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SOME PROPERTIES OF α-HARMONIC MEASUREBYDIMITRIOS BETSAKOS (Thessaloniki)Abstrat. The α-harmoni measure is the hitting distribution of symmetri α-stableproesses upon exiting an open set in R
n (0 < α < 2, n ≥ 2). It an also be de�ned in theontext of Riesz potential theory and the frational Laplaian. We prove some geometriestimates for α-harmoni measure.1. Introdution. In the 1930's, O. Frostman and M. Riesz developed apotential theory on R

n, n ≥ 2, based on the Riesz kernel(1.1) kα(x) =
A(n, α)

|x|n−α
, x ∈ R

n \ {0},where 0 < α < 2 and A(n, α) is a onstant. When α = 2, the Riesz kernel o-inides with the kernel of the lassial potential theory, the Newtonian kernel(n ≥ 3). The α-harmoni funtions are de�ned by a mean value property (in-volving the parameter α), analogous to the lassial one. Equivalently, theyare the solutions of the equation ∆α/2u = 0, where ∆α/2 is the frationalLaplaian, a non-loal integro-di�erential operator.A funtion u : R
n → R whih is α-harmoni in an open set D is deter-mined by its exterior values (its values in Dc := R

n \D). If B is a Borel setin Dc, the α-harmoni measure of B with respet to D is the α-harmonifuntion u in D with exterior values u = χB on Dc. The α-harmoni measureof B with respet to D, evaluated at the point x ∈ R
n, will be denoted by

ωD
α (x, B). For �xed x ∈ D, ωD

α (x, ·) is a Borel probability measure on Dc.Both lassial and α-harmoni measures have symmetry properties andsatisfy the Carleman priniple (domain monotoniity) and the Harnak prin-iple. The latter implies that if ωD
α (x, B) = 0 for some x ∈ D, then ωD

α (y, B)
= 0 for all y ∈ D; we then say that B is a D-null set. There are, how-ever, essential di�erenes. The lassial harmoni measure is de�ned (as afuntion) in a domain D and is supported (as a measure) on the boundaryof D. The α-harmoni measure is de�ned (as a funtion) in the whole R

nand is supported (as measure) in the exterior of D. These properties be-2000 Mathematis Subjet Classi�ation: 31B15, 31C05.Key words and phrases: α-harmoni measure, Riesz apaity.The author was supported by the EPEAEK programm Pythagoras II (Greee).[297℄ © Instytut Matematyzny PAN, 2008



298 D. BETSAKOS
ome transparent when onsidered from the probabilisti point of view. Thelassial harmoni measure is the hitting distribution of a Brownian motionupon exiting D, while the α-harmoni measure is the hitting distributionof a symmetri α-stable proess. This is a Hunt proess with disontinuouspaths. Thus its paths may jump from one omponent of D to another andmay hit Dc (upon exiting D) at points of (D)c and not neessarily at pointsof ∂D.The basi fats of Riesz potential theory are presented in the book ofN. S. Landkof [12℄. Reently there has been a renewed interest in Riesz po-tential theory, mainly from the probabilisti point of view. K. Bogdan [4℄proved the boundary Harnak priniple for α-harmoni funtions on Lip-shitz open sets. R. Song and J.-M. Wu [14℄ proved extensions of Bogdan'sresults. Bogdan [5℄ and Z.-Q. Chen and Song [11℄ gave a Martin representa-tion for non-negative α-harmoni funtions. Bogdan and T. Byzkowski [6℄,[7℄ developed the theory of the Shrödinger operator based on the frationalLaplaian. Wu [15℄ found neessary and su�ient onditions for a bound-ary set to have zero α-harmoni measure. R. Bañuelos, R. Lataªa and P. J.Méndez-Hernández [1℄ proved isoperimetri type inequalities for transitionprobabilities, Green funtions and eigenvalues assoiated with symmetristable proesses. Various other properties and appliations of α-harmonifuntions and the frational Laplaian are presented in [10℄, [2℄, [9℄, [8℄ andthe referenes therein. A review of the basi fats about Riesz potential the-ory and symmetri stable proesses appears in Setion 2.In Setion 3, we prove some geometri estimates for α-harmoni measureinvolving symmetri or polarized open sets D. Although the orrespondinginequalities for the lassial harmoni measure are almost trivial, we will seethat the proofs for the α-harmoni measure are not simple. Theorems 1 and2 were proved in [2℄ under more restritive onditions (in [2, Theorem 3℄, theopen set D is assumed to be bounded with boundary satisfying an exteriorone ondition).2. Bakground2.1. α-harmoni funtions. The M. Riesz kernels in R

n, n ≥ 2, are thefuntions(2.1) kα(x) =
A(n, α)

|x|n−α
, x ∈ R

n \ {0},where 0 < α < n and(2.2) A(n, γ) =
Γ ((n − γ)/2)

|Γ (γ/2)| 2γπn/2
, −n < γ < n, γ 6= 0,−2,−4, . . . .These kernels inlude as speial and limiting ases the kernels of the lassialpotential theory: the Newtonian kernel (n ≥ 3, α = 2) and the logarithmi
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kernel (n = 2, α → 2); see [12, Ch. I℄. From now on, we assume that 0 <
α < 2. We denote the n-dimensional Lebesgue measure by mn.Definition 1. Let D be an open set in R

n, n ≥ 2. A funtion u : R
n →

R is alled α-harmoni in D if(a) u is ontinuous in D;(b) u is in L1; that is, u is loally integrable on R
n and(2.3) \

|x|>1

|u(x)|

|x|n+α
mn(dx) < ∞;

