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THE MULTIPLICITY PROBLEM FORINDECOMPOSABLE DECOMPOSITIONS OF MODULES OVERDOMESTIC CANONICAL ALGEBRASBYPIOTR DOWBOR and ANDRZEJ MRÓZ (Toru«)Dedi
ated to Professor Helmut LenzingAbstra
t. Given a module M over a domesti
 
anoni
al algebra Λ and a 
lassi-fying set X for the inde
omposable Λ-modules, the problem of determining the ve
tor
m(M) = (mx)x∈X ∈ NX su
h that M ∼=

⊕
x∈XXmx

x is studied. A pre
ise formula for
dimk HomΛ(M, X), for any postproje
tive inde
omposable module X, is 
omputed inTheorem 2.3, and interrelations between various stru
tures on the set of all postproje
tiveroots are des
ribed in Theorem 2.4. It is proved in Theorem 2.2 that a general method of�nding ve
tors m(M) presented by the authors in Colloq. Math. 107 (2007) leads to algo-rithms with the 
omplexity O((dimk M)4). A pre
ise des
ription of algorithms determin-ing the multipli
ities m(M)x for postproje
tive roots x ∈ X is given (Algorithms 6.1, 6.2and 6.3).

INTRODUCTIONThe problem of e�e
tive de
omposition into a dire
t sum of inde
ompos-able obje
ts for modules over a �xed algebra of �nite or tame representationtype seems to be a very natural and interesting question. It was intensivelystudied in modular representation theory of groups. In representation theoryof �nite-dimensional algebras over a �eld, it seems to be a method to obtain
lassi�
ations of inde
omposable modules, rather than an independent re-sear
h task (see [17, 14, 11, 20, 21, 7℄). In the last thirty years, several otherpowerful resear
h methods have been invented. Consequently the problemof determining an e�
ient de
omposition lost its importan
e, in some sense,and not so many new results 
on
erning this topi
 have been obtained. Onthe other hand, the tools developed were oriented mainly towards the 
ate-gori
al approa
h, not quite adjusted to atta
k this kind of task.2000 Mathemati
s Subje
t Classi�
ation: 16G20, 16G60, 16G70, 68Q99.Key words and phrases: 
anoni
al algebra, module, tame representation type, tube,de
omposition, algorithm, multipli
ity ve
tor.The paper was prepared on the o

asion of the 
onferen
e �Representations of Algebrasand their Geometry�, organized in honour of Helmut Lenzing.[221℄ 
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This paper is devoted to a question 
losely related to that dis
ussedabove; namely, to its weaker version asking for a �normal form� of a module.The paper is a natural 
ontinuation of [9℄, where this problem was pre
iselyformulated. Below, we re
all this formulation in a slightly more general set-ting.Assume that a 
omplete 
lassi�
ation of all pairwise nonisomorphi
 inde-
omposable Λ-modules is already known and it is given by means of a �xedpair X = (X, ε),where X is a so-
alled 
lassifying set (of invariants for inde
omposable Λ-modules), ε : X → indΛ/∼= a bije
tion between X and the set of isomor-phism 
lasses of all inde
omposable �nite-dimensional Λ-modules. Now we
an formulate the problem as follows:Given a Λ-module M, we want to determine the sequen
e

m(M) = (mx) ∈ NXsu
h that M ∼=
⊕

x∈XXmx
x , where Xx is a module from the isomorphism
lass ε(x) for every x ∈ X.The sequen
e m(M) = (mx)x∈X is 
alled the multipli
ity ve
tor of Mwith respe
t to the 
lassifying set X. Note that, by the Krull�Remak�S
hmidt theorem, m(M) is uniquely determined; moreover, it belongs to

N(X) := (
⊕

x∈X Z) ∩ NX.The problem of determining the multipli
ity ve
tors m(M) is stronglyrelated to that of des
ription of orbits in the variety of Λ-modules witha �xed dimension ve
tor and to the question how to e�e
tively de
ide if
M ∼= M ′ for a pair M,M ′ of Λ-modules (see [3, 4℄, and also [10℄ whi
h is the
ontinuation of this paper).In [9℄, a general method of handling this problem is presented. It relieson 
omputing the sequen
e

h(M) = (hx) ∈ NXof dimensions hx = dimk HomΛ(M,Xx), and the so-
alled Auslander�Reitenmatrix TΛ ∈ MX×X(Z) for Λ; equivalently, the Auslander�Reiten quiver ΓΛfor Λ. (Under a suitable assumption on the algebra Λ, it is enough to �nd theCartan matrix C(Λ) ∈MX×X(Z) of the Auslander 
ategory for Λ). On
e weknow these two data and k is an algebrai
ally 
losed �eld, the 
oordinates
m(M)x = mx of the ve
tor m(M) 
an be 
omputed by applying the formula
(∗) mx =

{
hx + hz −

∑
y, ε(y)∈−ε(x) dy,xhy if Xx is nonproje
tive,

hx −
∑

y, ε(y)∈−ε(x) dy,xhy if Xx is proje
tive,where dy,x is the number of arrows ε(y) → ε(x) in the Auslander�Reitentranslation quiver ΓΛ = (ΓΛ, τ), −ε(x) denotes the set of all dire
t prede
es-
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sors of ε(x) in ΓΛ, and ε(z) = [τXx]∼= (see [9, Corollary 2.3℄). This method istested in [9℄ on the example of 
anoni
al hereditary algebras of type Ãp,q. Inthis 
ase pre
ise algorithmi
 pro
edures for solving the multipli
ity problemare given, with pessimisti
 
omputational 
omplexity (brie�y, 
omplexity)
O(n4), where n = dimk M (see [9, Algorithms 4.5 and 5.5℄). The main aimof this paper is to present similar results for the whole 
lass of domesti

anoni
al algebras over an algebrai
ally 
losed �eld k.In 
onstru
ting the algorithms for domesti
 
anoni
al algebras, and toimprove the e�
ien
y of 
omputations, we use general 
lassi
al results onthe stru
ture of the relevant module 
ategories and information on roots ofthe asso
iated quadrati
 Euler form. However, a 
ru
ial role in our approa
his played by the following three main results.The �rst, Theorem 2.2, states that there exist algorithms 
omputing therestri
ted multipli
ity ve
tor m(M) for any individual 
omponent of ΓΛ,with the same 
omplexity as in the Ãp,q 
ase, where the 
lassifying set X
onsists of the postproje
tive roots, preinje
tive roots and the data 
alledtubular 
oordinates, en
oding the inde
omposable regular modules from the
1-parameter family of stable tubes (see 1.6 and 2.1). The problem for regular
omponents is redu
ed to an analogous one for algebras of type Ãp,q, alreadysolved in [9℄. The redu
tion uses a 
ertain fun
torial te
hnique developed inSe
tion 3 (see Proposition 3.1 and Lemma 3.3). As a �side e�e
t� we alsoobtain a des
ription of 
anoni
al forms for inde
omposable regular modules(see Remark 3.3(i) and Corollary 3.3, 
f. [18℄).To handle the problem of 
omputing the restri
ted multipli
ity ve
tor forthe postproje
tive (and preinje
tive) 
omponent we prove the se
ond result,Theorem 2.3, whi
h yields pre
ise formulas for the 
oordinates h(M)x ofthe ve
tor h(M) for postproje
tive roots x ∈ X. The result refers to thespe
i�
 stru
ture of the set of all postproje
tive roots (see Lemma 2.3). Inthe proof we apply, among other things, the des
ription of the 
anoni
alforms for inde
omposable postproje
tive modules over domesti
 
anoni
alalgebras, obtained re
ently in [18, 15℄.The third result, Theorem 2.4, 
olle
ts all ne
essary information on in-terrelations between various 
ombinatorial stru
tures on the postproje
tive
omponent. In parti
ular, it yields an alternative method (in 
omparison to�knitting�) of 
omputing 
onse
utive dimension ve
tors in the postproje
tive
omponent, whi
h together with formula (∗) and Proposition 5.7 forms a ba-sis for 
omputing the multipli
ities m(M)x for postproje
tive roots x ∈ X.Se
tion 6, 
ontaining Algorithms 6.1, 6.2 and 6.3, is in some sense themost signi�
ant part of the paper, as it re
apitulates all previous 
onsidera-tions. There the algorithms are pre
isely formulated in an integrated pseudo-
ode form. The presentation of the �nal part of the paper is intended to 
re-
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ate a 
omplete (�up to� [9℄) and self-
ontained �
omputer algebra proje
t�,whi
h is just ready for implementation. Therefore, in Se
tion 7 we providetables 
ontaining initial parts of the postproje
tive 
omponents and the in-verses of the Coxeter matri
es, for all domesti
 
anoni
al algebras Λ. (Thealgorithms use the data from the theorems and from the tables.) We also
omment on the e�
ien
y and memory management aspe
ts. In parti
ular,we show how to de
rease the 
omplexity of Algorithm 6.2 and to a
hievethe announ
ed one, O(n4). To this end we apply a detailed analysis of some
omputational linear algebra problems, strongly related with very spe
i�
shapes of matri
es whi
h appear in the formulation of Theorem 2.3 (see 6.4and 6.5).The paper is organized as follows. In Se
tion 1 we re
all basi
 de�nitionsand �x the notation used throughout. There we introdu
e, in parti
ular, the
on
ept of tubular 
oordinates (1.3). We re
all the de�nition of domesti

anoni
al algebras (1.4), and the 
lassi
al theorems on the stru
ture of mod-ule 
ategories and 
lassi�
ation of inde
omposables modules for this 
lass ofalgebras (see Theorems 1.5 and 1.6). In Se
tion 2 we spe
ify the 
lassifyingset X (2.1) and formulate our main results: Theorems 2.2, 2.3 and 2.4. Se
-tion 3 is devoted to determining the restri
ted multipli
ity ve
tor for regular
omponents. We prove the results on fun
torial redu
tion (Proposition 3.1,Lemma 3.3) and Theorem 2.2(a+b). Se
tion 4 is devoted to the proof ofTheorem 2.3, pre
eded by several te
hni
al fa
ts. In Se
tion 5, the proofof Theorem 2.4 is given. Se
tion 6 
ontains the pseudo-
ode des
riptions ofAlgorithms 6.1, 6.2 and 6.3, a result that allows us to de
rease 
omplexityof Algorithm 6.2 (Lemma 6.4), and the proof of Theorem 2.2(
) (see 6.5).Se
tion 7 
onsists of the tables 
ontaining the data for domesti
 
anoni
alalgebras, mentioned above.

1. PRELIMINARIES AND NOTATIONThe de�nitions and notation we use are standard. Nevertheless, for thebene�t of the reader, we brie�y re
all some of them. We also 
olle
t somefa
ts des
ribing the module 
ategories for domesti
 
anoni
al algebras. Forbasi
 information and notation 
on
erning representation theory of algebras(respe
tively, 
anoni
al algebras, 
ategories, linear algebra, algorithm the-ory) we refer to [2℄ (respe
tively, [22, 23℄, [1℄, [16℄, [6℄).1.1. For any positive n ∈ N = {0, 1, . . .}, we set [n] = {1, . . . , n} and
Zn = {0, . . . , n − 1}; by Zn = (Zn,⊕n) we always mean the group of re-mainders modulo n. For m ∈ Z, the integral quotient and remainder of mmodulo n are denoted by quon(m) and remn(m), respe
tively. Given a set S,we write |S| for the 
ardinality of S. If G is a group and g ∈ G, we denote by
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(g) the 
y
li
 subgroup of G generated by g, and by |g| (= |(g)|) the orderof g.Throughout the paper, k always denotes a �eld, usually algebrai
ally
losed. For any m,n ∈ N, we denote by Mm×n(k) the set of all m × n-matri
es with 
oe�
ients in k. The identity matrix in Mn×n(k) is denotedby In.Given M ∈Mm×n(k), we denote by r(M) the rank of M and by cor(M)
= m−r(M) its 
orank. For any 1 ≤ i ≤ m (resp. 1 ≤ j ≤ n),M|i (resp.M |j)is the matrix in Mi×n(k) (resp. Mm×j(k)) 
onsisting of the �rst i rows (resp.�rst j 
olumns) of M . We denote by M̂ the e
helon upper triangular matrixobtained by deleting all zero rows from the e
helon matrix resulting fromthe standard Gaussian row elimination pro
edure applied to M (see [16℄).1.2. By a k-algebra we always mean a �nite-dimensional asso
iative 
on-ne
ted basi
 unitary algebra over k. For a k-algebra Λ (respe
tively, lo
allybounded 
ategory Λ, see [5℄), we denote by modΛ the 
ategory of all �nite-dimensional Λ-modules, by J = J(Λ) the Ja
obson radi
al of Λ, and by
radΛ = rad(modΛ) the Ja
obson radi
al of the 
ategory modΛ. If (Q, I) isa bound quiver (see [2℄) and the algebra (resp. lo
ally bounded 
ategory) Λhas the form Λ = kQ/I, then we always identify modΛ with the 
ategory ofall �nite-dimensional representations of the quiver Q = (Q0, Q1), satisfyingthe relations from the ideal I. For the de�nition of the path algebra kQ,we refer to [2℄. For any v ∈ Q0, we denote by S(v) (resp. P (v), Q(v)) thesimple (resp. inde
omposable proje
tive, inje
tive) module 
orresponding tothe vertex v.Let K0(Λ) = K0(modΛ) denote the Grothendie
k group of Λ, or morepre
isely, of the 
ategory modΛ. The 
lass of a �nite-dimensional Λ-module
X in the Grothendie
k group K0(Λ) is denoted by [X]. In 
ase Λ = kQ/I,where (Q, I) is a bound quiver, we use the standard identi�
ation K0(Λ)
∼= ZQ0 indu
ed by asso
iating to X the dimension ve
tor dimX.For any pair X,Y of modules in modΛ, we set

[X,Y ] = dimk HomΛ(X,Y ),and we denote by m(Y )X the maximal integer n ∈ N su
h that Xn is iso-morphi
 to a dire
t summand of Y .Throughout the paperD : modΛ→ modΛop means the standard duality
D(−) = Homk(−, k).Given a 
lass C of obje
ts in modΛ we denote by add C the additive
losure of C in modΛ.Let U be an abelian 
ategory. Re
all that U is serial if it is a length
ategory and ea
h of its inde
omposable obje
ts is uniquely determined,up to isomorphism, by its length and so
le. In 
ontrast to the 
ategory



226 P. DOWBOR AND A. MRÓZ
modΛ, the length (resp. so
le) of an obje
t X from U will be 
alled its
U -length (resp. U -so
le), and denoted by ℓU (X) (resp. socU (X)). (This isespe
ially important if U is a full proper exa
t sub
ategory of modΛ). Wesay that a serial 
ategory U is of type (n,∞) if there exist exa
tly n pairwisenonisomorphi
 simple obje
ts in U , and for ea
h pair 
onsisting of a simpleobje
t X0 in U and a positive integer l ∈ N, there exists an inde
omposableobje
t X in U su
h that socU(X) ∼= X0 and ℓU(X) = l (
f. [12℄).By the Auslander�Reiten quiver ΓΛ of Λ (A-R quiver, for short), wealways mean the translation quiver

Γ = (Γ0, Γ1, τ)de�ned in a standard way (the set of verti
es Γ0 
onsists of the iso
lasses
[X]∼= of inde
omposable obje
ts X in modΛ, the sets Γ1([X]∼=, [Y ]∼=) of allarrows from [Y ]∼= to [X]∼= 
onsist of dimk(radΛ(X,Y )/rad2

Λ(X,Y )) elements,and τ [X]∼= = [τX]∼=, where τ is the Auslander�Reiten translate).For any [X]∼= ∈ Γ0, we denote by −[X]∼= (resp. [X]+∼=) the set of all im-mediate prede
essors (resp. su

essors) of [X]∼= in ΓΛ, i.e. the set of allverti
es [Y ]∼= ∈ Γ0 su
h that there exists an arrow [Y ]∼= → [X]∼= (resp.
[X]∼= → [Y ]∼=) in ΓΛ. Similar notation is used for an arbitrary translationquiver Γ = (Γ, τ).Let C be a 
onne
ted 
omponent in ΓΛ. Then the additive 
losure
add(

⋃
[X]∼=∈C0

[X]∼=) is denoted for simpli
ity by add C. For a Λ-module Xthe phrase �X belongs to C� means �[X]∼= belongs to C0�.Following [2℄, a 
onne
ted 
omponent C of ΓΛ is 
alled postproje
tive if itis a
y
li
 and for any inde
omposable Λ-module M in C there exists t ∈ Nand an inde
omposable proje
tive module P su
h that M ∼= τ−nP .Finally, a 
onne
ted 
onvex a
y
li
 full subquiver Σ of the 
onne
tedtranslation quiver Γ = (Γ, τ) is 
alled a se
tional subquiver (brie�y, a se
-tion) in Γ if for ea
h x ∈ Γ0 there exists a unique n ∈ Z su
h that τ−nx ∈ Σ0.1.3. Re
all that a stable tube T (n) of rank n ≥ 1 is a quiver ZA∞/(τ
n)with the translation τ indu
ed from that in the translation quiver ZA∞(see [22, 23℄). Stable tubes of rank 1 are 
alled homogeneous . We �x a stan-dard notation of verti
es in T (n) by setting T (n)0 = {(s, l) : s∈Zn, l≥ 1}.Then T (n) has the following shape:

(s⊕n2, 3)
���

(s⊕n1, 2)

(s⊕n1, 1)

@@R

@@R

���

(s, 1)

(s⊕n1, 3)

���

@@R
(s, 2)

@@R

���

(s⊖n1, 1)

(s, 3)

· · · · · ·

... ...
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Let T be a 
onne
ted 
omponent of the A-R quiver ΓΛ of an algebra Λ,whi
h is a stable standard tube of rank n. Then the 
ategory add T is anabelian serial 
ategory of type (n,∞) and ea
h inde
omposable module Xfrom add T is uniquely determined by its T -so
le and T -length, de�ned by
socT (X) = socadd T (X) and ℓT (X) = ℓadd T (X).The T -simple modules (i.e. the simple obje
ts in add T ) are exa
tly thoselying in the mouth of the tube T . They 
orrespond to the verti
es (s, 1) ∈

T (n)0, s ∈ Zn. Moreover, the T -so
le of the module 
orresponding to thevertex (s, l) ∈ T (n)0 is a T -simple module 
orresponding to (s, 1) ∈ T (n)0,and its T -length is l. This yields a pre
ise en
oding of inde
omposable mod-ules in T . It su�
es to write down the pre
ise forms of the 
onse
utivemodules from the mouth of T and to 
hoose arbitrarily one of them to 
or-respond to the vertex (0, 1) ∈ T (n)0. We denote it by X(T , 0, 1). In pra
ti
e,one has to des
ribe only one of them, the remaining 
an be obtained as its
τ -shifts. Then the iso
lass of an ide
omposable module X from T is uniquelyen
oded in the form X ∼= X(T , s, l); this means that X is a module su
hthat ℓT (X) = l and socT (X) ∼= X(T , s, 1) = τ sX(T , 0, 1). It is 
lear that inthe above notation, the almost split sequen
es in T (more pre
isely, in thesub
ategory add T of modΛ) have the following shape:

0→ X(T , s, l)→ X(T , s⊖n 1, l − 1)⊕X(T , s, l + 1)

→ (T , s⊖n 1, l)→ 0for any s ∈ Zn, l ≥ 1 (we assume that X(T , s, 0) is a zero-module).This en
oding of inde
omposable obje
ts in add T is 
alled the system oftubular 
oordinates.1.4. Consider a sub
lass of 
anoni
al algebras (see [22℄ for the de�ni-tion) 
onsisting of the �nite-dimensional k-algebras of the form Λp,q,r =
kQp,q,r/Ip,q,r, p, q, r ≥ 1, where Qp,q,r is a quiver

0
�

���α1

a1 -
α2

· · · -
αp−1

ap−1
@

@@R

αp

ω-β1

b1
-

β2

· · · -
βq−1

bq−1
-βq

@
@@R

γ1

c1 -
γ2

· · · -
γr−1

cr−1
�

���
γr

and Ip,q,r is the ideal generated by α + β − γ, α = α1 · · ·αp, β = β1 · · ·βqand γ = γ1 · · · γr. (Later on, the 
omposition αiαi+1 · · ·αj for i ≤ j will bedenoted by αi,j and analogously for β and γ). Note that Λp,q,1 is isomorphi
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to the hereditary algebra Λp,q of type Ap,q, given by the quiver

