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ON A SEPARATION OF ORBITS IN THE MODULE
VARIETY FOR DOMESTIC CANONICAL ALGEBRAS

BY

PIOTR DOWBOR and ANDRZEJ MROZ (Torur)

Abstract. Given a pair M, M’ of finite-dimensional modules over a domestic canon-
ical algebra A, we give a fully verifiable criterion, in terms of a finite set of simple linear
algebra invariants, deciding if M and M’ lie in the same orbit in the module variety, or
equivalently, if M and M’ are isomorphic.

Introduction. The problem of deciding whether or not two points in an
algebraic variety X equipped with a regular action of an algebraic group G
lie in the same G-orbit was intensively studied as a basic elementary question
of geometric invariant theory. In case X is the affine variety

X =mody(n) C H M (5)x5(5) (K)
0EQ

of A-modules with a fixed dimension vector n = (ny),ecq, and G is the group

G=G(n) =[] Gl (k)
vEQoD
associated with a finite-dimensional k-algebra A = kQ/I defined by a finite
quiver @ = (Qo,®1) and an admissible ideal I in the path algebra kQ
(see [3]), this leads to the following question of purely algebraic form:

“When given A-modules M, M’ € mods(n) are isomorphic?”

We call it the isomorphism question for the pair (M, M').

There exists a rather theoretical criterion, due to Auslander [1, 2], that
answers this question for modules over any finite-dimensional algebra A. It
says that given objects M, M’ in the category mod A of finite-dimensional
A-modules, M = M’ if and only if dimy Hom 4 (M, X) = dimy Hom(M’, X)
for all indecomposable modules X in mod A. If A = kQ/I is a representation-
finite algebra then this result can lead to an algorithmic procedure, provided
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a complete classification of indecomposable A-modules together with a pre-
cise description of their matrix forms is known. In case A is representation-
infinite, the result seems to be useless, in the sense that it fails to provide
an effective method.

Observe that A-modules M and M’ are isomorphic if and only if the
multiplicity vectors m(M) and m(M’) with respect to a fixed classifying
set X = (X, ¢) (of invariants for the indecomposable A-modules) are equal
(see [5]). Therefore answering the isomorphism question for M, M’ can be
replaced by determining m(M) and m(M’), which is however much more
difficult than the original task. Observe that just as for the polynomial
algebra k[t] (problem of determining eigenvalues), one cannot expect the
existence of a fully verifiable procedure computing m(M) in the case of
representation-infinite algebras A. Nevertheless, a general method of attack-
ing this problem was presented in [4] and then applied to construct algo-
rithms determining m (M) (up to finding roots of polynomials in k[t]) for all
domestic canonical algebras (see [4, 5]).

This paper should be treated as an addendum to [5]. Its main aim is
to present (applying the results of [5]) a complete, finite and fully verifiable
criterion that allows us to answer the isomorphism question for any fixed pair
(M, M'") of modules over a domestic canonical algebra A, given as points in
the variety mod,(n); equivalently, to decide if M, M’ lie in the same G(n)-
orbit in mod(n) (see Theorem 1.5).

1. Preliminaries and the main theorem. We use well known and
commonly used definitions and notation, as in [5]. We only recall some of
them.

1.1. We consider finite-dimensional domestic canonical k-algebras A, 4 ,
= kQpqr/Ipgr, psq,m > 1, with

s ap_1
al DY > ap—]_
A X
61 B2 Bg—1 Bq
Qpgr: 0 b bg—1 w
'N 72 Yr—1 %:
! Cr—1

and g, =(@+f—7),a=a1---ap, f=01-B¢,y =", for any
triple

(p,g,7m) € D:={(p,q,1),p,q>1; (p,2,2),p > 2; (3,3,2); (4,3,2); (5,3,2)}.
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Let A = Ay 4, for some (p,q,r) € D. Then by finite-dimensional A-
modules we always mean matrix representations M of A, which can be iden-
tified with points

(Ms5)s5e(Qp.q.r) € moda(n)

of the module variety, where n = dim(M) (see [5, 1.4]). For simplicity, we
use the notation M = (A, B,C), where A = (4;)icpp, B = (Bj)iclq, C =
(Cl)ie[ﬂ and Az = Ma“ Bj = ng, Cl = MWI for ¢ € [p], j S [q], l € [7’],
respectively, and [s] := {1,...,s} for s € N. Clearly, we have A + B = C,
where A = A, ... Ay, and similarly for B and C.

