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ON A SEPARATION OF ORBITS IN THE MODULEVARIETY FOR DOMESTIC CANONICAL ALGEBRASBYPIOTR DOWBOR and ANDRZEJ MRÓZ (Toru«)Abstra
t. Given a pair M, M ′ of �nite-dimensional modules over a domesti
 
anon-i
al algebra Λ, we give a fully veri�able 
riterion, in terms of a �nite set of simple linearalgebra invariants, de
iding if M and M ′ lie in the same orbit in the module variety, orequivalently, if M and M ′ are isomorphi
.Introdu
tion. The problem of de
iding whether or not two points in analgebrai
 variety X equipped with a regular a
tion of an algebrai
 group Glie in the same G-orbit was intensively studied as a basi
 elementary questionof geometri
 invariant theory. In 
ase X is the a�ne variety
X = modΛ(n) ⊆

∏

δ∈Q1

Mt(δ)×s(δ)(k)

of Λ-modules with a �xed dimension ve
tor n = (nv)v∈Q0
and G is the group

G = G(n) :=
∏

v∈Q0

Glnv(k)

asso
iated with a �nite-dimensional k-algebra Λ = kQ/I de�ned by a �nitequiver Q = (Q0, Q1) and an admissible ideal I in the path algebra kQ(see [3℄), this leads to the following question of purely algebrai
 form:�When given Λ-modules M, M ′ ∈ modΛ(n) are isomorphi
?�We 
all it the isomorphism question for the pair (M, M ′).There exists a rather theoreti
al 
riterion, due to Auslander [1, 2℄, thatanswers this question for modules over any �nite-dimensional algebra Λ. Itsays that given obje
ts M, M ′ in the 
ategory modΛ of �nite-dimensional
Λ-modules, M ∼= M ′ if and only if dimk HomΛ(M, X) = dimk HomΛ(M ′, X)for all inde
omposable modules X in modΛ. If Λ = kQ/I is a representation-�nite algebra then this result 
an lead to an algorithmi
 pro
edure, provided2000 Mathemati
s Subje
t Classi�
ation: 16G20, 16G60, 16G70, 14L30, 68Q99.Key words and phrases: domesti
 
anoni
al algebra, module, module variety, multi-pli
ity ve
tor, isomorphism question. [283℄ 
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a 
omplete 
lassi�
ation of inde
omposable Λ-modules together with a pre-
ise des
ription of their matrix forms is known. In 
ase Λ is representation-in�nite, the result seems to be useless, in the sense that it fails to providean e�e
tive method.Observe that Λ-modules M and M ′ are isomorphi
 if and only if themultipli
ity ve
tors m(M) and m(M ′) with respe
t to a �xed 
lassifyingset X = (X, ε) (of invariants for the inde
omposable Λ-modules) are equal(see [5℄). Therefore answering the isomorphism question for M, M ′ 
an berepla
ed by determining m(M) and m(M ′), whi
h is however mu
h moredi�
ult than the original task. Observe that just as for the polynomialalgebra k[t] (problem of determining eigenvalues), one 
annot expe
t theexisten
e of a fully veri�able pro
edure 
omputing m(M) in the 
ase ofrepresentation-in�nite algebras Λ. Nevertheless, a general method of atta
k-ing this problem was presented in [4℄ and then applied to 
onstru
t algo-rithms determining m(M) (up to �nding roots of polynomials in k[t]) for alldomesti
 
anoni
al algebras (see [4, 5℄).This paper should be treated as an addendum to [5℄. Its main aim isto present (applying the results of [5℄) a 
omplete, �nite and fully veri�able
riterion that allows us to answer the isomorphism question for any �xed pair
(M, M ′) of modules over a domesti
 
anoni
al algebra Λ, given as points inthe variety modΛ(n); equivalently, to de
ide if M, M ′ lie in the same G(n)-orbit in modΛ(n) (see Theorem 1.5).

1. Preliminaries and the main theorem. We use well known and
ommonly used de�nitions and notation, as in [5℄. We only re
all some ofthem.1.1. We 
onsider �nite-dimensional domesti
 
anoni
al k-algebras Λp,q,r

= kQp,q,r/Ip,q,r, p, q, r ≥ 1, with
Qp,q,r : 0

�
���α1

a1 -
α2

· · · -
αp−1

ap−1
@

@@R

αp

ω-β1

b1
-

β2

· · · -
βq−1

bq−1
-βq

@
@@R

γ1

c1
-

γ2

· · · -
γr−1

cr−1
�

���
γr

and Ip,q,r = 〈α + β − γ〉, α = α1 · · ·αp, β = β1 · · ·βq, γ = γ1 · · · γr, for anytriple
(p, q, r) ∈ D := {(p, q, 1), p, q ≥ 1; (p, 2, 2), p ≥ 2; (3, 3, 2); (4, 3, 2); (5, 3, 2)}.
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Let Λ = Λp,q,r for some (p, q, r) ∈ D. Then by �nite-dimensional Λ-modules we always mean matrix representations M of Λ, whi
h 
an be iden-ti�ed with points
(Mδ)δ∈(Qp,q,r)1 ∈ modΛ(n)of the module variety, where n = dim(M) (see [5, 1.4℄). For simpli
ity, weuse the notation M = (A, B, C), where A = (Ai)i∈[p], B = (Bj)i∈[q], C =

