COLLOQUIUM MATHEMATICUM

SOME PROPERTIES OF α-HARMONIC MEASURE

BY
DIMITRIOS BETSAKOS (Thessaloniki)

Abstract

The α-harmonic measure is the hitting distribution of symmetric α-stable processes upon exiting an open set in $\mathbb{R}^{n}(0<\alpha<2, n \geq 2)$. It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove some geometric estimates for α-harmonic measure.

1. Introduction. In the 1930's, O. Frostman and M. Riesz developed a potential theory on $\mathbb{R}^{n}, n \geq 2$, based on the Riesz kernel

$$
\begin{equation*}
k_{\alpha}(x)=\frac{\mathcal{A}(n, \alpha)}{|x|^{n-\alpha}}, \quad x \in \mathbb{R}^{n} \backslash\{0\} \tag{1.1}
\end{equation*}
$$

where $0<\alpha<2$ and $\mathcal{A}(n, \alpha)$ is a constant. When $\alpha=2$, the Riesz kernel coincides with the kernel of the classical potential theory, the Newtonian kernel $(n \geq 3)$. The α-harmonic functions are defined by a mean value property (involving the parameter α), analogous to the classical one. Equivalently, they are the solutions of the equation $\Delta^{\alpha / 2} u=0$, where $\Delta^{\alpha / 2}$ is the fractional Laplacian, a non-local integro-differential operator.

A function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is α-harmonic in an open set D is determined by its exterior values (its values in $D^{c}:=\mathbb{R}^{n} \backslash D$). If B is a Borel set in D^{c}, the α-harmonic measure of B with respect to D is the α-harmonic function u in D with exterior values $u=\chi_{B}$ on D^{c}. The α-harmonic measure of B with respect to D, evaluated at the point $x \in \mathbb{R}^{n}$, will be denoted by $\omega_{\alpha}^{D}(x, B)$. For fixed $x \in D, \omega_{\alpha}^{D}(x, \cdot)$ is a Borel probability measure on D^{c}.

Both classical and α-harmonic measures have symmetry properties and satisfy the Carleman principle (domain monotonicity) and the Harnack principle. The latter implies that if $\omega_{\alpha}^{D}(x, B)=0$ for some $x \in D$, then $\omega_{\alpha}^{D}(y, B)$ $=0$ for all $y \in D$; we then say that B is a D-null set. There are, however, essential differences. The classical harmonic measure is defined (as a function) in a domain D and is supported (as a measure) on the boundary of D. The α-harmonic measure is defined (as a function) in the whole \mathbb{R}^{n} and is supported (as measure) in the exterior of D. These properties be-

[^0]come transparent when considered from the probabilistic point of view. The classical harmonic measure is the hitting distribution of a Brownian motion upon exiting D, while the α-harmonic measure is the hitting distribution of a symmetric α-stable process. This is a Hunt process with discontinuous paths. Thus its paths may jump from one component of D to another and may hit D^{c} (upon exiting D) at points of $(\bar{D})^{\mathrm{c}}$ and not necessarily at points of ∂D.

The basic facts of Riesz potential theory are presented in the book of N. S. Landkof [12]. Recently there has been a renewed interest in Riesz potential theory, mainly from the probabilistic point of view. K. Bogdan [4] proved the boundary Harnack principle for α-harmonic functions on Lipschitz open sets. R. Song and J.-M. Wu [14] proved extensions of Bogdan's results. Bogdan [5] and Z.-Q. Chen and Song [11] gave a Martin representation for non-negative α-harmonic functions. Bogdan and T. Byczkowski [6], [7] developed the theory of the Schrödinger operator based on the fractional Laplacian. Wu [15] found necessary and sufficient conditions for a boundary set to have zero α-harmonic measure. R. Bañuelos, R. Latała and P. J. Méndez-Hernández [1] proved isoperimetric type inequalities for transition probabilities, Green functions and eigenvalues associated with symmetric stable processes. Various other properties and applications of α-harmonic functions and the fractional Laplacian are presented in [10], [2], [9], [8] and the references therein. A review of the basic facts about Riesz potential theory and symmetric stable processes appears in Section 2.

In Section 3, we prove some geometric estimates for α-harmonic measure involving symmetric or polarized open sets D. Although the corresponding inequalities for the classical harmonic measure are almost trivial, we will see that the proofs for the α-harmonic measure are not simple. Theorems 1 and 2 were proved in [2] under more restrictive conditions (in [2, Theorem 3], the open set D is assumed to be bounded with boundary satisfying an exterior cone condition).

2. Background

2.1. α-harmonic functions. The M. Riesz kernels in $\mathbb{R}^{n}, n \geq 2$, are the functions

$$
\begin{equation*}
k_{\alpha}(x)=\frac{\mathcal{A}(n, \alpha)}{|x|^{n-\alpha}}, \quad x \in \mathbb{R}^{n} \backslash\{0\} \tag{2.1}
\end{equation*}
$$

where $0<\alpha<n$ and

$$
\begin{equation*}
\mathcal{A}(n, \gamma)=\frac{\Gamma((n-\gamma) / 2)}{|\Gamma(\gamma / 2)| 2^{\gamma} \pi^{n / 2}}, \quad-n<\gamma<n, \gamma \neq 0,-2,-4, \ldots \tag{2.2}
\end{equation*}
$$

These kernels include as special and limiting cases the kernels of the classical potential theory: the Newtonian kernel $(n \geq 3, \alpha=2)$ and the logarithmic
kernel ($n=2, \alpha \rightarrow 2$); see [12, Ch. I]. From now on, we assume that $0<$ $\alpha<2$. We denote the n-dimensional Lebesgue measure by m_{n}.

Definition 1. Let D be an open set in $\mathbb{R}^{n}, n \geq 2$. A function $u: \mathbb{R}^{n} \rightarrow$ \mathbb{R} is called α-harmonic in D if
(a) u is continuous in D;
(b) u is in \mathcal{L}^{1}; that is, u is locally integrable on \mathbb{R}^{n} and

$$
\begin{equation*}
\int_{|x|>1} \frac{|u(x)|}{|x|^{n+\alpha}} m_{n}(d x)<\infty ; \tag{2.3}
\end{equation*}
$$

(c) for every ball $B\left(x_{0}, r\right)$ with closure in D,

$$
\begin{equation*}
u\left(x_{0}\right)=\int_{\mathbb{R}^{n}} u(x) \varepsilon_{\alpha}^{(r)}\left(x-x_{0}\right) m_{n}(d x), \tag{2.4}
\end{equation*}
$$

where

$$
\varepsilon_{\alpha}^{(r)}(x)= \begin{cases}\frac{\Gamma(n / 2) \sin (\pi \alpha / 2)}{\pi^{n / 2+1}} \frac{r^{\alpha}}{\left(|x|^{2}-r^{2}\right)^{\alpha / 2}|x|^{n}}, & |x|>r, \tag{2.5}\\ 0, & |x|<r .\end{cases}
$$

