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ON A SEPARATION OF ORBITS IN THE MODULEVARIETY FOR DOMESTIC CANONICAL ALGEBRASBYPIOTR DOWBOR and ANDRZEJ MRÓZ (Toru«)Abstrat. Given a pair M, M ′ of �nite-dimensional modules over a domesti anon-ial algebra Λ, we give a fully veri�able riterion, in terms of a �nite set of simple linearalgebra invariants, deiding if M and M ′ lie in the same orbit in the module variety, orequivalently, if M and M ′ are isomorphi.Introdution. The problem of deiding whether or not two points in analgebrai variety X equipped with a regular ation of an algebrai group Glie in the same G-orbit was intensively studied as a basi elementary questionof geometri invariant theory. In ase X is the a�ne variety
X = modΛ(n) ⊆

∏

δ∈Q1

Mt(δ)×s(δ)(k)

of Λ-modules with a �xed dimension vetor n = (nv)v∈Q0
and G is the group

G = G(n) :=
∏

v∈Q0

Glnv(k)

assoiated with a �nite-dimensional k-algebra Λ = kQ/I de�ned by a �nitequiver Q = (Q0, Q1) and an admissible ideal I in the path algebra kQ(see [3℄), this leads to the following question of purely algebrai form:�When given Λ-modules M, M ′ ∈ modΛ(n) are isomorphi?�We all it the isomorphism question for the pair (M, M ′).There exists a rather theoretial riterion, due to Auslander [1, 2℄, thatanswers this question for modules over any �nite-dimensional algebra Λ. Itsays that given objets M, M ′ in the ategory modΛ of �nite-dimensional
Λ-modules, M ∼= M ′ if and only if dimk HomΛ(M, X) = dimk HomΛ(M ′, X)for all indeomposable modules X in modΛ. If Λ = kQ/I is a representation-�nite algebra then this result an lead to an algorithmi proedure, provided2000 Mathematis Subjet Classi�ation: 16G20, 16G60, 16G70, 14L30, 68Q99.Key words and phrases: domesti anonial algebra, module, module variety, multi-pliity vetor, isomorphism question. [283℄ © Instytut Matematyzny PAN, 2008
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a omplete lassi�ation of indeomposable Λ-modules together with a pre-ise desription of their matrix forms is known. In ase Λ is representation-in�nite, the result seems to be useless, in the sense that it fails to providean e�etive method.Observe that Λ-modules M and M ′ are isomorphi if and only if themultipliity vetors m(M) and m(M ′) with respet to a �xed lassifyingset X = (X, ε) (of invariants for the indeomposable Λ-modules) are equal(see [5℄). Therefore answering the isomorphism question for M, M ′ an bereplaed by determining m(M) and m(M ′), whih is however muh moredi�ult than the original task. Observe that just as for the polynomialalgebra k[t] (problem of determining eigenvalues), one annot expet theexistene of a fully veri�able proedure omputing m(M) in the ase ofrepresentation-in�nite algebras Λ. Nevertheless, a general method of attak-ing this problem was presented in [4℄ and then applied to onstrut algo-rithms determining m(M) (up to �nding roots of polynomials in k[t]) for alldomesti anonial algebras (see [4, 5℄).This paper should be treated as an addendum to [5℄. Its main aim isto present (applying the results of [5℄) a omplete, �nite and fully veri�ableriterion that allows us to answer the isomorphism question for any �xed pair
(M, M ′) of modules over a domesti anonial algebra Λ, given as points inthe variety modΛ(n); equivalently, to deide if M, M ′ lie in the same G(n)-orbit in modΛ(n) (see Theorem 1.5).

1. Preliminaries and the main theorem. We use well known andommonly used de�nitions and notation, as in [5℄. We only reall some ofthem.1.1. We onsider �nite-dimensional domesti anonial k-algebras Λp,q,r

= kQp,q,r/Ip,q,r, p, q, r ≥ 1, with
Qp,q,r : 0
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and Ip,q,r = 〈α + β − γ〉, α = α1 · · ·αp, β = β1 · · ·βq, γ = γ1 · · · γr, for anytriple
(p, q, r) ∈ D := {(p, q, 1), p, q ≥ 1; (p, 2, 2), p ≥ 2; (3, 3, 2); (4, 3, 2); (5, 3, 2)}.
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Let Λ = Λp,q,r for some (p, q, r) ∈ D. Then by �nite-dimensional Λ-modules we always mean matrix representations M of Λ, whih an be iden-ti�ed with points
(Mδ)δ∈(Qp,q,r)1 ∈ modΛ(n)of the module variety, where n = dim(M) (see [5, 1.4℄). For simpliity, weuse the notation M = (A, B, C), where A = (Ai)i∈[p], B = (Bj)i∈[q], C =