0
�

���α1Qp,q :
a1

-α2
· · · -αp−1

ap−1
@

@@R

αp

ω-β1

b1
-

β2

· · · -
βq−1

bq−1
-βqWe often treat Qp,q as a full subquiver of Qp,q,r via the embedding (Qp,q)0

→֒(Qp,q,r)0.Let Λ = Λp,q,r for some triple (p, q, r). Then the �nite-dimensional Λ-modules 
an be interpreted as linear representations
M = ({Mv}v∈(Qp,q,r)0 , {Mδ}δ∈(Qp,q,r)1)of the quiver Qp,q,r, with dimension ve
tor dimM = (dimk Mv) ∈ N(Qp,q,r)0 ,satisfying the relation α + β = γ. For obvious reasons we will restri
tattention to matrix representations of the algebra Λ. More pre
isely, we
onsider only those �nite-dimensional Λ-modules M , with dimM = n =

(nv) ∈ N(Qp,q,r)0 , for whi
h the spa
es Mv over the verti
es 0, a1, . . . , ap−1,
b1, . . . , bq−1, c1, . . . , cr−1, ω are resp. kn0, kna1 , . . . , knap−1 , knb1 , . . . , k

nbq−1 ,
knc1 . . . , kncr−1 , knω , and the maps Mδ 
orresponding to the arrows
α1, . . . , αp, β1, . . . , βq, γ1, . . . , γr are left multipli
ations by some matri
es
A1, . . . , Ap, B1, . . . , Bq, C1, . . . , Cr of appropriate dimensions. We allow ma-tri
es with zero 
olumns or rows. In this situation, we simply say that a mod-ule M is given by the triple (A,B,C), where A = (Ai)i∈[p], B = (Bi)i∈[q],
C = (Ci)i∈[r]. Sometimes we identify M with (A,B,C).Analogously, we 
onsider only Λp,q-modules that are pairs (A,B), where
A,B are as above. In both 
ases, Λ = Λp,q,r and Λ = Λp,q, we will also usethe notation As,t = AsAs−1 . . . At for t ≤ s, and A = Ap,1 (and similarlyfor B).Following [23�25℄, a 
anoni
al algebra Λ is 
alled domesti
 if Λ ∼= Λp,q,r,where
(p, q, r) ∈ D := {(p, q, 1), p, q ≥ 1; (p, 2, 2), p ≥ 2; (3, 3, 2); (4, 3, 2); (5, 3, 2)}.1.5. Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra. The well-knownresults of Ringel [22℄ yield a des
ription of the 
ategory modΛ, and the
lassi�
ation of inde
omposable Λ-modules, by use of the 
on
ept of rank(see also [23, 13℄).Re
all that the rank fun
tion

rk : K0(Λ)→ Zon the Grothendie
k group K0(Λ) is given by the formula
rk(d) = dω − d0
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for d ∈ Z(Qp,q,2)0 , under the standard identi�
ation K0(Λ) = Z(Qp,q,2)0 . Wealso 
onsider the so-
alled growth ve
tor gr(d) ∈ Z(Qp,q,2)1 , de�ned by threesequen
es
rα = (rα1 , . . . , rαp) = (da1 − d0, . . . , d∞ − dap−1),

rβ = (rβ1 , . . . , rβq
) = (db1 − d0, . . . , dω − dbq−1),

rγ = (rγ1 , rγ2) = (dc1 − d0, dω − dc1).The 
lass ob(indΛ) of all inde
omposable Λ-modules splits naturallyinto a disjoint union of three sub
lasses P = P(Λ), Q = Q(Λ) and R =
R(Λ), 
onsisting of all M su
h that rk(dimM) > 0, rk(dimM) < 0 and
rk(dimM) = 0, respe
tively. For reasons to be explained below, the modulesfrom these 
lasses are 
alled postproje
tive, preinje
tive and regular , respe
-tively (see the theorem).It is proved in [22℄ that there is another des
ription of the 
lasses Pand Q, 
ommon for all 
anoni
al algebras. Namely, P (resp. Q) 
onsistsof all inde
omposable Λ-modules M su
h that all maps Mδ, δ ∈ (Qp,q,r)1,are monomorphisms and gr(dimM) 6= 0 (resp. epimorphisms and
gr(−dimM) 6= 0).The following result furnishes important information on the stru
ture ofthe 
ategory modΛ.
Theorem ([22, 23℄). Let Λ be a domesti
 
anoni
al algebra.(a) The isomorphism 
lasses of all modules from P (resp. Q) form a
onne
ted postproje
tive (resp. preinje
tive) 
omponent in the quiver

ΓΛ 
ontaining the iso
lasses of all inde
omposable proje
tive (resp.inje
tive) Λ-modules.(b) addR is an abelian serial 
ategory 
losed under extensions , and
addR ≃

∐

λ∈k∪{∞}

add Tλwhere T = {Tλ}λ∈k∪{∞}
is a 1-parameter family of stable standardtubes of (tubular) type (p, q, 2), and add Tλ is an abelian sub
ategoryof addR.(
) HomΛ(Q,P) = 0; HomΛ(R,P) = 0; HomΛ(Q,R) = 0.From now on, the notation P and Q is used for the 
omponents of ΓΛrather than for the 
lasses of all postproje
tive and preinje
tive inde
ompos-able Λ-modules, respe
tively.1.6. We re
all that gl.dimΛ = 2 and a 
ru
ial role in the pre
ise 
las-si�
ation of inde
omposable modules over domesti
 
anoni
al algebras Λ isplayed by the Euler quadrati
 form

q = qΛ : K0(Λ)→ Z
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asso
iated to the Z-bilinear

〈−,−〉 : K0(Λ)×K0(Λ)→ Zgiven by the formula
〈dimM, dimN〉 = dimk HomΛ(M,N)

− dimk Ext1Λ(M,N) + dimk Ext2Λ(M,N)for M and N in modΛ. The quadrati
 form q is also de�ned in terms of theCartan matrix CΛ ∈Ms×s(k) of the algebra Λ = Λp,q,2, by the formula
q(x) = xt(Ct

Λ)−1xfor x ∈ Zs, under the identi�
ation Z(Qp,q,2)0 = Zs, where s = |(Qp,q,2)0|.Let rad q = {x ∈ Z(Qp,q,2)0 : q(x) = 0} denote the radi
al of the form q.Sin
e Λ is a 
on
ealed algebra of Eu
lidean type, it follows that rad q is asubgroup of Z(Qp,q,2)0 , q is positive semide�nite of 
orank 1 and
(∗) rad q = Z · 1,where 1 ∈ Z(Qp,q,2)0 is the all-one ve
tor.A

ording to Ringel's 
lassi�
ation [22℄, modΛ is 
ontrolled by theform qΛ. In more detail and in a slightly modi�ed version, taking into a

ount
(∗) and Theorem 1.5(b), this 
an be phrased as follows:
Theorem ([22, 23℄). Let Λ be a domesti
 
anoni
al algebra.(a) For an inde
omposable module X in add Tλ, λ ∈ k ∪ {∞}, we have

dimX = m · 1 if and only if ℓTλ
(X) = mnλ,for m ≥ 1, where nλ is the rank of Tλ.(b) The fun
tion dim yields bije
tions of the vertex sets P0 and Q0 withthe sets P := {x ∈ N(Qp,q,2)0 : q(x) = 1, rk(x) > 0},Q := {x ∈ N(Qp,q,2)0 : q(x) = 1, rk(x) < 0}respe
tively. Moreover , the set

{x ∈ N(Qp,q,2)0 : q(x) = 1, rk(x) = 0}
orresponds bije
tively via dim to the set of iso
lasses of all inde-
omposable modules X in add Tλ, λ ∈ k ∪ {∞}, su
h that nλ ∤ ℓTλ
(X)

(nλ ≥ 2).We 
allP (resp.Q) the set of all postproje
tive (resp. preinje
tive) positiveroots of the quadrati
 Euler form q = qΛ.
Remark. From (b) and the des
ription of postproje
tive (resp. prein-je
tive) modules over 
anoni
al algebras in terms of the growth ve
tor gr(x),it follows that for any x ∈ N(Qp,q,2)0 su
h that q(x) = 1, we have rk(x) > 0
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(resp. rk(x) < 0) if and only if gr(x) ∈ N(Qp,q,2)1 \ {0} (resp. gr(−x) ∈
N(Qp,q,2)1 \ {0}).
Corollary. The sets P and Q are 
lassifying sets of invariants forinde
omposable modules from the 
omponents P and Q.To de�ne a full 
lassifying set for the whole 
lass of inde
omposable Λ-modules one has to spe
ify tubular 
oordinates for the sub
ategories add Tλ,

λ ∈ k ∪ {∞}. To this end we have in fa
t to �x those λ ∈ k ∪ {∞} forwhi
h nλ takes the values 2, p and q, respe
tively, and next to give a pre
isedes
ription of one sele
ted module in the mouth, for ea
h tube Tλ.2. THE MAIN RESULTSBefore we formulate our main results we need to establish some extranotation and �rst of all to 
omplete the pro
ess of pre
ise en
oding for in-de
omposable modules over domesti
 
anoni
al algebras, i.e. to spe
ify the
lassifying set X.2.1. To �x the en
oding for regular inde
omposable modules by tubu-lar 
oordinates, we apply the tubular stru
ture of the 
ategory addR (seeTheorem 1.5(b)).Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra. As already stated in 1.5,the regular Λ-modules form a 1-parameter family T = {Tλ}λ∈k∪{∞} of stabletubes of type (p, q, 2) and ea
h of the 
ategories add Tλ, λ ∈ k∪{∞}, is serialof type (nλ,∞), where nλ denotes the rank of Tλ. Additionally, one 
an as-sume that Tλ = T p,q,2
λ , where T p,q,2 = {T p,q,2

λ }λ∈k∪{∞} is a 1-parameter fam-ily of tubular type (p, q, 2) su
h that T p,q,2
0 , T p,q,2

1 , T p,q,2
∞ , T p,q,2

λ , λ ∈ k\{0, 1},are stable tubes of rank p, 2, q and 1, respe
tively. Moreover, inde
ompos-able modules from the ex
eptional tubes 
an be en
oded, a

ording to 1.3,as des
ribed below (see also [18, 23℄).We 
an set:
X(T0, 0, 1) = k

���
0

0 -0 . . . -0 0
@@R

0

-1 k -1 . . . -1 k -1 k
PPPPPq1

k
�����1

1and X(T0, s, 1) = S(as) for s ∈ Zp \ {0}, where X(T0, s
′, l) is the module inthe tube T0 
orresponding to the vertex (s′, l) ∈ T (p)0, for all s′ ∈ Zp and

l ≥ 1;
X(T1, 0, 1) = k

���
1

k -1 . . . -1 k
@@R

1

-−1k -1 . . . -1 k -1 k
PPPPPq0

0
�����1

0
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and X(T1, 1, c1) = S(c1), where X(T1, s

′, l) is the module in the tube T1
orresponding to the vertex (s′, l) ∈ T (2)0, for all s′ ∈ Z2 and l ≥ 1;
X(T∞, 0, 1) = k

���
1

k -1 . . . -1 k
@@R

1

-0 0 -0 . . . -0 0 -0 k
PPPPPq1

k
�����1

1and X(T∞, s, 1) = S(bs) for s ∈ Zq \{0}, where X(T∞, s
′, l) is the module inthe tube T∞ 
orresponding to the vertex (s′, l) ∈ T (q)0, for all s′ ∈ Zq and

l ≥ 1.To establish the en
oding for inde
omposable regular modules from thetubes Tλ, λ ∈ k \ {0, 1}, of rank 1, it su�
es to give a pre
ise des
ription ofthe unique Tλ-simple module, for ea
h λ.For λ ∈ k \ {0, 1}, we 
an set
X(Tλ, 0, 1) = k

���
λ

k -1 . . . -1 k
@@R

1

-−1k -1 . . . -1 k -1 k
PPPPPqλ − 1

k
�����1

1Here X(Tλ, 0, l) is the module of Tλ-length l in the tube Tλ for all l ≥ 1.Further, for simpli
ity, we will use the abbreviate notation: X(λ, s, l) =
X(Tλ, s, l) for λ = 0, 1,∞, and X(λ, l) = X(Tλ, 0, l) for λ ∈ k \ {0, 1}.As a 
onsequen
e, inde
omposable regular modules modules are pre
iselyen
oded by the following 
lassifying set:T =

⊔

λ∈k∪{∞}

Tλ,where
Tλ =





{[0, s, l] : s ∈ Zp, l ≥ 1} for λ = 0,
{[1, s, l] : s ∈ Z2, l ≥ 1} for λ = 1,
{[∞, s, l] : s ∈ Zq, l ≥ 1} for λ =∞,
{[λ, l] : l ≥ 1} for λ ∈ k \ {0, 1}.Sin
e postproje
tive and preinje
tive modules are fully des
ribed in termsof their dimension ve
tors by the sets P and Q, we have the following.

Proposition. The set X := P ⊔T ⊔Q(with the obvious map ε) is a 
lassifying set of invariants for inde
omposable
Λ-modules.2.2. Now �x integers p≥ 1, n0, na1 , . . . nap−1 , nω ≥ 0. Let D ∈Mnω×n0(k)and A = (A1, . . . , Ap) be a system of matri
es of size na1 × n0, na2 × na1 ,
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. . . , nap−1 × nap−2 , nω × nap−1 , respe
tively. Then for any 2 ≤ i ≤
p + 1, 0 ≤ j ≤ p− 1, n ≥ −1, we de�ne a blo
k matrix Mi,j,n(D,A) ∈
M((n+1)nω+naj

)×((n+1)n0+nai−2)(k) by setting
Mi,j,n(D,A) =




Ap,i−1 D 0 0 · · · 0

0 −A D 0 · · · 0

0 0 −A D · · · 0... ... ... . . . ... ...
0 0 · · · 0 −A D

0 0 · · · 0 0 −Aj,1




if n ≥ 0, and
Mi,j,n(D,A) = Aj,i−1if n = −1. We set na0 = n0, A0,1 = In0 .Moreover, for a given 
olle
tion n, n0, nω1≥0, λ∈k and E,F∈Mnω×n0(k)we de�ne a blo
k matrixMn

λ(E,F ) ∈Mnnω×nn0(k) by setting
Mn

λ(E,F ) =




G 0 0 · · · 0

F G 0 · · · 0

0 F G · · · 0... ... ... . . . ...
0 0 · · · F G




,

where G = G(λ) = E + λF .For some te
hni
al reasons (explained in the proof of Theorem 2.2), wealso need the indexing map
µp : Zp × (N \ {0})→ {2, . . . , p+ 1} × Zp × (N ∪ {−1})de�ned by

µp(s, l) =

{
(s− l + 2, s,−1), l ≤ s,
(p− remp(l − s− 1) + 1, s, quop(l − s− 1)), l > s.Now, using the above notation, we formulate the main theorem of thispaper.

Theorem. Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra, X a 
lassify-ing set for inde
omposable Λ-modules de�ned above, M a �nite-dimensional
Λ-module, with n = dimk M and dimM = n, given by a triple (A,B,C),
A = (Ai)i∈[p], B = (Bi)i∈[q], C = (Ci)i∈[2] (see 1.4).(a) The 
oordinates of the restri
ted multipli
ity ve
tor

m(M)|T = (m(M)x)x∈T
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of M with respe
t to T are:(i) m(M)[0,s,l] = h(s, l)+h(s⊖p 1, l)−h(s⊖p 1, l−1)−h(s, l+1),(ii) m(M)[1,s′,l] = f(s′, l)+f(s′⊖2 1, l)−f(s′⊖2 1, l−1)−f(s′, l+1),(iii) m(M)[∞,s′′,l] = g(s′′, l)+g(s′′⊖q 1, l)−g(s′′⊖q 1, l−1)−g(s′′, l+1),(iv) m(M)[λ,l] = 2fλ(l)− fλ(l − 1)− fλ(l + 1),where h(u, t) = corMµp(u,t)(B,A), f(u′, t) = corMµ2(u′,t)(−B,C),
g(u′′, t)=corMµq(u′′,t)(A,B) and fλ(t)=corMt

λ(A,B), λ∈ k \{0, 1},
u ∈ Zp, u′ ∈ Z2, u′′ ∈ Zq and t ≥ 1 (we set f(∗, 0) = g(∗, 0) =
h(∗, 0) = fλ(0) = 0). Moreover , if the �nite set σ(M) 
onsisting ofall λ ∈ k\{0, 1} su
h that M 
ontains a dire
t summand from add Tλis known, then there exists an algorithm with pessimisti
 
omplexity
O(n4), determining m(M)|T.(b) A s
alar λ0 ∈ k\{0, 1} belongs to σ(M) if and only if λ0 is a 
ommonroot of all (nω − rkP(M))-minors of the matrix A+ λB, regarded aspolynomials in k[λ], where rkP(M) denotes the rank of the maximalpostproje
tive dire
t summand of M . Moreover , rkP(M) is equal tothe number of all postproje
tive summands in a de
omposition of theKrone
ker moduleM = (A,−B) into a dire
t sum of inde
omposablesin modΛ1,1. Consequently , the number of summands from the tube
Tλ0 in a de
omposition of M into a dire
t sum of inde
omposables isequal to

cor(A+ λ0B)− rkP(M)and there exists an algorithm 
omputing the integer rkP(M) with pes-simisti
 
omplexity O(n4), whi
h does not require (!) any knowledgeof the ve
tor m(M)|P (see Remark 3.5).(
) There exists an algorithm with pessimisti
 
omplexity O(n4) whi
hdetermines the ve
tor
m(M)|P⊔Q = (m(M)x)x∈P⊔Q.The proofs of (a) and (b) are given in Se
tion 3. The proof of (
) needsa mu
h deeper analysis and preparation; it will be 
ompleted at the end ofSe
tion 6. In fa
t, we not only prove the existen
e of algorithms with therequired properties, but we also give a detailed des
ription in the integratedpseudo-
ode form (
f. [9℄, see Se
tion 6). In parti
ular, we pre
isely des
ribean algorithm 
omputing m(M)|P (see Algorithms 6.1 and 6.2 in Se
tion 6),but we only explain how to redu
e the 
omputation of m(M)|T to the anal-ogous problem for the Krone
ker algebra Λ1,1 and hereditary algebras Λp′,q′of type Ãp′,q′ (see 3.4, 
f. also [9℄).2.3. The most di�
ult problem is to determine the restri
ted multipli
ityve
tor for the postproje
tive 
omponent. To do this, given a Λ-module M ,
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we give pre
ise formulas for the positive integers h(M)d for d ∈ P. We startby �xing some extra notation.For any ve
tor d ∈ Z(Qp,q,2)0 = K0(Λ), we set d = d − d01. We say that
d is redu
ed provided d = d , equivalently d0 = 0. Clearly, rk(d) = rk(d) and
gr(d) = gr(d). We denote by K0(Λ)red the subgroup of K0(Λ) 
onsisting ofall redu
ed ve
tors. Clearly, K0(Λ) = K0(Λ)red ⊕ Z[S(0)]. It is easily seenthat the mapping d 7→ (d, d01) yields another de
omposition

K0(Λ) = K0(Λ)red ⊕ Z · 1(1 =
∑

v∈(Qp,q,2)0
[S(v)]). Following [18℄, for d as above, we denote by d′ the
ontra
tion of d �along identities�, i.e. the ve
tor in Z(Q

(d)
p,q,2)0 obtained in anatural way from d , where Q(d)

p,q,2 is 
onstru
ted from Qp,q,2 by 
ontra
tingall arrows δ with rδ = 0 (see [18℄).Let Q′ = Q′
p,q,2 be the full subquiver of Qp,q,2 formed by the set

(Qp,q,2)0 \ {0} of verti
es and let Λ′ = kQ′. Then Q′ is a Dynkin quiver oftype ∆ = (p, q, 2). It is 
lear that K0(Λ
′) = ZQ′

0 
an be naturally identi�edwith K0(Λ)red. Then K0(Λ) = K0(Λ
′)⊕Z[S(0)] and K0(Λ) = K0(Λ

′)⊕Z · 1.We denote by L the set of all positive roots d ∈ N
Q′

0
0 of the quadrati
 form

q′ = q∆, su
h that all 
omponents rα2 , . . . , rαp , rβ2 , . . . , rβq
, rγ2 of gr(d) arenonnegative.Now we restri
t our attention to the set P. It is 
lear that for any

d ∈ P = P (Λ), Λ = Λp,q,2, we have rk(d) > 0, gr(d) ∈ N(Qp,q,2)1 \ {0}and d ∈ N(Qp,q,2)0 \ {0}. We set P = {d ∈ P : d0 = 0} (
learly, P =P ∩K0(Λ)red).The following fa
t summarizes the most essential properties of P (
f.also [18℄).
Lemma.(a) The mappings d 7→ d|Q′

0
and d 7→ (d0, d) yield bije
tions (i) P ↔ Land (ii) P↔ N×P of sets , respe
tively ; in parti
ular , the set P is�nite.(b) rk(P (Λ)) := {rk(d) : d∈P (Λ)}⊂ {1, . . . , 6}; moreover , 6∈ rk(P (Λ))if and only if Λ = Λ5,3,2.(
) The set Con :=

⋃
(p,q,2)∈D{d

′ : d ∈ P (Λp,q,2)} has |Con| = 18 (seeTable 1 below).Proof. Assertion (a) follows from the fa
ts that q
|Z

(Q′
p,q,2)0

= q′ and that1 ∈ rad q, where q = qΛ, Λ = Λp,q,2. Assertions (b) and (
) are 
onsequen
esof the respe
tive properties of root sets for Dynkin diagrams.
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From now on we will identify the sets L and P using the bije
tion (i).Note, in parti
ular, that the bije
tion (ii) equips the set P with some extra�
oordinate system�.To formulate our result we need some te
hni
al notation. Given N ∈

Mm×n(k), for positive i ∈ N, we form the m× in-matrix
N (i) = [N | −N |N | −N | . . .] ∈Mm×in(k).Then, for any i ∈ N, we set

N (∞|i) = (N (j))|i ∈Mm×i(k),where j ∈ N is an arbitrary positive integer su
h that jn ≥ i.Analogously, for any i ∈ N, we de�ne N(i) ∈ Mim×n(k) and N(∞|i) ∈

Mi×n(k), by setting
N(i) = ((N t)(i))t and N(∞|i) = (N(j))|i,where j ∈ N is su
h that jm ≥ i. Clearly, we have N(∞|i) = ((N t)(∞|i))t.Let N ∈Mm×m(k). For any i ∈ N, we denote by i∗N the blo
k diagonalmatrix
i ∗N =




N 0 . . . 0

0 N . . . 0... ... . . . ...
0 0 . . . N



∈Mim×im(k).

