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Abstract. Let CF (X) be the socle of C(X). It is shown that each prime ideal in
C(X)/CF (X) is essential. For each h ∈ C(X), we prove that every prime ideal (resp. z-
ideal) of C(X)/(h) is essential if and only if the set Z(h) of zeros of h contains no isolated
points (resp. int Z(h) = ∅). It is proved that dim(C(X)/CF (X)) ≥ dim C(X), where
dim C(X) denotes the Goldie dimension of C(X), and the inequality may be strict. We
also give an algebraic characterization of compact spaces with at most a countable number
of nonisolated points. For each essential ideal E in C(X), we observe that E/CF (X) is
essential in C(X)/CF (X) if and only if the set of isolated points of X is finite. Finally,
we characterize topological spaces X for which the Jacobson radical of C(X)/CF (X)
is zero, and as a consequence we observe that the cardinality of a discrete space X is
nonmeasurable if and only if υX, the realcompactification of X, is first countable.

Introduction. Let C(X) be the ring of real-valued continuous func-
tions on an infinite completely regular Hausdorff space X, and C⋆(X) be its
subring of bounded functions. The socle of C(X), denoted by CF (X), is the
sum of all minimal ideals of C(X), which is the intersection of all essential
ideals in C(X) (recall that, an ideal is essential if it intersects every nonzero
ideal nontrivially); see [15]. It can be easily seen that CF (X) 6= 0 if and only
if X has isolated points, and when the set of isolated points in X is finite,
then C(X)/CF (X) ∼= C(Y ), where Y is the set of nonisolated points of X.
This implies that in this case C(X)/CF (X) ∼= eC(X), where e2 = e ∈ C(X),
as a ring will enjoy all the general algebraic properties of C(X). Although
in general C(X)/CF (X) may not be isomorphic to C(Y ) for any topological
space Y , in any case, one encounters a curious similarity between the two
rings C(X) and C(X)/CF (X), and their common properties usually give rise
to useful information about X. For example, X is a P-space (resp. an ex-
tremally disconnected P-space with only a finite number of isolated points) if
and only if C(X) or equivalently C(X)/CF (X) is an ℵ0-self-injective (resp.
self-injective) ring (see [11, Theorems 1, 2 and Lemma 3.1]). Neither of the
two partially ordered rings C(X) and C(X)/CF (X) (note that CF (X) is
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convex; see [14, Theorem 5.2]) can be totally ordered, by [14, 5.4(c)] (note
that CF (X) is never a prime ideal in C(X); see [4], [11, Proposition 1.2]).

Our main aim in this article is to reveal more important links between
these two rings and apply these links to get information about X. An outline
of this article is as follows: After recalling some preliminary results in Sec-
tion 1, which are frequently used in the subsequent sections, the next section
deals with the behaviour of essential ideals in the factor ring C(X)/CF (X).
In particular, it is shown that each prime ideal of C(X)/CF (X) is essential
and the topological spaces X such that for each essential ideal E, E/CF (X)
is essential in C(X)/CF (X), are characterized. The final part of Section
2 shows that the Goldie dimension of the latter ring is not smaller than
that of C(X). Motivated by this result and the fact that only recently the
concept of infinite Goldie dimensions has received some attention (see [9]),
we construct various examples of rings with arbitrary Goldie dimensions.
We also observe that given any inaccessible cardinal number λ, there ex-
ists a zero-dimensional compact space X such that the Goldie dimension of
C(X) is λ, but unattained. The comparability of the dimensions of the two
rings shows that C(X)/CF (X) as well as C(X) avoids any natural finiteness
conditions.

In Section 3, we study z-ideals in C(X)/CF (X) and show that, similar
to C(X), every ideal and its radical in C(X)/CF (X) have the same largest
z-ideal. It is also shown that each countably generated ideal in C(X) is
essential in a principal ideal of C(X), which generalizes Corollary 2.2 in [21]
and immediately implies that each countably generated fixed maximal ideal
in C(X) is generated by an idempotent, which is well-known (see [12]). When
the set of isolated points in X is finite, then C(X)/CF (X) is not different
from C(X), i.e., it is isomorphic to some C(Y ). We note that in this case
CF (X) is a principal ideal. Motivated by this, we digress for a moment, and
in Section 4 consider the ring C(X)/(h), where (h) is an arbitrary principal
ideal in C(X). We prove that every prime ideal (resp. z-ideal) in C(X)/(h)
is essential if and only if Z(h) contains no isolated point (resp. intZ(h) = ∅).
These facts immediately give new information about almost P-spaces.

Finally, in Section 5, we revisit Ue-rings and Uem-rings which have been
introduced and systematically studied in [16]. A ring R is an Ue-ring (resp.
Uem-ring) if R has a unique proper essential (resp. essential maximal) ideal.
It is observed that C(X)/CF (X) and C(X) are never Ue-rings. More gen-
erally, neither C(X) nor C(X)/CF (X) has only a finite number of essential
ideals. It is shown that either C(X) or C(X)/CF (X) contains only a finite
(resp. countable) number of essential maximal ideals if and only if X is
a compact space with only a finite (resp. countable) number of nonisolated
points. As a consequence, we show that being compact with at most a count-
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able number of nonisolated points is an algebraic property. To conclude the
final section, we note that if X is the one-point compactification of a discrete
space, then C(X)/CF (X) is a local ring which is not a field (see [16]), i.e.,
its Jacobson radical, J(C(X)/CF (X)), is not zero. Motivated by this fact,
we characterize the topological spaces X such that J(C(X)/CF (X)) = (0).

1. Background and preliminary results. Let R be a commutative
ring with unity and A ⊆ B be two ideals in R. Then A is said to be essential

in B if A ∩ (b) 6= (0) for all 0 6= b ∈ B. When we just say A is an essential
ideal, we mean it is essential in R. We define the annihilator of B to be
Ann(B) = {r ∈ R : Br = 0}. It is trivial to see that if I is an ideal
in a reduced ring R, i.e., an = 0 implies that a = 0 for all a ∈ R, then
I ⊕Ann(I) is an essential ideal in R and therefore I is essential if and only
if Ann(I) = (0). A set {Iα}α∈S of nonzero ideals in a ring R is said to be
independent if Iβ ∩ ∑

β 6=α∈S Iα = (0), i.e.,
∑

α∈S Iα =
⊕

α∈S Iα.
The Goldie dimension of an ideal I of R, denoted by dim I, is the small-

est cardinal c such that every independent set of nonzero ideals in I has
cardinality less than or equal to c. The smallest cardinal α such that every
family of pairwise disjoint nonempty open subsets of X has cardinality less
than or equal to α is called the Suslin number or the cellularity of X and
is denoted by S(X) (see [10] and [23]). Clearly, if I is essential in R, then
dim I = dim R. An ideal U in a ring R is uniform if every nonzero ideal in
U is essential in U .

For any a in a ring R, the intersection of all maximal ideals containing a
is denoted by Ma, and an ideal I is called a z-ideal if Ma ⊆ I for every a ∈ I
(see [14, 4A]). Whenever f ∈ C(X), it is easy to see that Mf = {g ∈ C(X) :
Z(f) ⊆ Z(g)}, where Z(h) denotes the set of zeros of h. Hence an ideal I
in C(X) is a z-ideal if f ∈ I, g ∈ C(X) and Z(f) ⊆ Z(g) imply that g ∈ I.
Clearly Mf itself is a z-ideal. If S ⊆ X, then MS = {f ∈ C(X) : S ⊆ Z(f)}
is also a z-ideal. In particular, whenever S = Z(f) for some f ∈ C(X), then
MS = MZ(f) = Mf , and if S = {x}, then MS = Mx is a maximal ideal.

A point x ∈ X is said to be an almost P-point if intZ(f) 6= ∅ for
every f ∈ Mx, and X is called an almost P-space if every point of X is
an almost P-point. We refer the reader to [1], [20] and [22] for more details
and properties of almost P-spaces and to [14] and [19] for undefined terms,
notations and general information about the algebraic properties of C(X).