(Cl)i∈[r] and Ai = Mαi
, Bj = Mβj

, Cl = Mγl
for i ∈ [p], j ∈ [q], l ∈ [r],respetively, and [s] := {1, . . . , s} for s ∈ N. Clearly, we have A + B = C,where A = Ap . . . A1, and similarly for B and C.Reall from [5℄ that if r = 1 then Λ is anonially isomorphi to a heredi-tary algebra Λp,q and eah Λ-module M = (A, B, C) is uniquely determinedby the pair (A, B). From now on, we identify the algebras Λp,q,1 and Λp,q, aswell their module ategories, via the mapping (A, B, C) 7→ (A, B).Note that eah algebra Λ = Λp,q,r is anonially isomorphi to its opposite

Λop; the isomorphism is given by the mapping 0 7→ ω, a1 7→ ap−1, b1 7→ bq−1,and so on. Hene, we get an equivalene modΛop ≃ modΛ, and the standardduality D = Hom(−, k) : modΛ → modΛop yields a selfduality
D′ : modΛ

D
−→ modΛop ≃ modΛ.For any M in modΛ, given by (Mδ)δ∈(Qp,q,r)1 ∈ modΛ(n), we denote by

M∗ the Λ-module in modΛ given by (M tr
δ )δ∈(Qop

p,q,r)1 ∈ modΛop(n). Clearly,
M∗ is naturally isomorphi to D′(M).1.2. Let k be an algebraially losed �eld and P

1(k) the projetive lineover k. We identify points of P
1(k) with elements of k∪{∞} via the standardmapping (λ : 1) 7→ λ for λ ∈ k, and (1 : 0) 7→ ∞. For any homogeneouspolynomial f = f(t, u) ∈ k[t, u], the zero set of f is understood to be V (f) =

{(x : y) ∈ P
1(k) : f(x, y) = 0}. As usual, V (f) = {x ∈ k : f(x) = 0} for

f = f(t) ∈ k[t].Let w = (w1, . . . , wl) ∈ (N \ {0})l, λ = (λ1, . . . , λl) ∈ (P1(k))l be a pairof sequenes. Then we denote by X = X(w, λ) a weighted projetive line oftype (w, λ) (see [7℄ for a preise de�nition), and we view X as the lassialprojetive line P
1(k) equipped with a funtion w : P

1(k) → N, de�ned asfollows:
w(λ) =

{

wi if λ = λi for 1 ≤ i ≤ l,
1 if λ ∈ P

1(k) \ {λ1, . . . , λl}.We set
exc(X) = {λ ∈ P

1(k) : w(λ) > 1}, ord(X) = {λ ∈ P
1(k) : w(λ) = 1}.The elements of these sets are alled respetively the exeptional and ordi-nary points of X.
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It is well known that with any domesti anonial algebra Λ = Λp,q,r wean assoiate the weighted projetive line X(Λ) = X(w, λ), where (w, λ) =

((p, q, r), (0,∞, 1)), in suh way that the olletion (nλ)λ∈P1(k) of ranks forthe 1-parameter family T Λ = (T Λ
λ )λ∈P1(k) of stable tubes desribing thestruture of the ategory R of all regular Λ-modules, satis�es

(nλ)λ∈P1(k) = (w(λ))λ∈P1(k).Moreover, for eah tube T Λ
λ , λ ∈ P

1(k), we have �xed in [5, 2.1 and 3.3℄ asystem of tubular oordinates given by a preise seletion of one quasi-simple
Λ-module in T Λ

λ . This leads to spei�ation of the lassifying setT =
⊔

λ∈P1(k)

Tλ

for regular indeomposable Λ-modules, whereTλ = {[λ, s, l] : s ∈ Zw(λ), l ≥ 1}for λ ∈ P
1(k). (Note that if w(λ) = 1 then Zw(λ) = {0}, the tube T Λ

