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Abstract. Let R[z] and R[[z]] respectively denote the ring of polynomials and the
ring of power series in one indeterminate x over a ring R. For an ideal I of R, denote by
[R; I][x] the following subring of R[[z]]:

[R; I][z] := {anz € R[[z]] : 30 < n € Z such that r; € I, Vi > n}A
i>0

The polynomial and power series rings over R are extreme cases where I = 0 or R, but
there are ideals I such that neither R[z] nor R[[z]] is isomorphic to [R;I][z]. The results
characterizing polynomial rings or power series rings with a certain ring property suggest
a similar study to be carried out for the ring [R;I][z]. In this paper, we characterize
when the ring [R; I][z] is semipotent, left Noetherian, left quasi-duo, principal left ideal,
quasi-Baer, or left p.q.-Baer. New examples of these rings can be given by specializing to
some particular ideals I, and some known results on polynomial rings and power series
rings are corollaries of our formulations upon letting I = 0 or R.

1. Definitions and notations. Throughout, R is a ring with an iden-
tity unless specified otherwise, M is a left unitary R-module and I < R is
an ideal. We write J(R) for the Jacobson radical of the ring R. Let R|x],
R[[z]], R[z,z~!] and R[[z,x~!]] respectively denote the ring of polynomials,
the ring of power series, the ring of Laurent polynomials and the ring of Lau-
rent series in one indeterminate x over R. We denote by [R; I][x] the subring
Rlz] + I[[z]] of R[[z]] where I[[z]] is the set of power series all of whose coef-
ficients belong to I, and by [R; I][x,z~!] the subring R[z,z 1] + I[[x,z7!]]
of R[[z,x!]] where I[[z,x71]] is the set of Laurent series all of whose coef-
ficients belong to I (see [17]). That is,

[R; I[z] = {mel € R[[z]] : 30 < n € Z such that r; € I, Vi > n}
i>0
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and

[R; [z, 7] = { Z riz' € Rl[z,z7Y] :
i>—s
320,EI—SSHEZsuChthatriGI,ViZn}.

Let M(x], M|[z]], M[z,x~'] and M|[z, 27!]] respectively denote the module
of formal polynomials, of formal power series, of formal Laurent polynomials
and of formal Laurent series in z with coefficients from M. In a natural way,
M(z], M[[z]], M[z,z~!] and M[[z,2~!]] are left modules over R[z]|, R[[z]],
R[z,x71] and R|[[z,x7!]], respectively.

For a submodule N of M, define

[M; N][z] = {szxl € M[[z]] : 30 < n € Z such that v; € N, Vi > n}
>0
and
M Nl 2™ = { D e’ € Mlfe,a7']];
i>—s
520,EI—sSnEZsuchthatviEN,Vz’Zn}.

It is easy to see that IM C N iff [M; N][z] is a left [R;I|[z]-module un-
der usual addition and multiplication of power series, and that IM C N iff
[M; N[z, z71] is a left [R; I][x, z~!]-module under usual addition and multi-
plication of Laurent series (see [17]). In particular, [M; IM][z] is a left mod-
ule over [R;I][z], and [M;IM][z,z'] is a left module over [R;I][z,z7!].
Moreover, when I = 0 we have [R;I|[z] = R[z], [M;IM]|[z] = M]Jz],
[R; I[z,x~'] = R[z,z7'] and [M;IM][z,z~ '] = M[z,»~']; when I = R
we have [R; I)jz] = Rl{al], [M; IM)z] = M[lz]}, [R: T, '] = Rz, 2]
and [M; IM][z, 2~ = M[[z,z~1]].

2. Semipotent rings. A ring is called clean if every element is the sum
of a unit and an idempotent. It is known that a polynomial ring is never
clean (see [23], Proposition 13]) and that R][[z]] is clean iff R is clean (see [10,
Proposition 5|). It is then natural to ask: When is the ring [R; I][x] clean?
We answer this by considering a basic but weaker concept. A ring R is called
semipotent if every left (resp. right) ideal not contained in J(R) contains
a nonzero idempotent. Semipotent rings were named Iy-rings by Nicholson
in [22]. It is easily seen that the quotient ring of a semipotent ring R modulo
an ideal contained in J(R) is again semipotent. The next lemma will be used
several times.