We cite the following two results which will be frequently referred to
below. The socle CF (X) of C(X) was first characterized via the following
proposition in [17], where it was shown that CF (X) is essential in C(X) if
and only if the set of isolated points of X is dense in X (see also [2] and [3]).
The second result, which is in [2], gives a useful connection between S(X)
and dimC(X).
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Proposition 1.1. The socle CF (X) of C(X) is a z-ideal consisting of

all functions that vanish everywhere except on a finite subset of X.

Proposition 1.2.

(1) An ideal U is a uniform ideal in C(X) if and only if U is a minimal

ideal.

(2) dimC(X) = S(X).

It is well-known that x ∈ X is nonisolated if and only if Mx is an es-
sential maximal ideal in C(X) (see [17, Proposition 1.1]. The following is a
generalization of this fact.

Proposition 1.3. Let A be a closed set in X. Then for each x ∈ A, the

maximal ideal Mx/MA is an essential ideal in C(X)/MA if and only if x is

a limit point of A.

Proof. Suppose that Mx/MA is essential for some x ∈ A. Pick f ∈
C(X) such that x ∈ Coz(f) = X \ Z(f). Then f /∈ Mx and hence (f) ∩
(Mx \MA) 6= ∅. This implies that there exists g ∈ C(X) such that fg ∈ Mx

and A * Z(fg), i.e., x ∈ Z(g) and ∅ 6= A ∩ Coz(fg) 6= {x}; a fortiori
∅ 6= A ∩ Coz(f) 6= {x}. Therefore x is a limit point of A, for the collection
of cozero sets is a base for open sets.

Conversely, let x ∈ A be a limit point of A and suppose that Mx/MA

is not essential. Then there exists f /∈ Mx such that (f) ∩ (Mx \ MA) = ∅.
Since x /∈ Z(f), we have A∩Coz(f) 6= ∅. Let x 6= y ∈ Coz(f)∩A and choose
g ∈ C(X) such that g(x) = 0 and g(y) = 1. Then fg ∈ Mx and A 6⊆ Z(fg),
for f(y)g(y) 6= 0. This implies that fg ∈ Mx \ MA, which is absurd.

Example 1.4. Let X = R and A = [0, 1] ∪ {2}. Since x = 2 is not the
limit point of A, M2/MA is not essential in C(R)/MA, but clearly M2 is
essential in C(R).

The next characterization of essential ideals in C(X) shows that all free
ideals and certain fixed ideals are always essential (see [2, Theorem 3.1]).

Proposition 1.5. Let E be a nonzero ideal in C(X). Then the following

are equivalent :

(1) E is essential in C(X).
(2) Ann(E) = (0).
(3) E intersects every nonzero z-ideal in C(X) nontrivially.

(4) Z(E) =
⋂

f∈E Z(f) has empty interior.

It is well-known and very easy to prove that in any ring R, every prime
ideal is either essential or a minimal prime ideal which is also an annihilator
ideal. The following result (see the proof of Corollary 3.3 in [2]) shows that
in C(X), we have a much stronger result.
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Proposition 1.6. Let P be a prime ideal in C(X). Then either P is

essential or P = eC(X), where e is an idempotent in C(X) (i.e., P is a

maximal , minimal prime ideal and at the same time an annihilator ideal).

Finally, we cite the following lemmas from [5]. The proof of the first one
is evident and the second one is Sublemma 3.2 in [5].

Lemma 1.7. If R is a reduced ring and A ⊆ B are ideals in R, then A
is essential in B if and only if Ann(A) = Ann(B).

Lemma 1.8. If S ⊆ C(X) and
⋂

f∈S Z(f) = Z(g), where g ∈ C(X),
then Ann(S) = Ann(g).

2. Essential ideals in C(X) modulo its socle. Whenever E/I is
essential in R/I, it is trivial to see that E is essential in R, but the converse
is rarely true (see Example 1.4). Since every essential ideal of a ring R
contains the socle of R, it is natural to ask: is E/soc(R) an essential ideal
in R/soc(R) for every essential ideal E of R? There is also the same natural
question about prime ideals of R/soc(R): is every prime ideal of R/soc(R) an
essential ideal? In this section, we answer these questions for C(X) modulo
its socle CF (X).

Essential ideals and the Goldie dimension of a ring R are two related
concepts and we may have either dimR ≤ dim(R/I) or dim(R/I) ≤ dim R,
where I is an ideal of R. In this section we prove that dim(C(X)/CF (X)) ≥
dimC(X) and present some useful examples.

Pegging a particular topological property to an algebraic property has
always been of main interest to the workers in the area of C(X). Perhaps
the starting point here is the simple fact that X is connected if and only
if C(X) has no nontrivial idempotent, and so X is connected if and only if
βX(υX) is, where βX is the Stone–Čech compactification of X.

To start with, let us generalize this starting point, which determines the
connectedness of βX \ X, where X is a discrete space.

Proposition 2.1. Let D be the set of isolated points of X. Then βX \
D = Y is connected if and only if for each idempotent f = f + CF (X) in

C⋆(X)/CF (X) we have either Y ⊆ Z(fβ) or Y ⊆ Z(1− fβ), where f 7→ fβ

is the isomorphism of C⋆(X) onto C(βX).

Proof. Clearly under the isomorphism f 7→ fβ, the socle CF (X) is sent
to the socle CF (βX) of C(βX). Hence C⋆(X)/CF (X) ∼= C(βX)/CF (βX).
Now assume that Y is connected and let f = f + CF (X) be idempotent in

C⋆(X)/CF (X), i.e., f −f2 ∈ CF (X). This implies that fβ −fβ2 ∈ CF (βX),

which means that Z(fβ − fβ2
) = βX \ A, where A ⊆ D is a finite set of

isolated points of X. Now βX = Z(fβ)∪Z(1− fβ)∪A, Y is connected and
Y ∩ A = ∅, i.e., Y ⊆ Z(fβ) or Y ⊆ Z(1 − fβ).
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Conversely, suppose that Y is disconnected, i.e. Y = X1 ∪ X2, where
X1 and X2 are two disjoint nonempty closed subsets of Y . Then X1, X2 are
compact subsets of βX, i.e., there are two disjoint open sets G1 and G2

containing X1 and X2, respectively. Now βX \ (G1 ∪ G2) ⊆ D is compact,

i.e., βX = G1 ∪G2 ∪H, where H ⊆ D is a finite set. We can now pick fβ
1 ∈

C(βX) such that fβ
1 (G1) = {0} and fβ

1 (G2
⋃

H) = {1}. We may assume

that G2 is infinite, i.e., fβ
1 /∈ CF (βX). Clearly fβ

1 is an idempotent, i.e.,

f1 = f1 + CF (X) is an idempotent in C⋆(X)/CF (X). Then fβ
1 (X1) = {0}

and fβ
1 (X2) = {1} imply that Y * Z(fβ

1 ) and Y * Z(1 − fβ
1 ).

In [11, Proposition 1.2], it is shown that every maximal ideal of C(X)
modulo its socle is essential. In the following theorem we generalize this
result.

Theorem 2.2. Every prime ideal in C(X)/CF (X) is an essential ideal.

Proof. Let P be a prime ideal in C(X) containing CF (X), and f /∈ P .
First, suppose that there exist at least two nonisolated points in Coz(f).
Let x ∈ Coz(f) \ Z(P ) be a nonisolated point (note that Z(P ) is at most
a singleton) and therefore there exists g ∈ P such that g(x) 6= 0. Now
Coz(f)∩Coz(g) is an open set containing the nonisolated point x, which is
an infinite set, i.e., fg /∈ CF (X). So fg ∈ (P \CF (X))∩ (f), i.e., P/CF (X)
is essential in C(X)/CF (X). Next, as f /∈ CF (X), Coz(f) is infinite, i.e., we
may assume that all points of Coz(f) but at most one are isolated. Thus,
we may choose two infinite disjoint sets A = {xn}n∈N and B = {yn}n∈N of
isolated points in Coz(f). Now, we define

h(x) =

{

0, x 6= xn,

1/n, x = xn,
k(x) =

{

0, x 6= yn,

1/n, x = yn.