(Cl)i∈[r] and Ai = Mαi
, Bj = Mβj

, Cl = Mγl
for i ∈ [p], j ∈ [q], l ∈ [r],respe
tively, and [s] := {1, . . . , s} for s ∈ N. Clearly, we have A + B = C,where A = Ap . . . A1, and similarly for B and C.Re
all from [5℄ that if r = 1 then Λ is 
anoni
ally isomorphi
 to a heredi-tary algebra Λp,q and ea
h Λ-module M = (A, B, C) is uniquely determinedby the pair (A, B). From now on, we identify the algebras Λp,q,1 and Λp,q, aswell their module 
ategories, via the mapping (A, B, C) 7→ (A, B).Note that ea
h algebra Λ = Λp,q,r is 
anoni
ally isomorphi
 to its opposite

Λop; the isomorphism is given by the mapping 0 7→ ω, a1 7→ ap−1, b1 7→ bq−1,and so on. Hen
e, we get an equivalen
e modΛop ≃ modΛ, and the standardduality D = Hom(−, k) : modΛ → modΛop yields a selfduality
D′ : modΛ

D
−→ modΛop ≃ modΛ.For any M in modΛ, given by (Mδ)δ∈(Qp,q,r)1 ∈ modΛ(n), we denote by

M∗ the Λ-module in modΛ given by (M tr
δ )δ∈(Qop

p,q,r)1 ∈ modΛop(n). Clearly,
M∗ is naturally isomorphi
 to D′(M).1.2. Let k be an algebrai
ally 
losed �eld and P

1(k) the proje
tive lineover k. We identify points of P
1(k) with elements of k∪{∞} via the standardmapping (λ : 1) 7→ λ for λ ∈ k, and (1 : 0) 7→ ∞. For any homogeneouspolynomial f = f(t, u) ∈ k[t, u], the zero set of f is understood to be V (f) =

{(x : y) ∈ P
1(k) : f(x, y) = 0}. As usual, V (f) = {x ∈ k : f(x) = 0} for

f = f(t) ∈ k[t].Let w = (w1, . . . , wl) ∈ (N \ {0})l, λ = (λ1, . . . , λl) ∈ (P1(k))l be a pairof sequen
es. Then we denote by X = X(w, λ) a weighted proje
tive line oftype (w, λ) (see [7℄ for a pre
ise de�nition), and we view X as the 
lassi
alproje
tive line P
1(k) equipped with a fun
tion w : P

1(k) → N, de�ned asfollows:
w(λ) =

{

wi if λ = λi for 1 ≤ i ≤ l,
1 if λ ∈ P

1(k) \ {λ1, . . . , λl}.We set
exc(X) = {λ ∈ P

1(k) : w(λ) > 1}, ord(X) = {λ ∈ P
1(k) : w(λ) = 1}.The elements of these sets are 
alled respe
tively the ex
eptional and ordi-nary points of X.
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It is well known that with any domesti
 
anoni
al algebra Λ = Λp,q,r we
an asso
iate the weighted proje
tive line X(Λ) = X(w, λ), where (w, λ) =

((p, q, r), (0,∞, 1)), in su
h way that the 
olle
tion (nλ)λ∈P1(k) of ranks forthe 1-parameter family T Λ = (T Λ
λ )λ∈P1(k) of stable tubes des
ribing thestru
ture of the 
ategory R of all regular Λ-modules, satis�es

(nλ)λ∈P1(k) = (w(λ))λ∈P1(k).Moreover, for ea
h tube T Λ
λ , λ ∈ P

1(k), we have �xed in [5, 2.1 and 3.3℄ asystem of tubular 
oordinates given by a pre
ise sele
tion of one quasi-simple
Λ-module in T Λ

λ . This leads to spe
i�
ation of the 
lassifying setT =
⊔

λ∈P1(k)

Tλ

for regular inde
omposable Λ-modules, whereTλ = {[λ, s, l] : s ∈ Zw(λ), l ≥ 1}for λ ∈ P
1(k). (Note that if w(λ) = 1 then Zw(λ) = {0}, the tube T Λ