Recall from [5] that if » = 1 then A is canonically isomorphic to a heredi-
tary algebra A, , and each A-module M = (A, B, C) is uniquely determined
by the pair (A4, B). From now on, we identify the algebras A, ,1 and 4, 4, as
well their module categories, via the mapping (A, B,C) — (A, B).

Note that each algebra A = A, 4, is canonically isomorphic to its opposite
A°P; the isomorphism is given by the mapping 0 — w, a1 +— ap_1, b1 — by—1,
and so on. Hence, we get an equivalence mod A°? ~ mod A, and the standard
duality D = Hom(—, k) : mod A — mod A°P yields a selfduality

D’ : mod A L, mod A°P ~ mod A.

For any M in mod A, given by (Ms)se(q,.,.); € moda(n), we denote by
M* the A-module in mod A given by (Mj")se(qep, ), € moder(n). Clearly,
M* is naturally isomorphic to D’(M).

1.2. Let k be an algebraically closed field and P!(k) the projective line
over k. We identify points of P! (k) with elements of kU{oo} via the standard
mapping (A : 1) — X for A € k, and (1 : 0) — oo. For any homogeneous
polynomial f = f(t,u) € k[t,u], the zero set of f is understood to be V(f) =
{(z :y) € PL(k) : f(x,y) = 0}. As usual, V(f) = {z € k: f(x) = 0} for
f=Ft) € klt].

Let w = (wy,...,w;) € (N\ {0, A= (A1,...,N) € (PL(k))! be a pair
of sequences. Then we denote by X = X(w, \) a weighted projective line of
type (w,A) (see [7] for a precise definition), and we view X as the classical
projective line P1(k) equipped with a function w : P!(k) — N, defined as
follows:

w; fA=X\for 1 <7<,
w(A) = { . .
1 ifxePY (k) \ {\,..., N}
We set
exc(X) = {A € P(k) : w(\) > 1},  ord(X) = {A € P!(k) : w(\) = 1}.

The elements of these sets are called respectively the exceptional and ordi-
nary points of X.



286 P. DOWBOR AND A. MROZ

It is well known that with any domestic canonical algebra A = A, ,, we
can associate the weighted projective line X(A) = X(w, \), where (w,\) =
((p,q,7),(0,00,1)), in such way that the collection (n))xep1(r) of ranks for
the l-parameter family 74 = (T/\A) acpi(k) of stable tubes describing the
structure of the category R of all regular A-modules, satisfies

(na)rept (k) = (WA)) aept ()

Moreover, for each tube 7{!, A € P!(k), we have fixed in [5, 2.1 and 3.3] a
system of tubular coordinates given by a precise selection of one quasi-simple
A-module in ’T/\A. This leads to specification of the classifying set

T:|_|TA

AePL(k)
for regular indecomposable A-modules, where
T, = {[)\,S,l] 18 € Zw(/\)7 [ > 1}

for A € P!(k). (Note that if w(X) = 1 then Z,) = {0}, the tube T/ is
homogeneous and each triple [\, s,{] € T is in fact a pair [\, [].) Since post-
projective and preinjective indecomposable A-modules are fully described by
their dimension vector sets P and @, respectively, the set

X(A):=PLUTUQ

is a classifying set of invariants for indecomposable A-modules (see
[5, 1.6, 2.1]).

Recall that given a A-module M, we set h, = dimy Hom (M, X, ), where
X, is any module from the isomorphism class e(x), for x € X(A).

We assume that the set X = X(A) carries the structure of a translation
quiver transported from the Auslander—Reiten quiver Iy of A. Moreover,
each section X in the connected component P = P(A) induces a splitting
P = P°U P/, where P° = P%X) is finite and P’ = P'(¥) = —-NY
(see |5, 2.4] for r = 2). Note that if » = 1, we can take for X' the full
subquiver formed by the dimension vectors of all indecomposable projective
A-modules and in the splitting above the part P° is empty. The “consecu-
tive” vertices of P’ are denoted by x(n, i) (see |5, 5.1] for details). Following
[5, 7.1], for each A there exists a section X such that the vertex set Py
admits some ordering < with nice properties with respect to the splitting
above.