Clearly h, k ∈ C(X) (note that for all ε > 0, the set {x ∈ X : |h(x)| < ε}
is cofinite, i.e., it is open (even clopen); this means that h is continuous at
each point of X \ A). But hk = 0 ∈ P implies that either h ∈ P or k ∈ P ;
say h ∈ P . Then 0 6= hf ∈ (P \ CF (X)) ∩ (f), i.e., P/CF (X) is essential in
C(X)/CF (X) .

Theorem 2.3. For every essential ideal E in C(X), E/CF (X) is an

essential ideal in C(X)/CF (X) if and only if the set of isolated points of X
is finite.

Proof. Let A = {x1, . . . , xk} be the set of isolated points of X and
E be an essential ideal in C(X). If E/CF (X) is not an essential ideal in
C(X)/CF (X), then there exists f /∈ E such that (f)∩E ⊆ CF (X). Now for
each g ∈ E, X \ (Z(f) ∪ Z(g)) ⊆ A and hence ∅ 6= (X \ Z(f)) \ A ⊆ Z(g).
So ∅ 6= (X \ Z(f)) \ A ⊆ Z(E), and by Proposition 1.5, E is not essential,
a contradiction.
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Conversely, suppose that for every essential ideal E in C(X), E/CF (X)
is an essential ideal in C(X)/CF (X) and the set of isolated points of X is
infinite, say contains {x1, x2, . . .}. Let H be the set of nonisolated points of
X and consider two cases:

Case 1: intH 6= ∅. Set A = X \ intH and F = {f ∈ C(X) : A \ Z(f)
is finite}. Clearly Z(F ) ⊆ H \ intH and hence intZ(F ) = ∅, i.e., F is an
essential ideal in C(X), by Proposition 1.5. Now choose f ∈ C(X) with
f(A) = {0} and f(x) 6= 0 for some x ∈ intH. Then f ∈ F , but f /∈ CF (X),
for f is different from zero at every point of a neighbourhood of x which is
infinite. This shows that F/CF (X) is a non-trivial ideal in C(X)/CF (X).
Now we show that the ideal F/CF (X) is not essential. Pick gn ∈ C(X) such
that gn(xn) > 0 and gn(X \ {xn}) = {0}. Set

g =

∞
∑

n=1

1

2n
(g2

n ∧ 1).

Then g ∈ C(X), H ⊆ Z(g) and g(xn) 6= 0 for every n = 1, 2, . . . , thus
g /∈ F . Now whenever there exists h ∈ C(X) such that gh ∈ F , then
A \ (Z(h) ∪ Z(g)) = X \ (Z(h) ∪ Z(g)) should be finite, i.e., gh ∈ CF (X).
This means that

F

CF (X)
∩ CF (X) + (g)

CF (X)
= (0),

i.e., F/CF (X) is not essential in C(X)/CF (X), a contradiction.

Case 2: intH = ∅. Put B = {x1, x3, . . . , x2n−1, . . .} and consider the
ideal F consisting of all functions f such that B \ Z(f) is finite. Since
Z(F ) ⊆ H, we have intZ(F ) = ∅ and hence F is an essential ideal in C(X),
by Proposition 1.5. Now we choose fn ∈ C(X) such that fn(X \ {x2n}) =
{0}, fn(x2n) = 1 for every n = 1, 2, . . . and set f =

∑∞
n=1 2−n(f2

n ∧ 1).
Then f(B) = {0} and f(x2n) 6= 0 for every n = 1, 2, . . . , and consequently
f ∈ F \ CF (X). This means that F/CF (X) is not trivial. Now according
to our hypothesis, F/CF (X) is an essential ideal in C(X)/CF (X). As in
Case 1, if we consider g ∈ C(X) such that X \ B ⊆ Z(g) and g(x2n−1) 6= 0
for every n = 1, 2, . . . , then

F

CF (X)
∩ CF (X) + (g)

CF (X)
= (0),

for if there is h ∈ C(X) such that gh ∈ F \CF (X), then B \Z(gh) is finite,
which implies that X \ Z(gh) = B \ Z(gh) is finite, i.e., gh ∈ CF (X), a
contradiction.

Remark 2.4. Since X is infinite, we have CF (X) 6= C(X). Suppose
that A is the set of isolated points of X. If A is finite, then MX\A is
not essential in C(X) (as MX\A ∩ MA = (0)) and contains CF (X). Hence
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MX\A/CF (X) is not essential in C(X)/CF (X). If A is infinite, then by The-
orem 2.3, C(X)/CF (X) has at least one nonzero nonessential ideal. In any
case, C(X)/CF (X) has a nonzero nonessential ideal. Now, this immediately
yields another proof of the fact that CF (X) is never a prime ideal. For other-
wise, C(X)/CF (X) is a domain (i.e., each nonzero ideal is essential), which
contradicts our previous argument; see also [4] and [11].

Next we investigate the comparability of the dimensions of the rings in
the title of this article.

Theorem 2.5.

(1) C(X)/CF (X) has no uniform ideal.

(2) The socle of C(X)/CF (X) is the zero ideal of C(X)/CF (X).
(3) dim(C(X)/CF (X)) ≥ dim C(X).

Proof. (1) Let U/CF (X) be a uniform ideal in C(X)/CF (X) and f ∈
U \ CF (X). Then X \ Z(f) is an infinite open set. Suppose that G and H
are two disjoint infinite open subsets of X \ Z(f) and let {xn} and {yn} be
two infinite sequences in G and H, respectively. Choose gn, hn ∈ C(X) such
that gn(xn) > 0, gn(X \ G) = {0} and hn(yn) > 0, hn(X \ H) = {0} for
every n ∈ N. Let

g =
∞

∑

n=1

1

2n
(g2

n ∧ 1) and h =
∞

∑

n=1

1

2n
(h2

n ∧ 1).

Then g(X \ G) = {0}, h(X \ H) = {0} and g(xn) 6= 0 6= h(yn) for every
n ∈ N. Now fg, fh ∈ U \CF (X) and (fg)∩ (fh) = (0). This means that the
subideals (CF (X) + (fg))/CF (X) and (CF (X) + (fh))/CF (X) of U/CF (X)
do not intersect nontrivially, a contradiction (note that if k1, k2 ∈ C(X) \
CF (X) and k1 − k2 ∈ CF (X), then k1 − k2 ∈ eC(X) ⊆ CF (X) for some
idempotent e ∈ C(X), i.e., 0 6= k1(1 − e) = k2(1 − e) ∈ (k1) ∩ (k2)).

(2) This is evident by Proposition 1.2 in [11].

(3) By Proposition 1.2, it is enough to show that dim(C(X)/CF (X)) ≥
S(X). Let F = {Gα : α ∈ K} be any infinite collection of disjoint open
sets in X. We may assume that every Gα is infinite, for otherwise we can
construct a new collection with this property and the same cardinality. To
see this, clearly if Gα contains any nonisolated point, then Gα is infinite.
Thus we may assume that each Gα consists entirely of isolated points. By
Zorn’s lemma, we may write F =

⋃

j∈J Fj such that Fi ∩ Fj = ∅, for every
i 6= j, and each Fj is an infinite countable set. Clearly, |J | = |F |. For
each j ∈ J put Hj =

⋃

Gα∈Fj
Gα, which is clearly an infinite open set and

Hi ∩Hj = ∅ for all i 6= j. Setting F ′ = {Hj : j ∈ J}, we have |F ′| = |F | and
so F ′ is the collection that we were to construct.
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Next, using the complete regularity of X we choose fα ∈ C(X) such that
fα(X \ Gα) = {0} and fα is different from zero at infinitely many points
of Gα. Now we claim that the collection {(CF (X) + (fα))/CF (X) : α ∈ K}
is an independent set of nonzero ideals in C(X)/CF (X). If we prove our
claim, then we are done, for in that case dim(C(X)/CF (X)) ≥ S(X). Since
fα /∈ CF (X) for every α ∈ K, every member of this collection is a nonzero
ideal in C(X)/CF (X). Therefore we must only show that

I =
CF (X) + (fα)

CF (X)
∩

∑

α 6=β∈K

CF (X) + (fβ)

CF (X)
= (0).