Let P = [pi,j ] ∈ Mm1×n1(k) and Q ∈ Mm2×n2(k). Then we denote by
P ⊗ Q the matrix in Mm1m2×n1n2(k) that, under the standard identi�
a-tion

Mm1m2×n1n2(k)
∼= Mm1×n1(Mm2×n2(k)),has the form

P ⊗Q = [pi,j ·Q]1≤i≤m1, 1≤j≤n1.

P ⊗Q 
an be interpreted as the matrix of the tensor produ
t (P ·)⊗ (Q·) :
kn1⊗kn2 → km1⊗km2 of the linear maps P · : kn1 → km1 andQ· : kn2 → km2 ,with respe
t to the standard bases of kn1 ⊗ kn2 and km1 ⊗ km2 , respe
tively,ordered lexi
ographi
ally.Let M be a Λp,q-module with dimM = n, de�ned by the pair (A,B),
A = (Ai)i∈[p], B = (Bj)j∈[q], and d ∈ N(Qp,q)0 be a ve
tor su
h that its growthve
tor gr(d) ∈ Z(Qp,q)1 , whi
h is given by sequen
es rα and rβ as above,
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belongs to N(Qp,q)1 . For the pair (M,d) as above, we denote by W (A,B, d)the matrix W = [W1 |W2 |W3] ∈Mdωnω×c(k) of the form



rβq
∗Bq,q Ap,1. . . . . .

rβ1 ∗Bq,1
. . .

−Bq,1
. . .. . . Ap,1. . . rα1 ∗Ap,1. . . . . .
−Bq,1 rαp ∗Ap,p,




,

where all entries lying outside the two blo
k diagonals are zero and c =

(rβq
nbq−1 + · · ·+ rβ1n0) + d0n0 + (rα1n0 + · · ·+ rαpnap−1).Now we 
an formulate the announ
ed result.
Theorem. Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra and M a Λ-module with dimM = n, given by the triple (A,B,C), where A = (Ai)i∈[p],

B = (Bi)j∈[q] and C = (C1, C2) are sequen
es of matri
es de�ning the stru
-ture maps in M 
orresponding to arrows {αi}i∈[p], {βi}j∈[q] and {γ1, γ2},respe
tively. Then for any d ∈ P (Λ) we have
h(M)d = corM(M,d)where

M(M,d) =

[
W (A,B, d|(p,q))

∣∣∣∣
([
−Irγ2

U(d)

]

(∞| dω )

)
⊗ C2

]
,

d|(p,q) = d|(Qp,q)0
, and U(d) ∈ Mdc1×rγ2

(k) is uniquely determined by d.Moreover :(a) If rk(d) = 1, equivalently d′ = [0, 1], then U(d) depends only on dc1 ,
dc1 = 0 or 1, and it is a trivial matrix in M0×1(k) or in M0×0(k),respe
tively.(b) If char(k) 6= 2 and 2 ≤ rk(d), or char(k) = 2 and 2 ≤ rk(d) ≤ 5, then
U(d) depends only on d′, and U(d) = U(d′) belongs to the 17-element ,in fa
t 13-element , list 
onsisting of all matri
es U(e), e ∈ Con (seeTable 1).(
) If char(k) = 2 and rk(d) = 6 (
onsequently , Λ = Λ5,3,2), then U(d)depends only on the pair (d′, rem6(d0)), and U(d) = U(d′, rem6(d0))belongs to the 30-element list 
onsisting of all matri
es U(e, i), (e, i) ∈
{f ∈ Con : rk(f) = 6} × Z6 (see Table 2).
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Table 1. The shapes of the matri
es U(d′)

d′ U(d′) d′ U(d′)0 1 � 1

0 1 2

1

[1℄
1 2

0 1 2 3

1

[1 1℄ 1 2

0 1 2 3

2

[
1

−1

]

1 2 3

0 2 3 4

2

[
1 1

1 0

] 1 2 3

0 1 3 4

2

[
1 1

−1 −1

]

1 2 3

0 1 2 4

2

[
0 1

1 −1

]

1 2 3 4

0 1 3 5

2

[
0 1 0

1 1 1

] 1 2 3 4

0 2 3 5

2

[
1 1 1

0 1 0

]

1 2 3 4

0 1 3 5

3




1 1

0 −1

0 1




1 2 3 4

0 2 4 5

3




1 0

1 1

1 0




1 2 3 4

0 2 3 5

3




0 −1

1 −1

0 1




1 2 3 4

0 2 4 5

2

[
1 1 −1

0 0 1

]

2 3 4 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 3 4 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 2 4 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 2 3 5

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




1 2 3 4

0 2 4 6

3




1 1 0

0 1 1

−1 −1 1




Table 2. The shapes of the matri
es U(d′, rem6(d0))

d′ = d(1) d′ = d(2) d′ = d(3) d′ = d(4) d′ = d(5)

rem6(d0) = 0 U1 U2 U1 U4 U5

rem6(d0) = 1 U2 U1 U2 U3 U2

rem6(d0) = 2 U1 U2 U1 U2 U1

rem6(d0) = 3 U2 U1 U2 U4 U5

rem6(d0) = 4 U1 U2 U1 U2 U1

rem6(d0) = 5 U2 U1 U2 U3 U2
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The matri
es U1, . . . , U5 are de�ned as follows:
U1 =




0 1 1

1 0 1

1 1 0


, U2 =




1 1 1

0 1 1

1 0 1


, U3 =




1 1 0

1 0 1

1 1 1


, U4 =




1 0 1

1 1 1

0 1 0


, U5 =




1 1 1

0 1 0

1 1 1


;

whereas d(1), . . . , d(5) denote the last �ve ve
tors d′ in Table 1, whi
h asve
tors from K0(Λ5,3,2) are distinguished by the 
onditions rk(d(i)) = 6 and
rαi

(d(i)) = 2, i = 1, . . . , 5.The full proof of the theorem is given in Se
tion 4.2.4. Now we 
onsider the problems essential for 
omputing the ve
tor
m(M)|P for a Λ-module M . We formulate a long theorem 
olle
ting veryspe
i�
, detailed properties of the set of all positive postproje
tive roots.These properties are mainly 
onne
ted with the shape of the 
omponent
P and with the various stru
tures P is equipped with (
f. Lemma 2.3(a)and the 
onsiderations below). In parti
ular, we give formulas 
ontrollingthe �
hanges of 
oordinates� resulting from individual stru
tures. The theo-rem determines the nature and s
heme of the algorithms, dis
usses the stopproblem for them and indi
ates how to improve their e�
ien
y.Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra. Then, as already stated,the 
omponent P in ΓΛ 
ontaining all inde
omposable proje
tive Λ-modulesis postproje
tive in the sense of 1.2. It is also in�nite, sin
e Λ is a 
on
ealedalgebra of Eu
lidean type (see [23℄). In parti
ular, P admits se
tions and allof them are Eu
lidean quivers of the same type. For ea
h se
tion Σ in P wehave |Σ0| = |(Qp,q,2)0|, and P is isomorphi
, as a translation quiver, to thefull subquiver of ZΣ, formed by all verti
es (n, x) ∈ (ZΣ)0 = Z×Σ0 su
hthat τnx is de�ned in P. Moreover, under the identi�
ation τnx 7→ (n, x),ea
h 
hoi
e of a se
tion Σ yields a disjoint splitting P0 = (P0)0 ∪ (P ′)0,where P0 = P0(Σ) and P ′ = P ′(Σ) are full subquivers of ZΣ su
h that P0is the �nite full translation subquiver of (N \ {0})Σ and P ′ = −NΣ, sin
ethere are no inje
tive modules in P (see [23℄).We know that dim yields a bije
tion

P0 ↔ P(see Theorem 1.6(b)). Consequently, P is endowed with the 
anoni
al stru
-ture of translation quiver, transported from P along dim. (The translation inP is denoted by the same letter τ .) We assume that all notions and notationsintrodu
ed above for P are automati
ally transported to P.Let
φ = φΛ : K0(Λ)→ K0(Λ)be the Coxeter transformation for Λ. Re
all that φ is a Z-linear map, whi
h
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an be interpreted as the map

φ = (−CtC−1)· : Zs → Zs,under the identi�
ation K0(Λ) = Zs, where C = CΛ ∈Ms×s(k) is the Cartanmatrix of Λ and s = |(Qp,q,2)0|. Note that φ is an isomorphism, sin
e gl.dimΛis �nite and C is nonsingular (see [2, Se
tion III.3℄ and [22℄).We set K0(Λ) = K0(Λ)/rad qΛ, where rad qΛ is the radi
al of qΛ. Sin
e
φ(1) = 1 (and rad qΛ = Z · 1), φ indu
es the so-
alled redu
ed Coxetertransformation, whi
h is a Z-isomorphism

φ : K0(Λ)→ K0(Λ)de�ned by the formula
φ(x+ rad qΛ) = φ(x) + rad qΛfor x ∈ K0(Λ) (see [8℄ and [23, Se
tion XI.1℄). Observe that π| : K0(Λ)red →

K0(Λ) is an isomorphism, where π : K0(Λ) → K0(Λ) denotes the 
anoni
alproje
tion; the inverse of π| is indu
ed by the epimorphism : K0(Λ) →
K0(Λ)red, x 7→ x = x − x01. We often use the identi�
ations K0(Λ

′) =
K0(Λ)red = K0(Λ) (see also 2.3). In this way we view φ as a map K0(Λ)red →
K0(Λ)red given by the formula

φ(x) = φ(x)for x ∈ K0(Λ) (similarly for K0(Λ
′)).It turns out that φ furnishes some important extra stru
ture on the setL = P , and 
onsequently, on the set P (
f. Lemma 2.3(a)).

Theorem. Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra, φ = φΛ :

K0(Λ) → K0(Λ) the Coxeter transformation for Λ, φ : K0(Λ) → K0(Λ) theredu
ed Coxeter transformation for Λ, and let the subsets L (= P), P ⊂
K0(Λ) be as before. Then:(a) The set L is φ-invariant and , for any �xed se
tion Σ in P,L = O(x(1)) ∪ · · · ∪ O(x(s)),where Σ0 = {x(1), . . . , x(s)} and O(x(i)) is the orbit of the redu
edve
tor x(i) under the a
tion of the �nite 
y
li
 group G = (φ) on

K0(Λ).(b) Given a se
tion Σ as above, �x a sequen
e i1, . . . , ir su
h that L =
O(x(i1)) ∪ · · · ∪ O(x(ir)) is a disjoint union. Set yl,j = (φ)−l(x(ij))for any pair (l, j) ∈ {0, . . . , νj} × [r], and κj = u1,j + · · ·+ uνj ,j forany j ∈ [r], where νj = |O(x(ij))| and the integers ul,j are de�ned bythe equalities φ−1(yl−1,j) = yl,j + ul,j1. Then:
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• O(x(ij)) = {y0,j , . . . , yνj−1,j} and yνj ,j = y0,j for every j ∈ [r];hen
e the mapping (l, j) 7→ yl,j yields a bije
tionL↔ {(l, j) : j ∈ [r], l ∈ Zνj
}.Moreover , for any i ∈ [s], there exist unique j = j(i) ∈ [r] su
hthat O(x(i)) = O(x(ij)) and l = l(i) ∈ Zνj

su
h that x(i) = yl,j.
• νΣ = ν = lcm{νj : j ∈ [r]}, where ν = |φ|, νΣ = |φΣ | and
φΣ is the redu
ed Coxeter transformation for the Eu
lidean typequiver Σ.

• κj > 0 and κj = |[s]j| for every j ∈ [r], where [s]j = {i ∈ [s] :
j(i) = j}; 
onsequently , ∑r

j=1 κj = s. Moreover , set ̺j(l, i) =
remκj

(̺j(l, i)) for any j = 1, . . . , r and (l, i) ∈ Zνj
× [s]j, where

̺j(l, i)

=





x(i)0 if l = l(i),
x(i)0 + ul(i)+1,j + · · ·+ ul,j if l > l(i),
x(i)0 + ul(i)+1,j + · · ·+ uνj ,j + u1,j + · · ·+ ul,j if l < l(i).Then

(∗) {̺j(l, i) : i ∈ [s]j} = Zκjfor every l ∈ Zνj
.(
) Set x(n, i) = τ−n(x(i)) for any pair (n, i) ∈ N× [s]. Then

x(n, i) =

{
yn⊕l(i),j(i) + ̺j(i)(n⊕ l(i), i)1 if n < νj(i),
x(remνj(i)

(n), i) + quoνj(i)
(n)κj(i)1 if n ≥ νj(i),where ⊕ denotes addition in Zνj(i)

.(d) Let x ∈ NQ0 be a ve
tor from P, and (j, l, i) ∈ [r] × Zνj
× [s]j thetriple uniquely determined by the equalities x = yl,j and ̺j(l, i) =

remκj
(x0), where Q = Qp,q,2. Then:

• x ∈ P ′ if and only if x0 ≥ ̺j(l, i).
• If x ∈ P ′ then

x =

{
x(l − l(i) + (x0 − ̺j(l, i))νj/κj , i) if l ≥ l(i),
x(l − l(i) + νj + (x0 − ̺j(l, i))νj/κj , i) if l < l(i).(e) For any m,m′ ∈ N, the inequality

∑

v∈Q0

x(n, i)v > m (resp. x(n, i)v > m′, v ∈ Q0),holds for all i ∈ Σ0 and n ≥ m/sη + ν (resp. n ≥ m′/η + ν), where
η = min{κj/νj : j ∈ [r]}.
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(f) There exists a se
tion Σ in P with the property that for any pair

x = x(n, i), y = x(n′, i′) in P ′ = P ′(Σ) su
h that x = y the followinghold :
• The inequalities n ≤ n′ and x0 ≤ y0 are equivalent.
• If n < n′ and z 6= x for all z = x(n′′, i′′) with n < n′′ < n′, then
y0 = x0 + 1.A 
omplete proof of Theorem 2.4 is given in Se
tion 5.
3. THE RESTRICTED MULTIPLICITY VECTORFOR REGULAR COMPONENTSThe �rst part of this se
tion (Subse
tions 3.1�3.3) is devoted to prepa-rations for the proof of Theorem 2.2(a+b). Subse
tions 3.4 and 3.5 
ontainthe proofs of assertions (a) and (b), respe
tively.3.1. We start by proving a useful general fa
t.

Proposition. Let k be a �eld , R,S two �nite-dimensional k-algebras ,
C a 
onne
ted 
omponent of the quiver ΓR, and let

modR
Φ
−→←−

Ψ
modSbe a pair of k-linear fun
tors su
h that Ψ is left adjoint for Φ. Assume that

Φ is exa
t and the restri
ted fun
tor Φ|add C : add C → modS �preserves theAuslander�Reiten stru
ture�, i.e.:(a) Φ(X) is inde
omposable for any inde
omposable X in add C,(b) for any inde
omposable X in add C, Φ(f) is a right (resp. left)minimal almost split homomorphism in modS provided that so is
f : Y → X (resp. f : X → Y ) in modR,(
) for any inde
omposable X in add C, Φ(X) is a simple proje
tive in
modS provided that so is X in modR.Then

m(M)Φ(X) = m(Ψ(M))Xfor any M in modS and any inde
omposable X in add C.Proof. For any nonproje
tive X in C there exists an almost split sequen
e
0→ τX →

⊕

Z∈−X

Zd′Z,X → X → 0in modR. Sin
e Φ|add C is exa
t and satis�es (a) and (b), the sequen
e
0→ Φ(τX)→

⊕

Z∈−X

Φ(Z) d′Z,X → Φ(X)→ 0
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is almost split in modS. Therefore, for any S-module M ,
m(Ψ(M))X = [Ψ(M), X] + [Ψ(M), τX]−

∑

Z∈−X

d′Z,X [Ψ(M), Z],

m(M)Φ(X) = [M,Φ(X)] + [M,Φ(τX)]−
∑

Z∈−X

d′Z,X [M,Φ(Z)]

(see formula (∗) in the Introdu
tion). Sin
e (Ψ, Φ) is a pair of adjoint fun
tors,we get m(M)Φ(X) = m(Ψ(M))X .It remains to prove the assertion for X proje
tive in C. In this 
ase thereexists a right minimal almost split homomorphism
⊕

Z∈−X

Z d′Z,X ∼= JX →֒ X

in modR. By similar arguments to those above, applying (a)�(
), we get
m(Ψ(M))X = [Ψ(M), X]−

∑

Z∈−X

d′Z,X [Ψ(M), Z]

= [M,Φ(X)]−
∑

Z∈−X

d′Z,X [M,Φ(Z)] = m(M)Φ(X)for any S-module M , and the proof is 
omplete.
Remark.(i) Let (Ψ, Φ) be as in Proposition 3.1. Then there exists a unique 
on-ne
ted 
omponent C′ in ΓS su
h that Φ(X) ∈ add C′, for any X in
C, and the indu
ed fun
tor Φ|add C : add C → add C′ is dense. More-over, the problem of determining the restri
ted multipli
ity ve
torof an S-module M for the sub
ategory add C′ ⊂ modS 
an be re-du
ed to the analogous one for the module Ψ(M) and the sub
ategory
add C ⊂ modR.(ii) Assume that there are no proje
tive (resp. inje
tive) modules in Cand, in addition, the fun
tor Φ|add C is full and faithful. Then theassertion of the proposition remains valid if instead of the assump-tion on preserving the Auslander�Reiten stru
ture, we require that
Φ(τRX) ∼= τSΦ(X) (resp. Φ(τ−1

R X) ∼= τ−1
S Φ(X)) for any inde
ompos-able module X in C. (This follows by the properties of almost splitsequen
es, in parti
ular from [2, Corollary 3.2(a)℄.)3.2. Now we introdu
e four pairs of spe
ial fun
tors whi
h satisfy theassumptions of Proposition 3.1. Given a moduleM over a domesti
 
anoni
alalgebra Λ, we use them to redu
e the problem of determining the restri
tedmultipli
ity ve
tors m(M)|C for all regular 
omponents C in ΓΛ to the anal-
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ogous one for algebras of type Ãp,q for p, q ≥ 2, in some 
ases even Ã1,1 (theKrone
ker algebra). For this 
lass of algebras, the problem is already solvedin [9℄.Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra with p, q ≥ 2. We de�nethe fun
tors

modΛp,q

Φ0−→←−
Ψ0

modΛp,q,2, modΛ2,q

Φ1−→←−
Ψ1

modΛp,q,2,

modΛq,p

Φ∞−→←−
Ψ∞

modΛp,q,2, modΛ1,1

Φ
−→←−

Ψ
modΛp,q,2.Without loss of generality, we 
an restri
t our attention to matrix represen-tations (see 1.4 for the pre
ise de�nition).For a module M given by a triple (A,B,C), with A = (Ai)i∈[p], B =