Definition 2. Let $f \in \mathcal{L}^{1}$. For $\varepsilon>0$ and $x \in \mathbb{R}^{n}$, we define

$$
\begin{equation*}
\Delta_{\varepsilon}^{\alpha / 2} f(x)=\mathcal{A}(n,-\alpha) \int_{|y-x|>\varepsilon} \frac{f(y)-f(x)}{|y-x|^{n+\alpha}} m_{n}(d y) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{\alpha / 2} f(x)=\lim _{\varepsilon \downarrow 0} \Delta_{\varepsilon}^{\alpha / 2} f(x), \tag{2.7}
\end{equation*}
$$

whenever the limit exists.
By [6, Theorem 3.9], a function u defined on \mathbb{R}^{n} is α-harmonic in an open set D if and only if it is continuous in D and $\Delta^{\alpha / 2} u=0$ in D.
2.2. The Dirichlet problem for α-harmonic functions (see [12, Ch. IV], [3, Ch. VII], [15]). The Perron-Wiener-Brelot method can be applied for the solution of the Dirichlet problem for α-harmonic functions. Let D be an open set in \mathbb{R}^{n}. An α-subharmonic function in D is an \mathcal{L}^{1} function which is upper semicontinuous in D and satisfies the inequality

$$
\begin{equation*}
u\left(x_{0}\right) \leq \int_{\mathbb{R}^{n}} u(x) \varepsilon_{\alpha}^{(r)}\left(x-x_{0}\right) m_{n}(d x), \tag{2.8}
\end{equation*}
$$

for every ball $B\left(x_{0}, r\right)$ with closure in D.
Let $C\left(D^{\mathrm{c}}\right)$ be the class of functions f continuous in D^{c} satisfying

$$
\int_{D^{\mathrm{c} \cap\{|x|>1\}}} \frac{|f(x)|}{|x|^{n+\alpha}} m_{n}(d x)<\infty,
$$

and $H(D)$ be the class of functions on \mathbb{R}^{n}, α-harmonic in D. The lower Perron family of a function $f \in C\left(D^{\mathrm{c}}\right)$ is the family \mathcal{P}_{f} of all functions u which are α-subharmonic in D and satisfy the inequalities $u \leq f$ in $(\bar{D})^{\text {c }}$ and

$$
\limsup _{D \ni x \rightarrow \zeta} u(x) \leq f(\zeta), \quad \forall \zeta \in \partial D
$$

Define

$$
H_{f}(x):=\sup \left\{u(x): u \in \mathcal{P}_{f}\right\}, \quad x \in \mathbb{R}^{n}
$$

Then H_{f} is α-harmonic in D. The definition of regular and irregular boundary points and their characterization by Wiener's criterion are similar to their classical analogs. The function H_{f} has limit $f(\zeta)$ at each regular boundary point ζ. We say that H_{f} is the Perron solution of the Dirichlet problem in D with exterior values f.

The operator $f \mapsto H_{f}$ is a positive linear operator from $C\left(D^{\mathrm{c}}\right)$ into $H(D)$. Hence for each $x \in \mathbb{R}^{n}$, there is a measure $\omega_{\alpha}^{D}(x, \cdot)$ on $D^{\text {c }}$ such that

$$
H_{f}(x)=\int_{D^{\mathrm{c}}} f(y) \omega_{\alpha}^{D}(x, d y), \quad x \in \mathbb{R}^{n}
$$

This measure is the α-harmonic measure for D evaluated at x.
In a similar manner, one can define the upper and the lower Perron family for any Borel function on D^{c} and consider the corresponding generalized solution for the Dirichlet problem; see [3] for more details.
2.3. Symmetric stable processes (see [4], [5], [6], [10], [11], [14], [3], [8]). The fractional Laplacian $\Delta^{\alpha / 2}$ is the characteristic operator of the symmetric α-stable process $\left\{\mathrm{X}_{t}, t \in[0, \infty)\right\}$ in \mathbb{R}^{n}. This is a Lévy process (homogeneous and with independent increments) with transition density $p_{t}(x, y)=p_{t}(y, x)=p_{t}(x-y)$ (relative to the Lebesgue measure) uniquely determined by its Fourier transform

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{i x \cdot \xi} p_{t}(x) m_{n}(d x)=e^{-t|\xi|^{\alpha}} \tag{2.9}
\end{equation*}
$$

When $\alpha=2$, we get a Brownian motion running at twice the speed. The probability measures and the corresponding expectations of the process $\left\{\mathrm{X}_{t}\right\}$ starting at $x \in \mathbb{R}^{n}$ will be denoted by \mathbf{P}^{x} and \mathbf{E}^{x}.

The symmetric α-stable process $\left\{\mathrm{X}_{t}\right\}$ is a strong Feller and a Hunt process. For $A \subset \mathbb{R}^{n}$, we put

$$
\begin{equation*}
T^{A}=\inf \left\{t>0: \mathrm{X}_{t} \notin A\right\} \tag{2.10}
\end{equation*}
$$

the first exit time from A. A Borel function u defined on \mathbb{R}^{n} is α-harmonic in an open set $D \subset \mathbb{R}^{n}$ if and only if

$$
\begin{equation*}
u(x)=\mathbf{E}^{x} u\left(\mathrm{X}_{T^{U}}\right), \quad x \in U \tag{2.11}
\end{equation*}
$$

for every bounded open set U with closure \bar{U} contained in D. If $D \subset \mathbb{R}^{n}$ is open and B is a Borel subset of D^{c}, then

$$
\begin{equation*}
\omega_{\alpha}^{D}(x, B)=\mathbf{P}^{x}\left(\mathrm{X}_{T^{D}} \in B\right), \quad x \in \mathbb{R}^{n} \tag{2.12}
\end{equation*}
$$

2.4. Riesz capacity (see $[12, \mathrm{Ch} . \mathrm{II}]$). If K is a compact set in \mathbb{R}^{n} and μ is a probability Borel measure on K, then the α-energy of μ is

$$
\begin{equation*}
I_{\alpha}(\mu)=\int_{K} \int_{K} k_{\alpha}(x-y) \mu(d x) \mu(d y) \tag{2.13}
\end{equation*}
$$

The α-capacity of K is defined by

$$
\begin{equation*}
C_{\alpha}(K)=\left(\inf _{\mu} I_{\alpha}(\mu)\right)^{-1} \tag{2.14}
\end{equation*}
$$

where the infimum is taken over all probability Borel measures on K.
For a Borel set $E \subset \mathbb{R}^{n}$, we define

$$
\begin{equation*}
C_{\alpha}(E)=\sup \left\{C_{\alpha}(K): K \subset E \text { compact }\right\} \tag{2.15}
\end{equation*}
$$

By the Choquet capacitability theorem [12, Theorem 2.8, p. 156],

$$
\begin{equation*}
C_{\alpha}(E)=\inf \left\{C_{\alpha}(G): E \subset G \text { open }\right\} \tag{2.16}
\end{equation*}
$$

The α-capacity is a geometric quantity because of its expression as transfinite diameter; see [12, Ch. II, §3]. It can also be characterized in terms of symmetric stable processes; see references in [2].
2.5. Null sets. There is no known geometric characterization of null sets for α-harmonic measure. If a boundary set has zero α-capacity, then it also has zero α-harmonic measure; see [12]. The following lemmas provide more refined necessary or sufficient conditions.

Lemma 1 ([15, Theorem $\left.\left.1^{\prime}\right]\right)$. Let D be an open set in \mathbb{R}^{n} and F be a subset of ∂D with $m_{n}(F)=0$. Suppose that there exists $c>0$ such that for all $x \in D$,

$$
m_{n}\left(D^{\mathrm{c}} \cap B(x, 2 d(x, F))\right)>c d(x, F)^{n}
$$

Then F is D-null.
Lemma 2 ([15, Theorem 3]). Let D be an open set in \mathbb{R}^{n} and F be a subset of ∂D with $C_{\alpha}(F)>0$. If

$$
\lim _{r \rightarrow 0} C_{\alpha}\left(\left\{x \in D^{\mathrm{c}}: 0<d(x, F) \leq r\right\}\right)=0
$$

then F is not D-null.
Lemma 3. Suppose that D and Ω are open sets in \mathbb{R}^{n} with $D \subset \Omega$. Let $A=\Omega \backslash D$ and assume that A is D-null. Then $C_{\alpha}(A)=0$.

Proof. By the Choquet capacitability theorem [12, Theorem 2.8, p. 156], A is capacitable. Assume first that A is compact. Then $d(A, \partial \Omega)>0$. For
$0<r<d(A, \partial \Omega)$, the set

$$
\left\{x \in D^{c}: 0<d(x, A) \leq r\right\}
$$

is empty. By Lemma $2, C_{\alpha}(A)=0$.
Next assume that A is bounded. Let

$$
A_{k}=\{x \in A: d(x, \partial \Omega) \geq 1 / k\}, \quad k \in \mathbb{N}
$$

Then A_{k} is compact. Hence $C_{\alpha}\left(A_{k}\right)=0$ for all k. By the subadditivity of α-capacity, $C_{\alpha}(A)=0$. Finally, for unbounded A we consider the sequence of bounded sets

$$
A_{m}=\{x \in A:|x| \leq m\}, \quad m \in \mathbb{N}
$$

and conclude as above that $C_{\alpha}(A)=0$.
2.6. The minimum principle in Riesz potential theory. We will need some extensions of the minimum principle for α-superharmonic functions; see [12, pp. 115, 183].