Let f +CF (X) ∈ I. Then f −fαg = f −fα1
g1−· · ·−fαn

gn ∈ CF (X), where
g, gi ∈ C(X) and α 6= αi for every i = 1, . . . , n. But clearly fαfαi

= 0 for
every i = 1, . . . , n implies that f2

αg ∈ CF (X), and hence fαg ∈ CF (X), i.e.,
f ∈ CF (X).

Remark 2.6. Part (2) of the previous result shows that C(X) is never
a Loewy ring (recall that a ring R is Loewy if it is a Loewy R-module, and
an R-module M is Loewy if each of its nonzero homomorphic image has
essential socle). One can show that a C(X)-module is Loewy if and only if
it is semisimple.

The next remark shows that dim(C(X)/CF (X)) might be strictly greater
than dimC(X).

Remark 2.7. Let X be an infinite countable discrete space. Then C(X)
∼=

∏

i∈N
Ri, Ri = R for every i = 1, 2, . . ., where R is the field of real numbers.

Clearly,
∑

i∈N

⊕Ri = soc
(

∏

i∈N

Ri

)

and C(X)/CF (X) ∼=
∏

i∈N

Ri/
∑

i∈N

⊕Ri.

But
∑

i∈N
⊕Ri is essential in

∏

i∈N
Ri, i.e., dim

∏

i∈N
Ri = dim

∑

i∈N
⊕Ri.

Now we claim that dimS = ℵ0 and dimR = 2ℵ0 , where S =
∑

i∈N
⊕Ri,

R =
∏

i∈N
Ri and R = R/S. To see this, let F = {skR : sk ∈ S}k∈K be

a maximal independent collection of principal ideals in S. Then for each
sk, we have skR = Rs1

⊕ · · · ⊕ Rsn
. But the set of all finite subsets of N

is countable, i.e., |K| = ℵ0. Finally, we are to show that dim(R/S) = 2ℵ0 .
It is well known [18, Theorem 1.2] that there exists F ⊆ P(N) such that
|F | = 2ℵ0 and whenever A, B ∈ F , then A ∩ B is a finite set and |A| = ℵ0

for each A ∈ F ; see also [14, 5I]. Now for each A ∈ F we put xA = (xi) ∈ R
such that xi = 1 for all i ∈ A and xi = 0 otherwise.

We claim that {(xA + S)R}A∈F is an independent family of ideals in
R/S, which finishes the proof. To this end, we must show that (xA1

+S)R∩
∑n

i=2(xAi
+ S)R = (0), where A1, . . . , An ∈ F . First, note that xA is an

idempotent in R for all A ∈ F , and xAxB ∈ S for all A, B ∈ F such that
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A 6= B. Thus if xA1
r1−

∑n
i=2 xAi

ri ∈ S, then multiplying xA1
r1−

∑n
i=2 xAi

ri

by each xAi
we immediately have xAi

ri ∈ S, i.e., xAi
ri = S = 0 for each i,

and this completes the proof.

More generally, if X is a discrete space with cardinality |X| = a say,
where a is a regular cardinal, and S = {f ∈ C(X) : |X \ Z(f)| < a}, then
dim(C(X)/S) > a = dimC(X) (note S is an ideal containing CF (X)). To
see this, we may use the same set theory result in the book by K. Kunen to
get a subset F of P(X) such that |F | ≥ a+ and whenever A, B ∈ F , then
|A ∩ B| < a and |A| = a for each A ∈ F (note that we work in ZFC, i.e.,
Zermelo–Fraenkel set theory with the Axiom of Choice, and by a+ we mean
the least cardinal greater than a). Now, everything is ready to just imitate
the previous proof to show that dim(C(X)/S) ≥ a+.

Finally, the observations made in the previous two parts of this remark
can be extended with the same proofs to more general rings: if {Ri}i∈I is an
infinite collection of rings with dimRi ≤ ℵ0 for all i ∈ I and R =

∏

i∈I Ri

and S =
∑

i∈I ⊕Ri, then dim(R/S) ≥ dimR. Moreover, if I is an infinite
countable set, then dim(R/S) > dimR. We also note that if |I| = a is a
regular cardinal and S′ = {〈xi〉 ∈ R : |T | < a}, where T = {i ∈ I : xi 6= 0},
then dim(R/S′) ≥ a+ > dimR.

Remark 2.8. If X is a discrete space with |X| = a, where a is a regular
cardinal, and S⋆ = {f ∈ C⋆(X) : |X \ Z(f)| < a} ⊆ S = {f ∈ C(X) :
|X \ Z(f)| < a}, then

dim(C(βX)/Sβ) > a = dim C(βX),

where Sβ is the ideal corresponding to S⋆ under the isomorphism f 7→ fβ

of C⋆(X) onto C(βX) (note that if a = ℵ0, then S = S⋆ = CF (X)).

Motivated by the proof of Remark 2.7, we present a case that yields the
equality dim(C(X)/CF (X)) = dim C(X).

Theorem 2.9. If S(X) = ℵ0, then the following are equivalent.

(1) C(X)/CF (X) ∼= C(Y ), where Y is a space with S(Y ) = ℵ0.

(2) dim(C(X)/CF (X)) = dim C(X).
(3) X has at most a finite number of isolated points.

Proof. We only show that (2)⇒(3), for other implications are clear. First,
we note that dim(C(X)/CF (X)) = dimC(X) = S(X) = ℵ0. Next, suppose
X contains an infinite countable set D = {x1, x2, . . .} of isolated points.
Now, as in Remark 2.7, let F = {Ak}k∈K be an uncountable collection of
infinite subsets of D such that Ak ∩ Ak′ is finite for k 6= k′. As each Ak

is countable, we may use the complete regularity of X and for each k pick
fk ∈ C(X) such that fk(x) 6= 0 for all x ∈ Ak and fk(X \Ak) = {0}. Clearly,
fk /∈ CF (X) for all k ∈ K.
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We claim that {fkC(X)}k∈K , where

fkC(X) = (fkC(X) + CF (X))/CF (X),

is an independent collection of ideals in C(X)/CF (X), and this is the re-
quired contradiction. To this end, suppose fk1

C(X) ∩ (
∑

k 6=k1
fkC(X)) 6=

(0). Clearly, there must exist g1, . . . , gn ∈ C(X) such that h = fk1
g1 −

∑n
i=2 fki

gi ∈ CF (X) and fk1
g1 /∈ CF (X). Now, since X \ Z(h) is finite

and fki
is zero at all points of Ak1

except possibly a finite number for all
i ≥ 2, for all i ≥ 2, we immediately infer that fk1

g1 must be zero at all
points of Ak1

except possibly a finite number. This immediately shows that
fk1

g1 ∈ CF (X), which is absurd.

Remark 2.10. In [9, Theorem 6], it is shown that unless the Goldie di-
mension of a ring R is an inaccessible cardinal, R contains a direct sum of
dimR nonzero ideals (i.e., dimR is attained). By using an example of Erdős
and Tarski one can easily show that there is a Boolean ring whose unattained
Goldie dimension is any given inaccessible cardinal µ (see the last remark
in [9]). In Examples 8 and 9 of [9], it is also shown that rings with arbitrary
Goldie dimensions exist. We observe that the cardinality of each of the latter
rings is the same as its Goldie dimension. Motivated by these facts, we are
going to present more general examples in the context of C(X).