λ ishomogeneous and ea
h triple [λ, s, l] ∈ Tλ is in fa
t a pair [λ, l].) Sin
e post-proje
tive and preinje
tive inde
omposable Λ-modules are fully des
ribed bytheir dimension ve
tor sets P and Q, respe
tively, the setX(Λ) := P ⊔T ⊔Qis a 
lassifying set of invariants for inde
omposable Λ-modules (see[5, 1.6, 2.1℄).Re
all that given a Λ-module M , we set hx = dimk HomΛ(M, Xx), where
Xx is any module from the isomorphism 
lass ε(x), for x ∈ X(Λ).We assume that the set X = X(Λ) 
arries the stru
ture of a translationquiver transported from the Auslander�Reiten quiver ΓΛ of Λ. Moreover,ea
h se
tion Σ in the 
onne
ted 
omponent P = P(Λ) indu
es a splittingP = P0 ∪ P ′, where P0 = P0(Σ) is �nite and P ′ = P ′(Σ) = −NΣ(see [5, 2.4℄ for r = 2). Note that if r = 1, we 
an take for Σ the fullsubquiver formed by the dimension ve
tors of all inde
omposable proje
tive
Λ-modules and in the splitting above the part P0 is empty. The �
onse
u-tive� verti
es of P ′ are denoted by x(n, i) (see [5, 5.1℄ for details). Following[5, 7.1℄, for ea
h Λ there exists a se
tion Σ su
h that the vertex set P0admits some ordering ≺ with ni
e properties with respe
t to the splittingabove.From now on we assume that Σ = Σ(Λ) is as in [5, 7.1℄ if r = 2, and isthe se
tion mentioned above if r = 1.
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1.3. Following [6℄, given a matrix A ∈ Mx×y(k[t1, . . . , tl]) and an integer
j ≤ r = r(A), we denote by Dj = Dj(A) the polynomial in k[t1, . . . , tl] whi
his the greatest 
ommon divisor of all j×j minors ofA, where r(A) denotes therank of A over the quotient �eld k(t1, . . . , tl). Note that the polynomials Djare determined uniquely up to s
alars from k\{0}, and that Dj−1 |Dj for all
j = 1, . . . , r (we set D0(A) = 1). In 
ase l = 1, the elements A ∈ Mx×y(k[t])are 
alled simply t-matri
es. We say that t-matri
es A,A′ ∈ Mx×y(k[t]) areequivalent (and write A ∼ A′) if

A′ = BACfor some invertible B ∈ Mx×x(k[t]) and C ∈ My×y(k[t]); equivalently, if A 
anbe transformed to A′ by applying a �nite sequen
e of elementary row and
olumn transformations �over k[t]�. It is well known that ea
h equivalen
e
lass [A ]∼, A ∈ Mx×y(k[t]), 
ontains pre
isely one t-matrix ∆(A) in theso-
alled 
anoni
al diagonal form


















E1 . . . 0 . . . 0... . . . ... ...
0 . . . Er . . . 0... ... ...
0 . . . 0 . . . 0



















where Ej ∈ k[t], j = 1, . . . , r, are nonzero moni
 polynomials satisfying
E1 |E2, . . . , Er−1 |Er, and all other entries are zero. Moreover, there existsa pre
ise algorithm determining ∆(A). On the other hand, one 
an 
ompute
∆(A) dire
tly, by applying the formulas

Ej(A) =
Dj(A)

Dj−1(A)
, j = 1, . . . , r,provided we assume that all Dj(A) are moni
 polynomials.1.4. Let Λ = Λp,q,r be an arbitrary domesti
 
anoni
al algebra. Given a�nite-dimensional Λ-module M = (A, B, C), we set

M =

{

res(M) = (A, B) if r = 1,
Ψ(M) = (A,−B) if r = 2.Clearly, M is a Λ1,1-module and M = M if p = q = r = 1. Re
all that if

r = 1 then we identify modΛ with the module 
ategory for the hereditaryalgebra Λp,q (see 1.1).Following [5℄, for a Λ-module M , we denote by rkP(M) the rank of amaximal postproje
tive dire
t summand of M .
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Lemma. Let M be a module over a domesti
 
anoni
al algebra Λ.(a) If Λ = Λ1,1 and M = (A, B) with A, B ∈ Mnω×n0

(k), nω, n0 ≥ 0,then rkP(M) = nω − r(M i0
P ) + r(M i0−1

P ) for any i0 ≥ n0, where
M i

P =



















−A B 0 0 · · · 0

0 −A B 0 · · · 0

0 0 −A B · · · 0... ... ... ... . . . ...
0 0 0 · · · −A B



















∈ Minω×(i+1)n0
(k)

for i ≥ 0.(b) If Λ = Λp,q,r then rkP(M) = rkP(M).Proof. (a) Note that rk(P ) = 1 for any inde
omposable postproje
tive
Λ-module P . Therefore rkP(M) =