From now on we assume that X' = X(A) is as in [5, 7.1] if » = 2, and is
the section mentioned above if r = 1.
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1.3. Following [6], given a matrix A € My (k[t1,...,%]) and an integer
Jj <1 =r(A), we denote by D; = D;(.A) the polynomial in k[t1, ..., ;] which
is the greatest common divisor of all j x j minors of A, where r(.4) denotes the
rank of A over the quotient field k(t1,...,¢;). Note that the polynomials D;
are determined uniquely up to scalars from &\ {0}, and that D;_; | D; for all
j=1,...,r (weset Do(A) =1). In case [ = 1, the elements A € M, (k[t])
are called simply t-matrices. We say that t-matrices A, A" € My, (k[t]) are
equivalent (and write A ~ A’) if

A'=BAC

for some invertible B € My, (k[t]) and C € My, (k[t]); equivalently, if A can
be transformed to A’ by applying a finite sequence of elementary row and
column transformations “over k[t]”. It is well known that each equivalence
class [A]_, A € My, (k[t]), contains precisely one t-matrix A(A) in the
so-called canonical diagonal form

Er ... 0 ... 0

0 E. 0

0 0 0
where E; € k[t], j = 1,...,r, are nonzero monic polynomials satisfying
Ey|Es,...,E,—1|E,, and all other entries are zero. Moreover, there exists

a precise algorithm determining A(A). On the other hand, one can compute
A(A) directly, by applying the formulas

D;(A)
Dj 1(A)’

provided we assume that all D;(.A) are monic polynomials.

Ej(A) =

j=1,....7r

1.4. Let A= A, , be an arbitrary domestic canonical algebra. Given a
finite-dimensional A-module M = (A, B, C), we set

7= {res(M) =(A,B) ifr=1,
W(M)= (A, ~B) ifr=2.
Clearly, M is a Aj1-module and M = M if p = ¢ = 7 = 1. Recall that if

r = 1 then we identify mod A with the module category for the hereditary
algebra A, (see 1.1).

Following [5], for a A-module M, we denote by rkp(M) the rank of a
maximal postprojective direct summand of M.
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LEMMA. Let M be a module over a domestic canonical algebra A.

(a) If A= A1y and M = (A, B) with A, B € My, xno(k), nw,no > 0,
then vkp(M) = ng, — r(MR) +r(ME™") for any ig > no, where

-4 B 0 0 --- 0
0 A B 0 - 0
0 0 0 - -A B|
fori > 0.

(b) If A=A, 4, then rkp(M) = rkp(M).

Proof. (a) Note that rk(P) = 1 for any indecomposable postprojective
A-module P. Therefore rkp(M) = .2, m(M)p,, where iy > ng is a fixed
integer and P; denotes an indecomposable postprojective A-module with
dim P; = [i,7+ 1], for i > 1. Consequently, by [4, Lemmata 4.2(i), 4.6(i)], we
obtain the following equalities:

tkp(M) = [M, Py] + ([M, P,] — 2[M, P])
+ ZO:([M, P = 2[M, P,1] + [M, Pi—5])
=3

= [M, P,y] — [M, Pjy—]
= igny, — r(Mp) = ((io — 1)ny, — r(MP ™)
OB 4 (0

and the proof of (a) is complete.

(b) follows immediately from [5, Theorem 2.2]. =
Given a A; ;-module M = (A, B) with A, B € M, xn,(k), nw,no > 0,

we set

M(t) = A—tB € My, xno(klt]), M(t,u) =uA—tB € M, xn,(klt,u]).
Note that D;j(M(t,u)) is a homogeneous polynomial in k[t,u] for any j <
r(M(t,u)).