First, in view of the Stone representation theorem, let X be a zero-
dimensional (i.e., having a base of clopen subsets) compact space whose
Boolean algebra of clopen subsets is isomorphic to the above Boolean ring
R such that µ = dimR is not attained. Now the example of Erdős and Tarski
(see [9]) easily shows that the cellularity of X is µ and is not attained, i.e.,
by Proposition 1.2, dimC(X) = µ is not attained.

Let X be a discrete space with cardinality a = |X|. Clearly, S(X) =
S(βX), i.e., dimC(X) = dimC(βX) = a, and it is evident that |C(βX)| ≥
2a, for |βX| = 22a

. Clearly |C(βX)/CF (βX)| ≥ 2a and in view of Theo-
rem 2.5, we also have dim(C(βX)/CF (βX)) ≥ a. Next, we show that there
are rings as large as we want whose Goldie dimensions are the least infinity,
i.e., ℵ0. To see this, let λ ≥ ℵ0 be any cardinal and Dλ be the Cantor cube
of weight λ, i.e., Dλ =

∏

i∈I Di, |I| = λ and Di = {0, 1} the two-point
discrete space. It is well known that the cellularity of Dλ is ℵ0; see [10,
Corollary 2.3.18] (note that a more general result is true: if the countability
of the cellularity of a space X is preserved by products with two factors, it is
preserved by arbitrary products). Thus, dimC(Dλ) = ℵ0 and |C(Dλ)| ≥ λ.
Finally, using these facts, one can show that there is a ring R such that
dimR = a and |R| ≥ b where a < b are arbitrary infinite cardinals. To this
end, let R1 = C(Db) and R2 = C(X), where X is a discrete space with
|X| = a ≥ ℵ0. Clearly dimR1 = ℵ0 and dimR2 = a. Now put R = R1 ⊕R2.
Clearly, dimR = dimR1 + dimR2 = a and |R| ≥ |R1| ≥ b.
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By using the sophisticated fact of infinite additivity of the Goldie di-
mensions (see [9, Theorem 3]), one can construct still more examples simi-
lar to R. To see this, let I be a set with |I| = a and for each i ∈ I let Ri

be a domain with |Ri| = b (for example, one may take Ri = K[X], where
K is a finite field and X is a set of indeterminates with |X| = b). Now put
S =

∑

i∈I ⊕Ri and R =
∏

i∈I Ri. Then it is clear that S is essential in R and
dimR = dim S = a (note that dimRi = 1 for all i ∈ I) and |R| = ba ≥ b.

Remark 2.11. In [11], it is shown that C(X) is ℵ0-injective if and only if
C(X)/CF (X) is ℵ0-injective. We also observe trivially that C(X) is regular
(i.e., X is a P-space) if and only if C(X)/CF (X) is regular. To see this,
assume C(X)/CF (X) is regular; then each prime ideal in C(X)/CF (X) is
maximal. Now for each prime ideal P in C(X), either P is maximal and at
the same time minimal prime which is not essential, or P is essential (see
Proposition 1.6). But if P is essential in C(X), then P/CF (X) is maximal
in C(X)/CF (X), i.e., in this case P is also maximal in C(X). Thus we have
shown that every prime ideal in C(X) is maximal, i.e., C(X) is regular. The
converse is trivial. The reader should be reminded that one can apply some
algebraic results to show that if R is any reduced ring such that R/soc(R)
is regular, then R is also regular.

Remark 2.12. It is well known folklore that C(X) generally avoids any
finiteness condition, such as being Noetherian (i.e., acc on finitely generated
ideals), perfect (i.e., dcc on principal ideals), finitely embedded (i.e., having
a finitely generated essential socle), and more generally having finite Goldie
dimension. Perfect rings are Loewy rings, but C(X) is never Loewy (see [11,
Proposition 1.2]). Clearly, any of the above conditions in any ring forces the
ring to have finite Goldie dimension. Now, part (3) of Theorem 2.5 shows
that C(X)/CF (X), similarly to C(X), avoids all these finiteness conditions.

3. z-ideals in C(X) modulo its socle. In [21, Lemma 2.1], it is shown
that for any f1, . . . , fn in C(X), there exists g ∈ C(X) such that gn divides
every fi for any natural number n and Z(g) = Z(f1) ∩ · · · ∩ Z(fn). Con-
sequently, each finitely generated ideal in C(X) is contained in a principal
ideal. In [5, Theorem 3.3], it is observed that X is basically disconnected if
and only if every nonzero countably generated ideal in C(X) is essential in a
principal ideal generated by an idempotent. The following is a more general
result.

Proposition 3.1. Let I = (f1, f2, . . . , ) be a countably generated ideal

in C(X). Then there exists g ∈ C(X) such that I ⊆ ⋂∞
n=1(g

n). Moreover , I
is essential in (gn) for all n and Z(g) =

⋂∞
i=1 Z(fi).



C(X) VS. C(X) MODULO ITS SOCLE 327

Proof. Without loss of generality, we may assume that |fi| ≤ 1 for all
i (otherwise replace each fi by fi/(1 + f2

i )). Clearly I ⊆ (S), where S =
⋃∞

m=1{f
1/3
m , f

1/5
m , . . . , f

1/(2n+1)
m , . . .}. Now for each m, define

gm =
∞

∑

n=1

|fm|1/(2n+1)

2n
.

Then gm ∈ C(X), |gm| ≤ 1 and for each n we have |fm|1/(2n+1) ≤ 2n|gm|, i.e.,
|fm| ≤ 2n(2n+1)|gm|2n+1 ≤ |λgn

m|2, where λ = 2n(2n+1)/2. Now by [14, 1D],
we infer that each fm is a multiple of gn

m for all n ≥ 1 and Z(gm) = Z(fm)
for all m. Again we define

g =
∞

∑

m=1

|gm|1/2

2m
∈ C(X),

i.e., for each m, we have |gm|1/2 ≤ 2mg, and again by [14, 1D], we have g | gm

for each m. This means that for each n, m we have gn | fm and it is clear
that Z(g) =

⋂∞
i=1 Z(fi). Finally, we note that Z(g) =

⋂

f∈I Z(f), i.e., in
view of Lemma 1.8, we have Ann(g) = Ann(I) and therefore I is essential
in (g) by Lemma 1.7.

The next result, whose proof is essentially in the last part of the proof
of Theorem 6.1 in [13], is just a restatement of Proposition 2.4 in [21]; see
also [8].

Proposition 3.2. Let J be an ideal in C(X). Then J and
√

J have the

same largest z-ideal.

Proof. Since the sum of z-ideals in a proper ideal is a proper z-ideal, it
suffices to show that whenever I is a z-ideal contained in

√
J , then I ⊆ J .

To see this, let f ∈ I. By replacing f by f/(1 + f2) we may assume that
|f | ≤ 1. Now put g =

∑∞
n=1 |f |1/n/2n. Then g ∈ C(X), Z(g) = Z(f), i.e.,

g ∈ I. Thus g ∈
√

J , i.e., gn ∈ J for some n > 1. Now, 2−n2 |f |1/n2 ≤ g, i.e.,

|f | ≤ (2n3

gn)n. This means that gn | f , by [14, 1D.3], i.e., f ∈ J .

The previous fact is also true in C(X)/CF (X).

Corollary 3.3. Let J = J/CF (X) be an ideal in C(X)/CF (X). Then

J and
√

J have the same largest z-ideal.

Proof. First, we note that if A/CF (X) is a z-ideal in C(X)/CF (X),
then A is a z-ideal in C(X). To see this, let f ∈ A. If f ∈ CF (X), then
the intersection of all maximal ideals containing f , Mf say, is contained in
CF (X); a fortiori it is contained in A (as CF (X) is a z-ideal). Thus we may
assume that f /∈ CF (X) and consider f = f + CF (X) ∈ A/CF (X). Now let
{Pi/CF (X)}i∈K be the set of all maximal ideals in C(X)/CF (X) containing
f , i.e.,

⋂

i∈K Pi ⊆ A. This implies that Mf ⊆ ⋂

i∈K Pi ⊆ A and we are done.
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Now we claim that whenever I = I/CF (X) is a z-ideal in
√

J , then
I ⊆ J , and this completes the proof. To this end, by the first part we note

that I is a z-ideal in C(X) and from I ⊆
√

J =
√

J/CF (X) we infer that
I ⊆

√
J , i.e., by the previous result I ⊆ J and therefore I ⊆ J .

