) @1(X>(0,5,1)) = X(1,5,1),
(ili) Poo(XTP(0,5",1)) =2 X(0,5",1),
(iv) 2(XHHA D) = X (A1)
forall s € Zy, s’ € Ly, s" € Ly, 1 >1 and X € k\ {0,1}.

Proof. The functors @y, @1, P, P and the pairs (add 77, add %p,q,z),
(add 7%, add T%?), (add 7%, add T2?), (add 7, add TP%?) s g 0.1 Of
serial subcategories of the respective module categories satisfy the first as-
sumptions and condition (a) of Lemma 3.3 (see Lemma 3.2(a) and [22, 23]).
It is easy to check that for [ = 1, the isomorphisms (i)—(iv) hold trivially
(they are in fact equalities), so (b) is also satisfied for each of the four func-
tors. Consequently, (a) holds automatically by Lemma 3.3. Assertion (b)
follows immediately from the final assertion of Lemma 3.3 and the definition
of tubular coordinates. =

REMARK.

(i) By the definition of the functor @, the A 4 2-modules X (A, 1) in the
homogeneous tubes T)\p’q’2, A € k\ {0,1}, have the form

klj’"'j’kl
KA.
X\ = B e A Mg

Jl(mkl/]l'

(see also [18]). The formulas for the remaining indecomposable regu-
lar modules from the tubes %p,q,2’ 7—1p,q,2 and 72%? do not have such
regular shape but of course can be reconstructed, by applying the
functors @y, 1 and P, and the description of regular nonhomoge-
neous modules over hereditary algebras A’ of type A, , in terms of
walks in the quiver Q4 (see for example [9]).

(ii) The functor @ induces a homomorphism

Poo : K(Agp) = K(Apg2)
of Grothendieck groups, given by [M] — [ (M)] for M in mod A .

Applying only additivity of the dimension vector on exact sequences,
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exactness of @, and the isomorphisms (i)—(iv) for [ = 1, one can
easily obtain the formula @o. ([X %P (s,1)]) = [X (00, s,1)] for all s € Z,
and [ > 1. Consequently,

Do (XTP(0,5,1)) =2 X (00, s,1)

for all s € Z, and [ such that g{[, since the modules X (o0, s,1) are
uniquely determined by their dimension vectors in this case (see [23]).
It remains to define an analogous isomorphism in case ¢ |. The sit-
uation for the functors ®g|,qq TP and ¢1|add 724 is analogous.

3.4. Proof of Theorem 2.2(a). The pairs of functors (¥, P),(¥1,P1),
(Yo, Po), (¥, D) satisfy the assumptions of Proposition 3.1 (see Lemma 3.2,
Corollary 3.3 and Remark 3.1(ii)). Thus, the following formulas hold:

m(M)[Osl] = m(¥(M)) x», 14(0,8,0)
m(M)p,s g = m(P1(M)) x2.4(0,5 1)
m(M) [00,s" 1] m( o (M)) xa. 2(0,s",1)>

m(M)pg = m(P(M))x11(0),
for all s € Z,, ' € Zo, s”GZq,lZ land A€ k\ {0,1}.

Following the notation introduced in [9], for any p’,¢’ > 1, s € Z,y and
[ > 1, there exist i € {2,...,p' +1}, j € Zy and n > 0 such that an

indecomposable module X7 (0, s,1) is given by the walk w(i, j, —1) = Q;
or w(i,j,n) = a; (B )" B Lay j in the quiver Q o, where ayy 11y = (00),
a1, = (a;), a190 = (0) are trivial walks in Q, 4 (see |9] for details).
Applying simple induction, one can show the equality
(4,7, m) = ppr (s,1),

where 1,y is the indexing map defined in 2.2. Now, given a A,/ ,-module
M defined by the pair (A, B), A = (Aj)icypy), B = (Bi)ig|q), and integers
5 € Zy, m > 1, we have
(%) [M, X790, 5,1)] = cor M""(B, A),
where (i, j,n) = py(s,1) (see [9, Lemma 5.6]). Moreover, for any s € Z,y and
{ > 1 we have the formula
(s5x) m(M)Xp’,q’(QSJ)

= [M, X?"7(0,5,1)] — [M, X771 (0,5 ©, 1,1 — 1)]

— [M, XP59(0, 5,1+ 1)] + [M, XP7 (0,5 O, 1,1)],

where X?9'(0,5,0) = 0 (see [9, Corollary 5.3]).
Now we can complete the proof. Combining formulas (#x*%) and (xx), for
(p',q') equal to (p,q), (2,q) and (g, p), respectively, with (x), we obtain (i),

(%)
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(ii), (iii) of Theorem 2.2(a). Formula (iv) holds by analogous arguments and
the equality

[M, XY (X, 1)] = cor M4 (A1, —By)

for any A € £\ {0,1}, 1 > 0 (see [9, Lemma 4.6]).

Assume now that for a A-module M the set o(M) is known. Observe that
the existence of the algorithm with the required properties follows from the
formulas (). They reduce the problem of determining the restricted multi-
plicity vectors m(M)c, for all regular components C in I'4, to the analogous
one for concrete four modules, Wo(M), W1 (M), Yoo (M) and ¥(M), over four
algebras A’ of type &p/yq/, and a finite number of already determined regular
connected components C’' in I'y, for each of these algebras. Following [9], for
a A’-module M’ with dimy M’ = n’ and a regular component C’, there exists
an algorithm of pessimistic complexity O(n’*) which computes m(M’)c.
Since n’ < dimy, M for M’ = Wy(M), ¥ (M), ¥ (M), or ¥(M), the proof of
the existence of the algorithm, and hence Theorem 2.2(a), is complete. m

COROLLARY. Let T(o1,00y = Lremgoay Ta- Then m(M)ry,,
m(W(M))m/{O’LOO} and the problem of algorithmic computing of the vector

m(M)|T{0 Looyr 1 particular determining the set o(M), is fully reduced to the
analogous problems for the Kronecker algebra, Ay 1., for the restricted vector

m(W(M))|R/{O’LOO} and the set o((M)), where Rf{o’lm} = |—|/\ek\{0,1}(7>\171)0
and o(p(M)) consists of all X € k such that W(M) contains a direct sum-
mand from add T)\l’l (cf. [9, Proposition 4.4 and Algorithm 4.4(3)]).

REMARK. The algorithmic determining of the vector m(M)r,, for a
fixed A\ € kU{oo}, relies on an appropriate reduction and is described in the
final part of the proof above. To determine the integer m(M),, for a fixed
single € T, we can apply directly formulas (i)—(iv) from Theorem 2.2(a).

3.5. Proof of Theorem 2.2(b). Let A" = A11 = k(0 = w) be the Kro-
necker algebra and ¥ : mod A — mod A’ the functor defined in 3.2. First
we prove that rkp(M) is equal to the number of postprojective summands
in a decomposition of the module ¥ (M) = (A, —B) into a direct sum of
indecomposable A’-modules, where M is given by a triple (A, B,C).

Denote by add P/, add R’ and add Q' the subcategories of all postprojec-
tive, regular and preinjective modules in mod A’, respectively. Recall that the
dimension vector dim P’ of an indecomposable module P’ in add P’ has the
form dim P’ = [m, m + 1] for some m > 0. Denote by res : mod A — mod A’
the standard restriction functor, given by res(M) = (A, B) for M as above.

Let M be a fixed A-module given by a triple (A4, B, ('), and

M~2P3R®Q
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a decomposition of M with P in add P, R in add R and @ in add Q. Then,
by [23, Chapter 12|, the modules res(P), res(R) and res(Q) belong to the
subcategories add P/, add R’ and add @', respectively. Observe that ¥ can
be presented as a composite functor

mod A X% mod A’ -5 mod A,

where O is the autoequivalence defined by the formula O(N) = (A',—B’)
for a A’-module N given by the pair (A, B’) of appropriate matrices. The
equivalence © preserves the subcategories add P’, add R’ and add @', since
it preserves the dimension vectors. Hence, ¥(P), ¥(R) and ¥(Q) belong to
addP’, add R’ and add @', respectively. Thus, ¥(P) is a maximal postpro-
jective direct summand of ¥ (M).

Let

be a decomposition of ¥(P) into a direct sum of postprojective indecompos-
able A’-modules. Then

t
dim ¥ (P Z Siy Si + 1],
=1

where dim P/ = [s;,s; + 1] for i = 1,...,t; on the other hand,
dim ¥ (P) = [s, 5+ 1],

where s = dimy Py and r = rk(P) = rkp(M). Consequently, t = rkp(M)
and our claim is proved.

Now we prove the remaining assertions of Theorem 2.2(b).

Fix Ao € k\ {0,1}. Then \g belongs to o (M) if and only if m(M)y,; =
m(W(M))x1.1(xg,) 7 0 for some I > 1 (see 3.4(x)). By [9, Proposition 4.4]
and the equality ¢ = rkp (M), this is equivalent to A9 being a common root
of all (ny, — rkp(M))-minors of the matrix A+ AB, regarded as polynomials
in k[A], and we are done.

The formula for the number of indecomposable direct summands of M
from one tube 7, follows immediately, by the equality ¢ = rkp(M), from
[9, Corollary 4.4].