λ ishomogeneous and eah triple [λ, s, l] ∈ Tλ is in fat a pair [λ, l].) Sine post-projetive and preinjetive indeomposable Λ-modules are fully desribed bytheir dimension vetor sets P and Q, respetively, the setX(Λ) := P ⊔T ⊔Qis a lassifying set of invariants for indeomposable Λ-modules (see[5, 1.6, 2.1℄).Reall that given a Λ-module M , we set hx = dimk HomΛ(M, Xx), where
Xx is any module from the isomorphism lass ε(x), for x ∈ X(Λ).We assume that the set X = X(Λ) arries the struture of a translationquiver transported from the Auslander�Reiten quiver ΓΛ of Λ. Moreover,eah setion Σ in the onneted omponent P = P(Λ) indues a splittingP = P0 ∪ P ′, where P0 = P0(Σ) is �nite and P ′ = P ′(Σ) = −NΣ(see [5, 2.4℄ for r = 2). Note that if r = 1, we an take for Σ the fullsubquiver formed by the dimension vetors of all indeomposable projetive
Λ-modules and in the splitting above the part P0 is empty. The �onseu-tive� verties of P ′ are denoted by x(n, i) (see [5, 5.1℄ for details). Following[5, 7.1℄, for eah Λ there exists a setion Σ suh that the vertex set P0admits some ordering ≺ with nie properties with respet to the splittingabove.From now on we assume that Σ = Σ(Λ) is as in [5, 7.1℄ if r = 2, and isthe setion mentioned above if r = 1.
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1.3. Following [6℄, given a matrix A ∈ Mx×y(k[t1, . . . , tl]) and an integer
j ≤ r = r(A), we denote by Dj = Dj(A) the polynomial in k[t1, . . . , tl] whihis the greatest ommon divisor of all j×j minors ofA, where r(A) denotes therank of A over the quotient �eld k(t1, . . . , tl). Note that the polynomials Djare determined uniquely up to salars from k\{0}, and that Dj−1 |Dj for all
j = 1, . . . , r (we set D0(A) = 1). In ase l = 1, the elements A ∈ Mx×y(k[t])are alled simply t-matries. We say that t-matries A,A′ ∈ Mx×y(k[t]) areequivalent (and write A ∼ A′) if

A′ = BACfor some invertible B ∈ Mx×x(k[t]) and C ∈ My×y(k[t]); equivalently, if A anbe transformed to A′ by applying a �nite sequene of elementary row andolumn transformations �over k[t]�. It is well known that eah equivalenelass [A ]∼, A ∈ Mx×y(k[t]), ontains preisely one t-matrix ∆(A) in theso-alled anonial diagonal form


















E1 . . . 0 . . . 0... . . . ... ...
0 . . . Er . . . 0... ... ...
0 . . . 0 . . . 0



















where Ej ∈ k[t], j = 1, . . . , r, are nonzero moni polynomials satisfying
E1 |E2, . . . , Er−1 |Er, and all other entries are zero. Moreover, there existsa preise algorithm determining ∆(A). On the other hand, one an ompute
∆(A) diretly, by applying the formulas

Ej(A) =
Dj(A)

Dj−1(A)
, j = 1, . . . , r,provided we assume that all Dj(A) are moni polynomials.1.4. Let Λ = Λp,q,r be an arbitrary domesti anonial algebra. Given a�nite-dimensional Λ-module M = (A, B, C), we set

M =

{

res(M) = (A, B) if r = 1,
Ψ(M) = (A,−B) if r = 2.Clearly, M is a Λ1,1-module and M = M if p = q = r = 1. Reall that if

r = 1 then we identify modΛ with the module ategory for the hereditaryalgebra Λp,q (see 1.1).Following [5℄, for a Λ-module M , we denote by rkP(M) the rank of amaximal postprojetive diret summand of M .
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Lemma. Let M be a module over a domesti anonial algebra Λ.(a) If Λ = Λ1,1 and M = (A, B) with A, B ∈ Mnω×n0

(k), nω, n0 ≥ 0,then rkP(M) = nω − r(M i0
P ) + r(M i0−1

P ) for any i0 ≥ n0, where
M i

P =



















−A B 0 0 · · · 0

0 −A B 0 · · · 0

0 0 −A B · · · 0... ... ... ... . . . ...
0 0 0 · · · −A B



















∈ Minω×(i+1)n0
(k)

for i ≥ 0.(b) If Λ = Λp,q,r then rkP(M) = rkP(M).Proof. (a) Note that rk(P ) = 1 for any indeomposable postprojetive
Λ-module P . Therefore rkP(M) =