Remark 3.4. Our proof shows that the previous corollary holds in any
factor ring C(X)/I, where I is a z-ideal in C(X). We also note that if Q is
a primary ideal in C(X), then

√
Q = P is a prime ideal (this is true in any

commutative ring), i.e., P0 ⊆ √
Q = P , where P0 is a minimal prime ideal

which is a z-ideal (see [14, Theorem 14.7]). Hence the fact that
√

Q and Q
have the same z-ideals immediately implies that P0 ⊆ Q. It is also evident
that if

√
Q = P is a maximal ideal, then Q = P , which is Corollary 2.7

in [21].

The following well known result is now an easy consequence of our Propo-
sition 3.1 (see [12]).

Corollary 3.5. Let M = (f1, f2, . . .) be a fixed countably generated

maximal ideal in C(X). Then M = Mx, where x is an isolated point.

Proof. By Proposition 3.1, M ⊆ (g), and as M is fixed, we have Z(g) 6=∅,
i.e., M = (g). But M = (g) = M2 = (g2). Now let g = g2f and put e = gf ;
then clearly e = e2, M = (e) and the proof is complete.

Corollary 3.6. Suppose the set of isolated points of X is countable.

Then no fixed maximal ideal of C(X)/CF (X) can be countably generated

(note that an ideal I = I/CF (X) is fixed if I is fixed).

Proof. First we note that CF (X) is countably generated (CF (X) =
∑∞

i=1 ⊕ eiC(X), where ei = e2
i , Z(ei) = X \ {xi}, where xi is an isolated

point in X; see [17]). Now let M = M/CF (X) be a fixed countably generated
maximal ideal in C(X)/CF (X). Then M =

∑∞
i=1 fiC(X) + CF (X), i.e., M

is a fixed countably generated maximal ideal in C(X). Hence M = eC(X),
where e = e2, i.e., C(X)/M ∼= (1 − e)C(X) ⊆ CF (X). Thus C(X) =
eC(X) ⊕ (1 − e)C(X) ⊆ M , which is absurd.

4. Essential ideals in C(X) modulo its principal ideals. In this
section we investigate the essentiality of prime ideals and z-ideals of C(X)
modulo its principal ideals. Using these characterizations, we show that a
space X is an almost P-space (with a dense set of isolated points) if and only
if every factor ring of C(X) modulo a principal ideal contains a nonessential
z-ideal (prime ideal).

We start with an example of an essential minimal prime ideal in a factor
ring of C(X) modulo a principal ideal.
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Example 4.1. Suppose that W ⋆ = W ∪ {ω1}, where W is the space of
countable ordinals, and ω1 is the first uncountable ordinal. Clearly Oω1

=
Mω1

(see [14]). Suppose that f ∈ C(W ⋆) is such that f(1) 6= 0 and f(α) = 0
for every α > 1. Then Oω1

/(f) is a minimal prime ideal in C(W ⋆)/(f).
We show that Oω1

/(f) is an essential ideal in C(W ⋆)/(f). If h /∈ Oω1
, then

h(ω1) 6= 0 and hence there exists λ ∈ W such that h(α) 6= 0 for every α ≥ λ.
Take g ∈ Oω1

such that g(λ+1) 6= 0 and g(α) = 0 for every α 6= λ+1. Now
gh ∈ Oω1

\(f) (for if gh ∈ (f), then Z(f) ⊆ Z(gh), but g(λ+1)h(λ+1) 6= 0
and f(λ + 1) = 0). This shows that Oω1

/(f) is an essential ideal.

If the set of isolated points in X is finite, the next result can be considered
as a generalization of Theorem 2.2.

Theorem 4.2. If h ∈ C(X), then every prime ideal of C(X)/(h) is an

essential ideal if and only if Z(h) does not contain any isolated point.

Proof. Suppose that every prime ideal of C(X)/(h) is essential and
x0 ∈ Z(h) is an isolated point. Clearly Mx0

is a nonessential prime ideal
in C(X) and hence Mx0

/(h) is a nonessential prime ideal of C(X)/(h), a
contradiction.

Conversely, suppose Z(h) does not contain any isolated point and let
P be a prime ideal containing h. Suppose that f /∈ P ; we must show that
(P \ (h)) ∩ (f) 6= ∅. Clearly f /∈ (h1/3), for otherwise f ∈ P . We consider
two cases:

Case 1: Z(h) ⊆ Z(f). Since h1/3 ∈ P , we have h1/3f ∈ P but h1/3f /∈
(h); for otherwise there exists k ∈ C(X) such that h1/3f = hk, and hence
f(x) = k(x)h2/3(x) for every x /∈ Z(h). Now Z(h) ⊆ Z(f) implies that f =
kh2/3, so f ∈ (h1/3), a contradiction. This implies that fh1/3 ∈ (P \(h))∩(f).

Case 2: Z(h) 6⊆ Z(f). There exists x0 ∈ Z(h) such that x0 /∈ Z(f).
First, suppose that x0 ∈ intZ(h). Since f(x0) 6= 0, there is an open set

G containing x0 such that f(x) 6= 0 for every x ∈ G (as x0 is not an isolated
point, G is infinite). We may assume that G ⊆ intZ(h). Since Z(P ) is at
most a singleton, we may choose x0 6= y ∈ G such that y /∈ Z(P ). Now,
there exists g ∈ P such that g(y) 6= 0. Hence fg ∈ P but fg /∈ (h), for
h(y) = 0 but f(y)g(y) 6= 0, i.e., fg ∈ (P \ (h)) ∩ (f).

Next, suppose that x0 /∈ intZ(h); then x0 is in the boundary ∂Z(h) of
Z(h). Clearly h1/3f ∈ P . We show that h1/3f /∈ (h). If h1/3f ∈ (h), then
there exists k ∈ C(X) such that h1/3f = hk. Thus f(x) = k(x)h2/3(x) for
every x /∈ Z(h). Since x0 ∈ ∂Z(h), we may consider a net xα /∈ Z(h) such
that xα → x0. Since h, k, f ∈ C(X), we have h2/3(xα) → h2/3(x0) = 0 and
hence f(xα)→0=f(x0), a contradiction. Therefore h1/3f ∈(P \ (h))∩ (f).

Remark 4.3. If Z(h) consists entirely of isolated points, then some
prime ideals of C(X)/(h) might be essential. If Z(h) is a finite set of iso-
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lated points, then Z(h) is compact and hence by Lemma 4.10 of [14], h
belongs to no free ideal. Hence the set of prime ideals containing h is the
set {Mx : x ∈ Z(h)}. Since every Mx, x ∈ Z(h), is a nonessential maximal
ideal in C(X), C(X)/(h) has no essential ideal. Now suppose that Z(h) is
infinite and every x ∈ Z(h) is an isolated point. Again, fixed prime ideals
of C(X) containing h are nonessential, i.e., for every fixed prime ideal P
containing h, P/(h) is nonessential in C(X)/(h). But if P is a free prime
ideal in C(X) containing h, then P/(h) is essential in C(X)/(h). To see this,
let f /∈ P . Since Z(h) is open, Z(h) ⊆ Z(f) implies that f ∈ (h) ⊆ P , a
contradiction. So, we assume Z(h) 6⊆ Z(f) and take x ∈ Z(h) \ Z(f). Since
P is free, there exists g ∈ P such that g(x) 6= 0. Now fg ∈ P ∩ (f) but
fg /∈ (h), for f(x)g(x) 6= 0 and h(x) = 0, i.e., fg ∈ (P \ (h)) ∩ (f) and we
are done.

To prove the next theorem we need the following lemma.