DEFINITION. Let M be a module over a domestic canonical algebra A =
Ay q.r- Then the polynomial

Xy = Dj(M(t,u)) € klt, u]
where j = j(M) := ny, — rkp(M) (= v(M})—r(M'¥®~1)), dim M = [ng, n,],
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is called the characteristic polynomial of the M. The set
spec(M) = V(x,s) Nord(X(A))
is called the ordinary point spectrum (or simply the spectrum) of M.

REMARK. (a) If (p,q,7) # (1,1,1) then spec(M) is an affine variety. In
case ¢ # 1, spec(M) = V(x,,(t, 1)) Nord(X(A)) C k; in case ¢ = 1, we have
p # 1 and spec(M) = V(x,,(1,u)) Nord(X(A)).

(b) spec(M) = spec(M) \ exc(X(A)) for any A-module M.

(c) If one uses alternatively the rank of maximal preinjective direct sum-
mand of a A-module M in the definition above, the result does not change
since (dim M),, — rkp(M) = (dim M)y — rkp(M™).

1.5. Now we formulate the main result of this paper. To do this, with
any domestic canonical algebra A we associate a pair 6y = 0p(A),0; = 61(A)
of integers, as in the following table:

A 01(A) 00 (A)
Apg,p>gqg>1 [%] lem(p, q)
Ap22, p even P P
Ap2,2, p odd P 2p
A3 32 6 6
Asso 12 12
As,3,2 30 30

THEOREM. Let A = Ay, 4, be an arbitrary domestic canonical algebra
and 6y = 0p(A), 01 = 61(A) be as above. Then for any pair M = (A, B,C),
M' = (A", B',C") of finite-dimensional A-modules with dim M = dim M’ =
= (1)ve(Qp.q.r)0r cONditions (a), (b) and (c) below are equivalent:

(a) M = M'.

(b) The following equalities hold:

o h(M), = h(M"); and h(M*); = h(M"), for any x € P°U P}, ,
where P}, = {z(n,i) € P':i € Xy,n < 0in. + 6o},
ns = min{n, : v € (Qpqg.r)o};

e spec (M) = spec,(M');

o W(M)nsy = MM')xq for any X € spec, (M) Uexc(X(A)), s €
Zw()\) and 1 <1< (n* + 1)w()\).

(c) The following equalities hold:

b I'(M(M,;U)) = I'(M(M/’;U)) and r(./\/l(M*,x)) = I‘(M(MI*’;U))
for any x € P° U P}, (see [5, 2.3] for definition of M(N,y));
o A(M(t)) = A(M'(t)), or equivalently, r(M(t)) = r(M'(t)) (=: r)

and Dj(M(t)) = Dj(M'(t)) for all j=1,...,r;
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=r(M(A\, M’ s,1)) for any X € exc(X(A))U{oo},
8 € Ly(ny and 1 <1 < (ns + 1)w(N), where

MeeD(BIAY  if A =0,
MM, s,1) =S M2 (—B.C) if A=1,
MDA B)Y  if X = oo,

and similarly for M(X, M’ s,1) (see [5, 2.2] for definition of the
indexing function p_y and the matrices in the formulas above).

REMARK. (a) Condition (b) is rather theoretical. In comparison with the
Auslander theorem, it restricts the class of indecomposable modules in mod A
for which one has to test the equality of dimensions to members of a finite,
precisely described set of connected components in the Auslander—Reiten
quiver Iy, in fact, to a finite set of isoclasses. Nevertheless, because of the
necessity of solving polynomial equations, we should not expect that one can
determine this set effectively.

(b) Condition (c) says, in particular, that the multiplicity vectors, for M
and M’ restricted to all components which are not homogeneous tubes, are
equal. In contrast to (b), all ingredients of (¢) have algorithmic and “fully
computable” character (see [5] for details). Therefore, (c) can be effectively
used in practice. Moreover, it can be converted into a computer program.

2. Proof of the main result. In this section we give the full proof of
Theorem 1.5, which we precede by some preparatory facts.

2.1. We start with a lemma concerning the main property of the spectra
of modules over domestic canonical algebras.

LEMMA. Let M be a module over a domestic canonical algebra A. Then,
for any X\ € ord(X(A)), X\ belongs to spec,(M) if and only if M contains a
direct summand from the tube ’Z;\A.