∑i0
i=1 m(M)Pi

, where i0 ≥ n0 is a �xedinteger and Pi denotes an indeomposable postprojetive Λ-module with
dimPi = [i, i+1], for i ≥ 1. Consequently, by [4, Lemmata 4.2(i), 4.6(i)℄, weobtain the following equalities:

rkP(M) = [M, P1] + ([M, P2] − 2[M, P1])

+

i0
∑

i=3

([M, Pi] − 2[M, Pi−1] + [M, Pi−2])

= [M, Pi0 ] − [M, Pi0−1]

= i0nω − r(M i0
P ) − ((i0 − 1)nω − r(M i0−1

P ))

= nω − r(M i0
P ) + r(M i0−1

P )and the proof of (a) is omplete.(b) follows immediately from [5, Theorem 2.2℄.Given a Λ1,1-module M = (A, B) with A, B ∈ Mnω×n0
(k), nω, n0 ≥ 0,we set

M(t) = A − tB ∈ Mnω×n0
(k[t]), M(t, u) = uA − tB ∈ Mnω×n0

(k[t, u]).Note that Dj(M(t, u)) is a homogeneous polynomial in k[t, u] for any j ≤
r(M(t, u)).
Definition. Let M be a module over a domesti anonial algebra Λ =

Λp,q,r. Then the polynomial
χM = Dj(M(t, u)) ∈ k[t, u]where j = j(M) := nω − rkP(M) (= r(Mn0

P )−r(Mn0−1
P )), dimM = [n0, nω],
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is alled the harateristi polynomial of the M . The set
spec(M) = V (χM ) ∩ ord(X(Λ))is alled the ordinary point spetrum (or simply the spetrum) of M .

Remark. (a) If (p, q, r) 6= (1, 1, 1) then spec(M) is an a�ne variety. Inase q 6= 1, spec(M) = V (χM (t, 1))∩ ord(X(Λ)) ⊆ k; in ase q = 1, we have
p 6= 1 and spec(M) = V (χM (1, u)) ∩ ord(X(Λ)).(b) spec(M) = spec(M) \ exc(X(Λ)) for any Λ-module M .() If one uses alternatively the rank of maximal preinjetive diret sum-mand of a Λ-module M in the de�nition above, the result does not hangesine (dimM)ω − rkP(M) = (dimM)0 − rkP(M∗).1.5. Now we formulate the main result of this paper. To do this, withany domesti anonial algebra Λ we assoiate a pair θ0 = θ0(Λ), θ1 = θ1(Λ)of integers, as in the following table:

Λ θ1(Λ) θ0(Λ)

Λp,q, p ≥ q ≥ 1 ⌈ pq

p+q
⌉ lcm(p, q)

Λp,2,2, p even p p

Λp,2,2, p odd p 2p

Λ3,3,2 6 6
Λ4,3,2 12 12
Λ5,3,2 30 30

Theorem. Let Λ = Λp,q,r be an arbitrary domesti anonial algebraand θ0 = θ0(Λ), θ1 = θ1(Λ) be as above. Then for any pair M = (A, B, C),
M ′ = (A′, B′, C ′) of �nite-dimensional Λ-modules with dim M = dimM ′ =
n = (nv)v∈(Qp,q,r)0 , onditions (a), (b) and () below are equivalent :(a) M ∼= M ′.(b) The following equalities hold :

• h(M)x = h(M ′)x and h(M∗)x = h(M ′∗)x for any x ∈ P0 ∪P ′
n∗
,where P ′

n∗
= {x(n, i) ∈ P ′ : i ∈ Σ0, n < θ1n∗ + θ0},

n∗ = min{nv : v ∈ (Qp,q,r)0};
• specΛ(M) = specΛ(M ′);
• h(M)[λ,s,l] = h(M ′)[λ,s,l] for any λ ∈ specΛ(M) ∪ exc(X(Λ)), s ∈

Zw(λ) and 1 ≤ l ≤ (n∗ + 1)w(λ).() The following equalities hold :
• r(M(M, x)) = r(M(M ′, x)) and r(M(M∗, x)) = r(M(M ′∗, x))for any x ∈ P0 ∪P ′

n∗
(see [5, 2.3℄ for de�nition of M(N, y));