∑i0
i=1 m(M)Pi

, where i0 ≥ n0 is a �xedinteger and Pi denotes an inde
omposable postproje
tive Λ-module with
dimPi = [i, i+1], for i ≥ 1. Consequently, by [4, Lemmata 4.2(i), 4.6(i)℄, weobtain the following equalities:

rkP(M) = [M, P1] + ([M, P2] − 2[M, P1])

+

i0
∑

i=3

([M, Pi] − 2[M, Pi−1] + [M, Pi−2])

= [M, Pi0 ] − [M, Pi0−1]

= i0nω − r(M i0
P ) − ((i0 − 1)nω − r(M i0−1

P ))

= nω − r(M i0
P ) + r(M i0−1

P )and the proof of (a) is 
omplete.(b) follows immediately from [5, Theorem 2.2℄.Given a Λ1,1-module M = (A, B) with A, B ∈ Mnω×n0
(k), nω, n0 ≥ 0,we set

M(t) = A − tB ∈ Mnω×n0
(k[t]), M(t, u) = uA − tB ∈ Mnω×n0

(k[t, u]).Note that Dj(M(t, u)) is a homogeneous polynomial in k[t, u] for any j ≤
r(M(t, u)).
Definition. Let M be a module over a domesti
 
anoni
al algebra Λ =

Λp,q,r. Then the polynomial
χM = Dj(M(t, u)) ∈ k[t, u]where j = j(M) := nω − rkP(M) (= r(Mn0

P )−r(Mn0−1
P )), dimM = [n0, nω],
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is 
alled the 
hara
teristi
 polynomial of the M . The set
spec(M) = V (χM ) ∩ ord(X(Λ))is 
alled the ordinary point spe
trum (or simply the spe
trum) of M .

Remark. (a) If (p, q, r) 6= (1, 1, 1) then spec(M) is an a�ne variety. In
ase q 6= 1, spec(M) = V (χM (t, 1))∩ ord(X(Λ)) ⊆ k; in 
ase q = 1, we have
p 6= 1 and spec(M) = V (χM (1, u)) ∩ ord(X(Λ)).(b) spec(M) = spec(M) \ exc(X(Λ)) for any Λ-module M .(
) If one uses alternatively the rank of maximal preinje
tive dire
t sum-mand of a Λ-module M in the de�nition above, the result does not 
hangesin
e (dimM)ω − rkP(M) = (dimM)0 − rkP(M∗).1.5. Now we formulate the main result of this paper. To do this, withany domesti
 
anoni
al algebra Λ we asso
iate a pair θ0 = θ0(Λ), θ1 = θ1(Λ)of integers, as in the following table:

Λ θ1(Λ) θ0(Λ)

Λp,q, p ≥ q ≥ 1 ⌈ pq

p+q
⌉ lcm(p, q)

Λp,2,2, p even p p

Λp,2,2, p odd p 2p

Λ3,3,2 6 6
Λ4,3,2 12 12
Λ5,3,2 30 30

Theorem. Let Λ = Λp,q,r be an arbitrary domesti
 
anoni
al algebraand θ0 = θ0(Λ), θ1 = θ1(Λ) be as above. Then for any pair M = (A, B, C),
M ′ = (A′, B′, C ′) of �nite-dimensional Λ-modules with dim M = dimM ′ =
n = (nv)v∈(Qp,q,r)0 , 
onditions (a), (b) and (
) below are equivalent :(a) M ∼= M ′.(b) The following equalities hold :

• h(M)x = h(M ′)x and h(M∗)x = h(M ′∗)x for any x ∈ P0 ∪P ′
n∗
,where P ′

n∗
= {x(n, i) ∈ P ′ : i ∈ Σ0, n < θ1n∗ + θ0},

n∗ = min{nv : v ∈ (Qp,q,r)0};
• specΛ(M) = specΛ(M ′);
• h(M)[λ,s,l] = h(M ′)[λ,s,l] for any λ ∈ specΛ(M) ∪ exc(X(Λ)), s ∈

Zw(λ) and 1 ≤ l ≤ (n∗ + 1)w(λ).(
) The following equalities hold :
• r(M(M, x)) = r(M(M ′, x)) and r(M(M∗, x)) = r(M(M ′∗, x))for any x ∈ P0 ∪P ′

n∗
(see [5, 2.3℄ for de�nition of M(N, y));

• ∆(M(t)) = ∆(M ′(t)), or equivalently , r(M(t)) = r(M ′(t)) (=: r)and Dj(M(t)) = Dj(M ′(t)) for all j = 1, . . . , r;
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• r(M(λ, M, s, l)) = r(M(λ, M ′, s, l)) for any λ ∈ exc(X(Λ))∪{∞},

s ∈ Zw(λ) and 1 ≤ l ≤ (n∗ + 1)w(λ), where
M(λ, M, s, l) =











Mµp(s,l)(B, A) if λ = 0,

Mµ2(s,l)(−B, C) if λ = 1,
Mµq(s,l)(A, B) if λ = ∞,and similarly for M(λ, M ′, s, l) (see [5, 2.2℄ for de�nition of theindexing fun
tion µ(−) and the matri
es in the formulas above).