LEMmA 4. Let D be an open set in \mathbb{R}^{n} and $u: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be a function which is α-superharmonic in D and lower semicontinuous on \bar{D}. Suppose that there exists a constant $M \in \mathbb{R}$ such that $u \geq M$ in D^{c}. Then $u \geq M$ in \mathbb{R}^{n}. If $u\left(x_{0}\right)=M$ for some $x_{0} \in D$, then $u=M$ in \mathbb{R}^{n}.

Proof. Define $v(x)=u(x)-M, x \in \mathbb{R}^{n}$. Then v is lower semicontinuous on \bar{D}. Also, for $\zeta \in \partial D$,

$$
\begin{equation*}
\liminf _{D \ni x \rightarrow \zeta} v(x)=\liminf _{D \ni x \rightarrow \zeta} u(x)-M \geq u(\zeta)-M \geq 0 \tag{2.17}
\end{equation*}
$$

Suppose that there exists a point $x_{0} \in D$ such that

$$
\begin{equation*}
\min _{\bar{D}} v=v\left(x_{0}\right)<0 \tag{2.18}
\end{equation*}
$$

Take $r>0$ sufficiently small so that the ball of radius r, centered at x_{0}, lies in D. Then $v\left(x_{0}\right)<\varepsilon_{\alpha, x_{0}}^{(r)} v$; indeed, if $v\left(x_{0}\right)=\varepsilon_{\alpha, x_{0}}^{(r)} v$, then $v=v\left(x_{0}\right)<0$ a.e. in $\left\{\left|x-x_{0}\right|>r\right\}$, and therefore

$$
\liminf _{x \rightarrow \zeta \in D} v(x) \leq v\left(x_{0}\right)<0
$$

contradicting (2.17). Hence

$$
\begin{equation*}
v\left(x_{0}\right)<\varepsilon_{\alpha, x_{0}}^{(r)} v=\varepsilon_{\alpha, x_{0}}^{(r)} u-M \leq u\left(x_{0}\right)-M=v\left(x_{0}\right) \tag{2.19}
\end{equation*}
$$

which is absurd. We conclude that the minimum of v on \bar{D} is non-negative and therefore $u(x) \geq M$ for all $x \in \mathbb{R}^{n}$.

If $u\left(x_{0}\right)=M$ for some $x_{0} \in D$, then for all sufficiently small $r>0$,

$$
\begin{equation*}
0=v\left(x_{0}\right) \geq \varepsilon_{\alpha, x_{0}}^{(r)} v \tag{2.20}
\end{equation*}
$$

This implies $v=0$ a.e. in \mathbb{R}^{n}; that is, $u=M$ a.e. in \mathbb{R}^{n}. If $x \in D$, then [12, p. 114]

$$
u(x)=\lim _{r \rightarrow 0} \varepsilon_{\alpha, x}^{(r)} u=M
$$

Hence $u=M$ in D.
Lemma 5. Let D be an open set in \mathbb{R}^{n} and $u: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be a function α-superharmonic in D. Assume that
(i) u is bounded below in D;
(ii) u is lower semicontinuous in $\bar{D} \backslash E$, where E is a subset of ∂D with $\infty \notin E$ and $C_{\alpha}(E)=0$ (of course, if $E \subset \mathbb{R}^{n}$ then $\infty \notin E$);
(iii) $\liminf _{D \ni x \rightarrow \zeta} u(x) \geq M$ for some $M \in \mathbb{R}$ and all $\zeta \in \partial D \backslash E$;
(iv) $u(x) \geq M$ for all $x \in(\bar{D})^{\mathrm{c}}$.

Then $u(x) \geq M$ for all $x \in D$. Moreover, if $u\left(x_{0}\right)=M$ for some $x_{0} \in D$, then $u=M$ in D.

Proof. For $n \in \mathbb{N}$, let A_{n} be an open set such that $E \subset A_{n}$ and $C_{\alpha}\left(A_{n}\right)$ $\leq 1 / n$. Then $E_{1}:=\bigcap_{n=1}^{\infty} A_{n}$ is a G_{δ}-set such that $E \subset E_{1}$ and $C_{\alpha}\left(E_{1}\right)=0$.

There exists a measure λ on \mathbb{R}^{n} such that the Riesz potential U_{α}^{λ} of λ has the following properties (see [12, p. 179]):

$$
U_{\alpha}^{\lambda}(x)=\infty, \quad \forall x \in E_{1} \cap \partial D, \quad \text { and } \quad U_{\alpha}^{\lambda}(x)<\infty, \quad \forall x \notin E_{1} \cap \partial D
$$

For $\varepsilon>0$, define

$$
u_{1}(x)=u(x)+\varepsilon U_{\alpha}^{\lambda}(x), \quad x \in \mathbb{R}^{n}
$$

The function u_{1} is α-superharmonic in D. Moreover,

$$
\begin{equation*}
\liminf _{D \ni x \rightarrow \zeta} u_{1}(x) \geq M, \quad \forall \zeta \in \partial D \tag{2.21}
\end{equation*}
$$

because $U_{\alpha}^{\lambda}(x) \geq 0, \forall x \in \mathbb{R}^{n}$, and $U_{\alpha}^{\lambda}(x)=\infty, \forall x \in E_{1} \cap \partial D$. Also, since U_{α}^{λ} is lower semicontinuous in \mathbb{R}^{n} and

$$
\liminf _{\bar{D} \ni x \rightarrow \zeta \in E}\left[u(x)+\varepsilon U_{\alpha}^{\lambda}(x)\right]=\infty=u(\zeta)+\varepsilon U_{\alpha}^{\lambda}(\zeta)
$$

we see that u_{1} is lower semicontinuous in \bar{D}.
We apply Lemma 4 to the function u_{1} and conclude

$$
u_{1}(x)=u(x)+\varepsilon U_{\alpha}^{\lambda}(x) \geq M, \quad \forall x \in D
$$

Since $\varepsilon>0$ is arbitrary and $U_{\alpha}^{\lambda}<\infty$ in D, it follows that $u \geq M$ in D.
Suppose next that $u\left(x_{0}\right)=M$ for some $x_{0} \in D$. By the α-mean value inequality, $M=u\left(x_{0}\right) \geq \varepsilon_{\alpha, x_{0}}^{(r)} u$ for all sufficiently small $r>0$. It follows that $u=M$ a.e. in \mathbb{R}^{n}. If $x \in D$, then [12, p. 114]

$$
u(x)=\lim _{r \rightarrow 0} \varepsilon_{\alpha, x}^{(r)} u=M
$$

Hence $u=M$ in D.
3. Some geometric properties of α-harmonic measure Let $\Pi=$ $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}=0\right\}$. For $E \subset \mathbb{R}^{n}$, we denote by \widehat{E} the reflection of E in the $(n-1)$-dimensional plane Π. Thus we have

$$
\widehat{E}=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right):\left(x_{1}, \ldots, x_{n-1},-x_{n}\right) \in E\right\} .
$$

We will also use the following notation: if $x=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$ then $\widehat{x}:=$ $\left(x_{1}, \ldots, x_{n-1},-x_{n}\right) ; E_{+}:=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in E: x_{n}>0\right\} ; E_{0}:=E \cap \Pi$; $E_{-}=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in E: x_{n}<0\right\}$.