• ∆(M(t)) = ∆(M ′(t)), or equivalently , r(M(t)) = r(M ′(t)) (=: r)and Dj(M(t)) = Dj(M ′(t)) for all j = 1, . . . , r;
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• r(M(λ, M, s, l)) = r(M(λ, M ′, s, l)) for any λ ∈ exc(X(Λ))∪{∞},

s ∈ Zw(λ) and 1 ≤ l ≤ (n∗ + 1)w(λ), where
M(λ, M, s, l) =











Mµp(s,l)(B, A) if λ = 0,

Mµ2(s,l)(−B, C) if λ = 1,
Mµq(s,l)(A, B) if λ = ∞,and similarly for M(λ, M ′, s, l) (see [5, 2.2℄ for de�nition of theindexing funtion µ(−) and the matries in the formulas above).

Remark. (a) Condition (b) is rather theoretial. In omparison with theAuslander theorem, it restrits the lass of indeomposable modules in modΛfor whih one has to test the equality of dimensions to members of a �nite,preisely desribed set of onneted omponents in the Auslander�Reitenquiver ΓΛ, in fat, to a �nite set of isolasses. Nevertheless, beause of theneessity of solving polynomial equations, we should not expet that one andetermine this set e�etively.(b) Condition () says, in partiular, that the multipliity vetors, for Mand M ′, restrited to all omponents whih are not homogeneous tubes, areequal. In ontrast to (b), all ingredients of () have algorithmi and �fullyomputable� harater (see [5℄ for details). Therefore, () an be e�etivelyused in pratie. Moreover, it an be onverted into a omputer program.2. Proof of the main result. In this setion we give the full proof ofTheorem 1.5, whih we preede by some preparatory fats.2.1. We start with a lemma onerning the main property of the spetraof modules over domesti anonial algebras.
Lemma. Let M be a module over a domesti anonial algebra Λ. Then,for any λ ∈ ord(X(Λ)), λ belongs to specΛ(M) if and only if M ontains adiret summand from the tube T Λ

λ .Proof. Assume �rst that Λ = Λ1,1 and M = (A, B). Then learly
ord(X(Λ)) = P

1(k). We set χ t
M = χM (t, 1) and χu

M = χM (1, u). Observethat χ t
M = Dj(M)(M(t)), sine the mapping k[t, u] ∋ f 7→ f(t, 1) ∈ k[t] isan algebra homomorphism whih preserves irreduibility for homogeneouspolynomials f 6= u, and sends u to 1. Analogously, χu

M = −Dj(M)(M
′(u)),where M ′ = (B, A). Then k ∩ specΛ(M) = V (χ t

M ) = V (Dj(M)(M(t))),where the embedding k ⊆ P
1(k) is as in 1.2. Consequently, by [4, Proposi-tion 4.4℄, λ ∈ specΛ(M) if and only if M ontains a diret summand fromthe tube T Λ

λ , for λ ∈ k. In ase λ = ∞ ∈ P
1(k), we have ∞ ∈ specΛ(M) ifand only if 0 ∈ V (χu

M ) = V (Dj(M)(M
′(u))), M ′ ontains a T Λ

0 if and onlyif M ontains a diret summand from T Λ
∞, and we again apply [4, Proposi-tion 4.4℄. (Note that j(M ′) = j(M) sine the autoequivalene of modΛ given
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by (A, B) 7→ (B, A) preserves the dimension vetors so it ats invariantly onthe isolasses of postprojetives.) Consequently, the proof of the assertionfor a Kroneker algebra is omplete.Let Λ = Λp,q,2. Then by [5, 3.4(∗)℄, for λ ∈ ord(X(Λ)) = k \ {0, 1},
M ontains a diret summand from T Λ

λ if and only if the Λ1,1-module
Ψ(M) = M ontains a diret summand from T

Λ1,1

λ . Moreover, by the Kro-neker algebra ase, the seond equivalent ondition holds exatly when
λ ∈ specΛ(M) = specΛ1,1