() for every ball B(x0, r) with losure in D,(2.4) u(x0) =
\

Rn

u(x)ε(r)
α (x − x0) mn(dx),where(2.5) ε(r)

α (x) =






Γ (n/2) sin(πα/2)

πn/2+1

rα

(|x|2 − r2)α/2|x|n
, |x| > r,

0, |x| < r.Definition 2. Let f ∈ L1. For ε > 0 and x ∈ R
n, we de�ne(2.6) ∆α/2

ε f(x) = A(n,−α)
\

|y−x|>ε

f(y) − f(x)

|y − x|n+α
mn(dy)

and(2.7) ∆α/2f(x) = lim
ε↓0

∆α/2
ε f(x),whenever the limit exists.By [6, Theorem 3.9℄, a funtion u de�ned on R

n is α-harmoni in an openset D if and only if it is ontinuous in D and ∆α/2u = 0 in D.2.2. The Dirihlet problem for α-harmoni funtions (see [12, Ch. IV℄,[3, Ch. VII℄, [15℄). The Perron�Wiener�Brelot method an be applied forthe solution of the Dirihlet problem for α-harmoni funtions. Let D be anopen set in R
n. An α-subharmoni funtion in D is an L1 funtion whih isupper semiontinuous in D and satis�es the inequality(2.8) u(x0) ≤

\
Rn

u(x)ε(r)
α (x − x0) mn(dx),for every ball B(x0, r) with losure in D.Let C(Dc) be the lass of funtions f ontinuous in Dc satisfying\

Dc∩{|x|>1}

|f(x)|

|x|n+α
mn(dx) < ∞,
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and H(D) be the lass of funtions on R

n, α-harmoni in D. The lowerPerron family of a funtion f ∈ C(Dc) is the family Pf of all funtions uwhih are α-subharmoni in D and satisfy the inequalities u ≤ f in (D)cand
lim sup
D∋x→ζ

u(x) ≤ f(ζ), ∀ζ ∈ ∂D.De�ne
Hf (x) := sup{u(x) : u ∈ Pf}, x ∈ R

n.Then Hf is α-harmoni in D. The de�nition of regular and irregular bound-ary points and their haraterization byWiener's riterion are similar to theirlassial analogs. The funtion Hf has limit f(ζ) at eah regular boundarypoint ζ. We say that Hf is the Perron solution of the Dirihlet problem in
D with exterior values f .The operator f 7→ Hf is a positive linear operator from C(Dc) into
H(D). Hene for eah x ∈ R

n, there is a measure ωD
α (x, ·) on Dc suh that

Hf (x) =
\

Dc

f(y) ωD
α (x, dy), x ∈ R

n.This measure is the α-harmoni measure for D evaluated at x.In a similar manner, one an de�ne the upper and the lower Perron familyfor any Borel funtion on Dc and onsider the orresponding generalizedsolution for the Dirihlet problem; see [3℄ for more details.2.3. Symmetri stable proesses (see [4℄, [5℄, [6℄, [10℄, [11℄, [14℄, [3℄, [8℄).The frational Laplaian ∆α/2 is the harateristi operator of the sym-metri α-stable proess {Xt, t ∈ [0,∞)} in R
n. This is a Lévy proess(homogeneous and with independent inrements) with transition density

pt(x, y) = pt(y, x) = pt(x − y) (relative to the Lebesgue measure) uniquelydetermined by its Fourier transform(2.9) \
Rn

eix·ξpt(x) mn(dx) = e−t|ξ|α .When α = 2, we get a Brownian motion running at twie the speed. Theprobability measures and the orresponding expetations of the proess {Xt}starting at x ∈ R
n will be denoted by P

x and E
x.The symmetri α-stable proess {Xt} is a strong Feller and a Hunt pro-ess. For A ⊂ R

n, we put(2.10) TA = inf{t > 0 : Xt /∈ A},the �rst exit time from A. A Borel funtion u de�ned on R
n is α-harmoniin an open set D ⊂ R

n if and only if(2.11) u(x) = E
xu(XT U ), x ∈ U,
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for every bounded open set U with losure U ontained in D. If D ⊂ R
n isopen and B is a Borel subset of Dc, then(2.12) ωD

α (x, B) = P
x(XT D ∈ B), x ∈ R

n.2.4. Riesz apaity (see [12, Ch. II℄). If K is a ompat set in R
n and µis a probability Borel measure on K, then the α-energy of µ is(2.13) Iα(µ) =