(Bi)i∈[q], and C = (Ci)i∈[2], we set
Ψ0(M) = (A,B), Ψ∞(M) = (B,A),

Ψ1(M) =(C,B′), Ψ(M) = (A,−B),where B′ = (B′
i)i∈[q] with B′

1 = −B1 and B′
i = Bi for i ≥ 2.To de�ne the remaining four fun
tors we need some extra notation. Forany D ∈ Mv×w(k) and integer i ≥ 2, we set I(i)(D) = (D1, . . . , Di), where

D1 = D and Dj = Iv for all j = 2, . . . , i. If the value of i is obvious then weomit the upper index and write simply I(D).Now, for a Λ′-module N given by the pair (A,B), where Λ′ is equal to
Λp,q, Λ2,q, Λq,p and Λ1,1, respe
tively, we set

Φ0(N) = (A,B, I(A+B)), Φ1(N) = (I(A+B), B′, A),

Φ∞(N) = (B,A, I(A+B)), Φ(N) = (I(A1), I(−B1), I(A1 −B1)),where B′ is as above.The eight mappings introdu
ed above 
an be extended to k-linear fun
-tors by de�ning their values on morphisms in an obvious way. These fun
torshave the following properties.
Lemma.(a) The fun
tors Φ1, Φ0, Φ∞, Φ are full , faithful and exa
t.(b) (Ψ0, Φ0), (Ψ1, Φ1), (Ψ∞, Φ∞), (Ψ, Φ) are pairs of adjoint k-linear fun
-tors.Proof. An easy 
he
k on the de�nitions.3.3. By Remark 3.1(ii), to apply Proposition 3.1 for regular 
omponents,it su�
es to show that the fun
tors Φ0, Φ1, Φ∞, Φ, restri
ted to appropriatesub
ategories, 
ommute with the Auslander�Reiten translate. We show this
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by proving that Φ0|add T p,q
0

, Φ1|add T 2,q
0

, Φ∞|add T q,p
0

, Φ
|add T 1,1

λ
, λ ∈ k \ {0, 1},yield, respe
tively, the equivalen
es

(∗)
add T p,q

0 ≃ add T p,q,2
0 , add T 2,q

0 ≃ add T p,q,2
1 ,

add T q,p
0 ≃ add T p,q,2

∞ , add T 1,1
λ ≃ add T p,q,2

λ , λ ∈ k \ {0, 1},of serial 
ategories, where T ′ = {T p′,q′

λ }λ∈k∪{∞}, for p′, q′ ≥ 1, denotes the1-parameter family of stable tubes of type (p′, q′), 
ontaining all regular in-de
omposable modules over the hereditary algebra Λ′ = Λp′,q′ of type Ãp′,q′ .The following fa
t plays a 
ru
ial role in the proof of (∗).
Lemma. Let Υ : modR→ modS be a full faithfull exa
t fun
tor and U(resp. U ′) a full sub
ategory of modR (resp. modS) 
losed under isomor-phisms, whi
h as an exa
t sub
ategory is a serial (and abelian) 
ategory oftype (n,∞) for some n ≥ 1. Assume that :(a) U ′ is 
losed under extensions ,(b) for any simple obje
t X in U , Υ (X) is a simple obje
t in U ′.Then Υ|U yields an equivalen
e U ≃ U ′ of abelian 
ategories. In parti
ular ,if an obje
t X in U with U-so
le X1 has U-length l then Υ (X) has U ′-length

l and its U ′-so
le is isomorphi
 to Υ (X1).Proof. We �rst prove that Υ (X) ∈ U ′ for any X in U . We apply indu
tionon l = ℓU (X). If l = 1 then the 
laim holds by (b). Assume that l ≥ 2 and the
laim holds for all X ′ in U with ℓU(X ′) < l. For any �xed X with ℓU (X) = l,there exists an exa
t sequen
e
0→ X ′ → X → X ′′ → 0in U su
h that ℓU(X ′), ℓU(X ′′) < l. Then the sequen
e

0→ Υ (X ′)→ Υ (X)→ Υ (X ′′)→ 0is exa
t in U ′, sin
e Υ is an exa
t fun
tor. The obje
ts Υ (X ′) and Υ (X ′′)belong to U ′ by the indu
tive assumption. Hen
e, by (a), so does Υ (X),and the proof of the 
laim is 
omplete. Consequently, Υ indu
es a fun
tor
Υ|U : U → U ′. We have to show that Υ|U is dense.Denote by X0, . . . , Xn−1 all (up to isomorphism) pairwise nonisomorphi
simple obje
ts in U . We 
an assume that their numbering is su
h that allpairwise nonisomorphi
 obje
ts X(s, l), s ∈ Zn, of U -length l ≥ 1 in Uare uniquely determined by 
omposition series of the form (Xs, . . . , Xs−l+1),where Xi = Xremn(i) for i ≥ n. Then applying (b) and the fa
t that Υ isfull and faithful, we infer that the obje
ts Ys := Υ (Xs), s ∈ Zn, are allnonisomorphi
 simple obje
ts in U ′. Next, we show by indu
tion on l thatthe pairwise nonisomorphi
 inde
omposable obje
ts Y (s, l) := Υ (X(s, l)),
s ∈ Zn, in U ′ have U ′-length l and are determined by 
omposition series of
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the form (Ys, . . . , Ys−l+1), s ∈ Zn, where Yi = Yremn(i) for i ≥ n. This follows,by exa
tness of Υ , from the existen
e of exa
t sequen
es

0→ X(s, 1)→ X(s, l)→ X(s⊖n 1, l − 1)→ 0,

s ∈ Zn, for any l ≥ 2. Consequently, Υ|U : U → U ′ is dense and yieldsthe required equivalen
e of abelian 
ategories. Now the �nal assertion isstraightforward.Let Λ′ = Λp′,q′ be a hereditary algebra of type Ãp′,q′ , where p′, q′ ≥ 1.As already mentioned, the regular Λ-modules form a 1-parameter family
T ′ = {T p′,q′

λ }λ∈k∪{∞} of stable tubes of type (p′, q′) and ea
h of the 
ategories
add T p′,q′

λ , λ ∈ k∪{∞}, is serial of type (nλ,∞), where nλ is the rank of T p′,q′

λ .Assume that T p′,q′

0 , T p′,q′
∞ and T p′,q′

λ , λ ∈ k\{0}, are stable tubes of rank p, qand 1, respe
tively. Below we list all, 
onse
utive with respe
t to the �
y
li
order�, regular simple modules from the mouth of ea
h tube T p′,q′

λ , a

ordingto the 
onvention of 1.3. The list yields the en
odings of all inde
omposableregular Λ′-modules given by tubular 
oordinates.We set:
X(T p′,q′

0 , 0, 1) =
k

���
0

0 -0 . . . -0 0
@@R

0

-
1

k -
1

. . . -
1

k -
1

kand X(T p′,q′

0 , s, 1) = S(as) for s ∈ Zp′ \ {0}, where X(T p′,q′

0 , s′, l) is themodule in the tube T p′,q′

0 
orresponding to the vertex (s′, l) ∈ T (p′)0 for all
s′ ∈ Zp′ and l ≥ 1;

X(T p′,q′
∞ , 0, 1) =

k
���
1

k -1 . . . -1 k
@@R

1

-
0

0 -
0

. . . -
0

0 -
0

kand X(T p′,q′
∞ , s, 1) = S(bs) for s ∈ Zq′ \ {0}, where X(T p′,q′

∞ , s′, l) is themodule in the tube T p′,q′
∞ 
orresponding to the vertex (s′, l) ∈ T (q′)0 for all

s′ ∈ Zq′ and l ≥ 1.To �x a pre
ise list of regular simple Λ′-modules lying in homogeneoustubes, we simply give a des
ription of all inde
omposable regular modulesfrom tubes T p′,q′

λ , λ ∈ k \ {0}, of rank 1. We set
X(Tλ, 0, l) =

kl
���

Jl(λ) kl -Il . . . -Il
kl

@@R
Il

-
Il

kl -
Il

. . . -
Il

kl -
Il

klwhere X(T p′,q′

λ , 0, l) is the module of add T p′,q′

λ -length l in the tube T p′,q′

λ forall l ≥ 1.
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Further on, for λ ∈ k\{0}we use the abbreviated notationXp′,q′(λ, s, l) =

X(T p′,q′

λ , s, l) for λ = 0,∞, and Xp′,q′(λ, l) = X(T p′,q′

λ , 0, l) for λ ∈ k \ {0}.
Corollary.(a) The fun
tors Φ0|add T p,q

0
, Φ1|add T 2,q

0
, Φ∞|add T q,p

0
, Φ|add T 1,1

λ
yield theequivalen
es (∗).(b) We have the isomorphisms(i) Φ0(X

p,q(0, s, l)) ∼= X(0, s, l),(ii) Φ1(X
2,q(0, s′, l)) ∼= X(1, s′, l),(iii) Φ∞(Xq,p(0, s′′, l)) ∼= X(∞, s′′, l),(iv) Φ(X1,1(λ, l)) ∼= X(λ, l)for all s ∈ Zp, s′ ∈ Z2, s′′ ∈ Zq, l ≥ 1 and λ ∈ k \ {0, 1}.Proof. The fun
tors Φ0, Φ1, Φ∞, Φ and the pairs (add T p,q

0 , add T p,q,2
0 ),

(add T 2,q
0 , add T p,q,2

1 ), (add T q,p
0 , add T p,q,2

∞ ), (add T 1,1
λ , add T p,q,2

λ )λ∈k\{0,1} ofserial sub
ategories of the respe
tive module 
ategories satisfy the �rst as-sumptions and 
ondition (a) of Lemma 3.3 (see Lemma 3.2(a) and [22, 23℄).It is easy to 
he
k that for l = 1, the isomorphisms (i)�(iv) hold trivially(they are in fa
t equalities), so (b) is also satis�ed for ea
h of the four fun
-tors. Consequently, (a) holds automati
ally by Lemma 3.3. Assertion (b)follows immediately from the �nal assertion of Lemma 3.3 and the de�nitionof tubular 
oordinates.
Remark.(i) By the de�nition of the fun
tor Φ, the Λp,q,2-modules X(λ, l) in thehomogeneous tubes T p,q,2

λ , λ ∈ k \ {0, 1}, have the form
X(λ, l) = kl

���
Jl(λ)

kl -Il . . . -Il
kl

@@R
Il

-−Il
kl -Il . . . -Il kl -Il kl

PPPPPqJl(λ − 1)
kl

�����1
Il(see also [18℄). The formulas for the remaining inde
omposable regu-lar modules from the tubes T p,q,2

0 , T p,q,2
1 and T p,q,2

∞ do not have su
hregular shape but of 
ourse 
an be re
onstru
ted, by applying thefun
tors Φ0, Φ1 and Φ∞ and the des
ription of regular nonhomoge-neous modules over hereditary algebras Λ′ of type Ãp′,q′ in terms ofwalks in the quiver Qp′q′ (see for example [9℄).(ii) The fun
tor Φ∞ indu
es a homomorphism
ϕ∞ : K(Λq,p)→ K(Λp,q,2)of Grothendie
k groups, given by [M ] 7→ [Φ∞(M)] forM in modΛq,p.Applying only additivity of the dimension ve
tor on exa
t sequen
es,



248 P. DOWBOR AND A. MRÓZ
exa
tness of Φ∞ and the isomorphisms (i)�(iv) for l = 1, one 
aneasily obtain the formula ϕ∞([Xq,p(s, l)]) = [X(∞, s, l)] for all s ∈ Zqand l ≥ 1. Consequently,

Φ∞(Xq,p(0, s, l)) ∼= X(∞, s, l)for all s ∈ Zq and l su
h that q ∤ l, sin
e the modules X(∞, s, l) areuniquely determined by their dimension ve
tors in this 
ase (see [23℄).It remains to de�ne an analogous isomorphism in 
ase q | l. The sit-uation for the fun
tors Φ0|add T p,q
0

and Φ1|add T 2,q
0

is analogous.3.4. Proof of Theorem 2.2(a). The pairs of fun
tors (Ψ0, Φ0),(Ψ1, Φ1),
(Ψ∞, Φ∞), (Ψ, Φ) satisfy the assumptions of Proposition 3.1 (see Lemma 3.2,Corollary 3.3 and Remark 3.1(ii)). Thus, the following formulas hold:
(∗)

m(M)[0,s,l] = m(Ψ0(M))Xp,q(0,s,l),

m(M)[1,s′,l] = m(Ψ1(M))X2,q(0,s′,l),

m(M)[∞,s′′,l] = m(Ψ∞(M))Xq,p(0,s′′,l),

m(M)[λ,l] = m(Ψ(M))X1,1(λ,l),for all s ∈ Zp, s′ ∈ Z2, s′′ ∈ Zq, l ≥ 1 and λ ∈ k \ {0, 1}.Following the notation introdu
ed in [9℄, for any p′, q′ ≥ 1, s ∈ Zp′ and
l ≥ 1, there exist i ∈ {2, . . . , p′ + 1}, j ∈ Zp′ and n ≥ 0 su
h that aninde
omposable module Xp′,q′(0, s, l) is given by the walk w(i, j,−1) = αi,jor w(i, j, n) = αi,p′(β

−1α)nβ−1α1,j in the quiverQp′,q′ , where αp′+1,p′ = (∞),
αi+1,i = (ai), α1,0 = (0) are trivial walks in Qp′,q′ (see [9℄ for details).Applying simple indu
tion, one 
an show the equality

(i, j, n) = µp′(s, l),where µp′ is the indexing map de�ned in 2.2. Now, given a Λp′,q′-module
M de�ned by the pair (A,B), A = (Ai)i∈[p′], B = (Bi)i∈[q′], and integers
s ∈ Zp′ , m ≥ 1, we have
(∗∗) [M,Xp′,q′(0, s, l)] = corMi,j,n(B,A),where (i, j, n) = µp′(s, l) (see [9, Lemma 5.6℄). Moreover, for any s ∈ Zp′ and
l ≥ 1 we have the formula
(∗∗∗) m(M)Xp′,q′(0,s,l)

= [M,Xp′,q′(0, s, l)]− [M,Xp′,q′(0, s⊖p′ 1, l − 1)]

− [M,Xp′,q′(0, s, l + 1)] + [M,Xp′,q′(0, s⊖p′ 1, l)],where Xp′,q′(0, s, 0) = 0 (see [9, Corollary 5.3℄).Now we 
an 
omplete the proof. Combining formulas (∗∗∗) and (∗∗), for
(p′, q′) equal to (p, q), (2, q) and (q, p), respe
tively, with (∗), we obtain (i),
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(ii), (iii) of Theorem 2.2(a). Formula (iv) holds by analogous arguments andthe equality
[M,X1,1(λ, l)] = corMl

λ(A1,−B1)for any λ ∈ k \ {0, 1}, l ≥ 0 (see [9, Lemma 4.6℄).Assume now that for a Λ-moduleM the set σ(M) is known. Observe thatthe existen
e of the algorithm with the required properties follows from theformulas (∗). They redu
e the problem of determining the restri
ted multi-pli
ity ve
tors m(M)|C, for all regular 
omponents C in ΓΛ, to the analogousone for 
on
rete four modules, Ψ0(M), Ψ1(M), Ψ∞(M) and Ψ(M), over fouralgebras Λ′ of type Ãp′,q′ , and a �nite number of already determined regular
onne
ted 
omponents C′ in ΓΛ′ , for ea
h of these algebras. Following [9℄, fora Λ′-module M ′ with dimk M
′ = n′ and a regular 
omponent C′, there existsan algorithm of pessimisti
 
omplexity O(n′4) whi
h 
omputes m(M ′)|C′ .Sin
e n′ ≤ dimk M for M ′ = Ψ0(M), Ψ1(M), Ψ∞(M), or Ψ(M), the proof ofthe existen
e of the algorithm, and hen
e Theorem 2.2(a), is 
omplete.

Corollary. Let T{0,1,∞} =
⊔

λ∈k\{0,1}Tλ. Then m(M)|T{0,1,∞}
=

m(Ψ(M))|R′
{0,1,∞}

and the problem of algorithmi
 
omputing of the ve
tor
m(M)|T{0,1,∞}

, in parti
ular determining the set σ(M), is fully redu
ed to theanalogous problems for the Krone
ker algebra, Λ1,1,, for the restri
ted ve
tor
m(Ψ(M))|R′

{0,1,∞}
and the set σ(ψ(M)), where R′

{0,1,∞} =
⊔

λ∈k\{0,1}(T
1,1

λ )0and σ(ψ(M)) 
onsists of all λ ∈ k su
h that Ψ(M) 
ontains a dire
t sum-mand from add T 1,1
λ (
f. [9, Proposition 4.4 and Algorithm 4.4(3)℄).

Remark. The algorithmi
 determining of the ve
tor m(M)|Tλ
, for a�xed λ ∈ k∪{∞}, relies on an appropriate redu
tion and is des
ribed in the�nal part of the proof above. To determine the integer m(M)x, for a �xedsingle x ∈ T, we 
an apply dire
tly formulas (i)�(iv) from Theorem 2.2(a).3.5. Proof of Theorem 2.2(b). Let Λ′ = Λ1,1 = k(0 →→ ω) be the Kro-ne
ker algebra and Ψ : modΛ → modΛ′ the fun
tor de�ned in 3.2. Firstwe prove that rkP(M) is equal to the number of postproje
tive summandsin a de
omposition of the module Ψ(M) = (A,−B) into a dire
t sum ofinde
omposable Λ′-modules, where M is given by a triple (A,B,C).Denote by addP ′, addR′ and addQ′ the sub
ategories of all postproje
-tive, regular and preinje
tive modules in modΛ′, respe
tively. Re
all that thedimension ve
tor dimP ′ of an inde
omposable module P ′ in addP ′ has theform dimP ′ = [m,m+ 1] for some m ≥ 0. Denote by res : modΛ→ modΛ′the standard restri
tion fun
tor, given by res(M) = (A,B) for M as above.Let M be a �xed Λ-module given by a triple (A,B,C), and

M ∼= P ⊕R⊕Q
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a de
omposition of M with P in addP, R in addR and Q in addQ. Then,by [23, Chapter 12℄, the modules res(P ), res(R) and res(Q) belong to thesub
ategories addP ′, addR′ and addQ′, respe
tively. Observe that Ψ 
anbe presented as a 
omposite fun
tor

modΛ
res
−→ modΛ′ Θ

−→ modΛ′,where Θ is the autoequivalen
e de�ned by the formula Θ(N) = (A′,−B′)for a Λ′-module N given by the pair (A′, B′) of appropriate matri
es. Theequivalen
e Θ preserves the sub
ategories addP ′, addR′ and addQ′, sin
eit preserves the dimension ve
tors. Hen
e, Ψ(P ), Ψ(R) and Ψ(Q) belong to
addP ′, addR′ and addQ′, respe
tively. Thus, Ψ(P ) is a maximal postpro-je
tive dire
t summand of Ψ(M).Let

Ψ(P ) ∼=

t⊕

i=1

P ′
ibe a de
omposition of Ψ(P ) into a dire
t sum of postproje
tive inde
ompos-able Λ′-modules. Then

dimΨ(P ) =
t∑

i=1

[si, si + 1],where dimP ′
i = [si, si + 1] for i = 1, . . . , t; on the other hand,

dimΨ(P ) = [s, s+ r],where s = dimk P0 and r = rk(P ) = rkP(M). Consequently, t = rkP(M)and our 
laim is proved.Now we prove the remaining assertions of Theorem 2.2(b).Fix λ0 ∈ k \ {0, 1}. Then λ0 belongs to σ(M) if and only if m(M)[λ0,l] =
m(Ψ(M))X1,1(λ0,l) 6= 0 for some l ≥ 1 (see 3.4(∗)). By [9, Proposition 4.4℄and the equality t = rkP(M), this is equivalent to λ0 being a 
ommon rootof all (nω − rkP(M))-minors of the matrix A+λB, regarded as polynomialsin k[λ], and we are done.The formula for the number of inde
omposable dire
t summands of Mfrom one tube Tλ0 follows immediately, by the equality t = rkP(M), from[9, Corollary 4.4℄.Finally, the required algorithm 
omputing rkP(M) with low 
omplexity
an be obtained by applying the algorithm 
omputing the ve
tor m(N)|P ′for modules N over the Krone
ker algebra Λ′, to the module N = Ψ(M)(see [9℄). In this way the proof of Theorem 2.2(b) is 
omplete.
Remark. Suppose we want to determine the ve
torm(M)|T{0,1,∞}