(M) \ {0, 1,∞}.Finally, assume that Λ = Λp,q. Then similarly specΛ(M) = specΛ1,1
(M)\

exc(X(Λ)). Moreover, one an easily show that the funtor res : modΛ → Λ1,1has analogous properties to those of the funtor Ψ .In this way the assertion is proven for any domesti anonial algebra Λ.2.2. To formulate our next result preisely we need some extra notation.We onsider the pairs E = (E , ε) onsisting of subsets E ⊆ k[t] and funtions
ε : E → N. Note that eah suh pair (sometimes alled a �multiset�) an betreated as a sequene (ε(f)×f)f∈E of tuples ε(f)×f = (f, . . . , f) ∈ k[t]ε(f).Given E1 = (E1, ε1), E2 = (E2, ε2) as above we de�ne the union E1 ⊎ E2by setting

(E1, ε1) ⊎ (E2, ε2) = (E , ε)where E = E1 ∪ E2 and ε : E → N is de�ned as follows:
ε(f) =







ε1(f) if f ∈ E1 \ E2,
ε2(f) if f ∈ E2 \ E1,
ε1(f) + ε2(f) if f ∈ E1 ∩ E2.Following [6℄, with any t-matrix A ∈ Mx,y(k[t]) we assoiate the system

E(A) of elementary divisors of A. Reall that E(A) is the olletion of allpolynomials f
uj,i

i 6= 1 from the deompositions Ej(A) = f
uj,1

1 · . . . · f
uj,v
v ofthe moni polynomials Ej = Ej(A), j = 1, . . . , r = r(A), into produts ofpowers of pairwise di�erent irreduible moni polynomials f1, . . . , fv ∈ k[t].Note that Dr(A) = Er · . . . · E1 and E1 |E2, . . . , Er−1 |Er, in partiular,

ur,i ≥ · · · ≥ u1,i ≥ 0 for every i = 1, . . . , v. Clearly, E(A) arries a anonialstruture of a pair (E , ε) as above: E is the set of all elements in E(A) and εis E ∋ f 7→ |{(j, i) : f
uj,i

i = f}| ∈ N.Now we formulate all properties of t-matries assigned to Λ1,1-modules,whih are neessary in the proof of our main result.
Proposition. Given a pair M = (A, B), M ′ = (A′, B′) of Λ1,1-moduleswith A, B ∈ Mnω×n0

(k), A′, B′ ∈ Mn′

ω×n′

0
(k), the following assertions hold :(a) If M ∼= M ′ then M(t) ∼ M ′(t).(b) If M(t) ∼ M ′(t) and the matries B, B′ are invertible then M ∼= M ′.
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() If E(M(t)) = E(M ′(t)), nω = n0 = n′

ω = n′
0 and Dn0

(M(t)) 6= 0,
Dn0

(M ′(t)) 6= 0 then M(t) ∼ M ′(t).(d) E(M(t) ⊕ M ′(t)) = E(M(t)) ⊎ E(M ′(t)), where
M(t) ⊕ M ′(t) =

[

M(t) 0

0 M ′(t)

]

.Proof. Assertion (a) is lear. For the proof of (b) and a more generalversion of (d), we refer to [6℄. It remains to prove ().Let M and M ′ be as in (). Then M(t) and M ′(t) are square matries ofmaximal rank, i.e. they belong to Mr×r(k[t]), where r = r(M(t)) = r(M ′(t)).We an assume that Dr(M(t)) and Dr(M
′(t)) are polynomials of positivedegree, or equivalently, that E(M(t)) 6= ∅ and E(M ′(t)) 6= ∅. Otherwise,

E(M(t)) = E(M ′(t)) = ∅, so Dr(M(t)) = Dr(M
′(t)) = 1, and hene

∆(M(t)) = Ir = ∆(M ′(t)), sine Ej((M(t)) = Ej((M
′(t)) = 1 for every

j = 1, . . . , r.Now, the olletion E(M(t))=E(M ′(t)) has the form (f
wj,i

i )i=1,...,v; j=1,...,rifor some moni irreduible polynomials f1, . . . , fv∈ k[t], where ri ≤ r and
w1,i ≥ · · · ≥ wri,i ≥ 1 for every i = 1, . . . , v. We set wj,i = 0 for j > ri,
i = 1, . . . , v. Then