Proof. Assume first that A = A;; and M = (A, B). Then clearly
ord(X(A)) = PL(k). We set xt, = x,,(t,1) and x¥ = x;,(1,u). Observe
that xi;, = Djan(M(t)), since the mapping k[t,u] > f — f(t,1) € k[t] is
an algebra homomorphism which preserves irreducibility for homogeneous
polynomials f # u, and sends u to 1. Analogously, x; = —D;n (M’ (u)),
where M’ = (B, A). Then k Nspec (M) = V(xy,) = V(Djan(M(t))),
where the embedding & C P!(k) is as in 1.2. Consequently, by [4, Proposi-
tion 4.4], A € spec, (M) if and only if M contains a direct summand from
the tube 7}, for A € k. In case A = oo € PL(k), we have oo € spec, (M) if
and only if 0 € V(x}y) = V(Dj)(M'(u))), M’ contains a 7" if and only
if M contains a direct summand from ’Tog, and we again apply [4, Proposi-
tion 4.4|. (Note that j(M') = j(M) since the autoequivalence of mod A given
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by (A, B) — (B, A) preserves the dimension vectors so it acts invariantly on
the isoclasses of postprojectives.) Consequently, the proof of the assertion
for a Kronecker algebra is complete.

Let A = Apg2. Then by [5, 3.4(x)], for A € ord(X(A)) = k\ {0,1},
M contains a direct summand from TAA if and only if the A;-module
(M) = M contains a direct summand from T)\Al’l. Moreover, by the Kro-
necker algebra case, the second equivalent condition holds exactly when
A € specy(M) = specALl(M) \ {0,1, 00}.

Finally, assume that A = A, ;. Then similarly spec, (M) = specy, | (M)\
exc(X(A)). Moreover, one can easily show that the functor res : modA — A 1
has analogous properties to those of the functor ¥.

In this way the assertion is proven for any domestic canonical algebra A. m

2.2. To formulate our next result precisely we need some extra notation.
We consider the pairs £ = (€, €) consisting of subsets £ C k[t] and functions
e : £ — N. Note that each such pair (sometimes called a “multiset”) can be
treated as a sequence (e(f) x f)see of tuples e(f) x f = (f,..., f) € k[t]*).

Given &1 = (&1,€1), &2 = (E2,€2) as above we define the union & W &
by setting

(51581) W (52752) = (875)
where £ = €1 U &y and € : £ — N is defined as follows:
e1(f) if feé&\ &,
e(f) = q e2(f) if fe&\é&,
ei(f) +ef) if fe&iné.

Following [6], with any t-matrix A € M, ,(k[t]) we associate the system
E(A) of elementary divisors of A. Recall that £(A) is the collection of all
polynomials f;”* # 1 from the decompositions E;(A) = f;" - .... f3”" of
the monic polynomials E; = E;(A), j = 1,...,r = r(A), into products of
powers of pairwise different irreducible monic polynomials fi,..., f, € k[t].
Note that D,(A) = E, -...- Ey; and Fy|Es,...,E._1| E,, in particular,
Up; > -+ >up; > 0 for every i = 1,...,v. Clearly, £(.A) carries a canonical
structure of a pair (£,¢) as above: £ is the set of all elements in £(A) and ¢
is €5 s |{(7,1) s £ = f}| € N.

Now we formulate all properties of ¢t-matrices assigned to A; ;-modules,
which are necessary in the proof of our main result.

PROPOSITION. Guwen a pair M = (A, B), M' = (A', B') of A; 1-modules
with A, B € M, xn,(k), A',B' € M%Xng(k), the following assertions hold:

(a) If M = M’ then M(t) ~ M'(t).

(b) If M(t) ~ M'(t) and the matrices B, B" are invertible then M = M’.



292 P. DOWBOR AND A. MROZ

() 1 EM(0) = EQM@), ne = o = nf, =y and Duy(M (D) # 0.
D,y (M'(t)) # 0 then M(t) ~ M'(2).
(d) E(M(t) @ M'(t)) = E(M(t) W E(M(£)), where
o [ M@)o
M(t)@M(t)—[ . M,(t)].

Proof. Assertion (a) is clear. For the proof of (b) and a more general
version of (d), we refer to [6]. It remains to prove (c).