. Thenwe apply the method des
ribed above. More pre
isely, we exe
ute [9, Algo-rithm 4.5(1)℄ to 
ompute m(Ψ(M))|P ′ , and hen
e the integer t, whi
h is ne
-
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essary to determine σ(Ψ(M)). Next, applying [9, Algorithm 4.5(3)℄, we 
om-pute m(Ψ(M))|R{0,1,∞}
and m(M)|T{0,1,∞}

. In 
ase the integer rkP(M) = tis already known (in parti
ular, if m(M)|P as a solution of a partial taskin determining m(M) is already 
omputed), we 
an 
learly omit 
omput-ing m(Ψ(M))|P ′ and pass at on
e to further steps of the pro
edure (
f.Remark 6.2(
)). One should stress that the algorithm 
omputing m(M)|P,
onstru
ted in Se
tion 6, has the same 
omplexity, O(n4), as [9, Algo-rithm 4.5(1)℄, but it is mu
h more 
ompli
ated and uses rather deep knowl-edge of postproje
tive inde
omposable modules over domesti
 
anoni
al al-gebras.
4. COMPUTING THE INTEGERS h(M)d, d ∈ PThis se
tion is devoted to the proof of Theorem 2.3.4.1. We start with some general observation.LetM,N be modules over some lo
ally bounded 
ategory R (i.e. k-linearfun
tors from R to mod k). Assume that there exists a full sub
ategory R′ of

R su
h that for every x ∈ obR \ obR′ there exists a morphism α ∈ R(x, y),for some y ∈ obR′, su
h that N(α) : N(x) → N(y) is a monomorphism.Then the linear map
ι = ιR′

M,N HomR(M,N)→ HomR′(M|R′ , N|R′)indu
ed by the standard restri
tion fun
tor res : modR → modR′ is amonomorphism.We pre
isely des
ribe the image of ι in some parti
ular situations. Forthis we need some extra notation.Following [18℄, for any r ≥ s we 
onsider the blo
k matri
es
Xr,s =

[
Is

0

] and Yr,s =

[
0

Is

]

in Mr×s(k), where 0 denotes the zero matrix in M(r−s)×s(k).
Lemma.(a) Let Λ = Λ1,1,2 and M,M ′ be �nite-dimensional Λ-modules of di-mension ve
tors n, n′, whi
h are given by the triples (A,B,C) and

(A′, B′, C ′), respe
tively. Assume that C ′
2 : kn′

c1 → kn′
ω is a monomor-phism and D2 ∈ Mn′

c1
×n′

c1
(k) is invertible, where C ′

2 =
[

D1

D2

]
∈

Mn′
ω×n′

c1
(k), D1 ∈ M(n′

ω−n′
c1

)×n′
c1

(k). Then ιΛ
′

M,M ′ , for Λ′ = Λ1,1,yields a k-isomorphism
HomΛ(M,M ′)∼={(y, x)∈HomΛ′(M|Λ′ ,M ′

|Λ′) :x(1)C2 =D1D
−1
2 x(2)C2},
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where (y, x) ∈ Mn′

0×n0
(k) ×Mn′

ω×nω
(k) and x =

[
x(1)

x(2)

] with x1 ∈

M(n′
ω−n′

c1
)×nω

(k) and x2 ∈Mn′
c1

×nω
(k).(b) Let Λ = Λp,q and M,M ′ be �nite-dimensional Λ-modules of dimen-sion ve
tors n, n′, whi
h are given by the pairs (A,B) and (A′, B′),respe
tively. Assume that gr(n′) ∈ N(Qp,q)1 , all the matri
es A′

i areof the form X∗,∗ and all the matri
es B′
j are of the form Y∗,∗. Then

ιΛ
′

M,M ′ , for Λ′ = kω( = k), yields a k-isomorphism
HomΛ(M,M ′)∼=




x =




x1...
xn′

ω


 ∈Mn′

ω×nω
(k) : [x1| . . . |xn′

ω
] ·W = 0




,

where W = W (A,B, n′) (see 2.3).Proof. (a) We start by proving that a triple (y, x, u) ∈ Mn′
0×n0

(k) ×

Mn′
ω×nω

(k)×Mn′
c1

×nc1
(k) belongs to HomΛ(M,M ′) if and only if it satis�esthe system of three matrix equations:





(i) xA1 = A′
1y,

(ii) xB1 = B′
1y,

(iii) xC2 = C ′
2u.Fix (y, x, u) satisfying (i)�(iii). We have to show that for (y, x, u) also

(iv) uC1 = C ′
1y.To this end we use another form of (iii), namely,

{
(iii)1 x(1)C2 = D1u,

(iii)2 x(2)C2 = D2u,obtained from (iii) by using the blo
k matrix presentations of x and C ′
2. Bythe assumptions, (iii)2 is equivalent to

(iii)′2 D−1
2 x(2)C2 = u.The relations in Λ and (i), (ii), (iii)′2 yield

uC1 = D−1
2 x(2)C2C1 = D−1

2 x(2)(A1 +B1) = D−1
2 π2x(A1 +B1)

= D−1
2 π2(A

′
1 +B′

1)y = (D−1
2 π2C

′
2)C

′
1y = C ′

1y,where π2 = [0 | In′
c1

] ∈Mn′
c1
×n′

ω
(k). Consequently, the 
laim is proved.Now we show (a). By the above we have

HomΛ(M,M ′) = {(y, x, u) : (i), (ii), (iii)1, (iii)
′
2}.Observe that subtra
ting from (iii)1 equation (iii)′2 multiplied by D1 fromthe left, we obtain a new system ((iii)′1, (iii)

′
2), equivalent to ((iii)1, (iii)

′
2),
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where
(iii)′1 D1D

−1
2 x(2)C2 = x(1)C2.Moreover, by the shape of (iii)′2, the proje
tion (y, x, u) 7→ (y, x) yields a

k-isomorphism
HomΛ(M,M ′) ∼= {(y, x) ∈Mn′

0×n0
(k)×Mn′

ω×nω
(k) : (i), (ii), (iii)′1}.In this way the proof of (a) is 
omplete.(b) To show the required isomorphism, we interpret HomΛ(M,M ′) as theset of all tuples

ϕ = (y, v(1), . . . , v(p−1), w(1), . . . , w(q−1), x)in
Mn′

0×n0
(k)×

p−1∏

i=1

Mn′
ai
×nai

(k)×

q−1∏

i=1

Mn′
bj
×nbj

(k)×Mn′
ω×nω

(k)satisfying a system (v) = ((v)α1
, . . . , (v)αp

; (v)β1
, . . . , (v)βq

) of p + q matrixequations, given by the 
ommutativity of stru
ture maps in M and M ′ 
or-responding to all arrows of Qp,q, with the 
omponents of ϕ 
orrespondingto the appropriate verti
es of Qp,q,. To better understand the system (v),we present ea
h 
oordinate of ϕ in blo
k matrix form given by rows, in thefollowing way:
y =




y1...
yn′

0


 , v(i) =




v
(i)
1...
v

(i)
n′

ai


 , w(j) =




w
(j)
1...

w
(j)
n′

bj


 , x =




x1...
xn′

ω


 ,

where i = 1, . . . , p− 1 and j = 1, . . . , q − 1. Then, by applying the formulasde�ning the matri
es A′
i and B′

j , the system (v) has the form
(v)′α1

:




v
(1)
1...

v
(1)
n′

a1


 A1 =




y1...
yn′

0

0...
0




, (v)′β1
:




w
(1)
1...

w
(1)

n′
b1


 B1 =




0...
0

y1...
yn′

0




,

(v)′α2
:




v
(2)
1...

v
(2)
n′

a2


 A2 =




v
(1)
1...

v
(1)
n′

a1

0...
0




, (v)′β2
:




w
(2)
1...

w
(2)

n′
b2


 B2 =




0...
0

w
(1)
1...

w
(1)

n′
b1




,

... ...
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(v)′αp−1

:




v
(p−1)
1 ...

v
(p−1)
n′

ap−1


 Ap−1 =




v
(p−2)
1 ...

v
(p−2)
n′

ap−2

0...
0




, (v)′βq−1
:




w
(q−1)
1 ...

w
(q−1)

n′
bq−1




Bq−1 =




0...
0

w
(q−2)
1 ...

w
(q−2)

n′
bq−2




,

(v)′αp
:




x1...
xn′

ω


 Ap =




v
(p−1)
1 ...

v
(p−1)
n′

ap−1

0...
0




, (v)′βq
:




x1...
xn′

ω


 Bq =




0...
0

w
(q−1)
1 ...

w
(q−1)

n′
bq−1




,

Ea
h of the above equations 
an be written in the form [
(v)′αi,1

(v)′αi,2

] (resp.[
(v)′βj,1

(v)′βj,2

]), where the divisions are indi
ated by horizontal lines in the ve
-tors on the right hand sides. Now we indu
tively transform the systems
(v)′α = ((v)′α1

, . . . , (v)′αp
) and (v)′β = ((v)′β1

, . . . , (v)′βq
), separately, to equiv-alent systems (v)′′α = ((v)′′α1

, . . . , (v)′′αp
) and (v)′′β = ((v)′′β1

, . . . , (v)′′βq
) of asimpler form, in the following way.We start with (v)′α and set (v)′′αp

= (v)′αp
. Assume that (v)′′αi

for 1< i≤ pis already 
onstru
ted. Then we de�ne (v)′′αi−1
as the sum of (v)′αi−1

and
(v)′′αi,1

multiplied from the right by the matrix Ai. The resulting system (v)′′α,
onsisting of n′a1
+ · · ·+ n′ap−1

+ n′ω equations, looks as follows:
(v)′′α1

:





x1Ap,1 = y1,

· · · · · · · · · · · · · · ·

xn′
0
Ap,1 = yn′

0
,

xn′
0+1 Ap,1 = 0,

· · · · · · · · · · · · · · ·

xn′
a1

Ap,1 = 0,

(v)′′α2
:





x1Ap,2 = v
(1)
1 ,

· · · · · · · · · · · · · · ·

xn′
a1

Ap,2 = v
(1)
n′

a1

,

xn′
a1

+1 Ap,2 = 0,

· · · · · · · · · · · · · · ·

xn′
a2

Ap,2 = 0,...
(v)′′αp−1

:





x1Ap,p−1 = v
(p−2)
1 ,

· · · · · · · · · · · · · · · · · ·

xn′
ap−2

Ap,p−1 = v
(p−2)
n′

ap−2

,

xn′
ap−2+1

Ap,p−1 = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ap−1

Ap,p−1 = 0,

(v)′′αp
:





x1Ap = v
(p−1)
1 ,

· · · · · · · · · · · · · · ·

xn′
ap−1

Ap = v
(p−1)
n′

ap−1

,

xn′
ap−1+1

Ap = 0,

· · · · · · · · · · · · · · ·

xn′
ω

Ap = 0.Similarly we pro
eed with (v)′β. We set (v)′′βq
= (v)′βq

. Assume that (v)′′βj
,for 1 < j ≤ q, is already 
onstru
ted. Then we de�ne (v)′′βj−1

to be the sum of
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(v)′βj−1
and (v)′′βj,2

multiplied from the right by the matrix Bj . The resultingsystem (v)′′β, 
onsisting of n′b1 + . . .+ n′bq−1
+ n′ω equations, looks as follows:

(v)′′β1
:






xn′
ω−n′

b1
+1Bq,1 = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ω−n′

0
Bq,1 = 0,

xn′
ω−n′

0+1Bq,1 = y1,

· · · · · · · · · · · · · · · · · ·

xn′
ω

Bq,1 = yn′
0
,

(v)′′β2
:






xn′
ω−n′

b2
+1 Bq,2 = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ω−n′

b1
Bq,2 = 0,

xn′
ω−n′

b1
+1Bq,2 = w

(1)
1 ,

· · · · · · · · · · · · · · · · · ·

xn′
ω

Bq,2 = w
(1)

n′
b1

,...
(v)′′βq−1

:





xn′
bω

−n′
bq−1

+1Bq,q−1 = 0,

· · · · · · · · · · · · · · · · · · · · · · · ·

xn′
bω

−n′
bq−2

Bq,q−1 = 0,

xn′
bω

−n′
bq−2

+1Bq,q−1 = w
(q−2)
1 ,

· · · · · · · · · · · · · · · · · · · · · · · ·

xn′
ω

Bq,q−1 = w
(q−2)

n′
bq−2

,

(v)′′βq
:





x1Bq = 0,

· · · · · · · · · · · · · · · · · ·

xn′
ω−n′

bq−1

Bq = 0,

xn′
ω−n′

bq−1
+1 Bq = w

(q−1)
1 ,

· · · · · · · · · · · · · · · · · ·

xn′
ω

Bq = w
(q−1)

n′
bq−1

.Now we 
omplete the proof. It is easily seen that the proje
tion
(y, v(1), . . . , v(p−1), w(1), . . . , w(q−1), x) 7→ x =




x1...
xn′

ω


yields a k-isomorphism

HomΛ(M,M ′) ∼=





x =




x1...
xn′

ω


 ∈Mn′

ω×nω
(k) : (∗)





,where (∗) denotes system

((v)′′α1,2, . . . , (v)′′αp,2; (v)′′β1,1, . . . , (v)′′βq ,1; (v)′′α1,1 − (v)′′β1,2).Note that the matrix of (∗) is W , on
e we interpret x ∈Mn′
ω×nω

(k) as a rowve
tor [x1 | . . . |xn′
ω
] ∈ M1×nωn′

ω
(k). In this way the proof of assertion (b),and of the whole lemma, is 
omplete.4.2. Now we prove an important fa
t 
on
erning spe
ial homomorphismspa
es for modules over domesti
 
anoni
al algebras.

Proposition. Let Λ = Λp,q,2, p, q ≥ 2, and M,M ′ be �nite-dimensional
Λ-modules of dimension ve
tors n, n′, whi
h are given by the triples (A,B,C)and (A′, B′, C ′), respe
tively. Assume that C ′

2 and (A′, B′) satisfy the as-sumptions of (a) and (b) of Lemma 4.1, respe
tively. Then
[M,M ′] = cor[W |W ′],where W = W (A,B, n′|(p,q)) and W ′ =

[
−In′

ω−n′
c1

(D1D−1
2 )t

]
⊗ C2.
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Proof. Consider the 
ommutative diagram

H
ι′2−→ H2yι′1

yι2

H1
ι1−→ H3

ι3−→ H4
∼= Mn′

ω×nω
(k)of k-ve
tor spa
es, where H = HomΛ(M,M ′), H1, H2, H3, H4 stand for thehomomorphism spa
es HomΛ′(M|Λ′ ,M ′

|Λ′) for Λ′ = Λp,q, Λ1,1,2, Λ1,1, kω, re-spe
tively, and ι′1, ι′2, ι1, ι2, ι3 denote the maps given by the respe
tive restri
-tions. Observe that by the introdu
tory remark in 4.1 and the assumptionson M ′ all �ve homomorphisms in the diagram are monomorphisms. More-over, it is easily seen that the pair (ι′1, ι
′
2) indu
es a k-isomorphism

H ∼= H1 ⊓H3 H2,where H1 ⊓H3 H2 is the �bre produ
t of H1 and H2 along the pair (ι1, ι2) ofhomomorphisms. Consequently, the monomorphisms ι1 ◦ ι′1 (= ι2 ◦ ι
′
2) and ι3yield a k-isomorphism

H ∼= Im ι1 ∩ Im ι2 ∼= Im(ι3 ◦ ι1) ∩ ι3(Im ι2).Hen
e, by Lemma 4.1,
H ∼= {x ∈Mn′

ω×nω
(k) : [x1 | . . . |xn′

ω
] ·W = 0; D1D

−1
2 x(2)C2 = x(1)C2}.Note that the se
ond equation, as a matrix equation in M(n′

ω−n′
c1

)×nc1
(k),looks as follows:

[−In′
ω−n′

c1
|D1D

−1
2 ] ·

[
x(1)

x(2)

]
· C2 = 0.By the lemma below, it is equivalent to the equation

[x1| . . . |xn′
ω
] ·

([
−In′

ω−n′
c1

(D1D
−1
2 )t

]
⊗ C2

)
= 0

in M1×(n′
ω−n′

c1
) nc1

(k). This �nishes the proof.
Lemma. For any P ∈ Mm1×m(k), x ∈ Mm×n(k) and Q ∈ Mn×n2(k),

PxQ = 0 in Mm1×n2(k) if and only if [x1| . . . |xm] · (P t ⊗ Q) = 0 in
M1×m1n2(k), where x1, . . . , xm ∈M1×n(k) are the rows of x.Proof. An easy 
he
k on de�nitions.4.3. Let Z ∈ Mr×s(k). Following [18℄, for any n ∈ N, we denote by
Z[n] the nth enlargement of Z. Re
all that Z[n] ∈ M(r+n)×(s+n)(k) is
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given by
Z[n] =




Z
1 . . .

0

1 1. . .
1




,

where all entries o� the two diagonals of length n (
onsisting of ones) arezeros. We set Z(0) = Z.Assume now that r ≥ s. Then Z 
an be written in the form
Z =

[
Z1

Z2

]
,where Z1 ∈M(r−s)×s(k) and Z2 ∈Ms×s(k). Analogously, for any n ∈ N,

Z[n] =

[
Z[n]1

Z[n]2

]
,where Z[n]1 ∈ M(r−s)×(n+s)(k) and Z[n]2 ∈ M(n+s)×(n+s)(k). Observe that

Z[n]2 is a blo
k upper triangular matrix, so Z[n]2 is invertible if and only if
Z2 is.
Lemma. Let Z ∈Mr×s(k), r ≥ s, be su
h that Z2 is invertible. Then forany n ∈ N, we have the equality

[−Ir−s |Z[n]1Z[n]−1
2 ] = [−Ir−s |U ](∞|n+r)of matri
es in M(r−s)×(n+r)(k), where U = Z1Z

−1
2 ∈M(r−s)×s(k).Proof. Re
all that the matrix [−Ir−s |U ](∞|n+r) ∈ M(r−s)×(n+r)(k) is byde�nition given by the formula

[−Ir−s |U ](∞|n+r) = ([−Ir−s |U ](i))|n+r,where (i− 1)r ≥ n, and [−Ir−s |U ](i) ∈M(r−s)×ir(k) has the form
[−Ir−s |U ](i) = [Ir−s |U | Ir−s | −U | − Ir−s |U | . . .].Fix n ≥ 1 and set, for simpli
ity, Z̃1 = Z[n]1 and Z̃2 = Z[n]2. To showthe assertion we have to 
ompute the matrix Z̃1Z̃

−1
2 . To this end, we write

Z̃1 ∈M(r−s)×(n+s)(k) and Z̃2 = M(n+s)×(n+s)(k) in blo
k matrix form
Z̃1 = [Z1 | Ir−s | 0] and Z̃2 =

[
Z2 Z ′

2

0 Z ′′
2

]
,
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where Z ′

2 ∈Ms×n(k) and Z ′′
2 ∈Mn×n(k). Here

Z ′
2 = [0r−s | Is | 0] and Z ′′

2 = In +N r,where 0r−s ∈ Ms×(r−s)(k) is the zero matrix and N = Jn(0) ∈ Mn×n(k) isthe (nilpotent) upper triangular Jordan blo
k with eigenvalue 0.The matrix Z ′′
2 is 
learly invertible. We 
laim that its inverse is

Z ′′
2
−1

=

∞∑

i=0

(−1)iN ir.Sin
e the mapping T 7→ N yields an algebra isomorphism between the trun-
ated polynomial algebra k[T ]/(Tn) and the subalgebra k[N ] ⊆ Mn×n(k),where T = T + (Tn), the 
laim follows from the fa
t that the inverse of theinvertible element 1 + T r ∈ k[T ]/(Tn) is equal to ∑∞
i=0(−1)i T ir.Next observe that Z̃2 is a blo
k upper triangular matrix, so the inverseof Z̃2 has the form

Z̃−1
2 =

[
Z−1

2 −Z−1
2 Z ′

2 Z
′′
2
−1

0 Z ′′
2
−1

]
.Consequently,

Z̃1Z̃
−1
2 = [Z1Z

−1
2 | −Z1Z

−1
2 Z ′

2 Z
′′
2
−1

+ [Ir−s | 0]Z ′′
2
−1

],Moreover, applying the formula for Z ′′
2
−1, we have

−Z1Z
−1
2 Z ′

2 Z
′′
2
−1

= −Z1Z
−1
2 ([0r−s | Is | 0]Z ′′

2
−1

)

= −Z1Z
−1
2 [0r−s | Is | −0r−s | −Is | . . .]