\
K

\
K

kα(x − y) µ(dx) µ(dy).The α-apaity of K is de�ned by(2.14) Cα(K) = (inf
µ

Iα(µ))−1,where the in�mum is taken over all probability Borel measures on K.For a Borel set E ⊂ R
n, we de�ne(2.15) Cα(E) = sup{Cα(K) : K ⊂ E ompat}.By the Choquet apaitability theorem [12, Theorem 2.8, p. 156℄,(2.16) Cα(E) = inf{Cα(G) : E ⊂ G open}.The α-apaity is a geometri quantity beause of its expression as trans�-nite diameter; see [12, Ch. II, �3℄. It an also be haraterized in terms ofsymmetri stable proesses; see referenes in [2℄.2.5. Null sets. There is no known geometri haraterization of null setsfor α-harmoni measure. If a boundary set has zero α-apaity, then it alsohas zero α-harmoni measure; see [12℄. The following lemmas provide morere�ned neessary or su�ient onditions.Lemma 1 ([15, Theorem 1′℄). Let D be an open set in R

n and F be asubset of ∂D with mn(F ) = 0. Suppose that there exists c > 0 suh that forall x ∈ D,
mn(Dc ∩ B(x, 2d(x, F ))) > cd(x, F )n.Then F is D-null.Lemma 2 ([15, Theorem 3℄). Let D be an open set in R

n and F be asubset of ∂D with Cα(F ) > 0. If
lim
r→0

Cα({x ∈ Dc : 0 < d(x, F ) ≤ r}) = 0,then F is not D-null.Lemma 3. Suppose that D and Ω are open sets in R
n with D ⊂ Ω. Let

A = Ω \ D and assume that A is D-null. Then Cα(A) = 0.Proof. By the Choquet apaitability theorem [12, Theorem 2.8, p. 156℄,
A is apaitable. Assume �rst that A is ompat. Then d(A, ∂Ω) > 0. For
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0 < r < d(A, ∂Ω), the set

{x ∈ Dc : 0 < d(x, A) ≤ r}is empty. By Lemma 2, Cα(A) = 0.Next assume that A is bounded. Let
Ak = {x ∈ A : d(x, ∂Ω) ≥ 1/k}, k ∈ N.Then Ak is ompat. Hene Cα(Ak) = 0 for all k. By the subadditivity of

α-apaity, Cα(A) = 0. Finally, for unbounded A we onsider the sequeneof bounded sets
Am = {x ∈ A : |x| ≤ m}, m ∈ N,and onlude as above that Cα(A) = 0.2.6. The minimum priniple in Riesz potential theory. We will need someextensions of the minimum priniple for α-superharmoni funtions; see [12,pp. 115, 183℄.Lemma 4. Let D be an open set in R

n and u : R
n → (−∞,∞] be afuntion whih is α-superharmoni in D and lower semiontinuous on D.Suppose that there exists a onstant M ∈ R suh that u ≥ M in Dc. Then

u ≥ M in R
n. If u(x0) = M for some x0 ∈ D, then u = M in R

n.Proof. De�ne v(x) = u(x)−M, x ∈ R
n. Then v is lower semiontinuouson D. Also, for ζ ∈ ∂D,(2.17) lim inf

D∋x→ζ
v(x) = lim inf

D∋x→ζ
u(x) − M ≥ u(ζ) − M ≥ 0.Suppose that there exists a point x0 ∈ D suh that(2.18) min

D
v = v(x0) < 0.Take r > 0 su�iently small so that the ball of radius r, entered at x0, liesin D. Then v(x0) < ε

(r)
α,x0

v; indeed, if v(x0) = ε
(r)
α,x0

v, then v = v(x0) < 0a.e. in {|x − x0| > r}, and therefore
lim inf
x→ζ∈D

v(x) ≤ v(x0) < 0,ontraditing (2.17). Hene(2.19) v(x0) < ε(r)
α,x0

v = ε(r)
α,x0

u − M ≤ u(x0) − M = v(x0),whih is absurd. We onlude that the minimum of v on D is non-negativeand therefore u(x) ≥ M for all x ∈ R
n.If u(x0) = M for some x0 ∈ D, then for all su�iently small r > 0,(2.20) 0 = v(x0) ≥ ε(r)

α,x0
v.
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This implies v = 0 a.e. in R
n; that is, u = M a.e. in R

n. If x ∈ D, then [12,p. 114℄
u(x) = lim

r→0
ε(r)
α,xu = M.Hene u = M in D.Lemma 5. Let D be an open set in R

n and u : R
n → (−∞,∞] be afuntion α-superharmoni in D. Assume that(i) u is bounded below in D;(ii) u is lower semiontinuous in D \E, where E is a subset of ∂D with

∞ /∈ E and Cα(E) = 0 (of ourse, if E ⊂ R
n then ∞ /∈ E);(iii) lim infD∋x→ζ u(x) ≥ M for some M ∈ R and all ζ ∈ ∂D \ E;(iv) u(x) ≥ M for all x ∈ (D)c.Then u(x) ≥ M for all x ∈ D. Moreover , if u(x0) = M for some x0 ∈ D,then u = M in D.Proof. For n ∈ N, let An be an open set suh that E ⊂ An and Cα(An)

≤ 1/n. Then E1 :=
⋂∞

n=1 An is a Gδ-set suh that E ⊂ E1 and Cα(E1) = 0.There exists a measure λ on R
n suh that the Riesz potential Uλ