Lemma 4.4. Suppose that h ∈ C(X) and hλ is defined for the positive

real number λ < 1. Then (hλ)/(h) is an essential ideal in C(X)/(h) if and

only if intZ(h) = ∅.
Proof. If intZ(h) 6= ∅, then intZ(hλ) 6= ∅ and by Proposition 1.5, (hλ)

is not essential in C(X), hence (hλ)/(h) is not essential in C(X)/(h).

Conversely, suppose that intZ(h) = ∅. We will show that (h(n−1)/n)/(h)
is an essential ideal in C(X)/(h), where n is any odd integer. To see this,
let f /∈ (h(n−1)/n) and consider two cases:

Case 1: Z(h) ⊆ Z(f). First, suppose that for all integers 1 ≤ k ≤ n− 2
we have hk/n ∤ f . Clearly h(n−1)/nf ∈ (h(n−1)/n). But hn−1/nf /∈ (h), for
otherwise there exists g ∈ C(X) such that h(n−1)/nf = hg and hence f(x) =
h1/n(x)g(x) for every x /∈ Z(h). Now Z(h) ⊆ Z(f) implies that f = h1/ng,
a contradiction. This shows that h(n−1)/nf ∈ (h(n−1)/n) \ (h). Next suppose
that there exists 1 ≤ k ≤ n − 2 such that hk/n | f and let k be the largest
integer with this property. Thus h(k+1)/n ∤ f . We show that h(n−k−1)/nf ∈
(h(n−1)/n) \ (h). Since hk/n | f , there exists g ∈ C(X) such that f = hk/ng
and hence h(n−k−1)/nf = h(n−k−1)/nhk/ng = h(n−1)/ng. If h(n−k−1)/nf ∈ (h),
then there exists g ∈ C(X) such that f(x) = h(k+1)/n(x)g(x) for every
x /∈ Z(h). But Z(h) ⊆ Z(f) implies that f is a multiple of h(k+1)/n, a
contradiction. Thus h(n−k−1)/nf ∈ ((h(n−1)/n) \ (h)) ∩ (f). In any case, we
have shown that (h(n−1)/n)/(h) is an essential ideal.

Case 2: Z(h) 6⊆ Z(f). Let x0 ∈ Z(h) \ Z(f). Since intZ(h) = ∅, x0

is contained in the boundary ∂Z(h) of Z(h). It is enough to show that
h(n−1)/nf /∈ (h). If h(n−1)/nf ∈ (h), then there exists g ∈ C(X) such that
h(n−1)/nf = gh and hence f(x) = h1/n(x)g(x) for every x /∈ Z(h). Since
x0 ∈ ∂Z(h), there exists a net xα /∈ Z(h) such that xα → x0. Therefore
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f(xα) = h1/n(xα)g(xα) → 0 and this means that f(x0) = 0, a contradiction.
Thus (h(n−1)/n)/(h) is an essential ideal in C(X)/(h).

Now for every 0 < λ < 1, there exists an odd integer n such that λ <
(n − 1)/n. Since (h(n−1)/n)/(h) ⊆ (hλ)/(h) and (h(n−1)/n)/(h) is an essential
ideal in C(X)/(h), a fortiori (hλ)/(h) is essential too.

Remark 4.5. Note that Lemma 4.4 does not imply that any principal
ideal of C(X)/(h) with intZ(h) = ∅ is an essential ideal. For example,
let X = (−∞, 0) ∪ (0,∞), h, k ∈ C(X), Z(h) = {−1} and Z(k) = {1}.
Clearly intZ(hk) = ∅ but we show that (h)/(hk) is not an essential ideal
in C(X)/(kh). Choose f ∈ C(X) such that Z(f) = (0,∞), hence f /∈ (h).
Let g ∈ C(X) be such that fg ∈ (h). Then there exists t ∈ C(X) such
that fg = th. Since Z(f) ∩ Z(h) = ∅, we have Z(f) ⊆ Z(t). Now Z(k) ⊆
intZ(f) ⊆ intZ(t) and [14, 1D] implies that t is a multiple of k and hence
fg ∈ (hk), i.e., (h)/(hk) is not essential.

Theorem 4.6. Every z-ideal of C(X)/(h) is essential if and only if

intZ(h) = ∅ (i.e., the principal ideal (h) is an essential ideal).

Proof. If intZ(h) = ∅ and E/(h) is a z-ideal in C(X)/(h), then h1/3 ∈ E.
Now by Lemma 4.4, (h1/3)/(h) is essential and (h1/3)/(h) ⊆ E/(h) im-
plies that E/(h) is also an essential ideal in C(X)/(h). Conversely, suppose
intZ(h) 6= ∅. Then MZ(h) = Mh is a z-ideal in C(X) containing h which
is not essential by Proposition 1.5 (note that Mh/(h) is clearly a z-ideal).
Now, Mh/(h) is not an essential ideal in C(X)/(h), a contradiction.

Corollary 4.7.

(a) X is an almost P-space with a dense set of isolated points if and

only if every factor ring of C(X) modulo a principal ideal contains

a nonessential prime ideal.

(b) X is an almost P-space if and only if every factor ring of C(X)
modulo a principal ideal contains a nonessential z-ideal.

5. Ue-rings. A ring is a Ue-ring (resp. Uem-ring) if it has a unique
proper essential (essential maximal) ideal (see [16] for more details). In [16,
Corollary 32], it is observed that C(X) is never a Ue-ring. Similarly, one can
show that C(X)/CF (X) is also never a Ue-ring, for otherwise its socle must
be maximal, but the socle of C(X)/CF (X) is zero (see Theorem 2.5(2)).
This means that C(X)/CF (X) becomes a field, which is impossible, for
C(X)/CF (X) cannot even be a domain (note that CF (X) is never a prime
ideal; see [11, Proposition 1.2] and [4, Proposition 2.5]). The proof of the
fact that C(X) is never a Ue-ring can be given in various ways; for example,
the above proof in fact shows that. For another proof see [16, Corollary 32].
The following is still a different one which is more elementary and yields
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a more general result. Before giving this proof, we record the next lemma
whose proof is very elementary. Incidentally, this can be considered as a
generalization of Proposition 35 in [16].

Lemma 5.1. Let R be a duo ring (i.e., every one-sided ideal in R is

two-sided) with only a finite number of essential ideals. Then each prime

ideal in R must be maximal.

Proof. Suppose P is a nonmaximal prime ideal in R. Clearly, R/P is
a duo domain, i.e., each nonzero ideal I/P in R/P is essential, i.e., I is
essential in R. But it is trivial to see that each duo domain which is not
a division ring has infinitely many ideals (for any nonunit u in such a ring
take the ideals (un), n = 1, 2, . . .), i.e., R must have infinitely many essential
ideals, which is absurd.

Proposition 5.2. Neither C(X) nor C(X)/CF (X) has only a finite

number of essential ideals.

Proof. Suppose, on the contrary, that any of the above rings contains
only a finite number of essential ideals. Then by the previous lemma, prime
ideals in both rings are maximal, i.e., both rings are regular (reduced rings
whose prime ideals are maximal, are regular). But all maximal ideals of
C(X)/CF (X) are essential (see Theorem 2.2 or [11, Proposition 1.2]). This
means that by our assumption, C(X)/CF (X) has only a finite number of
maximal ideals, M1/CF (X), . . . , Mn/CF (X) say, and CF (X) =

⋂n
i=1 Mi.

Now by the Chinese remainder theorem,

C(X)

CF (X)
∼= C(X)

M1
⊕ · · · ⊕ C(X)

Mn
,

i.e., C(X)/CF (X) must be its own socle, which is absurd (see Theorem
2.5(2)).

In [16, Proposition 31], it is shown that X is the one-point compact-
ification of a discrete space if and only if C(X) is a Uem-ring. As for
C(X)/CF (X), we have the following immediate result whose proof is left to
the reader (see also [16, Proposition 9]).