LEMMA 1. Let S = [R;I][z]. The following hold:

(1) I[[z]} S and S/I[[z]] = (R/I)[x].
(2) J(S) 2 J(R) NI + I[[x]]z.
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(3) If I C J(R), then J(S) = Klx]| + I[[z]] where K/I < R/I is a nil
ideal. In particular, J([R; J(R)|[z]) = J(R)[[z]].

Proof. (1) This is clear.
(2) We see that A := J(R)NI+I[[z]]x is an ideal of S. Let ;- a;z’ € A.
Since A C J(R|[[z]]), there exists ) ;- biz" € R[[z]] such that

(1 + Zaixi) Z bt = 1.
i>0 i>0
Thus, by = (1 +ag)~* and b, = —(1 +ag) H(a1bp—1 + -+ + anby) € I for all
n>1.80 > .50 bz’ € [R; I][x]. This shows that A C J(S).

(3) By a result of Amitsur [1], J((R/I)[z]) = (K/I)[x] where K/I is a
nil ideal of R/I. As (R/I)[z] = R[z]/I[z] = S/I[[x]], we have J ((R/I)[z]) =
J(Rlz]/1[x]) = J (S/I[[«]]). Hence J(S/I[[z]]) = (K[z]+I[[2]])/1[[z]]. Since
I C J(R), one sees that I[[z]] C J(S) by (2); so J(S/I[[z]]) = J(5)/I[[z]].
Hence J(S) = K[x] + I[[z]]. =

THEOREM 2. The ring [R; I][x] is semipotent if and only if I = R and R
15 semipotent.

Proof. (=) Let S := [R;I][z]. By Lemma [1} I[[z]]z is an ideal of S
contained in J(S5). So S/I[[z]]z is a semipotent ring. Assume that I # R,
e, 1 ¢ I. Write @ = a + I[[z]]lz € S/I[[z]]z for any o € S. If T + 22
is a unit of S/I[[z]Jx, then there exists f(z) = > .o, fiz" € S such that
(1 + 2% f(x) € 1 + I[[x]]z. It follows that fo = 1 and f,, + fai2 € I for all
n > 0. This shows that fa, ¢ I for all n > 0, and this contradicts f(x) € S.
So 1+22 is not a unit of S/I[[x]]x, and hence 22 is not in the Jacobson radical
of S/I[[z]]z. Thus, f(z)z? is a nonzero idempotent of S/I[[z]]z for some
f(z) € S, but this is clearly impossible. Hence I = R, and so S = R][[z]].
To see that R is semipotent, let a € R\ J(R). As J(S) = J(R) + zR|[[z]],
a ¢ J(S). So g(z)a is a nonzero idempotent for some g(z) = > ;50 bz’ € S.
It follows that bpa € Ra is a nonzero idempotent. So R is semipotent.

(<) Let T = R[[z]], and let f(z) := Y ,soax’ € T\ J(T). We show
that T'f(x) contains a nonzero idempotent. Because J(T) = J(R) + Tz,
ap € R\ J(R). So, by hypothesis, there exists b € R such that bag is a nonzero
idempotent. With f(x) replaced by bf(x), we can assume that ag is a nonzero
idempotent of R. With f(x) replaced by agf(z), we can further assume that
apa; = a; for i = 0,1,.... We next define a sequence {b; : i = 0,1,...}
inductively

by =1, b1 = —aq, b, = —(an+b1an_1+-~-+bn_1a1) for n > 2.
Thus, for each n > 1, we see that b, € qgR and
an + brap—1 4 -+ + by_101 + bpag = —by (1 — ag) = —agbp(1 — ao).



4 M. T. KOSAN ET AL.

So, for g(x) =3 ;5 bzt € T, we have

g(z)f(z) = Z (ai +bra;—1+--+ biao)xi

>0
= ag + Z (CLZ‘ +biaj_1+ -+ biao)xi
i>1
=ag — Zaobi(l — ao)xi = ag — ao(z bi(l — ao)xi),
i>1 i>1

which is a nonzero idempotent of T'. So T is semipotent. m

COROLLARY 3. Rlzx] is never semipotent, and R[[z]] is semipotent iff R
18 semapotent.