Let E be any set in \mathbb{R}^{n}. We divide E into three subsets S, U, V :

$$
\begin{aligned}
& S=S_{E} \\
&=\{x \in E: \widehat{x} \in E\}=E \cap \widehat{E}, \\
& U=U_{E}=\left\{x \in E: x \in E_{+}, \widehat{x} \notin E\right\}=E_{+} \backslash S_{E}, \\
& V=V_{E}=\left\{x \in E: x \in E_{-}, \widehat{x} \notin E\right\}=E_{-} \backslash S_{E} .
\end{aligned}
$$

S is the symmetric part of E, U is the upper non-symmetric part of E, and V is the lower non-symmetric part of E. The sets S, U, V are disjoint and $E=S \cup U \cup V$. Note that if E is open, then its symmetric part S is always open, while the sets U, V are not necessarily open. We say that E is symmetric with respect to Π if $U=V=\emptyset$ and hence $E=S$. We say that E is polarized with respect to Π if $V=\emptyset$ and hence $E=S \cup U$.

Theorem 1. Let S be an open set in \mathbb{R}^{n}. Suppose that S is symmetric with respect to Π. Let $B \subset \mathbb{R}_{+}^{n} \cap S^{\mathrm{c}}$ be a Borel set. Then:
(i) $\omega_{\alpha}^{S}(x, B) \geq \omega_{\alpha}^{S}(\widehat{x}, B), x \in \mathbb{R}_{+}^{n}$;
(ii) $\omega_{\alpha}^{S}(x, B) \geq \omega_{\alpha}^{S}(x, \widehat{B}), x \in \mathbb{R}_{+}^{n}$.

Fig. 1. An illustration for Theorem 1

Proof. For $x \in \mathbb{R}_{+}^{n} \backslash S_{+}$, the inequalities (i) and (ii) are trivial. So we prove them for $x=s \in S_{+}$. Because of symmetry, (i) and (ii) are equivalent. So we only prove (i). By the inner regularity of α-harmonic measure, we may and do assume that B is a compact set in $\mathbb{R}_{+}^{n} \cap S^{\mathrm{c}}$. Take a decreasing sequence of compactly supported continuous functions $f_{k}: S^{\mathrm{c}} \rightarrow[0,1]$ with
$\operatorname{supp} f_{k} \downarrow B, f_{k} \downarrow \chi_{B}$ and $f_{k}=0$ in $\left(S^{\mathrm{c}}\right)_{-}$. Then for the sequence of functions

$$
H_{f_{k}}(x):=\int_{S^{\mathrm{c}}} f_{k}(y) \omega_{\alpha}^{S}(x, d y), \quad x \in \mathbb{R}^{n}
$$

we have $H_{f_{k}}(s) \downarrow \omega_{\alpha}^{S}(s, B), s \in S$. It therefore suffices to prove that

$$
\begin{equation*}
H_{f_{k}}(s) \geq H_{f_{k}}(\widehat{s}), \quad s \in S_{+}, k \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

Let E be the set of irregular points of ∂S. By a classical result (see e.g. $[12, \mathrm{p} .296]), C_{\alpha}(E)=0$. There exists a G_{δ}-set $E_{1} \supset E$ with $C_{\alpha}\left(E_{1}\right)=0$ and a measure λ on \mathbb{R}^{n} such that (see [12, p. 179])
$U_{\alpha}^{\lambda}(x)=\infty, \quad \forall x \in E_{1} \cap \partial D, \quad$ and $\quad U_{\alpha}^{\lambda}(x)<\infty, \quad \forall x \in \mathbb{R}^{n} \backslash\left(E_{1} \cup \partial D\right)$.
Because of symmetry, we may also assume that $U_{\alpha}^{\lambda}(\widehat{x})=U_{\alpha}^{\lambda}(x)$.
Fix $k \in \mathbb{N}$ and $\varepsilon>0$ and define

$$
\begin{equation*}
v(x)=H_{f_{k}}(x)-H_{f_{k}}(\widehat{x})+\varepsilon U_{\alpha}^{\lambda}(x), \quad x \in \mathbb{R}^{n} \tag{3.2}
\end{equation*}
$$

We look at the boundary values of v in S_{+}. Let $\zeta \in \partial\left(S_{+}\right)$.
Case 1: $\zeta \in S_{0}$. Then

$$
\liminf _{S_{+} \ni s \rightarrow \zeta} v(s)=\liminf _{S_{+} \ni s \rightarrow \zeta} \varepsilon U_{\alpha}^{\lambda}(s) \geq 0
$$

CASE 2: $\zeta \in \partial\left(S_{+}\right) \backslash\left(S_{0} \cup E_{1}\right)$. Then

$$
\liminf _{S_{+} \ni s \rightarrow \zeta} v(s)=f_{k}(\zeta)-0+\liminf _{S_{+} \ni s \rightarrow \zeta} \varepsilon U_{\alpha}^{\lambda}(s) \geq 0
$$

Case 3: $\zeta \in E_{1}$. Then by the lower semicontinuity of U_{α}^{λ},

$$
\liminf _{S_{+} \ni s \rightarrow \zeta} v(s)=\varepsilon U_{\alpha}^{\lambda}(\zeta)=\infty
$$

CASE 4: S is unbounded and $\zeta=\infty$. Let B_{1} be the support of f_{k}. For $s \in S$, we have

$$
\begin{aligned}
H_{f_{k}}(s) & =\int_{S^{\mathrm{c}}} f_{k}(y) \omega_{\alpha}^{S}(s, d y) \leq \int_{B_{1}} \omega_{\alpha}^{S}(s, d y)=\omega_{\alpha}^{S}\left(s, B_{1}\right) \\
& \leq \omega_{\alpha}^{B_{1}^{\mathrm{c}}}\left(s, B_{1}\right)=\mathbf{P}^{s}\left(T^{B_{1}^{\mathrm{c}}}<\infty\right)
\end{aligned}
$$

By a formula of S. Port [13],

$$
C_{\alpha}\left(B_{1}\right)=\lim _{s \rightarrow \infty} \mathcal{A}(n, \alpha)^{-1}|s|^{n-\alpha} \mathbf{P}^{s}\left(T^{B_{1}^{\mathrm{c}}}<\infty\right)
$$

Hence $\lim _{s \rightarrow \infty} H_{f_{k}}(s)=0$. This implies that

$$
\begin{equation*}
\liminf _{S_{+} \ni s \rightarrow \infty} v(s)=\liminf _{S_{+} \ni s \rightarrow \infty} \varepsilon U_{\alpha}^{\lambda}(s) \geq 0 \tag{3.3}
\end{equation*}
$$

Note here that we cannot apply the minimum principle of Subsection 2.6 because the condition $v \geq 0$ in $\left(S_{+}\right)^{\text {c }}$ is not satisfied. Nevertheless, we will
prove that $v \geq 0$ in S_{+}. Suppose that v takes on strictly negative values in S_{+}. Let

$$
\beta:=\inf \left\{v(s): s \in S_{+}\right\} .
$$

Take a sequence $\left\{s_{k}\right\}$ in S_{+}such that $v\left(s_{k}\right) \rightarrow \beta$. By passing to a subsequence if necessary, we may assume that $\left\{s_{k}\right\}$ converges in \bar{S}_{+}. By Cases $1-4$ examined above, we may assume that $\lim _{k} s_{k}=s_{0} \in S_{+}$. The measure λ is not necessarily concentrated on E (see [12, p. 181]). However, λ may be taken so that its support is as close to E as we wish (see the proof of Theorem 3.1 in [12]). It is also known [12, Ch. I, §6] that the potential U_{α}^{λ} is an α-harmonic function in the complement of the support of λ. Hence v is α-harmonic in a neighborhood of s_{0}. Hence

$$
\begin{align*}
0 & =\Delta^{\alpha / 2} v\left(s_{0}\right)=\int_{\mathbb{R}^{n}} \frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}} m_{n}(d x) \tag{3.4}\\
& =\int_{\mathbb{R}_{+}^{n}} \frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}} m_{n}(d x)+\int_{\mathbb{R}_{+}^{n}} \frac{v(\widehat{x})-v\left(s_{0}\right)}{\left|\widehat{x}-s_{0}\right|^{n+\alpha}} m_{n}(d x) \\
& \geq \int_{\mathbb{R}_{+}^{n}}\left[\frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{v(x)+v\left(s_{0}\right)}{\left|x-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d x)=: I_{1} .
\end{align*}
$$