Finally, the required algorithm computing rkp (M) with low complexity
can be obtained by applying the algorithm computing the vector m(N )‘7;/
for modules N over the Kronecker algebra A’, to the module N = ¥(M)
(see 9]). In this way the proof of Theorem 2.2(b) is complete. =

REMARK. Suppose we want to determine the vector m(M), Tio1 00} Then

we apply the method described above. More precisely, we execute [9, Algo-
rithm 4.5(1)] to compute m(¥(M));p/, and hence the integer ¢, which is nec-
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essary to determine o (¥ (M)). Next, applying [9, Algorithm 4.5(3)], we com-
pute m(W(M))m{OYLw} and m(M)‘T{O’LOO}. In case the integer rkp(M) =t
is already known (in particular, if m(M)p as a solution of a partial task
in determining m(M) is already computed), we can clearly omit comput-
ing m(¥(M));pr and pass at once to further steps of the procedure (cf.
Remark 6.2(c)). One should stress that the algorithm computing m(M),p,
constructed in Section 6, has the same complexity, O(n*), as [9, Algo-
rithm 4.5(1)], but it is much more complicated and uses rather deep knowl-
edge of postprojective indecomposable modules over domestic canonical al-
gebras.

4. COMPUTING THE INTEGERS h(M)q, d € P

This section is devoted to the proof of Theorem 2.3.

4.1. We start with some general observation.

Let M, N be modules over some locally bounded category R (i.e. k-linear
functors from R to mod k). Assume that there exists a full subcategory R’ of
R such that for every x € ob R\ ob R’ there exists a morphism « € R(z,y),
for some y € ob R/, such that N(«) : N(x) — N(y) is a monomorphism.
Then the linear map

L= 14y y Homp(M, N) — Homp (Mg, Nig/)
induced by the standard restriction functor res : mod R — mod R’ is a
monomorphism.
We precisely describe the image of ¢ in some particular situations. For

this we need some extra notation.
Following [18], for any r > s we consider the block matrices

I 0
Xrs = [ 0 } and Y. = [—]

S

in M s(k), where 0 denotes the zero matrix in M, _ (k).
LEMMA.
(a) Let A = Aj12 and M,M' be finite-dimensional A-modules of di-
mension vectors n,n', which are given by the triples (A, B,C) and
(A', B',C"), respectively. Assume that CY : k"1 — k™ is a monomor-
phism and Do € M”/qx”'q(k) is invertible, where C) = { gl } €

2
M’VLZUXTL/CI (k)7 Dl € M(n{ufnlcl)xn/cl (k) Then LJ/\%,M" fOT’ A, = Alvl’

yields a k-isomorphism

Hom (M, M) = {(y, z) € Hom (M4, M{ ) : 2(1)Ca = D1 Dy (5 C},
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where (y,2) € My xno (k) X My xn,, (k) and z = {&} with ©1 €

(2)
M(Tlfu—n/cl)xnw(kl) and T € Mnél><nw(]{?).

(b) Let A= A, 4 and M, M’ be finite-dimensional A-modules of dimen-
sion vectors n, n', which are given by the pairs (A, B) and (A, B’),
respectively. Assume that gr(n’) € N@va1 qll the matrices Al are
of the form X, . and all the matrices B;- are of the form Y, .. Then

Lﬁ’M,, for A = k,(=k), yields a k-isomorphism
1
Hom(M,M')={x=| : | €My xn, (k) [z1]... |z ] - W =0},
where W = W (A, B,n/) (see 2.3).
Proof. (a) We start by proving that a triple (y,z,u) € M%Xno(kj) X

My s, (k) X My xne, (k) belongs to Hom (M, M’) if and only if it satisfies
the system of three matrix equations:

(i) zA; = Ay,
(ii) By = By,
(iii) 2Cy = CHu.
Fix (y,z,u) satisfying (i)—(iii). We have to show that for (y,x,u) also
(iv) uCy = Cy.
To this end we use another form of (iii), namely,
(iii), z(1)C = Diu,
{(iii)2 z(2)C2 = Dau,
obtained from (iii) by using the block matrix presentations of x and C}. By
the assumptions, (iii), is equivalent to
(iii) Dy'wo)Cy = u.
The relations in A and (i), (ii), (iii)} yield
uCh = Dz_lx(g)CQC’l = D;lx(Q)(Al + B;) = D2_1772:c(A1 + By)
= Dy 'my(A} + By)y = (D 'maCy)Cly = Cly,
where m9 = [0 | I”'cl] € Mnélxn&(k‘). Consequently, the claim is proved.

Now we show (a). By the above we have
Hom (M, M") = {(y,2,u) : (i), (ii), (iii)1, (iii)3}.

Observe that subtracting from (iii); equation (iii), multiplied by D; from
the left, we obtain a new system ((iii)}, (iii)5), equivalent to ((iii)i, (iii)5),
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where
(iii)/l D1D2_1:L’(2)02 = :L’(l)CQ.
Moreover, by the shape of (iii)), the projection (y,z,u) — (y,z) yields a
k-isomorphism
Hom (M, M') 2 {(y,x) € My xny (k) X My, xn,, (k) = (1), (ib), (iid)1 }.
In this way the proof of (a) is complete.

(b) To show the required isomorphism, we interpret Hom 4 (M, M’) as the
set of all tuples

o= (y, oW, 0wl )
in

p—1 q—1
Mn{)xno(k) X H Mn;ixnai(k) X H Mn;)j Xnp, (k) X Mn(’u XNy (k)
=1 i=1

satisfying a system (v) = ((v)q,5-- 5 (V)i (V)g, - -+, (v)g,) of p + ¢ matrix
equations, given by the commutativity of structure maps in M and M’ cor-
responding to all arrows of @, , with the components of ¢ corresponding
to the appropriate vertices of ()4 . To better understand the system (v),
we present each coordinate of ¢ in block matrix form given by rows, in the
following way:

U1 Uy wy 1

() (4)
yn6 Ut wn;) Tyt

w

where i =1,...,p—1and j=1,...,q— 1. Then, by applying the formulas
defining the matrices A} and B;-, the system (v) has the form

[ w1 [ o
o z wfd .
T I I Ot | | m=|
S IR A S T e BT
Un/ . ’LUn/ .
aq . by :
0 L yn’O
vgl) i [ o
1)%2) . w§2) :
: » ) ) 0
(Vay Do (A= e | V), : L Be= |0
@ 0 u® |
? : : w®
0 | o,
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v£p72) 0
(p—1) : (g-1) :
1 ) i 0
. . .
Mo, : Apr=|_ =2 |, (V)p, ¢ : Bo1= |7 w2 |
oD 0 Wit :
an_1 . — .
L4 : a-1 w(ql—2)
0 an—2
—1 r T
ng. ) 0
1 o1 1 0
/ _ Na, ’ _ —
(), il S ), By= |0 |,
: (g=1)
0 wng
g—1

Each of the above equations can be written in the form {(Z)%“} (resp.
ﬁz;:ﬁﬂ}), where the divisions are indicated by horizontal lines ioréli’che vec-
tor:jgn the right hand sides. Now we inductively transform the systems
V), = ((V);l, e (V)/ap) and (V)/ﬁ = ((V)/ﬂl, e (V)%q), separately, to equiv-
alent systems (v)! = ((V)Zl,...,(v)gp) and (V)g = ((V)gl,...,(v)gq) of a
simpler form, in the following way.

We start with (v)’,, and set (v)! = (V);p. Assume that (V)/C/h for1<i<p

Ap
. " !/
is already constructed. Then we define (v),, , as the sum of (v),  and
11— 11—

" PR T . . . "
(v) iy multiplied from the right by the matrix A;. The resulting system (v),,,
consisting of nl, +--- + ngp_l + n/, equations, looks as follows:

r1Ap,1 = Y1, T1Ap2 = v£1>,

W Tpr Ap,1 = Ynly» W) Ty, Apo = vngl ,

a1 Tl 41 AP 1=0, a2 Tp/ 41 Ap 2 =0,

Ty Ap1 =0, Tyt Ap2 =0,

—92 _
xlAp,p—l = v(p ): .Z‘]A = ng 1),
App1 =02 _ D
(COM g CPPTLT Ol Mo mngp—lAp U,y

p— — p

:Enap p1 Sppl 0, m";p,1+1 p =0,

Zp App_1 =0, @ Ap =0

"

Similarly we proceed with (V)/ﬁ We set (V)/ﬁ/q = (V)/ﬁq. Assume that (V)ﬁj,
for 1 < j < ¢, is already constructed. Then we define (v)gj_1 to be the sum of
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"

(V)'ﬂF1 and (V)ﬂjz multiplied from the right by the matrix B;. The resulting

system (V)/ﬁ,, consisting of ny + ...+ nzq_l + n!, equations, looks as follows:

Tnt,—nj, +1Ba1 =0, @, —nj,+1B0.2 =0,
Y Tpr —nt Bg,1 =0, oy In;—nIbqu,z =0,
v : A\ 1
B xnfdfn6+qu71 = Y1, B2 Tyt —n{) +1B¢Z72 = w% )7
Ty Bg1 = Yn» Ty Bg2 = w<1,) ,
by
Tny  —nl 71+1Bq,q—1 =0, z1Bq =0,
Tyl ! Bg,q-1 =0, Tl By =0,
(V)N : e - (v)// . w Thbg—1
Ba—1" wng 771?) +1Bq,qfl = wgq_Q), Bq T, —n}, +1 Bq = w(q—1)7
w q—2
Ty Bgg-1 = w;q/_Q) ) T By = wiq,_l)
by—2 bg—1
Now we complete the proof. It is easily seen that the projection
1
1 -1) , (1 -1 N
(y, oM, o@D M @D gy s g = :
Ty,
yields a k-isomorphism
1
!/ . .
Hom (M, M') =z = | : | €My xn,(k): (%) s,
Tyt
where (%) denotes system
" " " " " "
((V)a1,27 RE (V)ap,27 (V)ﬁl,u R (V),Bq,p (V)al,l - (V)51,2)~
Note that the matrix of (x) is W, once we interpret = € M, «,,_ (k) as a row
w w
vector [z1] ... |2p ] € Miyn,n (K). In this way the proof of assertion (b),

and of the whole lemma, is complete. =

4.2. Now we prove an important fact concerning special homomorphism
spaces for modules over domestic canonical algebras.

PROPOSITION. Let A=A, q2,p,q9 > 2, and M, M’ be finite-dimensional
A-modules of dimension vectors n,n’, which are given by the triples (A, B, C')
and (A', B',C"), respectively. Assume that Ch and (A', B') satisfy the as-
sumptions of (a) and (b) of Lemma 4.1, respectively. Then

[M, M'] = cor[W |W'],
_I ’ 771/

and W’:{ e :|®02.
(D1Dy 1)t

where W =W (A, B, @1(p7q))
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Proof. Consider the commutative diagram

H 2 H

]
Hl L’ HS i) H4 = Mn[dxnw(k)
of k-vector spaces, where H = Hom, (M, M'), Hy, Hy, Hs, Hy stand for the
homomorphism spaces HomA/(M‘A/,M"A,) for A" = Apq, A1 12, A11, ku, Te-
spectively, and ¢}, ¢4, t1, L2, 13 denote the maps given by the respective restric-
tions. Observe that by the introductory remark in 4.1 and the assumptions

on M’ all five homomorphisms in the diagram are monomorphisms. More-
over, it is easily seen that the pair (¢{,¢}) induces a k-isomorphism

H = Hy Mg, Ho,

where Hy My, Ha is the fibre product of Hy and Ha along the pair (i1, t2) of
homomorphisms. Consequently, the monomorphisms ¢; 0t} (= t20¢5) and 3
yield a k-isomorphism

H=TImu; NImez = Im(eg0e1) Nes(Imeg).
Hence, by Lemma 4.1,
H= {$ € Mnﬁuxnw(k) : [:Cl | e |$n/w] -W =0; D1D2_1$(2)CQ = $(1)CQ}

Note that the second equation, as a matrix equation in M(n’m*n’cl)chl (k),

looks as follows:

_ x
g, | D205 [ 2] 0 =0
Z(2)
By the lemma below, it is equivalent to the equation

-
172

in I\/Jllx(n/w_n/q)nc1 (k). This finishes the proof. m

LEMMA. For any P € My, xm(k), © € Mpyxn(k) and Q € Myxn,(k),
PxQ = 0 in My, xn, (k) if and only if [x1]...|zm] - (PP ® Q) = 0 in
M xmyn, (K), where x1,. .., Zm € Mixn(k) are the rows of x.

Proof. An easy check on definitions. =

4.3. Let Z € M, (k). Following [18], for any n € N, we denote by
Z[n] the nth enlargement of Z. Recall that Z[n] € Mg pn)x(sn)(k) is
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given by

1

where all entries off the two diagonals of length n (consisting of ones) are
zeros. We set Z(0) = Z.
Assume now that » > s. Then Z can be written in the form

Z = ,
Z3

where Z; € M(T_S)Xs(k:) and Zs € My (k). Analogously, for any n € N,

0= 2,

where Z[n]1 € M, _g)x(nts) (k) and Z[n]z € M(,4.6)x (n+s) (k). Observe that
Z|[n]s is a block upper triangular matrix, so Z[n]y is invertible if and only if
Z2 is.

LEMMA. Let Z € M, «4(k), 7 > s, be such that Zs is invertible. Then for
any n € N, we have the equality

[~Lr—s | Zn1 Z[n)5 '] = [~ | U)(0ntr)
Of matT’iCes ln M(T*S)X(’ﬂﬁ»’r‘) (k)7 whe/r-e U — 2122—1 c M(T,S)XS(]{;),

Proof. Recall that the matrix [—1I,_ | U](®In+r) ¢ M, _s)x (ntr) (k) is by
definition given by the formula

[—I—s | U](OOW'T) = ([~Lr—s |U] (i))\n+r7
where (i — 1)r > n, and [-I,_, |U]® ¢ M, ) xir (k) has the form
I |U)D = [I,_s|U | L | -U| = L_s|U| ...
Fix n > 1 and set, for simplicity, 7, = Z|[n]; and Ty = Z[n]a. To show

the assertion we have to compute the matrix 2122_ L. To this end, we write

Z € M, —g)x (n+s) (k) and Zoy = M(114-5)x (n+s) (k) in block matrix form
- ~ Zy | Zb
&:%UHM]md%:{2 2}

0|z
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where Z!, € My (k) and ZJ € M, xp (k). Here
Zh =10,—_s|Is|0] and Z§ =1,+ N,
where 0,5 € My (,—g) (k) is the zero matrix and N = J,,(0) € My, xp (k) is
the (nilpotent) upper triangular Jordan block with eigenvalue 0.
The matrix Z} is clearly invertible. We claim that its inverse is
oo
Zé/—l _ Z(_l)zNzr
=0
Since the mapping T — N yields an algebra isomorphism between the trun-
cated polynomial algebra k[T']/(1™) and the subalgebra k[N] C M,xn(k),
where T'=T + (T™), the claim follows from the fact that the inverse of the
invertible element 1+ 7" € k[T]/(T™) is equal to Y ;oo (—1)' T
Next observe that Zs is a block upper triangular matrix, so the inverse
of Z9 has the form

- zy' | 2y zy zy !
o
Consequently,
LIy =02y |~ 22y 2,2 + (s 0125,
Moreover, applying the formula for Zé’_l, we have
~012;' 2y 23 = ~ 202y ([0r-s | 1] 01257
= 2125 0r—s | Is | —0p—s | =I5 | .. ]
= [0 | 2125 | =0,_s| 212571 .. ]

and
151012570 = [ | 05 | —Tr— | O] ... ],

where 05 € M(,_s)x,(k) is the zero matrix. Now inserting these two final
formulas into that for 2122_ ! we immediately obtain the assertion. m

Let A = Ay q9, Z € Myys(k), r > s, and let d € N(@r.a2)0 bhe a vector
such that dy =0, d¢, = s, d, =7, gr(d) € N(@r.a.2)1 Then for any | € N, we
denote by d[l] the vector

dill] =d+1-1
and by N[I] the A-module
N[l| = N(Z,d,l)

of dimension vector d[l], given by the triple (A4’, B, C"), where A, = X, , for
i=1,...,q, B =Y., for j=1,...,q, C] = Yy, 411 and Cy = Z[l]. (Note
that N[I] is really a A-module).
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REMARK. If A = A, 2 is a domestic canonical algebra then the mapping
(I,d) — d[l] yields the inverse of the map which defines the bijection (ii) in
Lemma 2.3(a).

As an immediate consequence of Proposition 4.2 and Lemma 4.3 we ob-
tain the following.

COROLLARY. Let Z and d be as above. Assume that Zy € Mgxs(k) is
invertible, where Z = {? } Then for any integer | € N and A-module M of
2
dimension vector n, given by the triple (A, B,C), we have
[M, N[l]] = cor [W(A, B, d[l]|(p,q)) ‘ {_I&S} ® 02} )
(00)141)

where U = (Z1Z5 ")t

4.4. Proof of Theorem 2.3. Let d € P. Then clearly d = d[do] and gr(d) €
N(@r.a.2)1. Applying the results of [18, 15], we know that, if r-,(d) > 1 (which
holds always if rk(d) > 2), then the unique indecomposable postprojective A-
module Py, with dimension vector d = d [do], can be represented in the form
P; = Nldg|, N[do] = N(Z(d),d,l), where Z(d) € Mchxicl(k) is uniquely
determined by d. Moreover, the set

2 ={Z:3ep r,(e)>1 Z = Z(e)}

is finite and it is described by two tables; the first from [18] for the case as
in Theorem 2.3(b), and the second from [15] for the case as in (c) (for e with
rk(e) =1 and r,(e) =1, Z(e) is a trivial matrix in M xo(k)).

One can easily check, by inspection, that each Z € Z has the property
that the matrix Z; € My 7 (k) is invertible, where Z = Z(d) and Z =

7 . €1 €1

{Zl} with Z; € M(d_w—aTcl)Xd_Cl (k)

2

Now we complete the proof. For any d € P such that r.,(d) > 1, we
set U(d) = (Z1Z5 "), where Z € Z is such that Z = Z(d). Then the first
assertion of Theorem 2.3, for d € P as above, follows immediately from
Corollary 4.3. We still have to discuss the case of d € P such that r.,(d) =0
(and then rk(d) = 1). Note that by Proposition 4.2, the formula for h(M )4
holds trivially in this case, since following [18] the unique indecomposable
postprojective A-module P; with dim Py = d is given by the triple (A’, B’, C")
such that A} = X, . for i € [p], Bj = Y. . for j € [q], O] = Xa. o + Ya,, do
and Cy = Iy, € My, x4, (k) (notice that r.,(d) = dy, — dc, =0).