A semipotent ring is called potent if idempotents lift modulo its Jacobson
radical. By [24], a semipotent ring need not be potent. One easily sees that
R/J(R) = R[[z]]/J(R][x]]) and that idempotents of R/J(R) lift to idempo-
tents of R iff idempotents of R[[z]]/J(R[[z]]) lift to idempotents of R[[z]].
Thus, it follows from [22, Proposition 1.4] that R is potent iff R[[z]] is potent
(this is observed in [19] and in [26]). The next corollary is clear.

COROLLARY 4. The ring [R;I|[x] is a potent ring iff = R and R is a
potent Ting.

COROLLARY 5. The ring [R;I|[x] is a clean ring iff I = R and R is a
clean ring.

Proof. This follows from Theorem [2| and [10, Proposition 5|. m

EXAMPLE 6. Let R be a semipotent ring which is semiprimitive or count-
able, and I a nonzero proper ideal of R. Then [R; I][x] is not isomorphic to
either of R[x] and R][[x]].

Proof. By Theorem[2] [R; I][z] is not semipotent but R[[x]] is semipotent,
so [R;I][x] 2 R[[z]]. If R is semiprimitive, then R[x] is semiprimitive by
a well-known result of Amitsur [I]. So [R;I][z] 2 Rx] as [R;I][z] is not
semiprimitive by Lemma (I} If R is countable, then R[z] is countable but
[R; I][x] is uncountable. So [R; I][x] # R[z]. =

EXAMPLE 7. Let R be a semipotent ring which is semiprimitive, and
R =1® K a direct sum of nonzero ideals I and K. Then [R;I][z] is never
isomorphic to a polynomial ring or a power series ring.

Proof. Since R = I ® K, it can be verified that [R; I][z] = I[[z]] ® K[x].
If [R; I][z] = T'[z] for a ring T', then there exists a central idempotent e
of T'[z] such that e(T'[x]) = I[[x]]. But it is easily seen that e € T' is central.
So e(T[z]) = (eT)[z], and hence (eT')[z] = I[[z]]. Since I is semipotent,
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I[[z]] is semipotent and (eT')[z] is not semipotent by Corollary [3| This is a
contradiction.

If [R; I][x] = T'[[z]] for aring T, then there exists a central idempotent e of
T[[z]] such that e(T'[[z]]) = K[x]. But it is easily seen that e € T'is central. So
e(T[[z]]) = (eT)[[x]], and hence (eT')[[z]] = K[x]. Since K is semiprimitive,
K|[x] is semiprimitive, but (eT')[[z]] is clearly not semiprimitive. This is a
contradiction. m

3. Noetherian rings and modules. A ring R is left Noetherian iff R[z]
is left Noetherian (by Hilbert’s Basis Theorem) iff R[[z]] is left Noetherian
(see Caruth [6]). It is natural to ask if R being left Noetherian also implies
that [R; I][x] is left Noetherian. We first mention here a relevant result due
to Varadarajan [28]. Let W be a left module over a ring T not necessarily
possessing an identity. Following [28], the module W is said to have property
(P)if {fwe W :Tw CU} =U for any submodule U of W. One easily sees
that W has property (P) iff w € Tw for all w € W, i.e., pW is an s-unital
module in the sense of Tominaga [25]. It is proved in [28] that W is a
Noetherian module which is s-unital iff 7,jW([z] is a Noetherian module
iff ppy -1 Wz, 27" is a Noetherian module iff 7y, W ([x]] is a Noetherian
module.

THEOREM 8. Let M be a module over R and let I<R be such that ;(IM)
is an s-unital module. The following are equivalent:

(1) rM is Noetherian.
(2) [M;IM][x] is a Noetherian module over [R;I][x].
(3) [M;IM][x, 2~ is a Noetherian module over [R; I][x,z~1].

Proof. (1)<(2). Write S = [R; I][z] and V = [M; IM][z].