α of λhas the following properties (see [12, p. 179℄):
Uλ

α(x) = ∞, ∀x ∈ E1 ∩ ∂D, and Uλ
α(x) < ∞, ∀x /∈ E1 ∩ ∂D.For ε > 0, de�ne

u1(x) = u(x) + εUλ
α(x), x ∈ R

n.The funtion u1 is α-superharmoni in D. Moreover,(2.21) lim inf
D∋x→ζ

u1(x) ≥ M, ∀ζ ∈ ∂D,beause Uλ
α(x) ≥ 0, ∀x ∈ R

n, and Uλ
α(x) = ∞, ∀x ∈ E1 ∩ ∂D. Also, sine

Uλ
α is lower semiontinuous in R

n and
lim inf

D∋x→ζ∈E
[u(x) + εUλ

α(x)] = ∞ = u(ζ) + εUλ
α(ζ),we see that u1 is lower semiontinuous in D.We apply Lemma 4 to the funtion u1 and onlude

u1(x) = u(x) + εUλ
α(x) ≥ M, ∀x ∈ D.Sine ε > 0 is arbitrary and Uλ

α < ∞ in D, it follows that u ≥ M in D.Suppose next that u(x0) = M for some x0 ∈ D. By the α-mean valueinequality, M = u(x0) ≥ ε
(r)
α,x0

u for all su�iently small r > 0. It followsthat u = M a.e. in R
n. If x ∈ D, then [12, p. 114℄

u(x) = lim
r→0

ε(r)
α,xu = M.Hene u = M in D.
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3. Some geometri properties of α-harmoni measure Let Π =

{(x1, . . . , xn) ∈ R
n : xn = 0}. For E ⊂ R

n, we denote by Ê the re�etion of
E in the (n − 1)-dimensional plane Π. Thus we have

Ê = {(x1, . . . , xn−1, xn) : (x1, . . . , xn−1,−xn) ∈ E}.We will also use the following notation: if x = (x1, . . . , xn−1, xn) then x̂ :=
(x1, . . . , xn−1,−xn); E+ := {(x1, . . . , xn−1, xn) ∈ E : xn > 0}; E0 := E ∩Π;
E− = {(x1, . . . , xn−1, xn) ∈ E : xn < 0}.Let E be any set in R

n. We divide E into three subsets S, U, V :
S = SE = {x ∈ E : x̂ ∈ E} = E ∩ Ê,

U = UE = {x ∈ E : x ∈ E+, x̂ /∈ E} = E+ \ SE ,

V = VE = {x ∈ E : x ∈ E−, x̂ /∈ E} = E− \ SE .

S is the symmetri part of E, U is the upper non-symmetri part of E,and V is the lower non-symmetri part of E. The sets S, U, V are disjointand E = S ∪ U ∪ V . Note that if E is open, then its symmetri part S isalways open, while the sets U, V are not neessarily open. We say that E issymmetri with respet to Π if U = V = ∅ and hene E = S. We say that Eis polarized with respet to Π if V = ∅ and hene E = S ∪ U .Theorem 1. Let S be an open set in R
n. Suppose that S is symmetriwith respet to Π. Let B ⊂ R

n
+ ∩ Sc be a Borel set. Then:(i) ωS

α(x, B) ≥ ωS
α(x̂, B), x ∈ R

n
+;(ii) ωS

α(x, B) ≥ ωS
α(x, B̂), x ∈ R

n
+.

S

Π

~
B x

x̂

q

q

Fig. 1. An illustration for Theorem 1
Proof. For x ∈ R

n
+ \ S+, the inequalities (i) and (ii) are trivial. So weprove them for x = s ∈ S+. Beause of symmetry, (i) and (ii) are equivalent.So we only prove (i). By the inner regularity of α-harmoni measure, wemay and do assume that B is a ompat set in R

n
+ ∩ Sc. Take a dereasingsequene of ompatly supported ontinuous funtions fk : Sc → [0, 1] with
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suppfk ↓ B, fk ↓ χB and fk = 0 in (Sc)−. Then for the sequene of funtions
Hfk

(x) :=
\

Sc

fk(y) ωS
α(x, dy), x ∈ R

n,

we have Hfk
(s) ↓ ωS

α(s, B), s ∈ S. It therefore su�es to prove that(3.1) Hfk
(s) ≥ Hfk

(ŝ), s ∈ S+, k ∈ N.Let E be the set of irregular points of ∂S. By a lassial result (see e.g.[12, p. 296℄), Cα(E) = 0. There exists a Gδ-set E1 ⊃ E with Cα(E1) = 0and a measure λ on R
n suh that (see [12, p. 179℄)

Uλ
α(x) = ∞, ∀x ∈ E1 ∩ ∂D, and Uλ

α(x) < ∞, ∀x ∈ R
n \ (E1 ∪ ∂D).Beause of symmetry, we may also assume that Uλ

α(x̂) = Uλ
α(x).Fix k ∈ N and ε > 0 and de�ne(3.2) v(x) = Hfk

(x) − Hfk
(x̂) + εUλ

α(x), x ∈ R
n.We look at the boundary values of v in S+. Let ζ ∈ ∂(S+).

Case 1: ζ ∈ S0. Then
lim inf
S+∋s→ζ

v(s) = lim inf
S+∋s→ζ

εUλ
α(s) ≥ 0.