Now the remaining assertion, in particular Tables 1 and 2, can be ob-
tained from the two tables in [18, 15] mentioned above by computing the
matrices U(d) from the definition. In this way the proof of Theorem 2.3 is
complete. m
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5. THE STRUCTURE OF THE SET P

This section is mainly devoted to the proof of Theorem 2.4. To do this
we need some preparatory facts. The proof will be completed in 5.6. We also
define a linear order relation < C Py x Py to be applied in the next section.

5.1. Let A = A, 2 be a domestic canonical algebra, X' a section in the
translation quiver P = P(A), and Py = Py U Pj, P° = P°(X), P’ =
P'(Y) = —NX, be a splitting of P induced by X (see 2.4 for definitions
and identifications). Denote by P” the full subquiver of P’ with vertex set
P} = {(—n,z) € =NX : n # 0}. We start by proving the following property
of the Auslander—Reiten translate .

LEMMA. Let x € P.

(a) If x € P’ then 77tz = ¢ ().
(b) If x € P" then Tz = ¢(x).

Proof. (a) Let X be an indecomposable postprojective module with
dim X = x € PJ. From Theorem 1.5(c) we have Hom,(D(4A4),X) = 0.
Moreover, Hom (771X, A) = 0, since the component P is standard, and by
the definition of section, there is no projective A-module P with dim P € P(/
(see [22, 2]). The last equality is equivalent to the fact that inj.dim X < 1,
so (a) now follows easily (see [22, 2.4.1%, 2.4.4%]).

(b) Let X be an indecomposable postprojective module with dim X
= x € P{|. By similar arguments, we have the equalities Hom, (X, A) = 0
and Homx(D(4A4),7X) = 0. The last equality is equivalent to the fact that
pd.dim. X <1 and thus we get (b) (see [22, 2.4.1, 2.4.4]). u

Let Xy = {z(1),...,z(s)}. For any (n,i) € N x [s], we set z(n,i) =
77 "(x(7)) (we assume 79(z(i)) = z(i)). Note that the root z(n,i) € P}
corresponds to (—n, z(i)) € —NX. Moreover, by the lemma above we clearly
have z(n,i) = ¢~ "(x(i)) and z(n’ + n,i) = ¢~ (z(n,i)) for all n,n’ € N,
i€ [s].

5.2. The following fact is crucial for the proof that the cyclic group
G = (¢) is finite (cf. [8] and [23], see also [19]).

PROPOSITION. There erists a minimal integer v = vy,
¢'(z) =z +0(z)-1

(and consequently ¢~"(x) = x — 9(x) - 1) for every x € Ko(A), where
O(x) € Z. The map 0 = 0 : Ko(A) — Z (called the defect) is a Z-homomor-
phism such that (x) < 0 for any x € P. The integer v equals 2p (resp. p)
if ¢ =2 and p is odd (resp. even); it equals 6, 12 or 30 if the pair (p,q) is
equal to (3,3), (4,3) or (5,3), respectively.

such that

1452
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Proof. As already mentioned, A = A, , 2 is a tilted algebra of a hereditary
algebra A” = kQ" of Euclidean type, where Q" is a quiver of type Iﬁ)p+2, Eg,
I~E7, Eg if the pair (p,q) is equal to (p,2), (3,3), (4,3), (5,3), respectively,
with p > 2. (We can set Q” = X, where X' is any section in P.)

It is well known [8, 23] that the radical rad¢” of the quadratic form
q" = qg» associated to Q" has the description rad¢” = Z - hgr, where h =
hgn € N is the vector uniquely determined by @Q”, with all components
positive and at least one of them equal to 1. Moreover, let ¢" = ¢ :
Ko(A”) — Ko(A”) be the Coxeter transformation for A”. Then ¢”(h) = h
and there exists a minimal integer 1 = vg» such that (¢")""(z) = = +
9"(xz) - h and (¢/)7"(x) = & — 8" (x) - h for every z € Ko(A"), where
" (z) € Z. The map 9" = Opn : Ko(A”) — Z is a Z-homomorphism such
that 8”(dim P") < 0 for any indecomposable postprojective A”-module P”.
The integer "/ = vgn is equal to 2p (resp. to p) if Q' is of type ®p+2 and p
is odd (resp. even); it is equal to 6, 12 or 30 if Q" is of type Eg, I~E7 or Eg,
respectively.

To finish the proof recall that by general results of tilting theory there
exists a Z-isomorphism f : Ko(A”) — Ko(A) such that

q-f=4q", da=1f da- [
(see |22, 4.1]) In particular, f(h) = 1. Moreover, in our case, the module used
in the tilting procedure is postprojective. Hence, for any = € P, there exists
an indecomposable postprojective A”-module P” such that = = f(dim P").
Now, by applying the properties of f, the assertions of the proposition

follow easily from the respective facts for Euclidean quivers, which were
mentioned above. m

COROLLARY. The following equalities hold:
v = ‘QE‘ — I/” — ’(5/1‘
where ¢" : Ko(A”) — Ko(A”) is the reduced Cozeter transformation for A"
and Ko(A") = Ko(A")/rad ¢".

5.3. For the proof of the equality v = lem{v; : j € [r]} we need the
following lemma.

LEMMA. Let A= Ap g2 be a domestic canonical algebra, S(L) the group
of all permutations of the set L, and H = {1 € Aut(Ko(A)req) : ¥ (L) C L}.
Then H is a subgroup of Aut(Ko(A)req) and the group homomorphism R :
H — S(L), ¢ +— 4, is injective.

Proof. Note first that for any ¢ € Aut(Ko(A)yeq) such that (L) C L, we
have ¢)(L) = L, so ¢! (L) C L, since L is finite and | is an injection. Con-
sequently, H is a subgroup of Aut(Ko(A)weq). To prove that ker R = {idp},
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it suffices to know that the subset £y = {z(1),...,2(s)} of L generates
Ko(A)reqa = Ko(A). This follows from the fact that Xy forms a Z-basis of
Ko(A), since the unique postprojective module T' = €;_, T'(i) such that
dim 7'(7) = z(7) is tilting (see [22]). =

5.4. In the proof of Theorem 2.4(e) we apply the results below.

LEMMA. Let t,n € N. Then x(n,i)p > tn provided n > tv, where 1 =
min{—0(z(7)) : i € [s]}.

Proof. Fix n € N. We argue by induction on t € N. The case t = 0 is
obvious. Assume that, given ¢ > 0, the assertion holds for all ' < t. Suppose
that n > tv. Then clearly n — v > (¢t — 1)v > 0 and applying definitions,
basic properties of the defect and the inductive assumption we have

2(n,i) = 67 (6" (@(0))) = 6~ (w(i)) — B (i)
=z(n—wv,i)—0(x(i))1
and
z(n,i)o =xz(n —v,i)g — (x(i)) > (t—1)n+n=1tn. =
COROLLARY. Let m,n € N. Then x(n,i)o > m provided n > mv/n+ v.
Proof. We have
n>mv/n+v=m/n+1)v>(0+1)y,

where 0 = quoﬁ(m). Then, from the lemma and the properties of remainders,

we infer x(n,i)o > (0 +1)7>m. n

5.5. To prove assertion (f) of Theorem 2.4 we show the following more
general fact.

LEMMA. Let X be a section in P and P = PYU P’ be the splitting of P
induced by X, where P° = P°(X) and P' = P'(X). If

() Yo <xo forall x € XyU P,y € P} such that T =T,
then X has the properties as in assertion (f) of Theorem 2.4.

Proof. Let X' be a section satisfying (*). Note that then x(i) # x(j) for
any 1 <14,j <s,1# j. Since ¢ is an isomorphism, by 5.1 we have

(i) z(n,i) # x(n,j) for any i,j € [s], i # j, and n € N.
Property (%) also implies that

(ii) if z(3) = z(n,j) then z(i)o < x(n,j)o for any 7, j € [s] and n > 0.
To prove our assertion, for any d € P we construct inductively a sequence
£(d) = {&}ten of nonnegative integers, and show that £(d) = idy.
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Fixd € P. Set & = :r;(() ), B N x(()to), to > —1, where x( ) ..,ac[()to) are
all vectors = € P8 such that T = d. We can assume that & < 51 SRR I
To define &;,+1, let n € N be minimal such that z(n,i) = d for some 7 € [s].
Note that by (i), the index 7 is uniquely determined. We set &;,1+1 = x(n, 7)o.
Assume that for ¢t > ¢y the integer & is already defined and & = x(n/, 7)o
for some n’ € N, ¢/ € [s]. Then we set &1 = z(n”,i")o, where n” > n’ is
minimal such that z(n”,i”) = d for some i € [s]. (Note again that " is
uniquely determined.)