Suppose (2) holds. If Ny € Ny C --- is a chain of submodules of M,
then [Ny; INy][z] C [Na; INo][z] C - - is a chain of submodules of gV and so
it is stable. This implies that the first chain is stable. So g M is Noetherian.

Suppose (1) holds. Then M/IM is a Noetherian module over R and
hence over R/I. By [28, Theorem A|, (%) [z] is a Noetherian module over

(%) [z]. As the lattice of S-submodules of #r— coincides with the lattice

(IM)][]
of ﬁ—submodules of W, which is isomorphic to the lattice of (%) [x]-
submodules of (%)[m], we see that m is a Noetherian S-module. So

to show that gV is a Noetherian module, it suffices to show that (IM)[[x]]
is a Noetherian S-module.

Let W C (IM)[[z]] be an S-submodule. Next we show that ¢W is
finitely generated. We introduce a notation: For v = Y5 vz’ € M([z]],
the coefficient v; is denoted as ¢;(v). For each i > 0, let W; = {z € M :
z = ¢;i(f) for some f € WNa'V}. Then Wy C Wp C --- is an ascend-
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ing chain of S-submodules of M, so there exists [ > 0 such that W; =
Wiy1 = ---. Moreover, for each 0 < ¢ <[, W; is' generated as an R-module
by {z; : j = 1,...,n(i)}. Take f;; € W N a'V such that ¢;(fij) = 2
for i = 0,...,0 and 5 = 1,...,n(i). We claim that gWW is generated by
{fiji=1,...5j=1,...,n(i)}.

Let f € W. Then co(f) € Wy, so co(f) = Z?LOB ap;zo; with all ag;
in R. Since the module ;(IM) is s-unital, zo; € I2g;, S0 2zo; = co;20; Where
coj € 1. Thus, ag;jz0; = (agjco;)z0; with agjco; € I. Hence we can assume that
co(f) = Z?g) ag;zo0j where all ag; € I. So f1:= f — Z;Liol apjfoj € WNaV.
As c1(f1) € W1, in the same manner, we have c1(f;) = Zn( 1) a1;21; where
all ajj € I. So fo := f1 — Z?ill) ay;fi; € W Nz2V. By induction, we can find
{aijel:0<i<l;1<j<n()}and{bjjel:i>1;1<j<n(l)}such
that

n(0) n(l—1)

9:=1r- Zaﬂjfoj’ - Z a_1;fi-1; € WNa'V
J=1 j=1
and
n(l)
9= Z bij fij — Z biyrefi; — - — Z binjxt fi; € W Nl TRty
Jj=1 j=1 j=1

for all £ > 0. Let g; = sz + b1+ o+ by a® + oo € I[[2]] for j =
1,...,n(l). Then g = EJ 1gjflJ and hence

n n(l-1)
f:ZCLOijj -+ Z a-1,jfi-1,5+9
=1

n(l

€Y Sfoj+- Z S+ > Sty

(1)<(3). Write S = [R; ][z, 2~ and V = [M; IM][z, z~1].

Suppose (3) holds. If Ny € Ny C --- is a chain of submodules of pM,
then [Ny; INy|[z,271] C [No; INs][z,271] C --- is a chain of submodules of
sV and so it is stable. This implies that the first chain is stable. So g M is
Noetherian.

Suppose (1) holds. Then M/IM is a Noetherian module over R and hence
over R/I. By [28, Theorem A|, (&)[z,27!] is a Noetherian module over

(]f)[x r7 Y. As the lattice of S-submodules of =] coincides with

\%
(IM)[[z,x

W, which is isomorphic to the

lattice of (£)[z, 2 1]-submodules of (&5)[z,271], we see that

the lattice of m submodules of

1%
(IM)[[z,z=1]]
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is a Noetherian S-module. So to show that gV is a Noetherian module, it
suffices to show that (IM)[[x,z7!]] is a Noetherian S-module.

Let W C (IM)[[x,z~!]] be an S-submodule. Next we show that gW is
finitely generated. For each k£ > 0, let W, = {z € M : z = v for some
D ik vt € W} Then each W}, is a submodule of gM, and Wy = W7, = ---
as x is invertible in S. By (1), we can assume that Wy is generated as an
R-module by {z1,...,2s}. For each 1 < j <'s, take h; = > .~ vz’ € W
such that vjo = z;. We claim that gV is generated by {hj 1 = 1,... ,s}.