We used above the equalities $v(\widehat{x})=-v(x)+2 \varepsilon U_{\alpha}^{\lambda}(x), U_{\alpha}^{\lambda}(\widehat{x})=U_{\alpha}^{\lambda}(x)$, and $\left|x-\widehat{s}_{0}\right|=\left|\widehat{x}-s_{0}\right|$, which come from symmetry. Now we set $A_{1}=\left\{x \in \mathbb{R}_{+}^{n}\right.$: $\left.v(x)+v\left(s_{0}\right) \geq 0\right\}$ and $A_{2}=\left\{x \in \mathbb{R}_{+}^{n}: v(x)+v\left(s_{0}\right)<0\right\}$. Using also the obvious inequality $\left|x-\widehat{s}_{0}\right|>\left|x-s_{0}\right|$, we get

$$
\begin{aligned}
I_{1}= & \int_{A_{1}}\left[\frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{v(x)+v\left(s_{0}\right)}{\left|x-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d x) \\
& +\int_{A_{2}}\left[\frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{v(x)+v\left(s_{0}\right)}{\left|x-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d x) \\
\geq & \int_{A_{1}}\left[\frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{v(x)+v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}}\right] m_{n}(d x)+\int_{A_{2}} \frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}} m_{n}(d x) \\
= & \int_{A_{1}} \frac{-2 v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}} m_{n}(d x)+\int_{A_{2}} \frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}} m_{n}(d x) .
\end{aligned}
$$

Since $v\left(s_{0}\right)<0$, the first integrand is positive. The second integrand is non-negative; indeed, if $x \in \mathbb{R}^{n}+\backslash S_{+}$, then $v(x)-v\left(s_{0}\right)=f_{k}(x)+\varepsilon U_{\alpha}^{\lambda}(x)-$ $v\left(s_{0}\right) \geq 0$, and if $x \in S_{+}$, then $v(x)-v\left(s_{0}\right) \geq 0$, by the definition of s_{0}. Because of (3.4), we conclude that $m_{n}\left(A_{1}\right)=0$ and $v=v\left(s_{0}\right)$ a.e. in A_{2}. Hence $v=v\left(s_{0}\right)<0$ a.e. in \mathbb{R}_{+}^{n}.

We proved above that the function v is equal to a negative constant a.e. in \mathbb{R}_{+}^{n}. This is absurd; indeed: (a) if $m_{n}\left(\mathbb{R}_{+}^{n} \backslash S_{+}\right)>0$ and $x \in \mathbb{R}_{+}^{n} \backslash S_{+}$, then
$v(x)=f_{k}(x)+\varepsilon U_{\alpha}^{\lambda}(x) \geq 0,(\mathrm{~b})$ if $m_{n}\left(\mathbb{R}_{+}^{n} \backslash S_{+}\right)=0$, then S is unbounded and, by (3.3), $\liminf _{S_{+} \ni s \rightarrow \infty} v(s) \geq 0$.

The contradiction shows that $v(s) \geq 0$ for all $s \in S_{+}$. Since $\varepsilon>0$ is arbitrary, (3.1) is proved.

Theorem 2. Let D be an open set in \mathbb{R}^{n}. Suppose that D is polarized with respect to the plane Π. Let $B \subset \mathbb{R}_{+}^{n} \cap D^{c}$ be a Borel set. Then:
(i) $\omega_{\alpha}^{D}(x, B) \geq \omega_{\alpha}^{D}(\widehat{x}, B), x \in \mathbb{R}_{+}^{n} \cup \Pi$;
(ii) $\omega_{\alpha}^{D}(x, B) \geq \omega_{\alpha}^{D}(x, \widehat{B}), x \in \mathbb{R}_{+}^{n} \cup \Pi$;
(iii) $\omega_{\alpha}^{D}(x, B)+\omega_{\alpha}^{D}(\widehat{x}, B) \geq \omega_{\alpha}^{D}(x, \widehat{B})+\omega_{\alpha}^{D}(\widehat{x}, \widehat{B}), x \in \mathbb{R}^{n}$;
(iv) $\omega_{\alpha}^{D}(x, B)+\omega_{\alpha}^{D}(x, \widehat{B}) \geq \omega_{\alpha}^{D}(\widehat{x}, B)+\omega_{\alpha}^{D}(\widehat{x}, \widehat{B}), x \in \mathbb{R}^{n}$.

Fig. 2. An illustration for Theorem 2

Proof. Since D is polarized, the lower non-symmetric part of D is empty. Hence $D=S \cup U$, where S is the symmetric part of D, and U is the upper non-symmetric part of D.
(i) If $x \in\left(\mathbb{R}_{+}^{n} \cup \Pi\right) \backslash S_{+}$, the inequality (i) is trivial. So we assume that $x=s \in S_{+}$. By the strong Markov property,

$$
\begin{aligned}
\omega_{\alpha}^{D}(s, B) & =\omega_{\alpha}^{S}(s, B)+\int_{U} \omega_{\alpha}^{S}(s, d u) \omega_{\alpha}^{D}(u, B) \\
\omega_{\alpha}^{D}(\widehat{s}, B) & =\omega_{\alpha}^{S}(\widehat{s}, B)+\int_{U} \omega_{\alpha}^{S}(\widehat{s}, d u) \omega_{\alpha}^{D}(u, B)
\end{aligned}
$$

By Theorem $1, \omega_{\alpha}^{S}(s, B) \geq \omega_{\alpha}^{S}(\widehat{s}, B)$ and $\omega_{\alpha}^{S}(s, d u) \geq \omega_{\alpha}^{S}(\widehat{s}, d u)$. So (i) is proved.
(ii) As in the proof of (i), we may assume that $x=s \in S_{+}$. Set $S_{1}:=$ $S \cup U \cup \widehat{U}$. Then S_{1} is an open set which is symmetric with respect to Π and contains D. By the strong Markov property,

$$
\begin{aligned}
\omega_{\alpha}^{D}(s, B) & =\omega_{\alpha}^{S_{1}}(s, B)-\int_{\widehat{U}} \omega_{\alpha}^{D}(s, d u) \omega_{\alpha}^{S_{1}}(u, B) \\
\omega_{\alpha}^{D}(s, \widehat{B}) & =\omega_{\alpha}^{S_{1}}(s, \widehat{B})-\int_{\widehat{U}} \omega_{\alpha}^{D}(s, d u) \omega_{\alpha}^{S_{1}}(u, \widehat{B})
\end{aligned}
$$

By Theorem $1, \omega_{\alpha}^{S_{1}}(s, B) \geq \omega_{\alpha}^{S_{1}}(s, \widehat{B})$ and $\omega_{\alpha}^{S_{1}}(u, \widehat{B}) \geq \omega_{\alpha}^{S_{1}}(u, B), u \in \widehat{U}$. So (ii) is proved.
(iii) By the inner regularity of α-harmonic measure, we may and do assume that B is a compact set in $\mathbb{R}_{+}^{n} \cap D^{c}$. Take a decreasing sequence of continuous functions $f_{k}: D^{c} \rightarrow[0,1]$ with $\operatorname{supp} f_{k} \downarrow B, f_{k} \downarrow \chi_{B}$ and $f_{k}=0$ in $\left(D^{\mathrm{c}}\right)_{-}$. Let $\widehat{f}_{k}(x)=f_{k}(\widehat{x}), x \in D^{\mathrm{c}}$ (with $\widehat{f_{k}}=0$ in $\left.\widehat{U}\right)$. Consider the sequences of functions

$$
\begin{aligned}
H_{f_{k}}(x):=\int_{D^{\mathrm{c}}} f_{k}(y) \omega_{\alpha}^{D}(x, d y), & x \in \mathbb{R}^{n} \\
H_{\widehat{f}_{k}}(x):=\int_{D^{\mathrm{c}}} \widehat{f_{k}}(y) \omega_{\alpha}^{D}(x, d y), & x \in \mathbb{R}^{n}
\end{aligned}
$$