= [0r−s | −Z1Z
−1
2 | −0r−s |Z1Z

−1
2 | . . .]and

[Ir−s | 0]Z ′′
2
−1

= [Ir−s | 0s | −Ir−s | 0s | . . .],where 0s ∈ M(r−s)×s(k) is the zero matrix. Now inserting these two �nalformulas into that for Z̃1Z̃
−1
2 , we immediately obtain the assertion.Let Λ = Λp,q,2, Z ∈ Mr×s(k), r > s, and let d ∈ N(Qp,q,2)0 be a ve
torsu
h that d0 = 0, dc1 = s, dω = r, gr(d) ∈ N(Qp,q,2)1 . Then for any l ∈ N, wedenote by d[l] the ve
tor

d[l] = d+ l · 1and by N [l] the Λ-module
N [l] = N(Z, d, l)of dimension ve
tor d[l], given by the triple (A′, B′, C ′), where A′

i = X∗,∗ for
i = 1, . . . , q, B′

j = Y∗,∗ for j = 1, . . . , q, C ′
1 = Ydc1+l,l and C ′

2 = Z[l]. (Notethat N [l] is really a Λ-module).
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Remark. If Λ = Λp,q,2 is a domesti
 
anoni
al algebra then the mapping
(l, d) 7→ d[l] yields the inverse of the map whi
h de�nes the bije
tion (ii) inLemma 2.3(a).As an immediate 
onsequen
e of Proposition 4.2 and Lemma 4.3 we ob-tain the following.
Corollary. Let Z and d be as above. Assume that Z2 ∈ Ms×s(k) isinvertible, where Z =

[
Z1

Z2

]. Then for any integer l ∈ N and Λ-module M ofdimension ve
tor n, given by the triple (A,B,C), we have
[M,N [l]] = cor

[
W (A,B, d[l]|(p,q))

∣∣∣∣
[
−Ir−s

U

]

(∞|l+r)

⊗ C2

]
,where U = (Z1Z

−1
2 )t.4.4. Proof of Theorem 2.3. Let d ∈ P. Then 
learly d = d [d0] and gr(d) ∈

N(Qp,q,2)1 . Applying the results of [18, 15℄, we know that, if rγ2(d) ≥ 1 (whi
hholds always if rk(d) ≥ 2), then the unique inde
omposable postproje
tive Λ-module Pd, with dimension ve
tor d = d [d0], 
an be represented in the form
Pd = N [d0], N [d0] = N(Z(d), d, l), where Z(d) ∈ Mdω×dc1

(k) is uniquelydetermined by d. Moreover, the set
Z = {Z : ∃e∈P, rγ2(e)≥1 Z = Z(e)}is �nite and it is des
ribed by two tables; the �rst from [18℄ for the 
ase asin Theorem 2.3(b), and the se
ond from [15℄ for the 
ase as in (
) (for e with

rk(e) = 1 and rγ2(e) = 1, Z(e) is a trivial matrix in M1×0(k)).One 
an easily 
he
k, by inspe
tion, that ea
h Z ∈ Z has the propertythat the matrix Z2 ∈ Mdc1×dc1
(k) is invertible, where Z = Z(d) and Z =

[
Z1

Z2

] with Z1 ∈M(dω−dc1)×dc1
(k).Now we 
omplete the proof. For any d ∈ P su
h that rγ2(d) ≥ 1, weset U(d) = (Z1Z

−1
2 )t, where Z ∈ Z is su
h that Z = Z(d). Then the �rstassertion of Theorem 2.3, for d ∈ P as above, follows immediately fromCorollary 4.3. We still have to dis
uss the 
ase of d ∈ P su
h that rγ2(d) = 0(and then rk(d) = 1). Note that by Proposition 4.2, the formula for h(M)dholds trivially in this 
ase, sin
e following [18℄ the unique inde
omposablepostproje
tive Λ-module Pd with dimPd = d is given by the triple (A′, B′, C ′)su
h that A′

i = X∗,∗ for i ∈ [p], B′
j = Y∗,∗ for j ∈ [q], C ′

1 = Xdc1 ,d0 + Ydc1 ,d0and C ′
2 = Idc1

∈Mdω×dc1
(k) (noti
e that rγ2(d) = dω − dc1 = 0).Now the remaining assertion, in parti
ular Tables 1 and 2, 
an be ob-tained from the two tables in [18, 15℄ mentioned above by 
omputing thematri
es U(d) from the de�nition. In this way the proof of Theorem 2.3 is
omplete.
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5. THE STRUCTURE OF THE SET PThis se
tion is mainly devoted to the proof of Theorem 2.4. To do thiswe need some preparatory fa
ts. The proof will be 
ompleted in 5.6. We alsode�ne a linear order relation ≺ ⊂ P0×P0 to be applied in the next se
tion.5.1. Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra, Σ a se
tion in thetranslation quiver P = P(Λ), and P0 = P0

0 ∪ P ′
0, P0 = P0(Σ), P ′ =P ′(Σ) = −NΣ, be a splitting of P indu
ed by Σ (see 2.4 for de�nitionsand identi�
ations). Denote by P ′′ the full subquiver of P ′ with vertex setP ′′

0 = {(−n, x) ∈ −NΣ : n 6= 0}. We start by proving the following propertyof the Auslander�Reiten translate τ .
Lemma. Let x ∈ P.(a) If x ∈ P ′ then τ−1x = φ−1(x).(b) If x ∈ P ′′ then τx = φ(x).Proof. (a) Let X be an inde
omposable postproje
tive module with

dimX = x ∈ P ′
0. From Theorem 1.5(
) we have HomΛ(D(ΛΛ), X) = 0.Moreover, HomΛ(τ−1X,Λ) = 0, sin
e the 
omponent P is standard, and bythe de�nition of se
tion, there is no proje
tive Λ-module P with dimP ∈ P ′′

0(see [22, 2℄). The last equality is equivalent to the fa
t that inj.dimX ≤ 1,so (a) now follows easily (see [22, 2.4.1∗, 2.4.4∗℄).(b) Let X be an inde
omposable postproje
tive module with dimX
= x ∈ P ′′

0 . By similar arguments, we have the equalities HomΛ(X,Λ) = 0and HomΛ(D(ΛΛ), τX) = 0. The last equality is equivalent to the fa
t that
pd.dim.X ≤ 1 and thus we get (b) (see [22, 2.4.1, 2.4.4℄).Let Σ0 = {x(1), . . . , x(s)}. For any (n, i) ∈ N × [s], we set x(n, i) =
τ−n(x(i)) (we assume τ0(x(i)) = x(i)). Note that the root x(n, i) ∈ P ′

0
orresponds to (−n, x(i)) ∈ −NΣ. Moreover, by the lemma above we 
learlyhave x(n, i) = φ−n(x(i)) and x(n′ + n, i) = φ−n′
(x(n, i)) for all n, n′ ∈ N,

i ∈ [s].5.2. The following fa
t is 
ru
ial for the proof that the 
y
li
 group
G = (φ) is �nite (
f. [8℄ and [23℄, see also [19℄).
Proposition. There exists a minimal integer ν = νΛp,q,2 su
h that

φν(x) = x+ ∂(x) · 1(and 
onsequently φ−ν(x) = x − ∂(x) · 1) for every x ∈ K0(Λ), where
∂(x) ∈ Z. The map ∂ = ∂Λ : K0(Λ)→ Z (
alled the defe
t) is a Z-homomor-phism su
h that ∂(x) < 0 for any x ∈ P. The integer ν equals 2p (resp. p)if q = 2 and p is odd (resp. even); it equals 6, 12 or 30 if the pair (p, q) isequal to (3, 3), (4, 3) or (5, 3), respe
tively.
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Proof. As already mentioned, Λ = Λp,q,2 is a tilted algebra of a hereditaryalgebra Λ′′ = kQ′′ of Eu
lidean type, where Q′′ is a quiver of type D̃p+2, Ẽ6,
Ẽ7, Ẽ8 if the pair (p, q) is equal to (p, 2), (3, 3), (4, 3), (5, 3), respe
tively,with p ≥ 2. (We 
an set Q′′ = Σ, where Σ is any se
tion in P.)It is well known [8, 23℄ that the radi
al rad q′′ of the quadrati
 form
q′′ = qQ′′ asso
iated to Q′′ has the des
ription rad q′′ = Z · hQ′′ , where h =

hQ′′ ∈ NQ′′
0 is the ve
tor uniquely determined by Q′′, with all 
omponentspositive and at least one of them equal to 1. Moreover, let φ′′ = φΛ′′ :

K0(Λ
′′) → K0(Λ

′′) be the Coxeter transformation for Λ′′. Then φ′′(h) = hand there exists a minimal integer ν ′′ = νQ′′ su
h that (φ′′)ν ′′
(x) = x +

∂′′(x) · h and (φ′′)−ν ′′
(x) = x − ∂′′(x) · h for every x ∈ K0(Λ

′′), where
∂′′(x) ∈ Z. The map ∂′′ = ∂Λ′′ : K0(Λ

′′) → Z is a Z-homomorphism su
hthat ∂′′(dimP ′′) < 0 for any inde
omposable postproje
tive Λ′′-module P ′′.The integer ν ′′ = νQ′′ is equal to 2p (resp. to p) if Q′ is of type D̃p+2 and pis odd (resp. even); it is equal to 6, 12 or 30 if Q′′ is of type Ẽ6, Ẽ7 or Ẽ8,respe
tively.To �nish the proof re
all that by general results of tilting theory thereexists a Z-isomorphism f : K0(Λ
′′)→ K0(Λ) su
h that

q · f = q′′, φΛ = f · φΛ′′ · f−1(see [22, 4.1℄) In parti
ular, f(h) = 1. Moreover, in our 
ase, the module usedin the tilting pro
edure is postproje
tive. Hen
e, for any x ∈ P, there existsan inde
omposable postproje
tive Λ′′-module P ′′ su
h that x = f(dimP ′′).Now, by applying the properties of f , the assertions of the propositionfollow easily from the respe
tive fa
ts for Eu
lidean quivers, whi
h werementioned above.
Corollary. The following equalities hold :

ν = |φ| = ν ′′ = |φ ′′|where φ ′′ : K0(Λ′′) → K0(Λ′′) is the redu
ed Coxeter transformation for Λ′′and K0(Λ′′) = K0(Λ
′′)/rad q′′.5.3. For the proof of the equality ν = lcm{νj : j ∈ [r]} we need thefollowing lemma.

Lemma. Let Λ = Λp,q,2 be a domesti
 
anoni
al algebra, S(L) the groupof all permutations of the set L, and H = {ψ ∈ Aut(K0(Λ)red) : ψ(L) ⊂ L}.Then H is a subgroup of Aut(K0(Λ)red) and the group homomorphism R :
H → S(L), ψ 7→ ψ|L, is inje
tive.Proof. Note �rst that for any ψ ∈ Aut(K0(Λ)red) su
h that ψ(L) ⊂ L, wehave ψ(L) = L, so ψ−1(L) ⊂ L, sin
e L is �nite and ψ|L is an inje
tion. Con-sequently, H is a subgroup of Aut(K0(Λ)red). To prove that kerR = {idL},



262 P. DOWBOR AND A. MRÓZ
it su�
es to know that the subset Σ0 = {x(1), . . . , x(s)} of L generates
K0(Λ)red = K0(Λ). This follows from the fa
t that Σ0 forms a Z-basis of
K0(Λ), sin
e the unique postproje
tive module T =

⊕s
i=1 T (i) su
h that

dimT (i) = x(i) is tilting (see [22℄).5.4. In the proof of Theorem 2.4(e) we apply the results below.
Lemma. Let t, n ∈ N. Then x(n, i)0 ≥ tη̃ provided n ≥ tν, where η̃ =

min{−∂(x(i)) : i ∈ [s]}.Proof. Fix n ∈ N. We argue by indu
tion on t ∈ N. The 
ase t = 0 isobvious. Assume that, given t > 0, the assertion holds for all t′ < t. Supposethat n ≥ tν. Then 
learly n − ν ≥ (t − 1)ν ≥ 0 and applying de�nitions,basi
 properties of the defe
t and the indu
tive assumption we have
x(n, i) = φ−ν(φ−(n−ν)(x(i))) = φ−(n−ν)(x(i))− ∂(x(i))1

= x(n− ν, i)− ∂(x(i))1and
x(n, i)0 = x(n− ν, i)0 − ∂(x(i)) ≥ (t− 1)η̃ + η̃ = tη̃.

Corollary. Let m,n ∈ N. Then x(n, i)0 > m provided n ≥ mν/η̃ + ν.Proof. We have
n ≥ mν/η̃ + ν = (m/η̃ + 1)ν ≥ (θ + 1)ν,where θ = quoη̃(m). Then, from the lemma and the properties of remainders,we infer x(n, i)0 ≥ (θ + 1)η̃ > m.5.5. To prove assertion (f) of Theorem 2.4 we show the following moregeneral fa
t.

Lemma. Let Σ be a se
tion in P and P = P0∪P ′ be the splitting of Pindu
ed by Σ, where P0 = P0(Σ) and P ′ = P ′(Σ). If
(∗) y0 < x0 for all x ∈ Σ0 ∪P 0

0 , y ∈ P ′
0 su
h that x = y,then Σ has the properties as in assertion (f) of Theorem 2.4.Proof. Let Σ be a se
tion satisfying (∗). Note that then x(i) 6= x(j) forany 1 ≤ i, j ≤ s, i 6= j. Sin
e φ is an isomorphism, by 5.1 we have(i) x(n, i) 6= x(n, j) for any i, j ∈ [s], i 6= j, and n ∈ N.Property (∗) also implies that(ii) if x(i) = x(n, j) then x(i)0 < x(n, j)0 for any i, j ∈ [s] and n > 0.To prove our assertion, for any d ∈ P we 
onstru
t indu
tively a sequen
e

ξ(d) = {ξt}t∈N of nonnegative integers, and show that ξ(d) = idN.



THE MULTIPLICITY PROBLEM 263

Fix d ∈ P . Set ξ0 = x
(0)
0 , . . . , ξt0 = x

(t0)
0 , t0 ≥ −1, where x(0)

0 , . . . , x
(t0)
0 areall ve
tors x ∈ P0

0 su
h that x = d. We 
an assume that ξ0 < ξ1 < · · · < ξt0 .To de�ne ξt0+1, let n ∈ N be minimal su
h that x(n, i) = d for some i ∈ [s].Note that by (i), the index i is uniquely determined. We set ξt0+1 = x(n, i)0.Assume that for t > t0 the integer ξt is already de�ned and ξt = x(n′, i′)0for some n′ ∈ N, i′ ∈ [s]. Then we set ξt+1 = x(n′′, i′′)0, where n′′ > n′ isminimal su
h that x(n′′, i′′) = d for some i′′ ∈ [s]. (Note again that i′′ isuniquely determined.)Observe that by Lemma 2.3(a), the 
onstru
ted sequen
e ξ(d) is surje
-tive as a fun
tion N→ N. This follows dire
tly from the 
onstru
tion, sin
efor ea
h x ∈ P with x = d, there exists t ≥ 0 su
h that ξt = x0.Next we prove that the sequen
e ξ(d) is in
reasing. Observe �rst that by
(∗) we have ξt0 < ξt0+1 if t0 ≥ 0. We now show that ξt+1 > ξt for t > t0.Referring to the de�nition above, this inequality has the shape x0 < y0, where
x = x(n′, i′), y = x(n′′, i′′)0, and n′ < n′′. Applying the obvious equalities
x = x+x01, y = y+y01 and φn′

(x) = x(i′), φn′
(y) = x(n′′−n′, i′′), we inferthat x(i′)+x(i′)01 = φn′

(x)+(t+x0)1 and x(n′′ − n′, i′′)+x(n′′ − n′, i′′)01 =

φn′
(y)+(t+y0)1 for some t ∈ Z, sin
e φn′

(x) = φn′
(y). Then x0 = x(i′)0−t,

y0 = x(n′′ − n′, i′′)0 − t and x(i′) = x(n′′ − n′, i′′), sin
e φn′
(x) = φn′

(y).Now the required inequality x0 < y0 follows immediately from (ii).To 
omplete the proof, note that ξ(d) = idN for every d ∈ P , sin
e
ξ(d) is in
reasing and surje
tive. Now it is easily seen that for any pair
x = x(n, i), y = x(n′, i′) of ve
tors in P ′, the two 
onditions from assertion(f) of Theorem 2.4 are satis�ed provided x = y = d.5.6. Proof of Theorem 2.4. (a) We prove that L is G-invariant, where
G = (φ ). Fix x ∈ L. Then by the shape of the bije
tion in Lemma 2.3(a)(ii)and the �niteness of the subquiver P0, there exists t ≥ 0 su
h that y =
x[t] ∈ P ′′

0 (see Remark 4.3). To show the �rst assertion of (a) observe that
φ(y) ∈ P, sin
e φ(y) = τ(y) from Lemma 5.1(b). Then

φ(x) = φ(y) = φ(y) = τ(y)and by Lemma 2.3(a), φ(x) ∈ P = L. Note that by Proposition 5.2 thegroup G is 
y
li
 of order ν, so the �rst assertion is shown.Now we prove the equality L = O(x(1)) ∪ · · · ∪ O(x(s)). The set P ′is a 
o�nite subset of P. Therefore, for any x ∈ L, there exists y ∈ P ′,
y = x(n, i), su
h that y = x (see Lemma 2.3(a)(ii)). Hen
e, y = φ−n(x(i))and x = y = φ−n(x(i)) = φ−n(x(i)), so x ∈ O(x(i)). In this way the proofof (a) is 
omplete.(b) The equality O(x(ij)) = {y0,j , . . . , yνj−1,j} follows immediately fromthe fa
t that G is a �nite 
y
li
 group. The remaining statements of the �rstassertion of (b) are now straightforward.
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To prove the se
ond assertion, we only have to show the equality ν̃ = ν,where ν̃ = lcm{vj : j ∈ [r]}. The equality ν = νΣ follows immediately fromProposition 5.2. (Note that νj | ν for every j ∈ [r], so ν̃ | ν, sin
e |G| = ν and

|O(x(ij))| = νj .)Observe �rst that (φνj ) = Stab(x(ij)), where Stab(x(ij)) denotes thestabilizer of x(ij) under the standard a
tion of G on L. For l ∈ N, φl belongsto Stab(x(ij)) if and only if νj | l. Consequently, by Lemma 5.3 and theequality L = O(x(1)) ∪ · · · ∪ O(x(s)),
φl = idK0(Λ)red ⇔ φl

|L = id|L ⇔ φ ∈
⋂

j∈[r]

Stab(x(ij)) ⇔ ν̃ | l.