Er(M(t)) = f
w1,1

1 · . . . · f
w1,v
v = Er(M

′(t)),

Er−1(M(t)) = f
w2,1

1 · . . . · f
w2,v
v = Er−1(M

′(t)),... ... ...
E1(M(t)) = f

wr,1

1 · . . . · f
wr,v
v = E1(M

′(t)).Consequently, ∆(M(t)) = ∆(M ′(t)) and M(t) ∼ M ′(t).2.3. Proof of Theorem 1.5. First we prove jointly the impliations(a)⇒(b) and (a)⇒(), next the impliation (b)⇒(a), and �nally ()⇒(a).(a)⇒(b),(): Reall �rst that h(M)x = h(M ′)x if and only if r(M(M, x))
= r(M(M ′, x)) for x ∈ P (see [5, Theorem 2.3℄ for Λ = Λp,q,2, and[4, Lemma 5.6(i)℄ for Λ = Λp,q). Similarly, h(M)[λ,s,l] = h(M ′)[λ,s,l] if andonly if M(λ, M, s, l) = M(λ, M ′, s, l), for [λ, s, l] ∈ T (see [4, Lemma5.6℄ and [5, 3.4℄ for Λp,q and Λp,q,2, respetively). Next note that learlythe integers h(N)x, x ∈ X, are invariants of isomorphism lasses of Λp,q,r-modules N . Moreover, by Lemma 2.1 and Proposition 2.2(a), so also are thesets specΛ(N) and the matries ∆(N(t)), respetively. Now, the impliations(a)⇒(b) and (a)⇒() follow immediately.(b)⇒(a): Assume that (b) holds. To prove M ∼= M ′, we show that
m(M)|Y = m(M ′)|Y for Y = P,Q,T, respetively.We start by showing m(M)|P = m(M ′)|P. Fix v0 ∈ (Qp,q,2)0 suh that
nv0

= n∗. Consider �rst the ase Λ = Λp,q,2. Let η = η(Λ) and ν = ν(Λ) bethe onstants de�ned in [5, Theorem 2.4℄. Then by [5, Theorem 2.4(e)℄ we
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have x(n, i)v0
> n∗ = nv0

, and hene m(M)x(n,i) = 0 for all n ≥ n∗/η + νand i ∈ Σ0. From [5, Proposition 5.2℄ it follows that ν = θ0. To determine ηwe use the formula η = min{κj/νj : j ∈ [r]} (see [5, Theorem 2.4(e)℄). First,applying [5, Algorithm 6.1℄, we ompute the onstants κj and νj , j ∈ [r],and then we �nd diretly that 1/η = θ1. As a onsequene, m(M)x = 0 =
m(M ′)x for all x ∈ P ′ \ (P0 ∪P ′

n∗
).Next onsider the ase Λ = Λp,q. We de�ne η and ν as in [5, Theo-rem 2.4℄. The arguments from the proof of [5, Theorem 2.4(e)℄ show againthat x(n, i)v0

> n∗ = nv0
, so m(M)x(n,i) = 0 for all n ≥ n∗/η + ν and

i ∈ Σ0. From [8, Setion XIII.1℄ we know that ν = lcm(p, q) and ∂(x) =
−(p + q)/gcd(p, q) for x ∈ P, where ∂ = ∂Λ denotes the defet funtionfor the hereditary algebra Λ. On the other hand, by the proof of [5, Theo-rem 2.4(e)℄, we have min{−∂(x) : x ∈ Σ0} = ην. Consequently,

1

η
=

lcm(p, q) gcd(p, q)

p + q
=

pq

p + q
,so ⌈1/η⌉ = θ1, and again m(M)x = 0 = m(M ′)x for all x ∈ P ′ \ (P0 ∪P ′

n∗
).It remains to show that m(M)P0∪P′

n∗

= m(M ′)P0∪P′

n∗

for any domestianonial algebra Λ.Fix any x ∈ P0 ∪P ′
n∗
. Reall the formulas

(∗)M m(M)x =














h(M)x + h(M)τx −
∑

y∈−x

dy,x h(M)y if Xx is non-projetive,
h(M)x −

∑

y∈−x

dy,x h(M)y if Xx is projetive,
and an analogous one (∗)M ′ for m(M ′)x (see [5, Introdution℄). Then by [5,Proposition 5.7℄, we have τx ≺ x and y ≺ x for any y ∈ −x. Hene, byde�nition of the order ≺, the vetors τx and y ∈ −x belong to P0 ∪ P ′

n∗(see [5, 5.7℄). Consequently, h(M)τx = h(M ′)τx and h(M)y = h(M ′)y for
y ∈ −x, so m(M)x = m(M ′)x.Conluding, we have m(M)|P = m(M ′)|P.Next onsider the aseY=Q. Applying the equalities h(M∗)x = h(M ′∗)xfor x ∈ P0 ∪P ′

n∗
, (b) and dual arguments, we obtain m(M)|Q = m(M ′)|Q.Finally, we show m(M)|Tλ