Let f € W. There exists [ > 0 such that fy = 2!f = >0 vizt. So
vg € Wy, and vg = ijl aop;z; where all agj; € R. Since the module ;(IM) is
s-unital, as above we can assume all ap; are in I. So fi := fo— ijl agjh; =
viz + vhr? + .-+ € W. As v} € Wi, in the same manner, we have v} =
ijl a1jzj where all a1 € I. So fo := fi —:):Zj-:l ar;h; = viz? +ofad+- -
is in W. By induction, we can find {aij €l:0<1i;1<j<s} such that

S
froa1 = fn—a" Z anjh; = vi@lxnﬂ + vnn+)2:c"+2 +.-eW
j=1
for all n > 0. Let g; = agj + ajjo +--- € I[[z]] for j =1,...,s. Then

2 f = fo = (apih1 + agaha + - -+ + agshs)
+ x(a11h1 + aighy + - - - + aishy)
+ 2% (ag1hy + ashs + -+ + asghy) + - -
= g1h1 + g2ha + -+ + gshs.

So f = (z7lg1)h1 + (7 g2)ho + - + (27 'gs)hs. w
An ideal I of R is said to be left s-unital if a € Ia for all a € I (see [25]).

COROLLARY 9. Let I be a left s-unital ideal of R. Then R is left Noethe-
rian iff [R; I)[z] is left Noetherian iff [R; I|[x,x~1] is left Noetherian.

COROLLARY 10. Let R be a countable ring and I an ideal of R. Then:

(1) [R;I][x] is left Noetherian iff R is left Noetherian and I is left s-
unital.

(2) [R;I][x, 271 is left Noetherian iff R is left Noetherian and I is left
s-unital.

Proof. (1) The sufficiency is by Corollary |§|

Suppose that S := [R; I][z] is left Noetherian. For a € I, let A = (Ra)[[z]]
and B = (Ia)[[z]]. Then A, B are left ideals of S. Since S' is left Noetherian,
s(A/B) is Noetherian. Since I[[z]]- A C B, we see that A/B is a left Noethe-

rian module over I[i - That is, (52)[[z]] is a left Noetherian module over
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(?)[x] Hence there exist f1,..., fn € (%‘)[[x]} such that

(B = (Do svn (D

If a ¢ Ia, then Ra/Ia has a cardinality > 2, so (£2)[[z]] is not countable.
But since R is countable, R/I is countable and so is (%) [x]. Consequently,
fie (B)[z] + -+ fo - (%)[2] is countable, a contradiction. So a € Ia.

(2) The proof is similar to the proof of (1). =

QUESTION 11. [s it true that [R; I][z] (resp. [R; I][x,271]) is left Noethe-
rian iff R is left Noetherian and I is left s-unital?

COROLLARY 12. A module M is Noetherian iff gy -1y M|[z,27"]] is
Noetherian.

EXAMPLE 13. Let R = Zyn where p is a prime and n > 1 and I an ideal
of R. Then [R;I][x] (resp. [R; I|[x,x71]) is left Noetherian iff I =0 or R.

EXAMPLE 14. Let I be an ideal of Z.. Then [Z; I|[x] (resp. [Z;1][x, z~])
1s left Noetherian iff I = 0 or Z.

EXAMPLE 15. Let V be a left Noetherian ring with o left identity, and let
R =1(Z,V) be the ideal extension of Z by V. That is, (R,+) = Z &V with
multiplication defined by (m,v)(n,w) = (mn,mw+nv+ovw). Let  =0dV
(an ideal of R). Then [R;I|[z] and [R;I][x, ™ are left Noetherian rings.

Proof. As R/I = Z is Noetherian, (R/I)r is Noetherian. As the lattice
of submodules of Ii is isomorphic to the lattice of left ideals of V', rI is
Noetherian by the assumption on V. Hence R is a left Noetherian ring.
Since V' has a left identity, I is a left s-unital ideal of R. So [R;I][z] and
[R; I)[z, '] are left Noetherian by Corollary @ .