Observe that by Lemma 2.3(a), the constructed sequence £(d) is surjec-
tive as a function N — N. This follows directly from the construction, since
for each x € P with T = d, there exists ¢t > 0 such that & = xq.

Next we prove that the sequence £(d) is increasing. Observe first that by
() we have &, < &,+1 if top > 0. We now show that &1 > & for t > t.
Referring to the definition above, this inequality has the shape g < yg, where
x =z, i), y = x(n"i")o, and n' < n' Applymg the obvious equalities
x=T+xol,y=7+yol and ¢" (x) = (i ) gi)” (y) = z(n” —n',i"), we infer
that 2(i')+x(i Mol = " (T)+(t+x0)L and z(n” — n/, ") +z(n" —n/ 7)ol =
¢"/(y)+(t+yo)]l for some ¢ € Z, since ¢™ (T) = ¢™ (7). Then o = :r;( "o —t,
yo = z(n” —n',i")g —t and x(i/) = x(n” —n',i"), since ¢" () = ¢" (7).
Now the required inequality z¢ < yo follows immediately from (ii).

To complete the proof, note that &(d) = idy for every d € P, since
€(d) is increasing and surjective. Now it is easily seen that for any pair
x =x(n,i), y = x(n,i') of vectors in P’, the two conditions from assertion
(f) of Theorem 2.4 are satisfied provided T =7 =d. n

5.6. Proof of Theorem 2.4. (a) We prove that L is G-invariant, where
G = (¢). Fix x € L. Then by the shape of the bijection in Lemma 2.3(a)(ii)
and the finiteness of the subquiver P°, there exists ¢ > 0 such that y =
z[t] € P{ (see Remark 4.3). To show the first assertion of (a) observe that
#(y) € P, since ¢(y) = 7(y) from Lemma 5.1(b). Then

() = 6@ = o(y) = 7(y)

and by Lemma 2.3(a), ¢(x) € P = L. Note that by Proposition 5.2 the
group G is cyclic of order v, so the first assertion is shown.

Now we prove the equality L = O(z(1)) U --- U O(z(s)). The set P’
is a cofinite subset of P. Therefore, for any z € L, there exists y € P/,
y = x(n, i), such that § = 7 (see Lemma 2.3(a)(ii)). Hence, y = ¢~"(x(i))
and . =7 = ¢—(z(i)) = ¢ "(2(i)), so € O(x(i)). In this way the proof
of (a) is complete.

(b) The equality O(z(i;)) = {yo.j, -, Yv;—1,j} follows immediately from
the fact that G is a finite cyclic group. The remaining statements of the first
assertion of (b) are now straightforward.
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To prove the second assertion, we only have to show the equality 7 = v,
where 7 = lem{v; : j € [r]}. The equality v = vy follows immediately from
Proposition 5.2. (Note that v; | v for every j € [r], so V| v, since |G| = v and

O(x(ij)] = vj.) B
Observe first that (¢"7) = Stab(z(i;)), where Stab(z(i;)) denotes the
stabilizer of 2(i;) under the standard action of G on L. For [ € N, #' belongs

to Stab(z(i;)) if and only if v;|l. Consequently, by Lemma 5.3 and the

equality L= 0O(z(1))U---UO(z(s)),

ggl :idKO(A)red = g;fL Zid|L = 5 S ﬂ Stab(x(z'j)) = 5“
jelr]
Then the nonempty sets consisting of all [ € N that satisfy separately the

leftmost and rightmost conditions coincide. Taking now the minimal value
in these two sets we obtain the equality 7 = v.
Now we show the third assertion. By Proposition 5.2, the inequality
kj > 0 follows immediately from the formula
v
*k 9 = — k.
( ) J v, Kj,
where 0; = —0(x(i;)) for j € [r]. To prove (xx), note first that ¢ =" (x(i;)) =
x(ij) + K1, since ¢ =% (y; ;) = yi; + k;1. Applying this equality, we have
. v ) . . v
¢~ (x(i)) = (7)) (i) = (i) + il
J
and on the other hand also

¢~ (2(15)) = 2(ij) — O(x(i;))L.
In this way we obtain (%), hence x; > 0.

Next we show formula 2.4(x). We start by some general observation. For
any y € L we set P(y) ={z € P:Z = y}. Then by Lemma 2.3(a)(ii), for
any cofinite subset J C P(y) and positive integer x € N, we have 7 (J) = Z,,
where m = 7, : Ko(A) — Zj, is given by 7(x) = remy(x0), * € Ko(A).

Now we fix j € [r] and [ € {0,...,v; — 1}. Then for any i € [s];, i.e.
Jj = 7(i), the set

P'(j,1,i) == {z = z(n,i) € P : T =y}

is nonempty, since O(z(i)) = O(z(ij)) = {voj,--->Yv;~1,j} and x(n,i) —
2(n,i)oll = §(@(®) = & "(@(D) = & "(wi(s,) = 91 for a suitable n € N.
Observe that for the vector z = z(n,i) € P'(j,1,i) such that n = n(j,1,1) is

minimal, the integer xg is given by the formula

o = Q](l,'l),
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where ;(l,7) is as in Theorem 2.4(b). Then we have the equality
{zo 1z € P'(4,1,1)} = 0;(1,1) + w)N,
or equivalently,
P'(G,1i) = iy + (el i) + k;N)L,
since ¢ 7 (y1,;) = yi,j + K51, s0 ¢ 7 (x(n', i) = x(n/, i) + k;1 for all z(n', )

with z(n/,i) = y; ;. Consequently, applying the introductory general obser-
vation, we have

Zlij = U Wﬁj(P/(jJ’i)) = {@](Z’Z) S [S]j}’

i€[s];

since Uie[s}j P’(j,1,4) is a cofinite subset of P(y;;), and in this way 2.4(x)
is proved.

In particular, 2.4(x) implies immediately x; < |[s];|. We now show the
opposite inequality. Suppose that g;(l,i) = g;(l,7') for some i,7" € [s];.
Then the sets 0;(l,7) + ;N and 0;(1,7") + x;N intersect nontrivially. Hence,
there exist n,n’ € N such that z(n,i)g = z(n/,i")o and z(n,i) = x(n’, 7).
Consequently, z(n,i) = x(n,?’), so ¢ = i'. Thus k; = |[s];| and the proof
of (b) is complete.

(c) For n < v; the required formula follows from the equality z(n,i) =
x(n,i) + x(n,i)ol, since 2(n,1) = Yngi(s),j) and z(n,i)o = 0;¢)(n & (i), 1)
(see the interpretation of the integers g;(l, ¢) in the proof of (b)). The formula
for n > v; is an immediate consequence of the equality z(n' + v;,i) =
x(n',i) + kg1

(d) Let  and (j,{,7) be as in the assumptions of (d). Clearly, we have
z =y, ;+xol € P(y;). Then, by 2.4(x), z € P'ifand only if v € P'(j,1,i) =
yr; + (0j(1,%) +~;N)1 (see the proof of (b) for the definitions). Consequently,
x € P’ is equivalent to the inequality zo > 0;(1,7).

Now we prove the formula for the coordinates of # € P’ in the presenta-
tion x = x(n, ). Note first that for (j,[,4) as above, we have

(il i) = I —1(i) if 1 > (1),
R R TS B O]
where 0;(l,7) = x(n(j,,4),7)o (see proof of (b)). On the other hand, both
r = x(n,i) = y; + w0l and z = x(n(j,1,7),7) = y; + 0;(1,7)1 belong to
P'(j,1,i), so xo — 0j(l,i) = Ck; for some ¢ € N. Then, by applying the
formula ¢="/(2) = z + k;1, we have

T =24 Crjl = ¢ i (2) = x(n(4,1,4) + Cvj,9).

Now, the required formula for n follows from those for n(j,[,) and from the

equality ¢ = (o — Qj(lvi))“j_l'
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(e) Note first that —0(x(i)) = 0;(;) for any i € [s]. Consequently, by (**),
we have 17 = nv. Now the assertions follow easily from Corollary 5.4, prop-
erties of remainders and the fact that z(n,i), > x(n,i)o for every v € Q.

(f) In Tables 7.1 below, for any domestic canonical algebra A, 92, we
provide one selected section ¥ together with the subquiver P° = PO(X). It
is easily seen that all these sections satisfy the assumptions of Lemma 5.5,
since 29 = 0 for all but one x € PJU X, y = dim P(0) belongs to ¥, and
7 = dim S(w) belongs to PY. Consequently, (f) holds by the lemma quoted
above, and the proof of Theorem 2.4 is complete. u

5.7. Keeping the notation of 2.4 and 5.1, we introduce the announced
relation < C Py x Py.

Given an enumeration z(1),...,z(s) of the vertices in X, we define the
relation

<" =<(a(1),...a(s)) C Po X Py
by setting
z(n',i") <" z(n,i) if and only if either n’ < n, or n’ =n and 7' < i.

It is clear that <’ yields a lexicographic order on the set N x X, so also in P’.
This relation has the following simple property.

LEMMA. If (z(1),...,2(s)) is a full admissible sequence of sources (in
the sense of [2]) in the section X, then x(n',i') <" x(n,i) for any x(n',i') €
€ ~z(n,i), n> 1.