Let M and M’ be as in (c). Then M (¢) and M’(t) are square matrices of
maximal rank, i.e. they belong to M., (k[t]), where r = r(M (t)) = r(M'(t)).
We can assume that D, (M (t)) and D,(M'(t)) are polynomials of positive
degree, or equivalently, that E(M(t)) # 0 and E(M'(t)) # 0. Otherwise,
EM(t)) = EM'(t)) = 0, so D(M(t)) = D, (M'( )) = 1, and hence
A(M(t)) = I, = A(M'(t)), since E;((M(t)) = E;((M'(t)) = 1 for every

j=1,...,r.

Now, the collection £(M (t)) =& (M'(t)) has the form (f;7")i=1. v j=1...r
for some monic irreducible polynomials fi,..., f, € k[t], where r; < r and
wy; > o0 > wp; > 1 forevery i = 1,...,v. We set wj; = 0 for j > r;,
1=1,...,v. Then

E (M) = fi "' - fo Y = El(M'(1),
Broa(M(D) = fi' - fi = B,y (M(1)),
E\(M(t) = fi™ o 0 = Ef(M(1)).

Consequently, A(M(t)) = A(M'(t)) and M(t) ~ M'(t). =

2.3. Proof of Theorem 1.5. First we prove jointly the implications
(a)=-(b) and (a)=-(c), next the implication (b)=-(a), and finally (c)=(a).

(a)=(b),(c): Recall first that h(M), = h(M'), if and only if r(M(M, z))
= r(M(M',x)) for z € P (see [5, Theorem 2.3] for A = A,,2, and
[4, Lemma 5.6(i)] for A = A, ). Similarly, h(M)(y s = h(M')5 4, if and
only if M(\, M,s,l) = M(\ M’ s,l), for [A;s,l]] € T (see [4, Lemma
5.6] and [5, 3.4] for A, , and A, ,9, respectively). Next note that clearly
the integers h(N)., € X, are invariants of isomorphism classes of A, 4 ,-
modules N. Moreover, by Lemma 2.1 and Proposition 2.2(a), so also are the
sets spec () and the matrices A(N(t)), respectively. Now, the implications
(a)=-(b) and (a)=-(c) follow immediately.

(b)=-(a): Assume that (b) holds. To prove M 2= M’ we show that
m(M)y =m(M')y for Y= P, Q, T, respectively.

We start by showing m(M)|p = m(M')p. Fix vg € (Qpg2)o such that
Ny, = N« Consider first the case A = A, ;2. Let n = n(A) and v = v(A) be
the constants defined in [5, Theorem 2.4]. Then by [5, Theorem 2.4(e)| we
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have x(n,i)y, > NMx = ny,, and hence m(M), ;) = 0 for all n > n./n+v
and ¢ € Xy. From [5, Proposition 5.2| it follows that v = 6. To determine 7
we use the formula n = min{x;/v; : j € [r]} (see [5, Theorem 2.4(e)]|). First,
applying [5, Algorithm 6.1], we compute the constants x; and v;, j € [r],
and then we find directly that 1/n = 6;. As a consequence, m(M ), = 0 =
m(M"), for all z € P'\ (P U P} ).

Next consider the case A = A,,. We define n and v as in [5, Theo-
rem 2.4]. The arguments from the proof of [5, Theorem 2.4(e)| show again
that z(n,i)u, > N = Ny, 50 M(M )45 = 0 for all n > n./n + v and
i € Xo. From [8, Section XIII.1| we know that v = lem(p,q) and 9(z) =
—(p+q)/ged(p,q) for x € P, where 0 = 04 denotes the defect function
for the hereditary algebra A. On the other hand, by the proof of |5, Theo-
rem 2.4(e)|, we have min{—90(z) : z € Xy} = nv. Consequently,