We have $H_{f_{k}}(x) \downarrow \omega_{\alpha}^{D}(x, B)$ and $H_{\widehat{f}_{k}}(x) \downarrow \omega_{\alpha}^{D}(x, B), x \in \mathbb{R}^{n}$. Therefore it suffices to prove that

$$
H_{f_{k}}(x)+H_{f_{k}}(\widehat{x}) \geq H_{\widehat{f}_{k}}(x)+H_{\widehat{f}_{k}}(\widehat{x}), \quad x \in \mathbb{R}^{n}, k \in \mathbb{N}
$$

Fix $k \in \mathbb{N}$ and define

$$
v(x)=H_{f_{k}}(x)+H_{f_{k}}(\widehat{x})-H_{\widehat{f}_{k}}(x)-H_{\widehat{f}_{k}}(\widehat{x}), \quad x \in \mathbb{R}^{n}
$$

It is clear that v is α-harmonic in S. Note that for $u \in U, v(u)=H_{f_{k}}(u)-$ $H_{\widehat{f}_{k}}(u)$. So v is α-harmonic in D. It is also continuous in $\bar{D} \backslash E$, where E is the set of irregular points of ∂D. We will apply the minimum principle (Lemma 5) to the function v in the domain D.

Let $\zeta \in D^{\mathrm{c}}$.
CASE 1: $\zeta \in \partial D \backslash(E \cup \widehat{U})$. Then

$$
\lim _{D \ni x \rightarrow \zeta} v(x)=f_{k}(\zeta)+f_{k}(\widehat{\zeta})-\widehat{f}_{k}(\zeta)-\widehat{f}_{k}(\widehat{\zeta})=0
$$

CASE 2: $\zeta \in(\partial D \cap \widehat{U}) \backslash E$. Then

$$
\begin{aligned}
\lim _{D \ni x \rightarrow \zeta} v(x) & =f_{k}(\zeta)+H_{f_{k}}(\widehat{\zeta})-\widehat{f}_{k}(\zeta)-H_{\widehat{f_{k}}}(\widehat{\zeta})=H_{f_{k}}(\widehat{\zeta})-H_{\widehat{f}}(\widehat{\zeta}) \\
& =\int_{D^{\mathrm{c}}} f_{k}(y) \omega_{\alpha}^{D}(\widehat{\zeta}, d y)-\int_{D^{\mathrm{c}}} \widehat{f}_{k}(y) \omega_{\alpha}^{D}(\widehat{\zeta}, d y) \\
& =\int_{D^{\mathrm{c}}} f_{k}(y) \omega_{\alpha}^{D}(\widehat{\zeta}, d y)-\int_{D^{\mathrm{c}}} f_{k}(y) \omega_{\alpha}^{D}(\widehat{\zeta}, \widehat{d y}) \\
& =\int_{\left(D^{\mathrm{c}}\right)_{+}} f_{k}(y)\left[\omega_{\alpha}^{D}(\widehat{\zeta}, d y)-\omega_{\alpha}^{D}(\widehat{\zeta}, \widehat{d y})\right] \geq 0
\end{aligned}
$$

Here $\omega_{\alpha}^{D}(\widehat{\zeta}, \widehat{d y})$ is the measure μ on $\left(D^{\mathrm{c}}\right)_{+}$defined by $\mu(E):=\omega_{\alpha}^{D}(\widehat{\zeta}, \widehat{E})$. The last equality holds because f_{k} is supported in $\left(D^{\mathrm{c}}\right)_{+}$. The inequality comes from part (ii) of Theorem 2.

CASE 3: $\zeta \in(\bar{D})^{\mathrm{c}} \backslash \widehat{U}$. Then $v(\zeta)=f_{k}(\zeta)+f_{k}(\widehat{\zeta})-\widehat{f}_{k}(\zeta)-\widehat{f}_{k}(\widehat{\zeta})=0$.
Case 4: $x=u \in \widehat{U} \backslash \partial D$. Then we work as in Case 2.
By Lemma 5, we conclude that $v \geq 0$ on D.
(iv) The proof is similar to that of (iii).

Theorem 3. Let D be an open set in \mathbb{R}^{n}. Suppose that D is polarized with respect to the plane Π. Let $B \subset \mathbb{R}_{+}^{n} \cap D^{c}$ be a Borel set. Then:
(i) $\omega_{\alpha}^{D}(x, B) \leq 1 / 2, x \in D_{-} \cup D_{0}$;
(ii) $\omega_{\alpha}^{D}(x, \widehat{B}) \leq 1 / 2, x \in D_{+} \cup D_{0}$;
(iii) $\omega_{\alpha}^{\widehat{D}}(x, B) \leq 1 / 2, x \in(\widehat{D})_{-} \cup D_{0}$.

Fig. 3. An illustration for Theorem 3

Proof. We will prove only the inequality (ii). The proof of (i) is similar and (iii) is equivalent to (ii) because of symmetry.

We write $D=S \cup U$, where S is the symmetric part of D and U is the upper non-symmetric part of D. Set $S_{1}:=D \cup \widehat{U}$. Then S_{1} is an open set, symmetric with respect to Π, and $D \subset S_{1}$. Using Theorem 1 we obtain

$$
\omega_{\alpha}^{D}(x, \widehat{B}) \leq \omega_{\alpha}^{S_{1}}(x, \widehat{B}) \leq \omega_{\alpha}^{S_{1}}(x, B), \quad x \in D_{+} \cup D_{0}
$$

Hence

$$
\omega_{\alpha}^{D}(x, \widehat{B}) \leq \frac{1}{2}\left[\omega_{\alpha}^{S_{1}}(x, \widehat{B})+\omega_{\alpha}^{S_{1}}(x, B)\right]=\frac{1}{2} \omega_{\alpha}^{S_{1}}(x, B \cup \widehat{B}) \leq \frac{1}{2} .
$$

We now turn to a sharp form of Theorem 2 .
Theorem 4. Let D be an open set in \mathbb{R}^{n}. Suppose that D is polarized with respect to the plane Π. Let $B \subset \mathbb{R}_{+}^{n} \cap D^{c}$ be a Borel set which is not
D-null. Then for $x \in D_{+}$, we have

$$
\begin{align*}
\omega_{\alpha}^{D}(x, B) & >\omega_{\alpha}^{D}(\widehat{x}, B) \tag{3.5}\\
\omega_{\alpha}^{D}(x, B) & >\omega_{\alpha}^{D}(x, \widehat{B}) \tag{3.6}
\end{align*}
$$

Proof. First we prove (3.5). We write $D=S \cup U$, where S is the symmetric part of D and U is the upper non-symmetric part of D. If $x=u \in U$, then $\omega_{\alpha}^{D}(u, B)>0$ because B is not D-null. On the other hand, $\omega_{\alpha}^{D}(\widehat{u}, B)=0$ because $\widehat{u} \notin B$. Therefore (3.5) is proved in this case. So it remains to prove (3.5) for $x=s \in S_{+}$.