Then the nonempty sets 
onsisting of all l ∈ N that satisfy separately theleftmost and rightmost 
onditions 
oin
ide. Taking now the minimal valuein these two sets we obtain the equality ν̃ = ν.Now we show the third assertion. By Proposition 5.2, the inequality
κj > 0 follows immediately from the formula
(∗∗) ∂j =

ν

νj
κj ,where ∂j = −∂(x(ij)) for j ∈ [r]. To prove (∗∗), note �rst that φ−νj (x(ij)) =

x(ij) + κj1, sin
e φ−νj (yl,j) = yl,j + κj1. Applying this equality, we have
φ−ν(x(ij)) = (φ−νj )(ν/νj)(x(ij)) = x(ij) +

ν

νj
κj1and on the other hand also

φ−ν (x(ij)) = x(ij)− ∂(x(ij))1.In this way we obtain (∗∗), hen
e κj > 0.Next we show formula 2.4(∗). We start by some general observation. Forany y ∈ L we set P (y) = {x ∈ P : x = y}. Then by Lemma 2.3(a)(ii), forany 
o�nite subset J ⊂ P(y) and positive integer κ ∈ N, we have π(J) = Zκ,where π = πκ : K0(Λ)→ Zκ is given by π(x) = remκ(x0), x ∈ K0(Λ).Now we �x j ∈ [r] and l ∈ {0, . . . , νj − 1}. Then for any i ∈ [s]j, i.e.
j = j(i), the set P ′(j, l, i) := {x = x(n, i) ∈ P ′ : x = yl,j}is nonempty, sin
e O(x(i)) = O(x(ij)) = {y0,j, . . . , yνj−1,j} and x(n, i) −

x(n, i)01 = φ−n(x(i)) = φ−n(x(i)) = φ−n(yl(i),j) = yl,j for a suitable n ∈ N.Observe that for the ve
tor x = x(n, i) ∈ P ′(j, l, i) su
h that n = n(j, l, i) isminimal, the integer x0 is given by the formula
x0 = ̺j(l, i),
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where ̺j(l, i) is as in Theorem 2.4(b). Then we have the equality
{x0 : x ∈ P ′(j, l, i)} = ̺j(l, i) + κjN,or equivalently, P ′(j, l, i) = yl,j + (̺j(l, i) + κjN)1,sin
e φ−νj (yl,j) = yl,j +κj1, so φ−νj (x(n′, i)) = x(n′, i)+κj1 for all x(n′, i)with x(n′, i) = yl,j . Consequently, applying the introdu
tory general obser-vation, we have

Zκj
=

⋃

i∈[s]j

πκj
(P ′(j, l, i)) = {̺j(l, i) : i ∈ [s]j},

sin
e ⋃
i∈[s]j

P ′(j, l, i) is a 
o�nite subset of P(yl,j), and in this way 2.4(∗)is proved.In parti
ular, 2.4(∗) implies immediately κj ≤ |[s]j|. We now show theopposite inequality. Suppose that ̺j(l, i) = ̺j(l, i
′) for some i, i′ ∈ [s]j.Then the sets ̺j(l, i) + κjN and ̺j(l, i

′) + κjN interse
t nontrivially. Hen
e,there exist n, n′ ∈ N su
h that x(n, i)0 = x(n′, i′)0 and x(n, i) = x(n′, i′).Consequently, x(n, i) = x(n, i′), so i = i′. Thus κj = |[s]j| and the proofof (b) is 
omplete.(
) For n < νj the required formula follows from the equality x(n, i) =

x(n, i) + x(n, i)01, sin
e x(n, i) = yn⊕l(i),j(i) and x(n, i)0 = ̺j(i)(n ⊕ l(i), i)(see the interpretation of the integers ̺j(l, i) in the proof of (b)). The formulafor n ≥ νj is an immediate 
onsequen
e of the equality x(n′ + νj , i) =
x(n′, i) + κj(i)1.(d) Let x and (j, l, i) be as in the assumptions of (d). Clearly, we have
x = yl,j+x01 ∈ P(yl,j). Then, by 2.4(∗), x ∈ P ′ if and only if x ∈ P ′(j, l, i) =
yl,j +(̺j(l, i)+κjN)1 (see the proof of (b) for the de�nitions). Consequently,
x ∈ P ′ is equivalent to the inequality x0 ≥ ̺j(l, i).Now we prove the formula for the 
oordinates of x ∈ P ′ in the presenta-tion x = x(n, i). Note �rst that for (j, l, i) as above, we have

n(j, l, i) =

{
l − l(i) if l ≥ l(i),
l − l(i) + νj if l < l(i),where ̺j(l, i) = x(n(j, l, i), i)0 (see proof of (b)). On the other hand, both

x = x(n, i) = yl,j + x01 and z = x(n(j, l, i), i) = yl,i + ̺j(l, i)1 belong toP ′(j, l, i), so x0 − ̺j(l, i) = ζκj for some ζ ∈ N. Then, by applying theformula φ−νj (z) = z + κj1, we have
x = z + ζκj1 = φ−ζνj (z) = x(n(j, l, i) + ζνj , i).Now, the required formula for n follows from those for n(j, l, i) and from theequality ζ = (x0 − ̺j(l, i))κj

−1.
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(e) Note �rst that −∂(x(i)) = ∂j(i) for any i ∈ [s]. Consequently, by (∗∗),we have η̃ = ην. Now the assertions follow easily from Corollary 5.4, prop-erties of remainders and the fa
t that x(n, i)v ≥ x(n, i)0 for every v ∈ Q0.(f) In Tables 7.1 below, for any domesti
 
anoni
al algebra Λp,q,2, weprovide one sele
ted se
tion Σ together with the subquiver P0 = P0(Σ). Itis easily seen that all these se
tions satisfy the assumptions of Lemma 5.5,sin
e x0 = 0 for all but one x ∈ P0

0 ∪ Σ, y = dimP (0) belongs to Σ0 and
y = dimS(ω) belongs to P0

0. Consequently, (f) holds by the lemma quotedabove, and the proof of Theorem 2.4 is 
omplete.5.7. Keeping the notation of 2.4 and 5.1, we introdu
e the announ
edrelation ≺⊂ P0 ×P0.Given an enumeration x(1), . . . , x(s) of the verti
es in Σ, we de�ne therelation
≺′ =≺′

(x(1),...,x(s))⊂ P′
0 ×P′

0by setting
x(n′, i′) ≺′ x(n, i) if and only if either n′ < n, or n′ = n and i′ < i.It is 
lear that ≺′ yields a lexi
ographi
 order on the set N×Σ, so also in P ′.This relation has the following simple property.
Lemma. If (x(1), . . . , x(s)) is a full admissible sequen
e of sour
es (inthe sense of [2℄) in the se
tion Σ, then x(n′, i′) ≺′ x(n, i) for any x(n′, i′) ∈

∈ −x(n, i), n ≥ 1.Proof. Assume x(n′, i′) ∈ −x(n, i) for n ≥ 1. Clearly, n′ ≤ n. If n′ = nthen there exists an arrow x(i′) → x(i) in Σ and, by the assumption on
(x(1), . . . , x(s)), we have i′ < i; Consequently, x(n′, i′) ≺′ x(n, i). The 
ase
n′ < n is trivial.Let Σ, with Σ0 = {x(1), . . . , x(s)}, be the sele
ted se
tion, and P0

0 =

{z(1), . . . , z(t)}, t = |P0
0|, be the enumeration of the verti
es in P0 estab-lished for Λ in 7.1. The 
olle
tion of these two data sets for an individualdomesti
 
anoni
al algebra Λ is denoted further by 7.1.I(P)Λ. We extend

≺′ =≺′
x(1),...,x(s) to a relation

≺=≺(x(1),...,x(s);z(1),...,z(t))⊂ P0 ×P0.For x, y ∈ P0, we set x ≺ y if and only if one of the following, pairwiseex
lusive, 
onditions holds:
• x = z(i), y = z(j) and i < j,
• x ∈ P0 and y ∈ P ′,
• x, y ∈ P ′ and x ≺′ y.
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Proposition. The relation ≺ de�nes the stru
ture of a partially orderedset on P0 su
h that(a) (P0,≺) ≃ (N, <),(b) τx ≺ x and y ≺ x for any x ∈ P0 and y ∈ −x.Proof. Assertion (a) is an immediate 
onsequen
e of the de�nitions. Toprove (b), note that the sequen
e (x(1), . . . , x(2)) from 7.1.I(P)Λ is an ad-missible sequen
e of sour
es in Σ for any domesti
 
anoni
al algebra Λ.Then, by Lemma 5.7, we have y ≺ x for x = x(n, i) ∈ P ′
0 and y ∈ −x, pro-vided n ≥ 1. Moreover, τx = x(n− 1, i) in this 
ase. In the remaining 
ase,

x ∈ P0
0∪Σ0 and the assertion follows easily by inspe
tion (see 7.1.I(P)Λ).6. ALGORITHMS AND OPTIMIZATIONIn this se
tion, using a pseudo-
ode, we des
ribe the 
onse
utive steps ofthe announ
ed algorithms. The most important one 
omputes dire
tly therestri
ted multipli
ity ve
tor m(M)|P for modules M over a �xed domesti

anoni
al algebra Λ. We also dis
uss some optimization of the algorithmsand 
omplete the proof of Theorem 2.2.We apply the results of the previous se
tions and the tables of Se
tion 7.The semanti
s of the pseudo-
ode is 
lear from the 
ontext (see also [6℄). Theonly nonstandard instru
tion we use is �read y from Y �. It means that thedata y, whi
h is �situated in the element Y � of the paper, is further availablein the 
ode as a value of the variable (or variables) named y. (�An element�is usually a table or a theorem.)6.1. We start with a preparatory algorithm.

Algorithm (
omputing the initial parameters for a domesti
 
anoni
alalgebra Λp,q,2).Input: A pair of integers (p, q) su
h that the algebra Λ = Λp,q,2 is do-mesti
 
anoni
al.Output: The following 
olle
tion of parameters for Λ des
ribed in The-orem 2.4:(i) r; νj , κj , [s]j , for 1 ≤ j ≤ r; j(i), l(i), for 1 ≤ i ≤ s,where s = p + q + 1; yl,j , for (l, j) ∈ Zνj
× [r]; ul,j , for

(l, j) ∈ [νj ]× [r];(ii) ̺j(l, i), for j ∈ [r], (l, i) ∈ Zνj
× [s]j; x(n, i), for i ∈ [s],

n ∈ Zνj(i)
.(1) Determining the set of distin
t orbits {O(x(ij))}j∈[r] and the param-eters (i) 
onne
ted to them, as in Theorem 2.4(b):
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Λp,q,2

from 7.2;set r := 0;for i := 1 to s do {read x(i) from 7.1.I(P)Λp,q,2
;set x := x(i); found := false; j := 1;while not found and j ≤ r do {set l := 1;while not found and l ≤ νj − 1 do {if x = yl,j then {set l(i) := l; j(i) := j;set [s]j := [s]j ∪ {i};set found := true;

}set l := l + 1;
}set j := j + 1;
}if not found then {set r := r + 1; j(i) := r; [s]r := {i}; l(i) := 0;set νr := 0; y := x; κr := 0;do {set yνr,r := y;set y := φ−1

Λp,q,2
(y); νr := νr + 1;set uνr,r := y0; κr := κr + uνr,r;

} while y 6= x;
}
}(2) Computing the parameters ̺j(l, i) for j ∈ [r], (l, i) ∈ Zνj

× [s]j , usingformulas from Theorem 2.4(b):for j := 1 to r dofor ea
h i ∈ [s]j {set ̺j(l(i), i) := x(i)0;for l := l(i) + 1 to νj − 1 doset ̺j(l, i) := ̺j(l − 1, i) + ul,j ;if l(i) > 0 then {set ̺j(0, i) := ̺j(νj − 1, i) + uνj ,j ;for l := 1 to l(i)− 1 doset ̺j(l, i) := ̺j(l − 1, i) + ul,j ;}}(3) Computing the �initial� dimension ve
tors x(n, i) for i∈ [s], n∈Zνj(i)
,using the �rst formula from Theorem 2.4(
):for i := 1 to s dofor n := 0 to νj(i) − 1 doset x(n, i) := yn⊕νj(i)

l(i) + ̺j(i)(n⊕νj(i)
l(i), i)1;
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Remark.(a) The algorithm prepares only the initial parameters for a �xed domes-ti
 
anoni
al algebra Λ. In 
ontrast to the next algorithms, whi
h areinvoked separately for ea
h moduleM , it is exe
uted exa
tly on
e forea
h algebra and 
learly does not depend on M at all.(b) After full exe
ution of the algorithm for an algebra Λ = Λp,q,2, we
an observe that ν = max{νj : j ∈ [r]} (
f. assertion (
)), and that
κj ≤ 2, so ∣∣[s]j

∣∣ ≤ 2 for all j ∈ [r]. Moreover, ν = νj(i) for i ∈ [s] su
hthat x(i) = dimP (0).6.2. Let M be a �nite-dimensional Λ-module. We give an algorithmstarting from x = z(1) and 
omputing su

essively, with respe
t to the linearorder ≺⊂ P0 × P0 de�ned in 5.7, the multipli
ities m(M)x, x ∈ P0. Thefa
t that we pro
eed a

ording to the order ≺ has some ni
e 
onsequen
es formanaging the memory in a possible implementation (see also Remark (b)).In the des
ription of the algorithm we use the following 
onventions and
onstru
tions:
• We assume that the fun
tion −( ) : ((−N\{0})Σ)0 → 2(−NΣ)0 , whi
hassigns to the vertex (−n, i) ∈ (−N \ {0})Σ the set −(−n, i) of itsdire
t prede
essors, is already available (it 
an be easily implementedapplying the de�nition of the translation quiver −NΣ, see [2℄).
• The string �h(M)x�, for x ∈ P0, appearing in the 
ode 
an have oneof the following two meanings: either(i) �return the value h(M)x� if it is already determined by thealgorithm (it should have been stored; it depends on a possibleimplementation), or(ii) �form the matrix M = M(M,x), 
ompute the value of h(M)x(= corM, see Theorem 2.3) and then return it� if the integer

h(M)x has not been determined yet (it also should then be storedfor later use).
• The fun
tion 
ompute is realized by applying the standard Gaussian-row elimination. The fun
tion form, given a Λ-moduleM = (A,B,C)and x ∈ P, 
onstru
ts the matrix M(M,x) using the matrix U(x),
hosen from a �nite list (see Tables 1 and 2 in 2.3) and next �
om-bined� with C2, and some matri
es from the �nite list Ap,1, . . . , Ap,p;
Bq,1, . . . , Bq,q. Sele
tion of the matri
es depends on x and is donea

ording to the rules from Theorem 2.3. The list above 
onsists of
onse
utive �partial produ
ts� and 
an be 
omputed only on
e forthe module M .
• We set h(M)0 = 0; also, τx = 0 if it is not de�ned for x ∈ P0

0 ∪Σ0.
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Algorithm (
omputing the restri
ted multipli
ity ve
tor m(M)|P for amodule M over a �xed domesti
 
anoni
al algebra Λ). Fix a pair (p, q) ofintegers su
h that the 
anoni
al algebra Λ = Λp,q,2 is domesti
.Input: A �nite-dimensional Λ-module M given by the triple (A,B,C).Output: The restri
ted multipli
ity ve
tor m(M)|P.(0) Preparation: loading the following 
olle
tion of parameters for Λ =

Λp,q,2 des
ribed in Theorem 2.4 (it 
an be 
omputed by applying Algo-rithm 6.1 for the pair (p, q)):(i) νj , κj, for 1 ≤ j ≤ r; j(i), for 1 ≤ i ≤ s, where s = p+ q + 1.(ii) x(n, i) for i ∈ [s], n ∈ Zνj(i)
.(1) Computing the ve
tor m(M)|P0∪Σ :read |P0

0| from 7.1.I(P)Λp,q,2
;for i := 1 to |P0

0| do {read z(i), τz(i),−z(i) from 7.1.I(P)Λp,q,2
;set m(M)z(i) := h(M)z(i) + h(M)τz(i) −
∑

y∈−z(i) h(M)y;}for i := 1 to s do {read x(i), τx(i),−x(i) from 7.1.I(P)Λp,q,2
;set m(M)x(i) := h(M)x(i) + h(M)τx(i) −

∑
y∈−x(i) h(M)y;}(2) Computing the ve
tor m(M)|P ′′ :read νΛp,q,2

from Proposition 5.2;set m := dimM ;set η := min{κj/νj : j ∈ [r]};set ξ := min{mi/η + νΛp,q,2
: i ∈ (Qp,q,2)0};set n := 1;while n < ξ do {for i := 1 to s do {if n < νj(i) then set x := x(n, i);else set x := x(remνj(i)

(n), i) + quoνj(i)
(n)κj(i) 1;set −x := ∅;for ea
h (−n′, i′) ∈ −(−n, i) doif n′ < νj(i′) then set −x := −x ∪ {x(n′, i′)};else set −x := −x ∪ {x(remνj(i′)

(n′), i′) + quoνj(i′)
(n′)κj(i′) 1};if n− 1 < νj(i) then set τx := x(n− 1, i);else set τx := x(remνj(i)

(n− 1), i) + quoνj(i)
(n− 1)κj(i) 1;set m(M)x := h(M)x + h(M)τx −

∑
y∈−x h(M)y;set m := m−m(M)x(n,i) · x(n, i);set ξ := min{mi/η + νΛp,q,2

: i ∈ (Qp,q,2)0};}set n := n+ 1;}



THE MULTIPLICITY PROBLEM 271

Remark.(a) The 
orre
tness of the algorithm follows from Theorem 2.4 and for-mulas (∗) from the Introdu
tion. Note that after the stop of loopsin step (2) we obtain the multipli
ities for all postproje
tive dire
tsummands of M . Sin
e the stop 
ondition in (2) is based on Theo-rem 2.4(f), the possible next run of these loops would test an inde-
omposable postproje
tive module X whose dimension ve
tor x doesnot satisfy the inequality x ≤ dim M − dim P , so 
learly X 
ouldnot be a dire
t summand of M (P is a postproje
tive summand of
M dete
ted up to that stage).(b) The loops in steps (1) and (2) are 
onstru
ted in su
h a way thatthe multipli
ities m(M)x, x ∈ P, are 
omputed in the algorithmsu

essively a

ording to the order ≺. Consequently, by Proposi-tion 5.7, when the instru
tion �set m(M)x := h(M)x + h(M)τx −∑

y∈−x h(M)y� is being exe
uted, the integers h(M)τx, h(M)y, for
y ∈ −x, are already determined. So, determining h(M)x is the only
omputation that is exe
uted in this step (see also the 
ommentsbefore Algorithm 6.2). Thus, in a possible 
omputer implementation,some data stru
ture for storing the integers h(M)x already 
omputedshould be used. Note that if x = x(n, i), n ≥ 1, then τx = x(n′, i′),
y = x(n′′, i′′) and n′, n′′ ∈ {n − 1, n}, for y ∈ −x. Consequently, to
ompute m(M)x, only the integers h(M)x(n′′′,i′′′) for n′′′ ∈ {n−1, n},
i′′′ ∈ [s] should be stored.(
) Algorithm 6.2 
an also be applied to 
ompute the integer rkP(M).Now we give a �rst estimate of the 
omplexity of Algorithm 6.2.

Lemma. Let M be a �nite-dimensional module with dimk M = n over a�xed domesti
 
anoni
al algebra Λ = Λp,q,2. Then the pessimisti
 
omplexityof Algorithm 6.2 is O(n7).Proof. Let n = dimM . We start by estimating the 
omplexity of deter-mining m(M)x, x ∈ P(d), for a �xed ve
tor d ∈ L = P, whereP(d) = {y ∈ P : y = d}.By the stop 
ondition in part (2), the integers m(M)x, x ∈ P(d), are 
om-puted only at most for those ve
tors x that belong to the �nite setP(d)n = {y ∈ P(d) : y = x(i, l), l < n/sη + νΛp,q,2} ∪ {d}.Let us arrange all elements of P(d)n in a 
hain x(0) ≺ x(1) ≺ · · · ≺ x(t), t ≥ 0.From the de�nition of ≺ and Theorem 2.4(f), we have x(i)
0 = i, so x(i) = d[i],and t < n/sη + νΛp,q,2 . Note that determining the multipli
ity m(M)x(i) , fora �xed i, relies in fa
t only on 
omputing the integer h(M)x(i) (see Re-
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mark (b)). By Theorem 2.3, h(M)x(i) = corM, where M = M(M,x(i))is a matrix of size (i + r)nω × ((rβq

nbq−1 + · · · + rβ1n0) + in0 + (rα1n0 +
· · · + rαpnap−1) + rγ2nc1), r = rk(d), 1 ≤ r ≤ 6. On the other hand, obvi-ously

(i+ r)nω ≤ (2r + rγ2 + i)nand
(rβq

nbq−1 + · · ·+ rβ1n0) + in0 + (rα1n0 + · · ·+ rαpnap−1) + rγ2nc1

≤ (2r + rγ2 + i)n.Re
all also that the 
omplexity of standard Gaussian row elimination for an
m × m-matrix (equivalently, determining the 
orank) is just O(m3). Con-sequently, on
e we know the matrix M (in the sense of 
on
rete values forall entries), the 
omplexity of 
omputing the integer h(M)x(i) by applyingthe fun
tion 
ompute, and hen
e of 
omputing m(M)x(i) , in the step 
orre-sponding to x(i), is O((in)3), sin
e the integer 2r+ rγ2 depends neither on nnor on i.The integers η, s, νΛp,q,2 are 
onstant, so to estimate the pessimisti
 
om-plexity we 
an assume that t = θn for some 
onstant integer θ ≥ 0. There-fore, the 
omplexity of determining all m(M)x, x ∈ P(d)n = {xi}ti=1, byAlgorithm 6.2 is
O(13n3 + 23n3 + · · ·+ (θn)3n3) = O(n3(13 + 23 + · · ·+ (θn)3)) = O(n7).Note that the pro
ess of forming the matri
es M(M,x), x ∈ P(d)n =
{xi}ti=1, does not a�e
t this estimation, sin
e the 
omplexity of total 
om-putations exe
uted by form is O(n3) (
f. 6.2, the introdu
tory 
omment).Sin
e P0 =

⋃
d∈LP(d) and L is �nite, the pessimisti
 
omplexity ofAlgorithm 6.2 is also O(n7).We show in 6.5 that this 
omplexity 
an be redu
ed to O(n4) and in thisway we 
omplete the proof of Theorem 2.2(
).6.3. Now we des
ribe the �lo
al version� of the algorithm above whi
hdetermines the multipli
ity for a �xed, single postproje
tive root. In thealgorithm we use the 
onventions established for Algorithm 6.2.