Case 2: ζ ∈ ∂(S+) \ (S0 ∪ E1). Then
lim inf
S+∋s→ζ

v(s) = fk(ζ) − 0 + lim inf
S+∋s→ζ

εUλ
α(s) ≥ 0.

Case 3: ζ ∈ E1. Then by the lower semiontinuity of Uλ
α ,

lim inf
S+∋s→ζ

v(s) = εUλ
α(ζ) = ∞.

Case 4: S is unbounded and ζ = ∞. Let B1 be the support of fk. For
s ∈ S, we have

Hfk
(s) =

\
Sc

fk(y) ωS
α(s, dy) ≤

\
B1

ωS
α(s, dy) = ωS

α(s, B1)

≤ ω
Bc

1
α (s, B1) = P

s(TBc
1 < ∞).By a formula of S. Port [13℄,

Cα(B1) = lim
s→∞

A(n, α)−1 |s|n−α
P

s(TBc
1 < ∞).Hene lims→∞ Hfk

(s) = 0. This implies that(3.3) lim inf
S+∋s→∞

v(s) = lim inf
S+∋s→∞

εUλ
α(s) ≥ 0.Note here that we annot apply the minimum priniple of Subsetion 2.6beause the ondition v ≥ 0 in (S+)c is not satis�ed. Nevertheless, we will
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prove that v ≥ 0 in S+. Suppose that v takes on stritly negative valuesin S+. Let

β := inf{v(s) : s ∈ S+}.Take a sequene {sk} in S+ suh that v(sk) → β. By passing to a subse-quene if neessary, we may assume that {sk} onverges in S+. By Cases1�4 examined above, we may assume that limk sk = s0 ∈ S+. The measure
λ is not neessarily onentrated on E (see [12, p. 181℄). However, λ maybe taken so that its support is as lose to E as we wish (see the proof ofTheorem 3.1 in [12℄). It is also known [12, Ch. I, �6℄ that the potential Uλ

αis an α-harmoni funtion in the omplement of the support of λ. Hene vis α-harmoni in a neighborhood of s0. Hene
0 = ∆α/2v(s0) =

\
Rn

v(x) − v(s0)

|x − s0|n+α
mn(dx)(3.4)

=
\

R
n
+

v(x) − v(s0)

|x − s0|n+α
mn(dx) +

\
R

n
+

v(x̂) − v(s0)

|x̂ − s0|n+α
mn(dx)

≥
\

R
n
+

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − ŝ0|n+α

]
mn(dx) =: I1.

We used above the equalities v(x̂) = −v(x) + 2εUλ
α(x), Uλ

α(x̂) = Uλ
α(x), and

|x− ŝ0| = |x̂− s0|, whih ome from symmetry. Now we set A1 = {x ∈ R
n
+ :

v(x) + v(s0) ≥ 0} and A2 = {x ∈ R
n
+ : v(x) + v(s0) < 0}. Using also theobvious inequality |x − ŝ0| > |x − s0|, we get

I1 =
\

A1

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − ŝ0|n+α

]
mn(dx)

+
\

A2

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − ŝ0|n+α

]
mn(dx)

≥
\

A1

[
v(x) − v(s0)

|x − s0|n+α
−

v(x) + v(s0)

|x − s0|n+α

]
mn(dx) +

\
A2

v(x) − v(s0)

|x − s0|n+α
mn(dx)

=
\

A1

−2v(s0)

|x − s0|n+α
mn(dx) +

\
A2

v(x) − v(s0)

|x − s0|n+α
mn(dx).Sine v(s0) < 0, the �rst integrand is positive. The seond integrand isnon-negative; indeed, if x ∈ R

n
+ \S+, then v(x)− v(s0) = fk(x)+ εUλ

α(x)−
v(s0) ≥ 0, and if x ∈ S+, then v(x) − v(s0) ≥ 0, by the de�nition of s0.Beause of (3.4), we onlude that mn(A1) = 0 and v = v(s0) a.e. in A2.Hene v = v(s0) < 0 a.e. in R

n
+.We proved above that the funtion v is equal to a negative onstant a.e.in R

n
+. This is absurd; indeed: (a) if mn(Rn

+ \S+) > 0 and x ∈ R
n
+ \S+, then
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v(x) = fk(x) + εUλ
α(x) ≥ 0, (b) if mn(Rn

+ \ S+) = 0, then S is unboundedand, by (3.3), lim infS+∋s→∞ v(s) ≥ 0.The ontradition shows that v(s) ≥ 0 for all s ∈ S+. Sine ε > 0 isarbitrary, (3.1) is proved.Theorem 2. Let D be an open set in R
n. Suppose that D is polarizedwith respet to the plane Π. Let B ⊂ R

n
+ ∩ Dc be a Borel set. Then:(i) ωD

α (x, B) ≥ ωD
α (x̂, B), x ∈ R

n
+ ∪ Π;(ii) ωD

α (x, B) ≥ ωD
α (x, B̂), x ∈ R

n
+ ∪ Π;(iii) ωD

α (x, B) + ωD
α (x̂, B) ≥ ωD

α (x, B̂) + ωD
α (x̂, B̂), x ∈ R

n;(iv) ωD
α (x, B) + ωD

α (x, B̂) ≥ ωD
α (x̂, B) + ωD

α (x̂, B̂), x ∈ R
n.
U

S

Π

~
B

~

B̂

x

x̂

q

q

Fig. 2. An illustration for Theorem 2
Proof. Sine D is polarized, the lower non-symmetri part of D is empty.Hene D = S ∪ U , where S is the symmetri part of D, and U is the uppernon-symmetri part of D.(i) If x ∈ (Rn