Consider the function

$$
v(x)=\omega_{\alpha}^{D}(x, B)-\omega_{\alpha}^{D}(\widehat{x}, B), \quad x \in \mathbb{R}^{n}
$$

Then v is α-harmonic in D and by Theorem 2,

$$
\begin{equation*}
v(x) \geq 0, \quad x \in \mathbb{R}_{+}^{n} \tag{3.7}
\end{equation*}
$$

Also, it is obvious that

$$
\begin{equation*}
v(x)+v(\widehat{x})=0, \quad x \in \mathbb{R}_{+}^{n} . \tag{3.8}
\end{equation*}
$$

We want to prove that

$$
\begin{equation*}
v(s)>0, \quad s \in S_{+} \tag{3.9}
\end{equation*}
$$

Suppose that $v\left(s_{0}\right)=0$ for some $s_{0} \in S_{+}$. Since v is α-harmonic in D,

$$
\begin{aligned}
0 & =\Delta^{\alpha / 2} v\left(s_{0}\right)=\int_{\mathbb{R}^{n}} \frac{v(x)-v\left(s_{0}\right)}{\left|x-s_{0}\right|^{n+\alpha}} m_{n}(d x)=\int_{\mathbb{R}^{n}} \frac{v(x)}{\left|x-s_{0}\right|^{n+\alpha}} m_{n}(d x) \\
& =\int_{\mathbb{R}_{+}^{n}}\left[\frac{v(x)}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{v(x)}{\left|x-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d x) \\
& =I_{1}+I_{2}+I_{3}+I_{4}
\end{aligned}
$$

where

$$
\begin{aligned}
I_{1} & :=\int_{S_{+}} v(s)\left[\frac{1}{\left|s-s_{0}\right|^{n+\alpha}}-\frac{1}{\left|s-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d s), \\
I_{2} & :=\int_{U} v(u)\left[\frac{1}{\left|u-s_{0}\right|^{n+\alpha}}-\frac{1}{\left|u-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d u) \\
& =\int_{U} \omega_{\alpha}^{D}(u, B)\left[\frac{1}{\left|u-s_{0}\right|^{n+\alpha}}-\frac{1}{\left|u-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d u),
\end{aligned}
$$

$$
\begin{aligned}
I_{3} & :=\int_{B} v(x)\left[\frac{1}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{1}{\left|x-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d x) \\
& =\int_{B}\left[\frac{1}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{1}{\left|x-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d x) \\
I_{4} & :=\int_{\left(D_{+}\right)^{c} \backslash B} v(x)\left[\frac{1}{\left|x-s_{0}\right|^{n+\alpha}}-\frac{1}{\left|x-\widehat{s}_{0}\right|^{n+\alpha}}\right] m_{n}(d x)
\end{aligned}
$$

Since $v=0$ in $\left(D_{+}\right)^{\mathrm{c}} \backslash B$, we have $I_{4}=0$. Because of the obvious inequality

$$
\left|x-s_{0}\right|<\left|x-\widehat{s}_{0}\right|, \quad x \in \mathbb{R}_{+}^{n},
$$

the integrands in I_{1}, I_{2}, I_{3} are non-negative. Therefore $I_{1}=I_{2}=I_{3}=0$. We conclude that $m_{n}(U)=0, m_{n}(B)=0$ and $v=0 m_{n}$-a.e. in S. Since v is continuous in D, we conclude that $v=0$ in S, which means that

$$
\begin{equation*}
\omega_{\alpha}^{D}(s, B)=\omega_{\alpha}^{D}(\widehat{s}, B), \quad s \in S \tag{3.10}
\end{equation*}
$$

The fact that $m_{n}(B)=0$ implies that (see [4], [15]) the set $B \cap(\bar{D})^{\text {c }}$ is D-null; hence the set $B \cap \partial D$ is not D-null. Thus, by [15, Lemma 1], we have

$$
\sup _{x \in D} \omega_{\alpha}^{D}(x, B)=1
$$

Take a sequence $\left\{x_{k}\right\}$ in D such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \omega_{\alpha}^{D}\left(x_{k}, B\right)=1 \tag{3.11}
\end{equation*}
$$

By Theorem 3, we may assume that $\left\{x_{k}\right\} \subset D_{+}$. Since D_{+}is an open set and $m_{n}(U)=0$, every neighborhood of x_{k} contains a point $s_{k} \in S_{+}, k \in \mathbb{N}$. So, by the continuity of α-harmonic measure in D, we can choose a sequence s_{k} in S_{+}such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \omega_{\alpha}^{D}\left(s_{k}, B\right)=1 \tag{3.12}
\end{equation*}
$$

Then, again by Theorem 3,

$$
\limsup _{k \rightarrow \infty} \omega_{\alpha}^{D}\left(\widehat{s}_{k}, B\right) \leq \frac{1}{2}
$$

This together with (3.12) contradicts (3.10). So (3.9) is proved.
We now turn to the proof of (3.6). We consider the function

$$
h(x)=\omega_{\alpha}^{D}(x, B)-\omega_{\alpha}^{D}(x, \widehat{B}), \quad x \in \mathbb{R}^{n}
$$

We know from Theorem 2 that

$$
\begin{equation*}
h(x) \geq 0, \quad h(x)+h(\widehat{x}) \geq 0, \quad x \in \mathbb{R}_{+}^{n} \tag{3.13}
\end{equation*}
$$

We want to prove that

$$
\begin{equation*}
h(x)>0, \quad x \in D_{+} \tag{3.14}
\end{equation*}
$$

Suppose that $h\left(x_{0}\right)=0$ for some $x_{0} \in D_{+}$. Since h is α-harmonic in D,

$$
\begin{aligned}
0 & =\Delta^{\alpha / 2} h\left(x_{0}\right)=\int_{\mathbb{R}^{n}} \frac{h(x)-h\left(x_{0}\right)}{\left|x-x_{0}\right|^{n+\alpha}} m_{n}(d x) \\
& =\int_{\mathbb{R}_{+}^{n}} \frac{h(x)}{\left|x-x_{0}\right|^{n+\alpha}} m_{n}(d x)+\int_{\mathbb{R}_{-}^{n}} \frac{h(x)}{\left|x-x_{0}\right|^{n+\alpha}} m_{n}(d x) \\
& =\int_{\mathbb{R}_{+}^{n}} \frac{h(x)}{\left|x-x_{0}\right|^{n+\alpha}} m_{n}(d x)+\int_{\mathbb{R}_{+}^{n}} \frac{h(\widehat{x})}{\left|\widehat{x}-x_{0}\right|^{n+\alpha}} m_{n}(d x) \\
& =\int_{\mathbb{R}_{+}^{n}}\left\{\frac{h(x)+h(\widehat{x})}{\left|x-\widehat{x}_{0}\right|^{n+\alpha}}+h(x)\left[\frac{1}{\left|x-x_{0}\right|^{n+\alpha}}-\frac{1}{\left|x-\widehat{x}_{0}\right|^{n+\alpha}}\right]\right\} m_{n}(d x)=: J .
\end{aligned}
$$

As in the proof of (3.5), we find that $J=J_{1}+J_{2}+J_{3}$, where

$$
\begin{aligned}
J_{1} & :=\int_{S_{+}}\left\{\frac{h(s)+h(\widehat{s})}{\left|x-\widehat{x}_{0}\right|^{n+\alpha}}+h(s)\left[\frac{1}{\left|s-x_{0}\right|^{n+\alpha}}-\frac{1}{\left|s-\widehat{x}_{0}\right|^{n+\alpha}}\right]\right\} m_{n}(d s) \\
J_{2} & :=\int_{U} \frac{h(u)}{\left|u-x_{0}\right|^{n+\alpha}} m_{n}(d u) \\
J_{3} & :=\int_{B}\left[\frac{1}{\left|x-x_{0}\right|^{n+\alpha}}-\frac{1}{\left|x-\widehat{x}_{0}\right|^{n+\alpha}}\right] m_{n}(d x) .
\end{aligned}
$$

Using (3.13) we conclude that $m_{n}(B)=0$ and that $v=0$ in S, which means that

$$
\begin{equation*}
\omega_{\alpha}^{D}(s, B)=\omega_{\alpha}^{D}(s, \widehat{B}), \quad s \in S \tag{3.15}
\end{equation*}
$$

By (3.15) and the fact that B is not D-null we infer that \widehat{B} is not D-null. As $m_{n}(\widehat{B})=m_{n}(B)=0$, the set $\widehat{B} \cap \partial D$ is not D-null. By [15, Lemma 1$]$, we thus have

$$
\sup _{x \in D} \omega_{\alpha}^{D}(x, \widehat{B})=1
$$

Take a sequence $\left\{y_{k}\right\}$ in D with $\omega_{\alpha}^{D}\left(y_{k}, \widehat{B}\right) \rightarrow 1$. As $\widehat{B} \subset \mathbb{R}_{-}^{n}$, Theorem 3 implies that we may assume $y_{k} \in D_{-}=S_{-}, k \in \mathbb{N}$. Then (3.15) gives $\omega_{\alpha}^{D}\left(y_{k}, B\right) \rightarrow 1$. But Theorem 3 implies $\omega_{\alpha}^{D}\left(y_{k}, B\right) \leq 1 / 2$. This contradiction proves (3.14).