4. Quasi-duo rings. Following Yu [32], a ring is called left quasi-duo if
every maximal left ideal is an ideal. Every factor ring of a left quasi-duo ring
is again left quasi-duo (see [32]). In |15, Theorem 3.2], a characterization of a
left quasi-duo ring is obtained: A ring R is left quasi-duo iff Ra+ R(ab—1) =
R for all a,b € R. It is easy to see that, for an ideal K of R with K C J(R),
R is left quasi-duo iff so is R/K. Hence R is left quasi-duo iff so is R[[z]].
In [18], the authors proved that R[z] is left quasi-duo iff J(R[z]) = N(R)[z]
and R/N(R) is commutative, where N(R) denotes the nil radical of R. This
result can be used to prove

THEOREM 16. Let I<R and R = R/I. The following are equivalent:
(1) [R;I][x] is left quasi-duo.

(2) R and R[z] are left quasi-duo. -
(3) R is left quasi-duo, J(R[z]) = N(R)[z] and R/N(R) is commutative.
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Proof. (1)=(2). Let S = [R;I][z]. Then R = S/Sz and R[z] = S/I|[[z]].
So (1) clearly implies (2).

(2)=(1). By [18, Lemma 3.2|, (2) implies that R[z|/I[x]z is left quasi-
duo. But S/I[[z]]z = (R[z] + I[[z]]z)/I[[z]]lz = R[z]/(R[z] N I[[z]]z) =
Rlz]/I[x]z, so S/I[[z]]x is left quasi-duo. Hence S is left quasi-duo, because
I[[z]]z C J(S) by Lemmall]

(2)<(3). This is by [18, Corollary 4.3]. =

COROLLARY 17. The ring [R; J(R)][z] is left quasi-duo iff R/J(R) is

commutative.

In [9], the authors proved that the transpose of every invertible matrix
over R is invertible exactly when R/J(R) is commutative.

Let 0; denote the intersection of all essential maximal left ideals of R.
Then ¢; is an ideal of R, and §;/S; = J(R/S;) where S; denotes the left socle
of R (see [33]). Hence J(R/d;) = 0.

COROLLARY 18. [R;d][z] is left quasi-duo iff R is left quasi-duo and
R/é; is commutative.

5. Principal left ideal rings. Following Goldie [§], a ring R is called
a principal left ideal ring (pli-ring) if every left ideal is principal. A principal
right ideal ring (pri-ring) is defined similarly. In [I3], Jategaonkar proved
that a left skew polynomial ring R[x;¢] is a prime pli-ring if R is a prime
pli-ring and ¢ : Q — R is a monomorphism where @ is the simple Artinian
left quotient ring of R. So a polynomial ring over a simple Artinian ring is
a pli-ring. Jategaonkar also commented that this result and its proof can
be adapted to left skew power series rings. In [27], Tuganbaev characterized
the right skew polynomial rings R[z, ] which are pri-rings (where ¢ is an
automorphism), and the right skew power series rings R|[x, ¢]| which are
pli-rings (where ¢ is injective) or pri-rings (where ¢ is an automorphism).
With ¢ = 1g, these results state that R[z] is a pli-ring iff R[[z]] is a pli-ring
iff R is semisimple Artinian.

THEOREM 19. Let I < R. The following are equivalent:

(1) [R;I][x] is a pri-ring.

(2) [R;I][x] is a pli-ring.

(3) R is a semisimple Artinian ring.

Proof. (1)=(3). Let S = [R;I][x]. Since a factor ring of a pri-ring is
again a pri-ring, S/2%S is a pri-ring by (1). So R[x]/x?R[x] & S/2%S is a
pri-ring. Thus R is semisimple Artinian by [27, Proposition 2.3].