+ ∪ Π) \ S+, the inequality (i) is trivial. So we assume that
x = s ∈ S+. By the strong Markov property,

ωD
α (s, B) = ωS

α(s, B) +
\
U

ωS
α(s, du) ωD

α (u, B),

ωD
α (ŝ, B) = ωS

α(ŝ, B) +
\
U

ωS
α(ŝ, du) ωD

α (u, B).

By Theorem 1, ωS
α(s, B) ≥ ωS

α(ŝ, B) and ωS
α(s, du) ≥ ωS

α(ŝ, du). So (i) isproved.(ii) As in the proof of (i), we may assume that x = s ∈ S+. Set S1 :=

S ∪ U ∪ Û . Then S1 is an open set whih is symmetri with respet to Πand ontains D. By the strong Markov property,
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ωD

α (s, B) = ωS1

α (s, B) −
\̂
U

ωD
α (s, du) ωS1

α (u, B),

ωD
α (s, B̂) = ωS1

α (s, B̂) −
\̂
U

ωD
α (s, du) ωS1

α (u, B̂).

By Theorem 1, ωS1
α (s, B) ≥ ωS1

α (s, B̂) and ωS1
α (u, B̂) ≥ ωS1

α (u, B), u ∈ Û . So(ii) is proved.(iii) By the inner regularity of α-harmoni measure, we may and doassume that B is a ompat set in R
n
+ ∩ Dc. Take a dereasing sequeneof ontinuous funtions fk : Dc → [0, 1] with suppfk ↓ B, fk ↓ χB and

fk = 0 in (Dc)−. Let f̂k(x) = fk(x̂), x ∈ Dc (with f̂k = 0 in Û). Considerthe sequenes of funtions
Hfk

(x) :=
\

Dc

fk(y) ωD
α (x, dy), x ∈ R

n,

H
f̂k

(x) :=
\

Dc

f̂k(y) ωD
α (x, dy), x ∈ R

n.We have Hfk
(x) ↓ ωD

α (x, B) and H
f̂k

(x) ↓ ωD
α (x, B), x ∈ R

n. Therefore itsu�es to prove that
Hfk

(x) + Hfk
(x̂) ≥ H

f̂k

(x) + H
f̂k

(x̂), x ∈ R
n, k ∈ N.Fix k ∈ N and de�ne

v(x) = Hfk
(x) + Hfk

(x̂) − H
f̂k

(x) − H
f̂k

(x̂), x ∈ R
n.It is lear that v is α-harmoni in S. Note that for u ∈ U , v(u) = Hfk

(u) −
H

f̂k

(u). So v is α-harmoni in D. It is also ontinuous in D \ E, where Eis the set of irregular points of ∂D. We will apply the minimum priniple(Lemma 5) to the funtion v in the domain D.Let ζ ∈ Dc.
Case 1: ζ ∈ ∂D \ (E ∪ Û). Then

lim
D∋x→ζ

v(x) = fk(ζ) + fk(ζ̂) − f̂k(ζ) − f̂k(ζ̂) = 0.

Case 2: ζ ∈ (∂D ∩ Û) \ E. Then
lim

D∋x→ζ
v(x) = fk(ζ) + Hfk

(ζ̂) − f̂k(ζ) − H
f̂k

(ζ̂) = Hfk
(ζ̂) − H

f̂
(ζ̂)

=
\

Dc

fk(y) ωD
α (ζ̂, dy) −

\
Dc

f̂k(y) ωD
α (ζ̂, dy)

=
\

Dc

fk(y) ωD
α (ζ̂, dy) −

\
Dc

fk(y) ωD
α (ζ̂, d̂y)

=
\

(Dc)+

fk(y) [ωD
α (ζ̂, dy) − ωD

α (ζ̂, d̂y)] ≥ 0.



SOME PROPERTIES OF α-HARMONIC MEASURE 309

Here ωD
α (ζ̂, d̂y) is the measure µ on (Dc)+ de�ned by µ(E) := ωD

α (ζ̂, Ê). Thelast equality holds beause fk is supported in (Dc)+. The inequality omesfrom part (ii) of Theorem 2.
Case 3: ζ ∈ (D)c \ Û . Then v(ζ) = fk(ζ) + fk(ζ̂) − f̂k(ζ) − f̂k(ζ̂) = 0.
Case 4: x = u ∈ Û \ ∂D. Then we work as in Case 2.By Lemma 5, we onlude that v ≥ 0 on D.(iv) The proof is similar to that of (iii).Theorem 3. Let D be an open set in R

n. Suppose that D is polarizedwith respet to the plane Π. Let B ⊂ R
n
+ ∩ Dc be a Borel set. Then:(i) ωD

α (x, B) ≤ 1/2, x ∈ D− ∪ D0;(ii) ωD
α (x, B̂) ≤ 1/2, x ∈ D+ ∪ D0;(iii) ωD̂
α (x, B) ≤ 1/2, x ∈ (D̂)− ∪ D0.