Remark. (a) Condition (b) is rather theoreti
al. In 
omparison with theAuslander theorem, it restri
ts the 
lass of inde
omposable modules in modΛfor whi
h one has to test the equality of dimensions to members of a �nite,pre
isely des
ribed set of 
onne
ted 
omponents in the Auslander�Reitenquiver ΓΛ, in fa
t, to a �nite set of iso
lasses. Nevertheless, be
ause of thene
essity of solving polynomial equations, we should not expe
t that one 
andetermine this set e�e
tively.(b) Condition (
) says, in parti
ular, that the multipli
ity ve
tors, for Mand M ′, restri
ted to all 
omponents whi
h are not homogeneous tubes, areequal. In 
ontrast to (b), all ingredients of (
) have algorithmi
 and �fully
omputable� 
hara
ter (see [5℄ for details). Therefore, (
) 
an be e�e
tivelyused in pra
ti
e. Moreover, it 
an be 
onverted into a 
omputer program.2. Proof of the main result. In this se
tion we give the full proof ofTheorem 1.5, whi
h we pre
ede by some preparatory fa
ts.2.1. We start with a lemma 
on
erning the main property of the spe
traof modules over domesti
 
anoni
al algebras.
Lemma. Let M be a module over a domesti
 
anoni
al algebra Λ. Then,for any λ ∈ ord(X(Λ)), λ belongs to specΛ(M) if and only if M 
ontains adire
t summand from the tube T Λ

λ .Proof. Assume �rst that Λ = Λ1,1 and M = (A, B). Then 
learly
ord(X(Λ)) = P

1(k). We set χ t
M = χM (t, 1) and χu

M = χM (1, u). Observethat χ t
M = Dj(M)(M(t)), sin
e the mapping k[t, u] ∋ f 7→ f(t, 1) ∈ k[t] isan algebra homomorphism whi
h preserves irredu
ibility for homogeneouspolynomials f 6= u, and sends u to 1. Analogously, χu

M = −Dj(M)(M
′(u)),where M ′ = (B, A). Then k ∩ specΛ(M) = V (χ t

M ) = V (Dj(M)(M(t))),where the embedding k ⊆ P
1(k) is as in 1.2. Consequently, by [4, Proposi-tion 4.4℄, λ ∈ specΛ(M) if and only if M 
ontains a dire
t summand fromthe tube T Λ

λ , for λ ∈ k. In 
ase λ = ∞ ∈ P
1(k), we have ∞ ∈ specΛ(M) ifand only if 0 ∈ V (χu

M ) = V (Dj(M)(M
′(u))), M ′ 
ontains a T Λ

0 if and onlyif M 
ontains a dire
t summand from T Λ
∞, and we again apply [4, Proposi-tion 4.4℄. (Note that j(M ′) = j(M) sin
e the autoequivalen
e of modΛ given
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by (A, B) 7→ (B, A) preserves the dimension ve
tors so it a
ts invariantly onthe iso
lasses of postproje
tives.) Consequently, the proof of the assertionfor a Krone
ker algebra is 
omplete.Let Λ = Λp,q,2. Then by [5, 3.4(∗)℄, for λ ∈ ord(X(Λ)) = k \ {0, 1},
M 
ontains a dire
t summand from T Λ

λ if and only if the Λ1,1-module
Ψ(M) = M 
ontains a dire
t summand from T

Λ1,1

λ . Moreover, by the Kro-ne
ker algebra 
ase, the se
ond equivalent 
ondition holds exa
tly when
λ ∈ specΛ(M) = specΛ1,1

(M) \ {0, 1,∞}.Finally, assume that Λ = Λp,q. Then similarly specΛ(M) = specΛ1,1
(M)\

exc(X(Λ)). Moreover, one 
an easily show that the fun
tor res : modΛ → Λ1,1has analogous properties to those of the fun
tor Ψ .In this way the assertion is proven for any domesti
 
anoni
al algebra Λ.2.2. To formulate our next result pre
isely we need some extra notation.We 
onsider the pairs E = (E , ε) 
onsisting of subsets E ⊆ k[t] and fun
tions
ε : E → N. Note that ea
h su
h pair (sometimes 
alled a �multiset�) 
an betreated as a sequen
e (ε(f)×f)f∈E of tuples ε(f)×f = (f, . . . , f) ∈ k[t]ε(f).Given E1 = (E1, ε1), E2 = (E2, ε2) as above we de�ne the union E1 ⊎ E2by setting

(E1, ε1) ⊎ (E2, ε2) = (E , ε)where E = E1 ∪ E2 and ε : E → N is de�ned as follows:
ε(f) =