1 _ lem(p,g)ged(p,g) _  pg
U P+4q p+q
so [1/n] = 61, and again m(M), = 0 = m(M’), for allz € P\ (P°U P}, ).
It remains to show that m(M)PoUP;L* = m(M’)PoUP;l* for any domestic

canonical algebra A.
Fix any 2 € P° U P}, . Recall the formulas

()ar - m(M), =
h(M)y + h(M)ry — Z dy . h(M), if X, is non-projective,
ye~x
- Z dy o h(M), if X, is projective,

yeE~x
and an analogous one (%), for m(M’), (see |5, Introduction]). Then by [5,
Proposition 5.7|, we have 7 < z and y < z for any y € ~z. Hence, by
definition of the order <, the vectors 7z and y € ~x belong to P° U P,’l*
(see [5, 5.7]). Consequently, h(M);, = h(M');5 and h(M), = h(M’), for
y € ~x, 80 m(M)y = m(M'),.

Concluding, we have m(M)p = m(M')|p.

Next consider the case Y= Q. Applying the equalities h(M*), = h(M"™),
for z € P°U P}, , (b) and dual arguments, we obtain m(M) g =m(M')q.

Finally, we show m(M)|z, = m(M')|r,. Fix A € spec, (M) Uexc(X (/1))
It is well known [8] that (dim X[y 5 51)i > ns+1 for all i € (Qp,q.r)0, 5 € Zoy(n)
and [ > (n« 4+ 1w(X). Hence, m(M)py o0 = 0 = m(M')p\ 5 for all 5 € Zy(y)
and | > (n. + Dw(N).

Consider z = [, s,[] given by the pair (s,l) € Z,(x) x N such that | <
(ns+1)w(A). Clearly, 7z = [\, s©1,1] and ~x = {[\,s©1,l—1], [\, s, I+ 1]} if
1 > 2, and ~x = {[\, 5,2]} otherwise, where © = ©,,(5). Since [,] - 1,1+1 <
(ns + 1)w(A), we have h(M)r5 = h(M')r5 and h(M), = h(M'), for y € "z,
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so m(M), = m(M'),, from (x). Consequently, m(M) g, = m(M')r, for all
A € spec (M) Uexc(A).

Finally, note that by Lemma 2.1, m(M)p, = m(M')|y, = 0 for all
A € ord(X(A)) \ spec,(M). Thus, m(M)|gp = m(M),p.

In this way m(M), = m(M'), for all z € X, and the proof of (b)=(a)
is complete.

(c)=-(a): Assume that (c) holds. By the previous parts of the proof,

(xx)  m(M)y=m(M')y, where Y=PUL QU |_| T,.
A€exc(X(A))U{oo}

So it remains to show that R = R/, where R (resp. R’) denotes the maximal
direct summand of M (resp. M") belonging to add (U yeorax () {oo} TM). By
the properties of the functors ¥ and res, the Ay ;-modules R = (Ry, Ry) and
R’ = (R}, R}) belong to add(U/\eOrd (X(A)\ {00} TAI’I); moreover, R = R’ if
and only if R = R’ (see [8, 5]). Therefore, we now show that the equality
A(M(t)) = A(M’(t)) implies the required isomorphism R = R’.

By (#*), dim R = dim R/, so dim R = dim R/, since dim M = dim M’.
We can assume that R, R’ are non-zero modules (otherwise, there is nothing
to show). By the description of indecomposable modules in the category
mod A; 1, Proposition 2.2(a) and an elementary calculation, we have the
following;:

(i) Ri, Re, R}, R, are square | x | matrices for some [ > 1,
(i) Rz, Ry are 1nvert1ble
i

)
(11; ((R(t)), Du(R' (1)) # 0,

(iv) for an indecomposable N in mod A; i, the set £(N(t)) is empty,

provided N is postprojective, preinjective or belongs to Togh’l.

The equality A(M(t)) = A(M'(t)) implies E(M(t)) = E(M'(t)), so
E(R(t))=E(R'(t)) by (iv) and Proposition 2.2(d), since m(M);z=m(M') g,
where Z = | |\cexe(x(a)) Ta- Then, by (i), (iii) and Proposition 2.2(c), the ma-
trices R(t) and R/(t) are equivalent. Hence, by (ii) and Proposition 2.2(b),
the modules R and R’ are isomorphic (and so are R and R').

Summarizing, (c¢) implies (**) and the isomorphism R = R’ so M = M.
The proof of the theorem is complete. n
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