Proof. Assume z(n',i") € ~x(n,i) for n > 1. Clearly, n’ < n.If n’ =n
then there exists an arrow z(i') — (i) in X and, by the assumption on
((1),...,2z(s)), we have i' < i; Consequently, z(n',i") <’ z(n,). The case
n’ < n is trivial. =

Let X, with Xy = {z(1),...,z(s)}, be the selected section, and P} =
{2(1),...,2(t)}, t = | P}, be the enumeration of the vertices in P° estab-
lished for A in 7.1. The collection of these two data sets for an individual
domestic canonical algebra A is denoted further by 7.1.I(P),. We extend
<= <lx(1),...,w(s) to a relation

<= =(@(1),.z(s)i2(1),.z(t)) © Po X Po.

For z,y € Py, we set x < y if and only if one of the following, pairwise
exclusive, conditions holds:

e x=2(i),y=2(j) and 7 < j,
e zcP’andyec P,
e z,yc P and z <'y.
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PROPOSITION. The relation < defines the structure of a partially ordered
set on Py such that

(a) (Po,<) ~ (N, <),
(b) 7 <z and y < x for any x € Py and y € ~x.

Proof. Assertion (a) is an immediate consequence of the definitions. To
prove (b), note that the sequence (z(1),...,z(2)) from 7.1.I(P), is an ad-
missible sequence of sources in Y for any domestic canonical algebra A.
Then, by Lemma 5.7, we have y < = for z = x(n,i) € P} and y € ~x, pro-
vided n > 1. Moreover, 7z = x(n — 1,1) in this case. In the remaining case,
x € PJU X and the assertion follows easily by inspection (see 7.1.1(P),). =

6. ALGORITHMS AND OPTIMIZATION

In this section, using a pseudo-code, we describe the consecutive steps of
the announced algorithms. The most important one computes directly the
restricted multiplicity vector m(M)p for modules M over a fixed domestic
canonical algebra A. We also discuss some optimization of the algorithms
and complete the proof of Theorem 2.2.

We apply the results of the previous sections and the tables of Section 7.
The semantics of the pseudo-code is clear from the context (see also [6]). The
only nonstandard instruction we use is “read y from Y”. It means that the
data y, which is “situated in the element Y of the paper, is further available
in the code as a value of the variable (or variables) named y. (“An element”
is usually a table or a theorem.)

6.1. We start with a preparatory algorithm.

ALGORITHM (computing the initial parameters for a domestic canonical
algebra Ay 4 2).

Input: A pair of integers (p, ¢) such that the algebra A = A, 2 is do-
mestic canonical.

Output: The following collection of parameters for A described in The-
orem 2.4:
(i) r; vy, Ky, [s], for 1T < 3 < r; j(i), I(z), for 1 < i < s,
where s = p +q + 1; y 5, for (I,j) € Zy, x [r]; u, for
(1, ) € [ys] < [r];
(ii) 0j(l,1), for j € [r], (I,i) € Zy; x [s]j; x(n,i), for i € [s],
n e Z,,m.).

(1) Determining the set of distinct orbits {O(x(i))} jer) and the param-
eters (1) connected to them, as in Theorem 2.4(b):
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read ¢Z;,q,2 from 7.2;
set r:=0;
for i:=1 to s do {
read z(i) from 7.1.1(P),

pyq,2;
set x:=x(i); found := false; j:=1;
while not found and j <r do {
set [:=1;

while not found and [ <v; —1 do {
if x =y, then {
set 1(3) :=1; j(i) == 7;
set. [s]; i [s]; U {i};
set found := true;

set [:=1+1;

set j:=7+1;

}

if not found then {
set ri=r+1; ji):=r; [s],:={i}; 1(z) :=0;
set v, :=0; y:=z; K. :=0;

do {
set Yy, r ::1@
set y:=¢, (§); vri=v,+1;

P,q,2
set Uy, = Yo; Kr = Kr + Uy, r;

} while § # x;
}

(2) Computing the parameters o;(1,17) for j € [r], (1,i) € Zy,; x [s];, using
formulas from Theorem 2.4(b):

for j:=1 to r do
for each i€ [s]; {

set 0;(1(¢),4) := 2(i)o;

for :=1(i)+1 to v; —1 do
set 0;(1,1) := 0; (1 — 1,7) +uy j;

if [(¢) > 0 then {
set 0;(0,4) := 0j(v; — 1,i) +uy, j;
for [:=1 to l(i)—1 do

set 0;(1,1) := 0;(I — 1,%) + w j;

}
(8) Computing the “initial” dimension vectors x(n, i) fori € [s], n € Zy,
using the first formula from Theorem 2.4(c):
for i:=1 to s do
for n:=0 to v, —1 do
set 2(n,1) = Yna, 1) T 2j() (1 Buy(,, 1D),1)1; m
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REMARK.

(a) The algorithm prepares only the initial parameters for a fixed domes-
tic canonical algebra A. In contrast to the next algorithms, which are
invoked separately for each module M, it is executed exactly once for
each algebra and clearly does not depend on M at all.

(b) After full execution of the algorithm for an algebra A = A, 2, we
can observe that v = max{v; : j € [r]} (cf. assertion (c)), and that
ki < 2,50 |[s];| <2 forall j € [r]. Moreover, v = v;;) for i € [s] such
that z(i) = dim P(0).

6.2. Let M be a finite-dimensional A-module. We give an algorithm
starting from z = z(1) and computing successively, with respect to the linear
order < C Py x Py defined in 5.7, the multiplicities m(M),, © € Py. The
fact that we proceed according to the order < has some nice consequences for
managing the memory in a possible implementation (see also Remark (b)).

In the description of the algorithm we use the following conventions and
constructions:

e We assume that the function ~( ) : ((=N\{0})X)¢ — 2-N¥)o_ which
assigns to the vertex (—n,i) € (=N \ {0})X the set ~(—n,i) of its
direct predecessors, is already available (it can be easily implemented
applying the definition of the translation quiver —NX, see [2]).

e The string “h(M),”, for © € Py, appearing in the code can have one
of the following two meanings: either

(i) “return the value h(M),” if it is already determined by the
algorithm (it should have been stored; it depends on a possible
implementation), or

(ii) “form the matrix M = M(M,z), compute the value of h(M),
(= cor M, see Theorem 2.3) and then return it” if the integer
h(M ), has not been determined yet (it also should then be stored
for later use).

e The function compute is realized by applying the standard Gaussian-
row elimination. The function form, given a A-module M = (A, B, ()
and z € P, constructs the matrix M (M, z) using the matrix U(x),
chosen from a finite list (see Tables 1 and 2 in 2.3) and next “com-
bined” with C5, and some matrices from the finite list A, 1,..., App;
Byi,...,Bq4- Selection of the matrices depends on x and is done
according to the rules from Theorem 2.3. The list above consists of
consecutive “partial products” and can be computed only once for
the module M.

e We set h(M)g = 0; also, 72 = 0 if it is not defined for z € PJU 5.
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ALGORITHM (computing the restricted multiplicity vector m(M)p for a
module M over a fixed domestic canonical algebra A). Fix a pair (p,q) of
integers such that the canonical algebra A = A, ;2 is domestic.

Input: A finite-dimensional A-module M given by the triple (A, B, C).
Output: The restricted multiplicity vector m(M),p.

(0) Preparation: loading the following collection of parameters for A =
Ap g2 described in Theorem 2.4 (it can be computed by applying Algo-
rithm 6.1 for the pair (p,q)):

(i) v, ky, for 1 < j <r; j(i), for 1 <i <s, where s=p+q+ 1.
(i) @(n,i) for i € [s], n € Zy,,.
(1) Computing the vector m(M)|po 5

read |P)| from 7.1.1(P),
for i:=1 to |P}| do {
read z(i),72(i ) “2(i) from 7.1.I(P)y, .5

set m(M).) = h(M).) + h(M)r2() = 2ye-.iy MM)y;

Ap,q,22

}
for i:=1 to s do {

read z(i), 7x(i), "x(i) from 7.1.I1(P)a, .,
) set m(M)m(i) = h(M)x(i) + h(M)‘rx(i) - Zye*z(i) h(M)y;

(2) Computing the vector m(M) pr:
read v,,,, from Proposition 5.2;
set m :=dim M;
set 7 :=min{k;/v; : j € [r]};
set &:=min{m;/n+wva, , 1€ (Qpq2)o}:
set n:=1;
while n < ¢ do {
for i:=1 to s do {
if n <wvj;) then set x:=x(n,i);
else set x:=ux(remy, (n),i)+quo,,  (n)k;c)L;
set ~x:=0;
for each (—n',i’) € ~(—n,i) do
if n' <wvjy then set ~x:= "z U{x(n,i)};
else set “z:= "z U {x(reml, an (1), 1) + quoyj(i,)(n’)mj(i/) 1}
if n—1<vj; then set 7w —x(n— 1,4);
else set Tz :=xz(remy,, (n—1),i) +quo,  (n—1)k;q) L;
set m(M); == h(M)y +h(M)ry — 32 -y h(M)y;
set m :=m — m(M)ym,i) - z(n,i);

) set & :=min{m;/n+wva, , 1€ (Qpqg2)o};
set n:=n+1;
}m
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REMARK.