ε1(f) if f ∈ E1 \ E2,
ε2(f) if f ∈ E2 \ E1,
ε1(f) + ε2(f) if f ∈ E1 ∩ E2.Following [6℄, with any t-matrix A ∈ Mx,y(k[t]) we asso
iate the system

E(A) of elementary divisors of A. Re
all that E(A) is the 
olle
tion of allpolynomials f
uj,i

i 6= 1 from the de
ompositions Ej(A) = f
uj,1

1 · . . . · f
uj,v
v ofthe moni
 polynomials Ej = Ej(A), j = 1, . . . , r = r(A), into produ
ts ofpowers of pairwise di�erent irredu
ible moni
 polynomials f1, . . . , fv ∈ k[t].Note that Dr(A) = Er · . . . · E1 and E1 |E2, . . . , Er−1 |Er, in parti
ular,

ur,i ≥ · · · ≥ u1,i ≥ 0 for every i = 1, . . . , v. Clearly, E(A) 
arries a 
anoni
alstru
ture of a pair (E , ε) as above: E is the set of all elements in E(A) and εis E ∋ f 7→ |{(j, i) : f
uj,i

i = f}| ∈ N.Now we formulate all properties of t-matri
es assigned to Λ1,1-modules,whi
h are ne
essary in the proof of our main result.
Proposition. Given a pair M = (A, B), M ′ = (A′, B′) of Λ1,1-moduleswith A, B ∈ Mnω×n0

(k), A′, B′ ∈ Mn′

ω×n′

0
(k), the following assertions hold :(a) If M ∼= M ′ then M(t) ∼ M ′(t).(b) If M(t) ∼ M ′(t) and the matri
es B, B′ are invertible then M ∼= M ′.
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(
) If E(M(t)) = E(M ′(t)), nω = n0 = n′

ω = n′
0 and Dn0

(M(t)) 6= 0,
Dn0

(M ′(t)) 6= 0 then M(t) ∼ M ′(t).(d) E(M(t) ⊕ M ′(t)) = E(M(t)) ⊎ E(M ′(t)), where
M(t) ⊕ M ′(t) =

[

M(t) 0

0 M ′(t)

]

.Proof. Assertion (a) is 
lear. For the proof of (b) and a more generalversion of (d), we refer to [6℄. It remains to prove (
).Let M and M ′ be as in (
). Then M(t) and M ′(t) are square matri
es ofmaximal rank, i.e. they belong to Mr×r(k[t]), where r = r(M(t)) = r(M ′(t)).We 
an assume that Dr(M(t)) and Dr(M
′(t)) are polynomials of positivedegree, or equivalently, that E(M(t)) 6= ∅ and E(M ′(t)) 6= ∅. Otherwise,

E(M(t)) = E(M ′(t)) = ∅, so Dr(M(t)) = Dr(M
′(t)) = 1, and hen
e

∆(M(t)) = Ir = ∆(M ′(t)), sin
e Ej((M(t)) = Ej((M
′(t)) = 1 for every

j = 1, . . . , r.Now, the 
olle
tion E(M(t))=E(M ′(t)) has the form (f
wj,i

i )i=1,...,v; j=1,...,rifor some moni
 irredu
ible polynomials f1, . . . , fv∈ k[t], where ri ≤ r and
w1,i ≥ · · · ≥ wri,i ≥ 1 for every i = 1, . . . , v. We set wj,i = 0 for j > ri,
i = 1, . . . , v. Then

Er(M(t)) = f
w1,1

1 · . . . · f
w1,v
v = Er(M

′(t)),

Er−1(M(t)) = f
w2,1

1 · . . . · f
w2,v
v = Er−1(M

′(t)),... ... ...
E1(M(t)) = f

wr,1

1 · . . . · f
wr,v
v = E1(M

′(t)).Consequently, ∆(M(t)) = ∆(M ′(t)) and M(t) ∼ M ′(t).2.3. Proof of Theorem 1.5. First we prove jointly the impli
ations(a)⇒(b) and (a)⇒(
), next the impli
ation (b)⇒(a), and �nally (
)⇒(a).(a)⇒(b),(
): Re
all �rst that h(M)x = h(M ′)x if and only if r(M(M, x))
= r(M(M ′, x)) for x ∈ P (see [5, Theorem 2.3℄ for Λ = Λp,q,2, and[4, Lemma 5.6(i)℄ for Λ = Λp,q). Similarly, h(M)[λ,s,l] = h(M ′)[λ,s,l] if andonly if M(λ, M, s, l) = M(λ, M ′, s, l), for [λ, s, l] ∈ T (see [4, Lemma5.6℄ and [5, 3.4℄ for Λp,q and Λp,q,2, respe
tively). Next note that 
learlythe integers h(N)x, x ∈ X, are invariants of isomorphism 
lasses of Λp,q,r-modules N . Moreover, by Lemma 2.1 and Proposition 2.2(a), so also are thesets specΛ(N) and the matri
es ∆(N(t)), respe
tively. Now, the impli
ations(a)⇒(b) and (a)⇒(
) follow immediately.(b)⇒(a): Assume that (b) holds. To prove M ∼= M ′, we show that
m(M)|Y = m(M ′)|Y for Y = P,Q,T, respe
tively.We start by showing m(M)|P = m(M ′)|P. Fix v0 ∈ (Qp,q,2)0 su
h that
nv0