Proposition 5.3. C(X) is a Uem-ring if and only if C(X)/CF (X) is

a Uem-ring. Moreover , in this case C(X)/CF (X) is a local ring.

Next, it is natural to ask when C(X) has only a finite number of essential
maximal ideals. The following settles this question.

Proposition 5.4. Either C(X) or C(X)/CF (X) contains only a finite

number of essential maximal ideals if and only if X is a compact space

with only a finite number of nonisolated points. Moreover , in this case,
C(X)/CF (X) is a semilocal ring (i.e., it has only a finite number of maximal

ideals).
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Proof. We first note that for each p ∈ βX \ X, we have a free maximal
ideal Mp, which is essential. Thus if any of the above rings has only a
finite number of essential maximal ideals, the set βX \X cannot be infinite.
This means that βX must coincide with the realcompactification of X, for
otherwise βX \ X is an infinite set (see [14, 9D.2]). Now we have C(X) ∼=
C(βX), i.e., C(X) = C⋆(X) and therefore X is pseudocompact. Finally, it
remains to show that X is compact, for it is evident that X contains only
a finite number of nonisolated points. To see this, we note that no infinite
closed subset of X can consist entirely of isolated points, for this would
contradict the fact that X is pseudocompact (see also [14, 1.21]). Thus any
neighbourhood of the set of nonisolated points is a cofinite subset, i.e., X is
compact. The converse is clear.

Remark 5.5. Either C(X) or C(X)/CF (X) contains only a countable
number of essential maximal ideals if and only if X is compact and contains
at most a countable number of nonisolated points. To see this, we note that if
βX 6= υX, then βX \X is uncountable; see [14, 9D.2], which is not possible,
i.e., C(X) ∼= C(βX), i.e., X is pseudocompact. Clearly, X is Lindelöf, so
it must be compact (see [10, 3.11.1]). The converse is trivial. This has an
interesting consequence, namely being compact and having only a countable
number of nonisolated points is an algebraic property (i.e., it is preserved
under the isomorphism C(X) ∼= C(Y )).

Finally, we observe trivially that whenever Y ⊆ X is a clopen subset
of X and I = {f ∈ C(X) : Y ⊆ Z(f)}, then C(X)/I ∼= C(Y ). This
immediately implies that if the set of isolated points of X is finite, then
C(X)/CF (X) ∼= C(Y ) where Y is the set of nonisolated points. Therefore
in this case C(X)/CF (X) has all the algebraic properties of C(X). In par-
ticular, the Jacobson radical of C(X)/CF (X) is zero. But this is not true
in general, for as we have already observed in this section, when X is the
one-point compactification of a discrete space, then C(X)/CF (X) is a local
Uem-ring, i.e., its Jacobson radical is a nonzero maximal ideal. Motivated
by this fact, we conclude this section by characterizing topological spaces X
such that J(C(X)/CF (X)) = (0).

Before proceeding, let us remind the reader that under the isomorphism
C(X)/CF (X) ∼= C(υX)/CF (υX), the Jacobson radical of C(X)/CF (X) is
sent to the Jacobson radical of C(υX)/CF (υX), i.e., J(C(X)/CF (X)) ∼=
J(C(υX)/CF (υX)). This means that, regarding the aforementioned prob-
lem, whenever necessary we may assume that X = υX. In the following
we use the fact that whenever X is realcompact, then the family CK(X)
of all functions with compact support (see [14, 4D]) is in fact the intersec-
tion of all the free maximal ideals in C(X) (see [14, Theorem 8.19]), i.e.,
J(C(X)/CF (X)) = (CK(X) ∩ MY )/CF (X), where Y is the set of noniso-
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lated points of X and MY =
⋂

x∈Y Mx. We should emphasize that in the
following results X is not assumed to be realcompact.

Theorem 5.6. J(C(X)/CF (X)) = (0) if and only if every compact sub-

set of X contains at most a finite number of isolated points of X.

Proof. Let D be the set of isolated points of X and Y = υX\D. First, we
assume that each compact subset of X has finite intersection with D. Now
let fυ ∈ CK(υX) ∩ MY (f 7→ fυ is the isomorphism of C(X) onto C(υX),
fυ|X = f ; see [14, Remarks 8.8]). Then X \Z(f) ⊆ υX \Z(fυ) ⊆ D implies
that clX(X \ Z(f)) ⊆ clυX(υX \ Z(fυ)), hence clX(X \ Z(f)) is compact
and therefore X \Z(f) = cl(X \Z(f))∩D is finite, so f ∈ CF (X) and fυ ∈
CF (υX). This implies that J(C(X)/CF (X)) as well as J(C(υX)/CF (υX))
are zero, for

(∗) J

(

C(υX)

CF (υX)

)

=
CK(υX) ∩ MY

CF (υX)
= (0).

Conversely, suppose that J(C(X)/CF (X)) = (0) and C is a compact
subset of X such that {x1, x2, . . .} ⊆ C∩D is infinite. By complete regularity
of υX, we can define fυ ∈ C(υX) such that υX \ Z(fυ) = {x1, x2, . . .}
⊆ C, i.e., clυX(υX \ Z(fυ)) ⊆ C (note that C is also compact in υX). We
immediately infer that clυX(υX\Z(fυ)) is compact, i.e., fυ ∈ CK(υX)∩MY ,
where Y is the set of nonisolated points of υX. This implies that fυ ∈
CF (υX) by (∗), which is absurd (note that υX \ Z(fυ) must be finite).

The following corollary is now immediate.

Corollary 5.7. Let X be a compact space. Then J(C(X)/CF (X))
= (0) if and only if the set of isolated points of X is finite.

Proposition 5.8. J(C(X)/CF (X)) = (0) if and only if every Fσ-set

consisting of isolated points, with compact closure, is finite.

Proof. If J(C(X)/CF (X)) = (0), then we invoke Theorem 5.6. Con-
versely, let fυ ∈ CK(υX) ∩ MY , where Y is the set of nonisolated points of
υX. Clearly, B = υX \Z(fυ) and A = X \Z(f) ⊆ B are both Fσ-sets con-
sisting of isolated points, i.e., clXA ⊆ clυXB and therefore clXA is compact
in X. Hence A is finite, i.e., f ∈ CF (X) and fυ ∈ CF (υX). Now, we infer
immediately that J(C(X)/CF (X)) = (0), by (∗).

Corollary 5.9. Let X be first countable. Then J(C(X)/CF (X)) = (0)
if and only if the set of isolated points of X is closed.

Proof. If the set of isolated points, D say, of X is closed, then we invoke
Theorem 5.6. Conversely, suppose that J(C(X)/CF (X)) = (0) and x ∈
cl D \ D. Since X is first countable, there exists a sequence {xn} in D such
that xn → x. Now, by complete regularity of υX there exists fυ ∈ C(υX)
such that υX \ Z(fυ) = {x1, x2, . . .} and therefore clυX(υX \ Z(fυ)) =
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{x1, x2, . . .} ∪ {x} is compact. This means that fυ ∈ CK(υX) ∩ MY , where
Y is the set of nonisolated points of υX, and therefore fυ ∈ CF (υX), by (∗).
This is the required contradiction, for fυ ∈ CF (υX) means that υX \Z(fυ)
is finite.

Corollary 5.10. Let X be a nondiscrete P-space. Then either X is not

first countable or the set of isolated points of X is not dense.

Next, applying Corollary 5.9 or the previous result, and the fact that
a discrete space is realcompact if and only if its cardinal is nonmeasurable
(see [14, Theorem 12.2]), we have the following interesting fact.

Corollary 5.11. The cardinality of a discrete space X is nonmeasur-

able if and only if υX is first countable.

Remark 5.12. If W is the space of countable ordinals, ω1 is the first
uncountable ordinal number and W ⋆ = W ∪ {ω1} is the one-point com-
pactification of W (see [14, p. 74]), then by the previous results we have
J(C(W )/CF (W )) 6= (0) 6= J(C(W ⋆)/CF (W ⋆)).
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