(3)=(1). If 1 = ey + --+ + e, where ey,...,e, are orthogonal central
idempotents of R, then [R;I][z] = [e1R;e1l][z] @ - @ [enR; en]][x]. So we
may assume that R is simple Artinian. If I = 0, then [R; I][x] = R[z] is a
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pri-ring by [I3] Theorem 3.1, p. 54|. If I = R, then [R;I][z] = R|[[z]] is a
pri-ring by [31, Theorem 4.5|. =

ExAMPLE 20. Let I be a nonzero proper ideal of a semisimple Artinian
ring R. Then [R;I][z] is a pli-ring and a pri-ring by Theorem but it is
not isomorphic to a polynomial ring or a power series ring by Example [7]

6. Hopfian modules. Following Hiremath [12], a module M over R is
called Hopfian if every surjective endomorphism of M is an automorphism.
One easily sees that the module pR is Hopfian iff R is a Dedekind finite
ring, i.e., ab = 1 in R always implies ba = 1. Motivated by Theorem 2.1 in
Varadarajan [29], we prove the following

THEOREM 21. Let I < R. Then a module gM is Hopfian iff [M,IM][z]
is a Hopfian module over [R, I][x].

Proof. Let S = [R;I][z] and V = [M; IM][z].

(=) Let p : V.= M be given by p(> ,5oviz’) = vo. Then p is an
R-homomorphism. Suppose that ¢ is a surjective endomorphism of gV'. For
any wo € M, there exists v = Y, viz’ € V such that ¢(v) = wg. Thus,

wo = (o) = p((v)) = p(p(w0) + 2D visra') ) = ple(w)).
i>0
This shows that pp|,, : M — M is surjective, so it is injective as pM is
Hopfian.

Next we show that ¢ is injective. Assume that Ker(y) # 0. Then there
exists v =}, viz' € V with vy # 0 such that p(v) = 0. Thus, 0 = p(v) =
o(x" ZZ-ZO Vg it?) = xkgo(zizo'vkﬂmi); this shows that (p(zizq Vpgirt) = 0.
So 0 = p(0) = p(@(zizo vp4it')) = p(p(vk) + $80(Z¢21 Vg+iT")) = pp(vg).
Hence v, = 0 as py|,, is injective. This contradiction shows that ¢ is injec-
tive.

(«) If f is a surjective endomorphism of gM, then f(IM) C IM and
hence f : V = V, > vz’ — >~ f(vi)x' is a surjective S-homomor-
phism, so it is injective by hypothesis. It follows that f is injective. m

COROLLARY 22 ([29]). A module rM is Hopfian iff g, M|z] is Hopfian
iff R M [[x]] is Hopfian.

The question of Varadarajan [29] whether prM Hopfian implies that
Rle,e- Mz, 2~ '] is Hopfian remains open. By Varadarajan [30], Corollary
holds true if R is a ring not necessarily possessing an identity and M is a
left s-unital R-module.

7. Quasi-Baer rings and modules. Following Clark [7], a ring R is
called quasi-Baer if for any ideal K of R, 13(K) = Re where ¢2 = e € R. The
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definition of quasi-Baer rings is left-right symmetric by [7]. Following [16],
a module M over R is called quasi-Baer if for any submodule N of M,
1g(N) = Re for some ¢? = ¢ € R. Thus R is a quasi-Baer ring iff xR is a
quasi-Baer module. The following theorem is motivated by [5, Theorem 1.8]
and [16, Corollary 2.14].

THEOREM 23. Let I < R. The following are equivalent:

(1) M is a quasi-Baer module over R.
(2) [M;IM][x] is a quasi-Baer module over [R; I][x].
(3) [M;IM][x,z7Y] is a quasi-Baer module over [R; I|[z,z~1].

Proof. (1)=(2). Let S = [R;I][z] and V = [M;IM][z]. Suppose that
rM is a quasi-Baer module and let W be an S-submodule of V. We show
that 1g(W) is generated by an idempotent as a left ideal of S. This is clearly
true if W = 0. Assume that W # 0 and let