U

S

Π

~
B

xq

Fig. 3. An illustration for Theorem 3
Proof. We will prove only the inequality (ii). The proof of (i) is similarand (iii) is equivalent to (ii) beause of symmetry.We write D = S ∪ U , where S is the symmetri part of D and U is theupper non-symmetri part of D. Set S1 := D ∪ Û . Then S1 is an open set,symmetri with respet to Π, and D ⊂ S1. Using Theorem 1 we obtain

ωD
α (x, B̂) ≤ ωS1

α (x, B̂) ≤ ωS1

α (x, B), x ∈ D+ ∪ D0.Hene
ωD

α (x, B̂) ≤
1

2
[ωS1

α (x, B̂) + ωS1

α (x, B)] =
1

2
ωS1

α (x, B ∪ B̂) ≤
1

2
.We now turn to a sharp form of Theorem 2.Theorem 4. Let D be an open set in R

n. Suppose that D is polarizedwith respet to the plane Π. Let B ⊂ R
n
+ ∩ Dc be a Borel set whih is not
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D-null. Then for x ∈ D+, we have

ωD
α (x, B) > ωD

α (x̂, B),(3.5)
ωD

α (x, B) > ωD
α (x, B̂).(3.6)Proof. First we prove (3.5). We write D = S∪U , where S is the symmet-ri part of D and U is the upper non-symmetri part of D. If x = u ∈ U , then

ωD
α (u, B) > 0 beause B is not D-null. On the other hand, ωD

α (û, B) = 0beause û /∈ B. Therefore (3.5) is proved in this ase. So it remains to prove(3.5) for x = s ∈ S+.Consider the funtion
v(x) = ωD

α (x, B) − ωD
α (x̂, B), x ∈ R

n.Then v is α-harmoni in D and by Theorem 2,(3.7) v(x) ≥ 0, x ∈ R
n
+.Also, it is obvious that(3.8) v(x) + v(x̂) = 0, x ∈ R

n
+.We want to prove that(3.9) v(s) > 0, s ∈ S+.Suppose that v(s0) = 0 for some s0 ∈ S+. Sine v is α-harmoni in D,

0 = ∆α/2v(s0) =
\

Rn

v(x) − v(s0)

|x − s0|n+α
mn(dx) =

\
Rn

v(x)

|x − s0|n+α
mn(dx)

=
\

Rn
+

[
v(x)

|x − s0|n+α
−

v(x)

|x − ŝ0|n+α

]
mn(dx)

= I1 + I2 + I3 + I4,where
I1 :=

\
S+

v(s)

[
1

|s − s0|n+α
−

1

|s − ŝ0|n+α

]
mn(ds),

I2 :=
\
U

v(u)

[
1

|u − s0|n+α
−

1

|u − ŝ0|n+α

]
mn(du)

=
\
U

ωD
α (u, B)

[
1

|u − s0|n+α
−

1

|u − ŝ0|n+α

]
mn(du),



SOME PROPERTIES OF α-HARMONIC MEASURE 311

I3 :=
\
B

v(x)

[
1

|x − s0|n+α
−

1

|x − ŝ0|n+α

]
mn(dx),

=
\
B

[
1

|x − s0|n+α
−

1

|x − ŝ0|n+α

]
mn(dx),

I4 :=
\

(D+)c\B

v(x)

[
1

|x − s0|n+α
−

1

|x − ŝ0|n+α

]
mn(dx).

Sine v = 0 in (D+)c \B, we have I4 = 0. Beause of the obvious inequality
|x − s0| < |x − ŝ0|, x ∈ R

n
+,the integrands in I1, I2, I3 are non-negative. Therefore I1 = I2 = I3 = 0. Weonlude that mn(U) = 0, mn(B) = 0 and v = 0 mn-a.e. in S. Sine v isontinuous in D, we onlude that v = 0 in S, whih means that(3.10) ωD

α (s, B) = ωD
α (ŝ, B), s ∈ S.The fat that mn(B) = 0 implies that (see [4℄, [15℄) the set B ∩ (D)c is

D-null; hene the set B∩∂D is not D-null. Thus, by [15, Lemma 1℄, we have
sup
x∈D

ωD
α (x, B) = 1.Take a sequene {xk} in D suh that(3.11) lim

k→∞
ωD

α (xk, B) = 1.By Theorem 3, we may assume that {xk} ⊂ D+. Sine D+ is an open setand mn(U) = 0, every neighborhood of xk ontains a point sk ∈ S+, k ∈ N.So, by the ontinuity of α-harmoni measure in D, we an hoose a sequene
sk in S+ suh that(3.12) lim

k→∞
ωD

α (sk, B) = 1.Then, again by Theorem 3,
lim sup

k→∞
ωD

α (ŝk, B) ≤
1

2
.This together with (3.12) ontradits (3.10). So (3.9) is proved.We now turn to the proof of (3.6). We onsider the funtion

h(x) = ωD
α (x, B) − ωD

α (x, B̂), x ∈ R
n.We know from Theorem 2 that(3.13) h(x) ≥ 0, h(x) + h(x̂) ≥ 0, x ∈ R
n
+.We want to prove that(3.14) h(x) > 0, x ∈ D+.
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Suppose that h(x0) = 0 for some x0 ∈ D+. Sine h is α-harmoni in D,