= n∗. Consider �rst the 
ase Λ = Λp,q,2. Let η = η(Λ) and ν = ν(Λ) bethe 
onstants de�ned in [5, Theorem 2.4℄. Then by [5, Theorem 2.4(e)℄ we
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have x(n, i)v0
> n∗ = nv0

, and hen
e m(M)x(n,i) = 0 for all n ≥ n∗/η + νand i ∈ Σ0. From [5, Proposition 5.2℄ it follows that ν = θ0. To determine ηwe use the formula η = min{κj/νj : j ∈ [r]} (see [5, Theorem 2.4(e)℄). First,applying [5, Algorithm 6.1℄, we 
ompute the 
onstants κj and νj , j ∈ [r],and then we �nd dire
tly that 1/η = θ1. As a 
onsequen
e, m(M)x = 0 =
m(M ′)x for all x ∈ P ′ \ (P0 ∪P ′

n∗
).Next 
onsider the 
ase Λ = Λp,q. We de�ne η and ν as in [5, Theo-rem 2.4℄. The arguments from the proof of [5, Theorem 2.4(e)℄ show againthat x(n, i)v0

> n∗ = nv0
, so m(M)x(n,i) = 0 for all n ≥ n∗/η + ν and

i ∈ Σ0. From [8, Se
tion XIII.1℄ we know that ν = lcm(p, q) and ∂(x) =
−(p + q)/gcd(p, q) for x ∈ P, where ∂ = ∂Λ denotes the defe
t fun
tionfor the hereditary algebra Λ. On the other hand, by the proof of [5, Theo-rem 2.4(e)℄, we have min{−∂(x) : x ∈ Σ0} = ην. Consequently,

1

η
=

lcm(p, q) gcd(p, q)

p + q
=

pq

p + q
,so ⌈1/η⌉ = θ1, and again m(M)x = 0 = m(M ′)x for all x ∈ P ′ \ (P0 ∪P ′

n∗
).It remains to show that m(M)P0∪P′

n∗

= m(M ′)P0∪P′

n∗

for any domesti

anoni
al algebra Λ.Fix any x ∈ P0 ∪P ′
n∗
. Re
all the formulas

(∗)M m(M)x =














h(M)x + h(M)τx −
∑

y∈−x

dy,x h(M)y if Xx is non-proje
tive,
h(M)x −

∑

y∈−x

dy,x h(M)y if Xx is proje
tive,
and an analogous one (∗)M ′ for m(M ′)x (see [5, Introdu
tion℄). Then by [5,Proposition 5.7℄, we have τx ≺ x and y ≺ x for any y ∈ −x. Hen
e, byde�nition of the order ≺, the ve
tors τx and y ∈ −x belong to P0 ∪ P ′

n∗(see [5, 5.7℄). Consequently, h(M)τx = h(M ′)τx and h(M)y = h(M ′)y for
y ∈ −x, so m(M)x = m(M ′)x.Con
luding, we have m(M)|P = m(M ′)|P.Next 
onsider the 
aseY=Q. Applying the equalities h(M∗)x = h(M ′∗)xfor x ∈ P0 ∪P ′

n∗
, (b) and dual arguments, we obtain m(M)|Q = m(M ′)|Q.Finally, we show m(M)|Tλ

= m(M ′)|Tλ
. Fix λ ∈ specΛ(M)∪ exc(X(Λ)).It is well known [8℄ that (dimX[λ,s,l])i ≥ n∗+1 for all i ∈ (Qp,q,r)0, s ∈ Zw(λ)and l ≥ (n∗ +1)w(λ). Hen
e, m(M)[λ,s,l] = 0 = m(M ′)[λ,s,l] for all s ∈ Zw(λ)and l ≥ (n∗ + 1)w(λ).Consider x = [λ, s, l] given by the pair (s, l) ∈ Zw(λ) × N su
h that l <

(n∗+1)w(λ). Clearly, τx = [λ, s⊖1, l] and −x = {[λ, s⊖1, l−1], [λ, s, l+1]} if
l ≥ 2, and −x = {[λ, s, 2]} otherwise, where ⊖ = ⊖w(λ). Sin
e l, l− 1, l +1 ≤
(n∗ + 1)w(λ), we have h(M)τx = h(M ′)τx and h(M)y = h(M ′)y for y ∈ −x,
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so m(M)x = m(M ′)x, from (∗). Consequently, m(M)|Tλ