(a) The correctness of the algorithm follows from Theorem 2.4 and for-
mulas (*) from the Introduction. Note that after the stop of loops
in step (2) we obtain the multiplicities for all postprojective direct
summands of M. Since the stop condition in (2) is based on Theo-
rem 2.4(f), the possible next run of these loops would test an inde-
composable postprojective module X whose dimension vector x does
not satisfy the inequality x < dim M — dim P, so clearly X could
not be a direct summand of M (P is a postprojective summand of
M detected up to that stage).

(b) The loops in steps (1) and (2) are constructed in such a way that
the multiplicities m(M),, * € P, are computed in the algorithm
successively according to the order <. Consequently, by Proposi-
tion 5.7, when the instruction “set m(M), := h(M)y + h(M )y —
> ye—z R(M)y” is being executed, the integers h(M)rz, h(M)y, for
y € ~x, are already determined. So, determining h(M), is the only
computation that is executed in this step (see also the comments
before Algorithm 6.2). Thus, in a possible computer implementation,
some data structure for storing the integers h(M ), already computed
should be used. Note that if z = x(n,i), n > 1, then 7z = xz(n/, ),
y = x(n”,i") and n',n"” € {n — 1,n}, for y € ~z. Consequently, to
compute m(M),, only the integers h(M )y gy for n'" € {n—1,n},
i"" € [s] should be stored.

(c) Algorithm 6.2 can also be applied to compute the integer rkp(M).

Now we give a first estimate of the complexity of Algorithm 6.2.

LEMMA. Let M be a finite-dimensional module with dimy M = n over a

fized domestic canonical algebra A = Ay 4o. Then the pessimistic complexity
of Algorithm 6.2 is O(n").

Proof. Let n = dim M. We start by estimating the complexity of deter-
mining m(M),, x € P(d), for a fixed vector d € L = P, where
Pd)={ye P:y=d}.
By the stop condition in part (2), the integers m(M),, € P(d), are com-
puted only at most for those vectors x that belong to the finite set

P(d), ={y € P(d):y = (i), | <n/sn+wva,,,}U{d}.

Let us arrange all elements of P(d),, in a chain (9 < 2(1) < ... < 2® ¢ >0,
D =d

From the definition of < and Theorem 2.4(f), we have ac[()i) =i, s0 (V) = d[i],
and t < n/sn+vy,,,- Note that determining the multiplicity m(M),q), for
a fixed i, relies in fact only on computing the integer h(M),u (see Re-
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mark (b)). By Theorem 2.3, h(M), s = cor M, where M = M(M,z®)
is a matrix of size (i + r)nw ((rg,mp,_y + =+ +78,m0) + ino + (rayn0 +
4 TayNa, 1) + TyuNey ), 7 = 1k(d), 1 < 7 < 6. On the other hand, obvi-
ously
(i+7)ny < 2r+ry, +i)n

and

(18, Mbg_y + -+ 75m0) + 00 + (Tay M0+ + TayNa,_1) + TN
< (2r+ry, +i)n.

Recall also that the complexity of standard Gaussian row elimination for an
m X m-matrix (equivalently, determining the corank) is just O(m?). Con-
sequently, once we know the matrix M (in the sense of concrete values for
all entries), the complexity of computing the integer h(M), i) by applying
the function compute, and hence of computing m(M),(, in the step corre-
sponding to () is O((in)?), since the integer 2r + T+, depends neither on n
nor on ¢.

The integers 7, s, 14, , , are constant, so to estimate the pessimistic com-
plexity we can assume that ¢ = 6n for some constant integer 6 > 0. There—
fore, the complexity of determining all m(M),, z € P(d), = {z'}_,,
Algorithm 6.2 is

O13n® 4+ 2203 4+ 4 (On)3n®) = O3 (13 + 23 +--- + (0n)?)) = O(n").

Note that the process of forming the matrices M(M,z), x € P(d), =
{xi}gzl, does not affect this estimation, since the complexity of total com-
putations executed by form is O(n?) (cf. 6.2, the introductory comment).

Since Py = Uger P(d) and L is finite, the pessimistic complexity of
Algorithm 6.2 is also O(n7). =

We show in 6.5 that this complexity can be reduced to O(n?*) and in this
way we complete the proof of Theorem 2.2(c).

6.3. Now we describe the “local version” of the algorithm above which
determines the multiplicity for a fixed, single postprojective root. In the
algorithm we use the conventions established for Algorithm 6.2.

ALGORITHM (for a given z € P, computing the multiplicity m(M ), for
a module M over a fixed domestic canonical algebra A). Fix a pair (p,q) of
integers such that the canonical algebra A = A, ;2 is domestic.

Input: A finite-dimensional A-module M given by the triple (A, B, C)
and a vector x € P.

Output: The multiplicity m(M),.
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(0) Preparation: loading the following collection of parameters for A de-
scribed in Theorem 2.4 (it can be computed using Algorithm 6.1 for the pair

(p,q)):
(i) r; vj,Kj,[s]; for 1 < j
s=p+q+1;y, for (I,

(ii) o4(l,1), for j € [r], (I,
n el

< l(i), (i), for 1 < i < s, where
j) €L [ s
) € Zuy X [lis 2l for i € sl
Vi(i)®
(1) Determining the triple (j,1,i) € [r] X Z,, x [s]; as in Theorem 2.4(d):
set j:=0; found:= false;
while not found do {
set j:=75+1; 1:=0;
while [ < v; and not found do
if T =1y;, then set found:= true;
else set [:=1+1;
}
set i:= first in [s];; found := false;
while not found do
if remy,(0;(l,7)) = remy, (o) then set found := true;
else set i:= next in [s;;

(2) Finding out if x lies in P? orin P’ and determining the “appropriate
coordinates” of the vectors from the set ~x U {rxz} by applying parts (c), (d)
of Theorem 2.4:

if zg < Qj(l,i) then
read 7z and ~z from 7.1.I(P)
else {
if [ >1(i) then set n:=1—1(i)+ (zo — 0;(1,1))v;/K;;
else set n:=1—1(i) +v; + (zo — 0;(1,1))vj/K;;
if n =0 then read 7z and ~« from 7.1.I(P)
else {
if n—1<vjy) then set 7z :=ux(n—1,i);
else set 7z :=z(remy,, (n —1),i) +quo,  (n— 1)k L;
set “z:=10
for each (—n',i') € ~(—n,i) do
if n’ <wvjiy then set ~x:= "z U{x(n,i)};
else set ~z:= "z U {z(rem,, , (n'),i)+ quo,_ ()KL}

Ap,q,22

Ap,q,2?

}
}

(3) Determining the multiplicity m(M )y:
set m(M)y :=h(M)y +h(M)rs — 3 -y R(M)y; =
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6.4. Now we show how to improve the efficiency of Algorithm 6.2 and
to decrease the complexity of computations from O(n”) to O(n*). We start
by a general construction.

Let r,0 € N be a fixed pair of positive integers. For any positive n € N
and the triple

S=(Di,....,DiEr,...,E;Fr,.... F)
consisting of sequences of matrices D;, F; € M, x, (k) and F; € My, xn(k),
respectively, 1 <t < 0n+r, we define a family K (S) = {K;};c[y of matrices
Ki = Ki(S) € Minx(ont3r)n(k) by setting
Dy Ey F
K; = S
D; E; F
where the jth block row of K; has the shape
[0G—1)n | Dj [0@—1yn | E5 | 0] F}]
for j € [i]. (For any s € N, 05 denotes the zero matrix in My, xs(k).)

LEMMA. Let S be an arbitrary triple as above, for fized r,6, and L(S) =
{Li}icy be the family of matrices L; = L;(S), with (0n + 3r)n columns,
defined inductively as follows:

Ll = j\l)
where J1 = [D1|0¢_1y, | E1|0]| F1], and
JAOI 4O
Loy = { 1 ]
Jit1

for i < t, where

L { Ly Ly ]
v (@ 7@
L21 L22

with mazimal zero block L;il) containing i - n columns, and
R
i+1 — .
Dis1 [ Og—1yn | Eig1 | 0| Fita
Then
. .
() = r(Lg) = x(LE ) + 1)
and all matrices Jj, j € [t], have at most (2r + 1)n rows and (2r + 1)n
nonzero columns, where K(S) = {Kj}jcy-
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Proof. The first assertion follows immediately by the construction of the

families K(S) and L(S). To prove the second, note that the number of rows
)

in ngé_l) coincides with the number of leading coefficients in L(ng_l , SO it is

bounded by the number of columns of Léj;l). The last integer is not greater

than 2rn, since the columns with numbers (j —1)n+1,...,jn in ngg_l) and
clearly those with numbers jn+1,...,(2r+n)n in J; are zero columns. Now

the claim follows immediately from the definition of the matrix J;. =
REMARK.

(a) Letting Ko = Lo be equal to the trivial matrix in Moy gn3r)n(k), We
can extend the inductive definition of L(S) to {Li}icqo,...4}, starting
from Lg. Clearly, the assertion of the lemma remains valid.

(b) The lemma remains valid if in the sequences defining the triple S we
allow also rectangle matrices of sizes suitable for the construction of
the family K (S) and bounded by n x n (resp. n x rn).

(c) Let S be a triple as above. Then, for any 1 < s < ¢, we have

L(S|s) = {LI(S)v EE) LS(S)}7

where
S\s = (Dl,...,Ds;El,‘..,Es;Fl,...,Fs).