0 = ∆α/2h(x0) =
\

Rn

h(x) − h(x0)

|x − x0|n+α
mn(dx)

=
\

R
n
+

h(x)

|x − x0|n+α
mn(dx) +

\
R

n
−

h(x)

|x − x0|n+α
mn(dx)

=
\

R
n
+

h(x)

|x − x0|n+α
mn(dx) +

\
R

n
+

h(x̂)

|x̂ − x0|n+α
mn(dx)

=
\

R
n
+

{
h(x) + h(x̂)

|x − x̂0|n+α
+ h(x)

[
1

|x − x0|n+α
−

1

|x − x̂0|n+α

]}
mn(dx) =: J.

As in the proof of (3.5), we �nd that J = J1 + J2 + J3, where
J1 :=

\
S+

{
h(s) + h(ŝ)

|x − x̂0|n+α
+ h(s)

[
1

|s − x0|n+α
−

1

|s − x̂0|n+α

]}
mn(ds),

J2 :=
\
U

h(u)

|u − x0|n+α
mn(du),

J3 :=
\
B

[
1

|x − x0|n+α
−

1

|x − x̂0|n+α

]
mn(dx).

Using (3.13) we onlude that mn(B) = 0 and that v = 0 in S, whihmeans that(3.15) ωD
α (s, B) = ωD

α (s, B̂), s ∈ S.By (3.15) and the fat that B is not D-null we infer that B̂ is not D-null.As mn(B̂) = mn(B) = 0, the set B̂ ∩ ∂D is not D-null. By [15, Lemma 1℄,we thus have
sup
x∈D

ωD
α (x, B̂) = 1.Take a sequene {yk} in D with ωD

α (yk, B̂) → 1. As B̂ ⊂ R
n
−, Theorem 3implies that we may assume yk ∈ D− = S−, k ∈ N. Then (3.15) gives

ωD
α (yk, B) → 1. But Theorem 3 implies ωD

α (yk, B) ≤ 1/2. This ontraditionproves (3.14).Theorem 5. Let D be an open set in R
n. Suppose that D is polarizedwith respet to the hyperplane Π, i.e. D = S ∪ U , where S is the symmetripart of D and U is the upper non-symmetri part of D. Let B ⊂ R

n
+ ∩Dc bea Borel set whih is not D-null. Then we have:(3.16) ωD

α (s0, B) + ωD
α (ŝ0, B) = ωD

α (s0, B̂) + ωD
α (ŝ0, B̂)
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for some s0 ∈ S if and only if Cα(U) = 0;(3.17) ωD
α (s0, B) + ωD

α (s0, B̂) = ωD
α (ŝ0, B) + ωD

α (ŝ0, B̂)for some s0 ∈ S if and only if Cα(U) = 0;(3.18) ωD
α (s0, B) = ωD

α (s0, B̂)for some s0 ∈ S0 := S ∩ Π if and only if Cα(U) = 0.Proof. We only prove the �rst equivalene; the proofs of the remainingones are similar.Suppose that (3.16) holds for some s0 ∈ S. By the strong Markov prop-erty,
ωD

α (s0, B) = ωS
α(s0, B) +

\
U

ωS
α(s0, du) ωD

α (u, B),(3.19)
ωD

α (ŝ0, B) = ωS
α(ŝ0, B) +

\
U

ωS
α(ŝ0, du) ωD

α (u, B),(3.20)
ωD

α (s0, B̂) = ωS
α(s0, B̂) +

\
U

ωS
α(s0, du) ωD

α (u, B̂),(3.21)
ωD

α (ŝ0, B̂) = ωS
α(ŝ0, B̂) +

\
U

ωS
α(ŝ0, du) ωD

α (u, B̂).(3.22)Hene\
U

[ωS
α(s0, du) + ωS

α(ŝ0, du)] ωD
α (u, B)

=
\
U

[ωS
α(s0, du) + ωS

α(ŝ0, du)] ωD
α (u, B̂).

By Theorem 4, ωD
α (u, B) > ωD

α (u, B̂) for all u ∈ U . Hene ωS
α(s0, du) +

ωS
α(ŝ0, du) is the zero measure on U . This implies ωS

α(s0, U) = 0, i.e. U is
S-null. By Lemma 3, Cα(U) = 0.Conversely, if Cα(U) = 0, then U is S-null. Therefore (3.19)�(3.22) imply

ωD
α (s, B) + ωD

α (ŝ, B) = ωD
α (s, B̂) + ωD

α (ŝ, B̂)for all s ∈ S.Theorem 6. Let D be an open set in R
n. Suppose that D is polarizedwith respet to the hyperplane Π, i.e. D = S ∪ U , where S is the symmetripart of D and U is the upper non-symmetri part of D. Let B ⊂ Dc be aBorel set whih is symmetri with respet to Π and is not D-null. Then

ωD
α (s, B) = ωD

α (ŝ, B)for some s ∈ S+ if and only if Cα(U) = 0.Proof. Similar to the proof of Theorem 5.
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