Algorithm (for a given x ∈ P, 
omputing the multipli
ity m(M)x fora module M over a �xed domesti
 
anoni
al algebra Λ). Fix a pair (p, q) ofintegers su
h that the 
anoni
al algebra Λ = Λp,q,2 is domesti
.Input: A �nite-dimensional Λ-module M given by the triple (A,B,C)and a ve
tor x ∈ P.Output: The multipli
ity m(M)x.
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(0) Preparation: loading the following 
olle
tion of parameters for Λ de-s
ribed in Theorem 2.4 (it 
an be 
omputed using Algorithm 6.1 for the pair
(p, q)): (i) r; νj , κj , [s]j for 1 ≤ j ≤ r; l(i), j(i), for 1 ≤ i ≤ s, where

s = p+ q + 1; yl,j for (l, j) ∈ Zνj
× [r];(ii) ̺j(l, i), for j ∈ [r], (l, i) ∈ Zνj
× [s]j; x(n, i), for i ∈ [s],

n ∈ Zνj(i)
.(1) Determining the triple (j, l, i) ∈ [r]×Zνj

× [s]j as in Theorem 2.4(d):set j := 0; found := false;while not found do {set j := j + 1; l := 0;while l < νj and not found doif x = yl,j then set found := true;else set l := l + 1;}set i := first in [s]j; found := false;while not found doif remκj
(̺j(l, i)) = remκj

(x0) then set found := true;else set i := next in [s]j;(2) Finding out if x lies in P0 or in P ′ and determining the �appropriate
oordinates� of the ve
tors from the set −x∪ {τx} by applying parts (
), (d)of Theorem 2.4 :if x0 < ̺j(l, i) thenread τx and −x from 7.1.I(P)Λp,q,2
;else {if l ≥ l(i) then set n := l − l(i) + (x0 − ̺j(l, i))νj/κj;else set n := l − l(i) + νj + (x0 − ̺j(l, i))νj/κj;if n = 0 then read τx and −x from 7.1.I(P)Λp,q,2

;else {if n− 1 < νj(i) then set τx := x(n− 1, i);else set τx := x(remνj(i)
(n− 1), i) + quoνj(i)

(n− 1)κj(i) 1;set −x := ∅for ea
h (−n′, i′) ∈ −(−n, i) doif n′ < νj(i′) then set −x := −x ∪ {x(n′, i′)};else set −x := −x ∪ {x(remνj(i′)
(n′), i′) + quoνj(i′)

(n′)κj(i′) 1};}}(3) Determining the multipli
ity m(M)x:set m(M)x := h(M)x + h(M)τx −
∑

y∈−x h(M)y;
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6.4. Now we show how to improve the e�
ien
y of Algorithm 6.2 andto de
rease the 
omplexity of 
omputations from O(n7) to O(n4). We startby a general 
onstru
tion.Let r, θ ∈ N be a �xed pair of positive integers. For any positive n ∈ Nand the triple

S = (D1, . . . , Dt;E1, . . . , Et;F1, . . . , Ft)
onsisting of sequen
es of matri
es Di, Ei ∈ Mn×n(k) and Fi ∈ Mn×rn(k),respe
tively, 1 ≤ t ≤ θn+ r, we de�ne a family K(S) = {Ki}i∈[t] of matri
es
Ki = Ki(S) ∈Min×(θn+3r)n(k) by setting

Ki =




D1 E1 F1. . . . . . ...
Di Ei Fi


 ,

where the jth blo
k row of Ki has the shape
[0(j−1)n |Dj | 0(r−1)n |Ej | 0 |Fj ]for j ∈ [i]. (For any s ∈ N, 0s denotes the zero matrix in Mn×s(k).)

Lemma. Let S be an arbitrary triple as above, for �xed r, θ, and L(S) =
{Li}i∈[t] be the family of matri
es Li = Li(S), with (θn + 3r)n 
olumns,de�ned indu
tively as follows:

L1 = Ĵ1,where J1 = [D1 | 0(r−1)n |E1 | 0 |F1], and
Li+1 =

[
L

(i)
11 L

(i)
12

0 Ĵi+1

]

for i < t, where
Li =

[
L

(i)
11 L

(i)
12

L
(i)
21 L

(i)
22

]
,

with maximal zero blo
k L(i)
21 
ontaining i · n 
olumns, and

Ji+1 =

[
L

(i)
22

Di+1 | 0(r−1)n | Ei+1 | 0 | Fi+1

]
.Then

r(Kj) = r(Lj) = r(L
(j−1)
1,1 ) + r(Ĵj)and all matri
es Jj , j ∈ [t], have at most (2r + 1)n rows and (2r + 1)nnonzero 
olumns, where K(S) = {Kj}j∈[t].
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Proof. The �rst assertion follows immediately by the 
onstru
tion of thefamilies K(S) and L(S). To prove the se
ond, note that the number of rowsin L(j−1)
22 
oin
ides with the number of leading 
oe�
ients in L(j−1)

22 , so it isbounded by the number of 
olumns of L(j−1)
22 . The last integer is not greaterthan 2rn, sin
e the 
olumns with numbers (j−1)n+1, . . . , jn in L(j−1)

22 and
learly those with numbers jn+1, . . . , (2r+n)n in Jj are zero 
olumns. Nowthe 
laim follows immediately from the de�nition of the matrix Jj.
Remark.(a) Letting K0 = L0 be equal to the trivial matrix in M0×(θn+3r)n(k), we
an extend the indu
tive de�nition of L(S) to {Li}i∈{0,...,t}, startingfrom L0. Clearly, the assertion of the lemma remains valid.(b) The lemma remains valid if in the sequen
es de�ning the triple S weallow also re
tangle matri
es of sizes suitable for the 
onstru
tion ofthe family K(S) and bounded by n× n (resp. n× rn).(
) Let S be a triple as above. Then, for any 1 ≤ s ≤ t, we have

L(S|s) = {L1(S), . . . , Ls(S)},where
S|s = (D1, . . . , Ds;E1, . . . , Es;F1, . . . , Fs).6.5. Proof of Theorem 2.2(
). To show assertion (
) we apply the generalidea of the proof of Lemma 6.2 and keep the notation established there.Clearly, it su�
es to modify the algorithm 
omputing, for a Λ-module M =

(A,B,C), the integers h(M)x = corM(M,x), x ∈ P(d) for a �xed d ∈L = P , in su
h a way that the new one already has 
omplexity O(n4),where n = dimk M . In fa
t, we have to 
ompute the ranks rl = r(M(M,x))for l = 0, . . . , θn, where x = d[l], i.e. x0 = l, and θ is as in the proof ofLemma 6.2.We assume �rst that either char k 6= 2, or char k = 2 and rk(d) ≤ 5.Then, for any l = 0, . . . , θn, we set
Sl = (rβq ×Bq,q, . . . , rβ1 ×Bq,1, l×B; l×A, rα1 ×Ap,1, . . . , rαp ×Ap,p; F1, . . . , Fl+r),where r = rk(d) = dω,m×N denotes the sequen
e 
onsisting ofm 
opies ofNfor any m ∈ N and matrix N , and the matri
es F1, . . . , Fl+r ∈ Mn×rγ2

(k)are determined by the formula



F1...
Fθn+r


 =

[
−Irγ2

U(d)

]

(∞|θn+r)

⊗ C2.

By Lemma 6.4, we have
rl = r(Ll+r(Sl))
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for l = 0, . . . , θn, sin
e M(M,x) = Kl+r(Sl). Observe that (Sl)|l = S|l forall l = 0, . . . , θn, where

S = (rβq
×Bq,q, . . . , rβ1×Bq,1, θn×B; (θn+ r)×A; F1, . . . , Fθn+r)Hen
e,

Ll(Sl) = Ll(S)for every l (see Remark 6.4(b)). Therefore, by Lemma 6.4, to 
ompute theinteger rl, we have to exe
ute Gaussian row elimination on the matri
es
Jl+1(Sl), . . . , Jl+r(Sl), provided we know the matrix Ll(S). By analogousarguments, to 
ompute all matri
es Ll(S), l = 0, . . . , θn, we have to ex-e
ute only the Gaussian row elimination of Jl(Sl) in ea
h step. Thus, in
omputation of all integers rl, l = 0, . . . , θn, we exe
ute (θn+ 1)r+ θn elim-inations of matri
es with row and 
olumn dimensions bounded by (2r+1)n.Consequently, the total number of arithmeti
 operations is bounded by
((r + 1)θn + r)(2r + 1)3n3, so the pessimisti
 
omplexity is O(n4). Notethat just as in the proof of Lemma 6.2, the pro
ess of forming the sequen
es
Sl, l = 0, . . . , θn, does not a�e
t this estimation.In the remaining 
ase, char k = 2 and rk(d) = 6, the algorithm 
om-puting rl, l = 0, . . . , θn, 
an be 
onstru
ted similarly, although in a slightlymore 
ompli
ated way. Nevertheless, the di�
ulties have only a te
hni
al
hara
ter, and therefore we do not give any extra details.In this way the proof of Theorem 2.2 is 
omplete.
Remark.(a) The problem of determining the restri
ted multipli
ity ve
torm(M)|Q(resp. multipli
ity m(M)x, for a single x ∈ Q) for a module Mover a �xed domesti
 
anoni
al algebra Λ is equivalent to that ofdetermining m(D(M))|P(Λop) (resp. m(D(M))x) for x regarded asan element of P(Λop) for the opposite algebra Λop, whi
h is againa domesti
 
anoni
al algebra of the same type. In fa
t, to 
ompute

mx, x ∈ Q, we have to apply the formula dual to (∗) in the In-trodu
tion and use the dimensions h′x = dimk HomΛ(Xx,M), x ∈ Q(see [9, 2.3℄).(b) De
reasing the pessimisti
 
omplexity of Algorithm 6.2 as above, oneshould also take into a

ount some �negative e�e
ts�. Namely, in apossible implementation of the improved version of the algorithm,at ea
h step of 
omputations we have to store mu
h more infor-mation than the in algorithm without optimizations as above (seeRemark 6.2(b)).
A final comment. The algorithmi
 method of determining multipli
ityve
tors for modules, proposed in [9℄, should be possible to adapt for a larger
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lass of tame algebras with an appropriate shape of the Auslander�Reitenquiver; in parti
ular, for all 
on
ealed algebras of Eu
lidean type. We ex-pe
t to prove that in this situation there exist algorithms with pessimisti

omplexities similar to those 
onsidered here. We strongly believe that toa
hieve this we do not need a pre
ise des
ription of the 
anoni
al forms forall inde
omposables. We have already obtained some results in this dire
tion.They will be 
ontained in a forth
oming publi
ation.
7. TABLESIn this se
tion we give the �nite sets of dis
rete data used in the algo-rithms from Se
tion 6. They 
an be easily 
omputed by applying the de�ni-tions and standard te
hniques.

7.1. We give, using the standard graphi
 
onvention, the list of initialparts I(P) = I(P)Λ of postproje
tive 
omponents, more pre
isely of thetranslation quivers P = P(Λ) , for all domesti
 
anoni
al algebras Λ. Ea
h
I(P) is a full subquiver ofP, formed by the sets P0

0∪Σ0, where Σ is a suitablese
tion in P and P0 = P0(Σ). They are obtained by applying the standard�knitting� te
hnique (
f. [23℄). Below the quivers I(P) we �x the notationwhi
h is used in the algorithms. We list the names for all 
onse
utive verti
esin I(P)0 in the form of a �s
heme� re�e
ting the shape of I(P). The verti
es
z(i) 
onstitute the part P0, the verti
es x(i) belong to the se
tion Σ andform there an admissible sequen
e of sour
es. The enumeration of verti
esin I(P) is 
ru
ial for the de�nition of the order relation ≺ in P (see 6.2).(a) I(P)Λp,2,2 : 00...000 0 11

ր ց00...000 0 10 →
00...000 1 10 →

00...010 1 21
ց ր ց00...010 0 10 00...0110 1 21

ց ր ց00...0110 0 10 . . .
ց ց. . . 11...110 1 21 →

11...111 1 21
ց ր ց11...110 0 10 00...000 1 11
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x(1)

z(1) x(2) x(3)

z(2) x(4)

z(3)
. . .. . . x(p+1) x(p+2)

z(p) x(p+3)(b) I(P)Λ3,3,2 : 0 00 1 1 10 0 10 0 0 11 1 10 0 1 10
ր ց ր ց ր0 00 0 1 10 0 10 1 1 21 1 20 0 1 21 1 11 1 1 21

ր ց ր ց ր ր0 00 0 0 10 →
0 00 0 0 11 →

0 10 0 1 21 →
0 10 0 1 10 →

1 20 1 2 31 →
1 10 1 1 21

ց ր ց ր ց0 10 0 0 10 1 10 0 1 21 0 10 1 2 21
ց ր ց ր ց1 10 0 0 10 0 00 0 1 11 0 10 1 1 10

z(5) z(11) x(5)

z(2) z(8) x(4) x(3)

z(1) z(3) z(6) z(9) x(1) x(2)

z(4) z(10) x(6)

z(7) z(12) x(7)(
) I(P)Λ4,3,2 : 1 1 11 1 1 21
ր0 0 00 1 1 10 0 0 10 0 0 11 0 1 10 0 1 10 1 1 10 1 1 21

ր ց ր ց ր ց ր0 0 00 0 1 10 0 0 10 1 1 21 0 1 20 0 1 21 1 2 20 1 2 31
ր ց ր ց ր ց ր0 0 00 0 0 10 →

0 0 00 0 0 11 →
0 0 10 0 1 21 →

0 0 10 0 1 10 →
0 1 20 1 2 31 →

0 1 10 1 1 21 →
1 2 30 1 2 42 →

1 1 20 0 1 21
ց ր ց ր ց ր ց0 0 10 0 0 10 0 1 10 0 1 21 1 1 20 1 2 31 0 1 20 1 2 32

ց ր ց ր ց ր ց0 1 10 0 0 10 1 1 10 0 1 21 0 0 10 1 2 21 0 1 20 1 1 21
ց ր ց ր ց ր ց1 1 10 0 0 10 0 0 00 0 1 11 0 0 10 1 1 10 0 1 10 0 0 11
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x(5)

z(5) z(12) z(19) x(4)

z(2) z(8) z(15) x(3)

z(1) z(3) z(6) z(9) z(13) z(16) x(1) x(2)

z(4) z(10) z(17) x(6)

z(7) z(14) z(20) x(7)

z(11) z(18) z(21) x(8)(d) I(P)Λ5,3,2 : 0 0 0 00 0 0 10
ւ ↓ ց0 0 0 10 0 0 10 0 0 0 00 0 0 11 0 0 0 00 0 1 10

ւ ց ↓ ւ ց0 0 1 10 0 0 10 0 0 0 10 0 1 21 0 0 0 00 1 1 10
ւ ց ւ ↓ ց ւ0 1 1 10 0 0 10 0 0 1 10 0 1 21 0 0 0 10 0 1 10 0 0 0 10 1 1 21

ւ ց ւ ց ↓ ւ ց1 1 1 10 0 0 10 0 1 1 10 0 1 21 0 0 1 20 1 2 31 0 0 0 10 0 0 11
ց ւ ց ւ ↓ ց ւ1 1 1 10 0 1 21 0 1 1 20 1 2 31 0 0 1 10 1 1 21 0 0 1 20 0 1 21
ւ ց ւ ց ↓ ւ ց0 0 0 00 0 1 11 1 1 1 20 1 2 31 0 1 2 30 1 2 42 0 0 1 10 0 1 10
ց ւ ց ւ ↓ ց ւ0 0 0 10 1 2 21 1 1 2 30 1 2 42 0 1 1 20 0 1 21 0 1 2 20 1 2 31
ւ ց ւ ց ↓ ւ ց0 0 0 10 1 1 10 0 0 1 20 1 2 32 1 2 3 40 1 3 52 0 1 1 10 1 1 21
ց ւ ց ւ ↓ ց ւ0 0 1 20 1 1 21 0 1 2 30 1 3 42 1 1 2 20 1 2 31 1 2 2 30 1 2 42
ւ ց ւ ց ↓ ւ ց0 0 1 10 0 0 11 0 1 2 30 1 2 31 1 2 3 40 2 4 63 1 1 1 20 0 1 21
ց ւ ց ւ ↓ ց ւ0 1 2 20 0 1 21 1 2 3 40 2 3 52 0 1 1 20 1 2 32 1 1 2 30 1 3 42
ւ ց ւ ց0 1 1 10 0 1 10 1 2 3 30 1 2 42 0 0 1 10 1 2 21
ց ւ1 2 2 20 1 2 31
ւ1 1 1 10 1 1 21

ւ1 1 1 11 1 1 21
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z(1)

z(4) z(3) z(2)

z(7) z(6) z(5)

z(11) z(10) z(9) z(8)

z(15) z(14) z(13) z(12)

z(19) z(18) z(17) z(16)

z(23) z(22) z(21) z(20)

z(27) z(26) z(25) z(24)

z(31) z(30) z(29) z(28)

z(35) z(34) z(33) z(32)

z(38) z(37) x(1) z(36)

z(39) x(5) x(2) x(3)

z(40) x(6) x(4)

x(7)

x(8)

x(9)7.2. Finally, we list the inverses φ−1
Λ of the Coxeter transformations φΛ :

K0(Λ) → K0(Λ) for the domesti
 
anoni
al algebras Λ = Λp,q,2. They arepresented as matri
es from Ms×s(Z), under the identi�
ation of K0(Λ) =
Z(Qp,q,2)0 with Zs via the mapping

n = (nv) 7→ [nω, nap−1 , . . . , na1 , nbq−1 , . . . , nb1nc1n0]
t,where s = |(Qp,q,2)0| = p + q + 1. The following matri
es are 
omputed byapplying the formula given in 2.4.

φ−1
Λp,2,2

=




0 0 0 0 0 0 1 1 1 −2

0 0 0 0 0 0 0 1 1 −1

−1 1 0 0 0 0 0 1 1 −1

−1 0 1 0 0 0 0 1 1 −1... ... ... . . . ... ... ... ... ... ...
−1 0 0 0 1 0 0 1 1 −1

−1 0 0 0 0 1 0 1 1 −1

0 0 0 0 0 0 1 0 1 −1

0 0 0 0 0 0 1 1 0 −1

−1 0 0 0 0 0 1 1 1 −1




,

φ−1
Λ3,3,2

=




0 0 1 0 1 1 −2

0 0 0 0 1 1 −1

−1 1 0 0 1 1 −1

0 0 1 0 0 1 −1

−1 0 1 1 0 1 −1

0 0 1 0 1 0 −1

−1 0 1 0 1 1 −1




,



THE MULTIPLICITY PROBLEM 281

φ−1
Λ4,3,2

=




0 0 0 1 0 1 1 −2

0 0 0 0 0 1 1 −1

−1 1 0 0 0 1 1 −1

−1 0 1 0 0 1 1 −1

0 0 0 1 0 0 1 −1

−1 0 0 1 1 0 1 −1

0 0 0 1 0 1 0 −1

−1 0 0 1 0 1 1 −1




,

φ−1
Λ5,3,2

=




0 0 0 0 1 0 1 1 −2

0 0 0 0 0 0 1 1 −1

−1 1 0 0 0 0 1 1 −1

−1 0 1 0 0 0 1 1 −1

−1 0 0 1 0 0 1 1 −1

0 0 0 0 1 0 0 1 −1

−1 0 0 0 1 1 0 1 −1

0 0 0 0 1 0 1 0 −1

−1 0 0 0 1 0 1 1 −1




.
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