= m(M ′)|Tλ
. Fix λ ∈ specΛ(M)∪ exc(X(Λ)).It is well known [8℄ that (dimX[λ,s,l])i ≥ n∗+1 for all i ∈ (Qp,q,r)0, s ∈ Zw(λ)and l ≥ (n∗ +1)w(λ). Hene, m(M)[λ,s,l] = 0 = m(M ′)[λ,s,l] for all s ∈ Zw(λ)and l ≥ (n∗ + 1)w(λ).Consider x = [λ, s, l] given by the pair (s, l) ∈ Zw(λ) × N suh that l <

(n∗+1)w(λ). Clearly, τx = [λ, s⊖1, l] and −x = {[λ, s⊖1, l−1], [λ, s, l+1]} if
l ≥ 2, and −x = {[λ, s, 2]} otherwise, where ⊖ = ⊖w(λ). Sine l, l− 1, l +1 ≤
(n∗ + 1)w(λ), we have h(M)τx = h(M ′)τx and h(M)y = h(M ′)y for y ∈ −x,
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so m(M)x = m(M ′)x, from (∗). Consequently, m(M)|Tλ

= m(M ′)|Tλ
for all

λ ∈ specΛ(M) ∪ exc(Λ).Finally, note that by Lemma 2.1, m(M)|Tλ
= m(M ′)|Tλ

= 0 for all
λ ∈ ord(X(Λ)) \ specΛ(M). Thus, m(M)|T = m(M)|T.In this way m(M)x = m(M ′)x for all x ∈ X, and the proof of (b)⇒(a)is omplete.()⇒(a): Assume that () holds. By the previous parts of the proof,
(∗∗) m(M)|Y = m(M ′)|Y, where Y = P ⊔Q ⊔

⊔

λ∈exc(X(Λ))∪{∞}

Tλ.

So it remains to show that R ∼= R′, where R (resp. R′) denotes the maximaldiret summand of M (resp. M ′) belonging to add(
⋃

λ∈ord(X(Λ))\{∞} T
Λ

λ ). Bythe properties of the funtors Ψ and res, the Λ1,1-modules R = (R1, R2) and
R′ = (R′

1, R
′
2) belong to add (

⋃

λ∈ord(X(Λ))\{∞} T
Λ1,1

λ ); moreover, R ∼= R′ ifand only if R ∼= R′ (see [8, 5℄). Therefore, we now show that the equality
∆(M(t)) = ∆(M ′(t)) implies the required isomorphism R ∼= R′.By (∗∗), dim R = dimR′, so dimR = dimR′, sine dim M = dim M ′.We an assume that R,R′ are non-zero modules (otherwise, there is nothingto show). By the desription of indeomposable modules in the ategory
modΛ1,1, Proposition 2.2(a) and an elementary alulation, we have thefollowing:(i) R1, R2, R

′
1, R

′
2 are square l × l matries for some l ≥ 1,(ii) R2, R

′
2 are invertible,(iii) Dl(R(t)), Dl(R′(t)) 6= 0,(iv) for an indeomposable N in modΛ1,1, the set E(N(t)) is empty,provided N is postprojetive, preinjetive or belongs to T

Λ1,1
∞ .The equality ∆(M(t)) = ∆(M ′(t)) implies E(M(t)) = E(M ′(t)), so

E(R(t))=E(R′(t)) by (iv) and Proposition 2.2(d), sine m(M)|Z=m(M ′)|Z ,where Z =
⊔

λ∈exc(X(Λ))Tλ. Then, by (i), (iii) and Proposition 2.2(), the ma-tries R(t) and R′(t) are equivalent. Hene, by (ii) and Proposition 2.2(b),the modules R and R′ are isomorphi (and so are R and R′).Summarizing, () implies (∗∗) and the isomorphism R ∼= R′, so M ∼= M ′.The proof of the theorem is omplete.
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