6.5. Proof of Theorem 2.2(c). To show assertion (c) we apply the general
idea of the proof of Lemma 6.2 and keep the notation established there.
Clearly, it suffices to modify the algorithm computing, for a A-module M =
(A, B,C), the integers h(M), = cor M(M,z), © € P(d) for a fixed d €
L = P, in such a way that the new one already has complexity O(n*),
where n = dimy, M. In fact, we have to compute the ranks r; = r(M (M, x))
for I = 0,...,0n, where x = d[l], i.e. 29 = [, and 6 is as in the proof of
Lemma 6.2.

We assume first that either chark # 2, or chark = 2 and rk(d) < 5.
Then, for any [ =0, ...,0n, we set

Sl = (qu ><.B(17(17...71“g1 ><Bq717 ZXE; l><A7 Tay XApyl,. s Tay, XAp,p; Fl,. . -7Fl+r),

where r = rk(d) = d,,, mxN denotes the sequence consisting of m copies of N
for any m € N and matrix N, and the matrices F1,..., Fiyy € Myx,., (k)
are determined by the formula

_IT
= [ U(;)Q ] ® Cs.
F0n+T (00\977,+T)

By Lemma 6.4, we have

1 =1(L11+(51))
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for | = 0,...,0n, since M(M,x) = K;;(S]). Observe that (S;); = S, for
all [ =0,...,0n, where

S = (Tﬁq X Bqgs--- 78 X Bg1, On x B; (On+r) x A; Fy,. .. s Fonir)

Hence,

Li(S1) = Li(9)

for every [ (see Remark 6.4(b)). Therefore, by Lemma 6.4, to compute the
integer r;, we have to execute Gaussian row elimination on the matrices
Ji41(81), -+, Ji14r(S1), provided we know the matrix L;(.S). By analogous
arguments, to compute all matrices L;(S), | = 0,...,0n, we have to ex-
ecute only the Gaussian row elimination of J;(.5;) in each step. Thus, in
computation of all integers r;, [ = 0,...,0n, we execute (On + 1)r + 6n elim-
inations of matrices with row and column dimensions bounded by (2r + 1)n.
Consequently, the total number of arithmetic operations is bounded by
((r + 1)0n + 7)(2r + 1)3n3, so the pessimistic complexity is O(n*). Note
that just as in the proof of Lemma 6.2, the process of forming the sequences
S;, 1 =0,...,60n, does not affect this estimation.

In the remaining case, chark = 2 and rk(d) = 6, the algorithm com-
puting r;, I = 0,...,60n, can be constructed similarly, although in a slightly
more complicated way. Nevertheless, the difficulties have only a technical
character, and therefore we do not give any extra details.

In this way the proof of Theorem 2.2 is complete. =

REMARK.

(a) The problem of determining the restricted multiplicity vector m(M)|q
(resp. multiplicity m(M),, for a single x € @) for a module M
over a fixed domestic canonical algebra A is equivalent to that of
determining m(D(M))|p(er) (resp. m(D(M));) for = regarded as
an element of P(A°P) for the opposite algebra A°P; which is again
a domestic canonical algebra of the same type. In fact, to compute
mg, © € @, we have to apply the formula dual to (%) in the In-
troduction and use the dimensions h/, = dimy Homy(X,, M), z € Q
(see [9, 2.3]).

(b) Decreasing the pessimistic complexity of Algorithm 6.2 as above, one
should also take into account some “negative effects”. Namely, in a
possible implementation of the improved version of the algorithm,
at each step of computations we have to store much more infor-
mation than the in algorithm without optimizations as above (see
Remark 6.2(Db)).

A FINAL COMMENT. The algorithmic method of determining multiplicity
vectors for modules, proposed in [9], should be possible to adapt for a larger
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class of tame algebras with an appropriate shape of the Auslander—Reiten
quiver; in particular, for all concealed algebras of Euclidean type. We ex-
pect to prove that in this situation there exist algorithms with pessimistic
complexities similar to those considered here. We strongly believe that to
achieve this we do not need a precise description of the canonical forms for
all indecomposables. We have already obtained some results in this direction.
They will be contained in a forthcoming publication.

7. TABLES

In this section we give the finite sets of discrete data used in the algo-
rithms from Section 6. They can be easily computed by applying the defini-
tions and standard techniques.

7.1. We give, using the standard graphic convention, the list of initial
parts I(P) = I(P), of postprojective components, more precisely of the
translation quivers P = P(A), for all domestic canonical algebras A. Each
I(P) is a full subquiver of P, formed by the sets P8UZ'0, where Y is a suitable
section in P and P° = PO(E ). They are obtained by applying the standard
“knitting” technique (cf. [23]). Below the quivers I(P) we fix the notation
which is used in the algorithms. We list the names for all consecutive vertices
in I(P)g in the form of a “scheme” reflecting the shape of I(P). The vertices
2(i) constitute the part P°, the vertices x(i) belong to the section X and
form there an admissible sequence of sources. The enumeration of vertices
in I(P) is crucial for the definition of the order relation < in P (see 6.2).

(a) I(P>Ap,2,2:

00...00
0O 0 1
1
00...00 00...00 00...01
0 0 1—-0 1 1— 0 1 2
0 0 1
00...01 00...011
0O 0 1 o 1 2
0 1
N
00...011
0 o0 1
0
N
11...11 11...11
0 1 2—-1 1 2
1 1
N
11...11 00...00
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z(1)
z(1) z(2) =(3)
%(2) z(4)
z(3)
z(p+1) z(p+2)
z(p) z(p+3)
(b) I(P)As,&z:
00 01 11
0111 0001 0011
0 1 0
0o 7 > o1 7 N g 7o
0011 0112 0012 1112
0 1 1 1
o0 7 00 > 01 7 01 > 12 7 117
0001—-0001—0012—-0011—0123—-0112
0 1 1 0 1 1
N o1 7 REETEE N oo
0001 0012 0122
0 1 1
N~ 7 N g0 7 N oo
0001 0011 0111
0 1 0
z(5) z(11) z(5)
z(2) z(8) z(4) z(3)
z(1) 2(3) 2(6) 2(9) =(1) =(2)
z(4) z(10) x(6)
2(7) z(12) z(7)
Oﬁ 1(1))4y32:
111
1112
1
e
000 001 011 111
0111 0001 0011 0112
0 1 0 1
e N / N e N e
000 001 012 122
0011 0112 0012 0123
0 1 1 1
/ N e N e N\
000 000 001 001 012 011 123 112
0001—-0001—0012—-0011—-0123—-0112—-0124—0012
0 1 1 0 1 1 2 1
N e N / N e N
001 011 112 012
0001 0012 0123 0123
0 1 1 2
e N e N / N
011 111 001 012
0001 0012 0122 0112
0 1 1 1
N e N e N e N
111 000 001 011
0001 0011 0111 0001
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z(12) z(19) z(4)

(3)

z(8) z(15)

z(2)
z(1) 2(3) 2(6) 2(9) 2(13) z(16) =(1) =(2)

2(17) z(6)

z(10)

z(4)

z(14) z(20) z(7)

2(7)

z(18) z(21) x(8)

z(11)

(d) I(l)x4a32:
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z(9)

7.2. Finally, we list the inverses gbzl of the Coxeter transformations ¢4 :
Ko(A) — Ko(A) for the domestic canonical algebras A = A, 2. They are

presented as matrices from My 5(Z), under the identification of Kg(A)

Z@p.a2)0 with Z* via the mapping

n = () = [NwNay 15+ - Nag, M

q—17°

t
ooy My Mgy M)

where s = |(Qp,q,2)0] = p+ ¢ + 1. The following matrices are computed by
applying the formula given in 2.4.

1 o
¢Ap224_

-1 .
¢A&33'_

000 0 00 1
000 0 0 0 0
-1 1.0 0 0 0 0
-1 01 0 0 0 0
-1 0 0 0 1 0 0
-1 0 0 0 0 1 0
000 0 00 1
000 0 00 1
-1 0 0 0 0 0 1
00 1 0 1 1 -2
0000 1 1 —1
-1 100 1 1 -1
0010 0 1 -1
-1 0 1 1 0 1 -1
0010 1 0 —1
-1 0 1 0 1 1 -1

e

= e

1 -2
1 -1
1 -1
1 -1
)
1 -1
1 -1
1 -1
0 -1
1 -1 |
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(1]
2]

3]
[4]
[5]
[6]
[7]
[8]
[9]

[10]

[11]
[12]

o 0o 0 1 0 1 1 =2
00 00 0 1 1 -1
-1 1 0 0 0 1 1 -1
-1 _ | -1 0100 1 1 -1
¢A47372 o 000100 1 -1/
-1 0 0 1 1 0 1 -1
00 01 0 1 0 -1
| -1 0 0 1 0 1 1 -1 |
[ o 0o 0o 1 0 1 1 —2]
00 00 O0O0 1 1 -1
-1 1. 0 0 0 0 1 1 -1
-1 0 1 0 0 0 1 1 -1
‘75251,3,2 =|-100 10011 -1
00 00 1 00 1 -1
-1 0 0 01 1 0 1 -1
00 00 1 0 1 0 -1
| -1 0 0 01 0 1 1 -1
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