ThEOREM 5. Let D be an open set in \mathbb{R}^{n}. Suppose that D is polarized with respect to the hyperplane Π, i.e. $D=S \cup U$, where S is the symmetric part of D and U is the upper non-symmetric part of D. Let $B \subset \mathbb{R}_{+}^{n} \cap D^{c}$ be a Borel set which is not D-null. Then we have:

$$
\begin{equation*}
\omega_{\alpha}^{D}\left(s_{0}, B\right)+\omega_{\alpha}^{D}\left(\widehat{s}_{0}, B\right)=\omega_{\alpha}^{D}\left(s_{0}, \widehat{B}\right)+\omega_{\alpha}^{D}\left(\widehat{s}_{0}, \widehat{B}\right) \tag{3.16}
\end{equation*}
$$

for some $s_{0} \in S$ if and only if $C_{\alpha}(U)=0$;

$$
\begin{equation*}
\omega_{\alpha}^{D}\left(s_{0}, B\right)+\omega_{\alpha}^{D}\left(s_{0}, \widehat{B}\right)=\omega_{\alpha}^{D}\left(\widehat{s}_{0}, B\right)+\omega_{\alpha}^{D}\left(\widehat{s}_{0}, \widehat{B}\right) \tag{3.17}
\end{equation*}
$$

for some $s_{0} \in S$ if and only if $C_{\alpha}(U)=0$;

$$
\begin{equation*}
\omega_{\alpha}^{D}\left(s_{0}, B\right)=\omega_{\alpha}^{D}\left(s_{0}, \widehat{B}\right) \tag{3.18}
\end{equation*}
$$

for some $s_{0} \in S_{0}:=S \cap \Pi$ if and only if $C_{\alpha}(U)=0$.
Proof. We only prove the first equivalence; the proofs of the remaining ones are similar.

Suppose that (3.16) holds for some $s_{0} \in S$. By the strong Markov property,

$$
\begin{align*}
& \omega_{\alpha}^{D}\left(s_{0}, B\right)=\omega_{\alpha}^{S}\left(s_{0}, B\right)+\int_{U} \omega_{\alpha}^{S}\left(s_{0}, d u\right) \omega_{\alpha}^{D}(u, B) \tag{3.19}\\
& \omega_{\alpha}^{D}\left(\widehat{s}_{0}, B\right)=\omega_{\alpha}^{S}\left(\widehat{s}_{0}, B\right)+\int_{U} \omega_{\alpha}^{S}\left(\widehat{s}_{0}, d u\right) \omega_{\alpha}^{D}(u, B), \tag{3.20}\\
& \omega_{\alpha}^{D}\left(s_{0}, \widehat{B}\right)=\omega_{\alpha}^{S}\left(s_{0}, \widehat{B}\right)+\int_{U} \omega_{\alpha}^{S}\left(s_{0}, d u\right) \omega_{\alpha}^{D}(u, \widehat{B}), \tag{3.21}\\
& \omega_{\alpha}^{D}\left(\widehat{s}_{0}, \widehat{B}\right)=\omega_{\alpha}^{S}\left(\widehat{s}_{0}, \widehat{B}\right)+\int_{U} \omega_{\alpha}^{S}\left(\widehat{s}_{0}, d u\right) \omega_{\alpha}^{D}(u, \widehat{B}) . \tag{3.22}
\end{align*}
$$

Hence

$$
\begin{aligned}
\int_{U}\left[\omega_{\alpha}^{S}\left(s_{0}, d u\right)+\omega_{\alpha}^{S}\left(\widehat{s}_{0}, d u\right)\right] \omega_{\alpha}^{D} & (u, B) \\
& =\int_{U}\left[\omega_{\alpha}^{S}\left(s_{0}, d u\right)+\omega_{\alpha}^{S}\left(\widehat{s}_{0}, d u\right)\right] \omega_{\alpha}^{D}(u, \widehat{B}) .
\end{aligned}
$$

By Theorem 4, $\omega_{\alpha}^{D}(u, B)>\omega_{\alpha}^{D}(u, \widehat{B})$ for all $u \in U$. Hence $\omega_{\alpha}^{S}\left(s_{0}, d u\right)+$ $\omega_{\alpha}^{S}\left(\widehat{s}_{0}, d u\right)$ is the zero measure on U. This implies $\omega_{\alpha}^{S}\left(s_{0}, U\right)=0$, i.e. U is S-null. By Lemma 3, $C_{\alpha}(U)=0$.

Conversely, if $C_{\alpha}(U)=0$, then U is S-null. Therefore (3.19)-(3.22) imply

$$
\omega_{\alpha}^{D}(s, B)+\omega_{\alpha}^{D}(\widehat{s}, B)=\omega_{\alpha}^{D}(s, \widehat{B})+\omega_{\alpha}^{D}(\widehat{s}, \widehat{B})
$$

for all $s \in S$.
Theorem 6. Let D be an open set in \mathbb{R}^{n}. Suppose that D is polarized with respect to the hyperplane Π, i.e. $D=S \cup U$, where S is the symmetric part of D and U is the upper non-symmetric part of D. Let $B \subset D^{c}$ be a Borel set which is symmetric with respect to Π and is not D-null. Then

$$
\omega_{\alpha}^{D}(s, B)=\omega_{\alpha}^{D}(\widehat{s}, B)
$$

for some $s \in S_{+}$if and only if $C_{\alpha}(U)=0$.
Proof. Similar to the proof of Theorem 5.

REFERENCES

[1] R. Bañuelos, R. Latała and P. J. Méndez-Hernández, A Brascamp-Lieb-Luttingertype inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc. 129 (2001), 2997-3008.
[2] D. Betsakos, Symmetrization, symmetric stable processes, and Riesz capacities, Trans. Amer. Math. Soc. 356 (2004), 735-755, 3821.
[3] J. Bliedtner and W. Hansen, Potential Theory. An Analytic and Probabilistic Approach to Balayage, Springer, 1986.
[4] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997), 43-80.
[5] -, Representation of α-harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), 227-243.
[6] K. Bogdan and T. Byczkowski, Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Studia Math. 133 (1999), 53-92.
[7] —, 一, Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Statist. 20 (2000), 293-335.
[8] K. Bogdan and T. Żak, On Kelvin transformation, J. Theoret. Probab. 19 (2006), 89-120.
[9] K. Burdzy and T. Kulczycki, Stable processes have thorns, Ann. Probab. 31 (2003), 170-194.
[10] Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann. 312 (1998), 465-501.
[11] -, 一, Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal. 159 (1998), 267-294.
[12] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972.
[13] S. C. Port, On hitting places for stable processes, Ann. Math. Statist. 38 (1967), 1021-1026.
[14] R. Song and J.-M. Wu, Boundary Harnack principle for symmetric stable processes, J. Funct. Anal. 168 (1999), 403-427.
[15] J.-M. Wu, Harmonic measures for symmetric stable processes, Studia Math. 149 (2002) 281-293.

Department of Mathematics
Aristotle University of Thessaloniki
54124 Thessaloniki, Greece
E-mail: betsakos@math.auth.gr

[^0]: 2000 Mathematics Subject Classification: 31B15, 31C05.
 Key words and phrases: α-harmonic measure, Riesz capacity.
 The author was supported by the EPEAEK programm Pythagoras II (Greece).