= m(M ′)|Tλ
for all

λ ∈ specΛ(M) ∪ exc(Λ).Finally, note that by Lemma 2.1, m(M)|Tλ
= m(M ′)|Tλ

= 0 for all
λ ∈ ord(X(Λ)) \ specΛ(M). Thus, m(M)|T = m(M)|T.In this way m(M)x = m(M ′)x for all x ∈ X, and the proof of (b)⇒(a)is 
omplete.(
)⇒(a): Assume that (
) holds. By the previous parts of the proof,
(∗∗) m(M)|Y = m(M ′)|Y, where Y = P ⊔Q ⊔

⊔

λ∈exc(X(Λ))∪{∞}

Tλ.

So it remains to show that R ∼= R′, where R (resp. R′) denotes the maximaldire
t summand of M (resp. M ′) belonging to add(
⋃

λ∈ord(X(Λ))\{∞} T
Λ

λ ). Bythe properties of the fun
tors Ψ and res, the Λ1,1-modules R = (R1, R2) and
R′ = (R′

1, R
′
2) belong to add (

⋃

λ∈ord(X(Λ))\{∞} T
Λ1,1

λ ); moreover, R ∼= R′ ifand only if R ∼= R′ (see [8, 5℄). Therefore, we now show that the equality
∆(M(t)) = ∆(M ′(t)) implies the required isomorphism R ∼= R′.By (∗∗), dim R = dimR′, so dimR = dimR′, sin
e dim M = dim M ′.We 
an assume that R,R′ are non-zero modules (otherwise, there is nothingto show). By the des
ription of inde
omposable modules in the 
ategory
modΛ1,1, Proposition 2.2(a) and an elementary 
al
ulation, we have thefollowing:(i) R1, R2, R

′
1, R

′
2 are square l × l matri
es for some l ≥ 1,(ii) R2, R

′
2 are invertible,(iii) Dl(R(t)), Dl(R′(t)) 6= 0,(iv) for an inde
omposable N in modΛ1,1, the set E(N(t)) is empty,provided N is postproje
tive, preinje
tive or belongs to T

Λ1,1
∞ .The equality ∆(M(t)) = ∆(M ′(t)) implies E(M(t)) = E(M ′(t)), so

E(R(t))=E(R′(t)) by (iv) and Proposition 2.2(d), sin
e m(M)|Z=m(M ′)|Z ,where Z =
⊔

λ∈exc(X(Λ))Tλ. Then, by (i), (iii) and Proposition 2.2(
), the ma-tri
es R(t) and R′(t) are equivalent. Hen
e, by (ii) and Proposition 2.2(b),the modules R and R′ are isomorphi
 (and so are R and R′).Summarizing, (
) implies (∗∗) and the isomorphism R ∼= R′, so M ∼= M ′.The proof of the theorem is 
omplete.
REFERENCES[1℄ M. Auslander, Representation theory of �nite-dimensional algebras, in: Contemp.Math. 13, Amer. Math. So
., 1982, 27�39.[2℄ K. Bongartz, A generalization of a theorem of M. Auslander , Bull. London Math.So
. 21 (1989), 255�256.



SEPARATION OF ORBITS 295

[3℄ K. Bongartz, A geometri
 version of the Morita equivalen
e, J. Algebra 139 (1991),159�171.[4℄ P. Dowbor and A. Mróz, The multipli
ity problem for inde
omposable de
ompositionsof modules over a �nite-dimensional algebra. Algorithms and a 
omputer algebraapproa
h, Colloq. Math. 107 (2007), 221�261.[5℄ �, �, The multipli
ity problem for inde
omposable de
ompositions of modules overdomesti
 
anoni
al algebras, this issue, 221�282.[6℄ F. R. Gantma
her, Matrix Theory , Chelsea, New York, 1959.[7℄ W. Geigle and H. Lenzing, A 
lass of weighted proje
tive 
urves arising in represen-tation theory of �nite-dimensional algebras, in: Singularities, Representation of Alge-bras and Ve
tor Bundles (Lambre
ht, 1985), Le
ture Notes in Math. 1273, Springer,Berlin, 1987, 265�297.[8℄ D. Simson and A. Skowro«ski, Elements of Representation Theory of Asso
iativeAlgebras, Vol. 2, Tubes and Con
ealed Algebras of Eu
lidean type, London Math.So
. Student Texts 70, Cambridge Univ. Press, Cambridge, 2007.Fa
ulty of Mathemati
s and Computer S
ien
eNi
olaus Coperni
us UniversityChopina 12/1887-100 Toru«, PolandE-mail: dowbor�mat.uni.torun.plizydor�mat.uni.torun.plRe
eived 6 Mar
h 2007;revised 16 May 2007 (4881)