Wy ={0# w € M : w = the coefficient of the lowest degree term
of some v(z) € W} U {0}.
Then Wy is a submodule of M, so 1z(Wy) = Re where e = e € R. For any
v(x) =vg+nz+ vk 4+ - € W, we have vg € Wy, so evg = 0 holds.
If ev; = 0 for 0 < i < k, then ev(z) = evp 12! + evp 0?2 + - € W,
and so evgi1 € Wy. Hence eviy1 = e(evg41) = 0. By induction, we have
ev; = 0 for all i > 0. So ev(x) = 0 and hence Se C 1g(WW). To show that
Se 2 15(W), let f(x) = ap + a1z + --- € 1lg(W). It suffices to show that
a; = aze for all 7 > 0 (this gives f(z) = f(z)e). For any wy € Wy, there
exists w(r) = woz® + wix** + ... € W where k > 0. Then f(x)w(z) = 0,
which implies that agwg = 0. Since wy is an arbitrary element of Wy, one
finds that ag € 1r(Wy) = Re; so ag = age. Let us assume that a; = ae
for all 0 < i < k. Thus f(z) = (ap + a17 + - - - + aga®)e + fi(z)z**! where
f1(z) = agpy1+apiox+---. So fi(z)z*+! and hence fi(z) is in 1g(WW). From
fi(x)w(x) = 0, it follows that aprqiwe = 0. Hence agq € 1g(Wy) = Re, so
ak+1 = agr1€. An induction shows that a; = a;e for all ¢ > 0.
(2)=-(1). Suppose that V := [M;MI][z] is a quasi-Baer module over
S := [R; I][z]. To show that rM is quasi-Baer, let N be a submodule of M.

Then U := [N;IN][z] is an S-submodule of V' and therefore 15(U) = Se(x)
where e(z)? = e(x) € S. Let ey be the constant term of e(z). Then €3 = e
and egN = 0 (as e(z )U 0). So Reg C 1z(N). For any a € 1g(N), aU = 0.
Thus a € lg(U) = Se(x), so a = ae(x). This gives a = aey € Rep. So

( Reo

) =
(1)=(3). Same as the proof of (1)=-(2).
( )=(1). Suppose that V := [M; MI][x, 2~ '] is a quasi-Baer module over
= [R;I][x,z~ ] To show that pM is quasi-Baer, let N be a submodule
of M Then U := [N;IN][z,27!] is an S-submodule of V and therefore
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15(U) = Se(z) where e(x)? = e(x) € S. Write e(z) = > ,»_;€;x° where
e; € 1g(N). For any a € 1g(N), a € 1g(U) = Se(zx), so a = ae(z). This
shows that a = aeg. Consequently, 6(2) =¢p and 1g(N) = Reg. m

COROLLARY 24 ([16]). A module rM is quasi-Baer iff g, M|[z] is quasi-
Baer iff payMl[z]] is quasi-Baer iff R[x,x_qM[x,x_l} is quasi-Baer iff
Rlje,e— 1 M [, 27 Y] is quasi-Baer.

COROLLARY 25. Let I < R. Then R is quasi-Baer iff [R;I][x] is quasi-
Baer iff [R; I|[x,x71] is quasi-Baer.

COROLLARY 26 ([5]). A ring R is quasi-Baer iff R[x] is quasi-Baer iff
R[[x]] is quasi-Baer iff Rlx,z~!] is quasi-Baer iff R[[z,z~]] is quasi-Baer.

EXAMPLE 27.

(1) Let R be any countable quasi-Baer ring which is semipotent, and I
a nonzero proper ideal of R. Then [R;I][x] is a quasi-Baer ring by
Corollary 25|, but it is not isomorphic to either of R[z] and R[[z]] by
Ezample [0]

(2) Let R be a primitive potent ring, and I a nonzero proper ideal of R.
Then R is a quasi-Baer ring by [3, Lemma 4.2|. So [R; I|[z] is quasi-
Baer by C’omllary but it is not isomorphic to either of R[x] and
R[[z]] by Example [6]

8. Principally quasi-Baer rings and modules. Following Birken-
meier, Kim and Park [4], a ring R is called left principally quasi-Baer (or
simply left p.q.-Baer) if the left annihilator of a principal left ideal is gener-
ated as a left ideal by an idempotent. Following Bager and Harmanci [2], a
module M over R is called p.q.-Baer if for any cyclic submodule N of M,
1p(N) = Re for some e? = e € R. These rings and modules are extensions
of quasi-Baer rings and modules.

LEMMA 28. Let f(z) =Y ;5 ;aix’ € Rl[z,z7 Y]] and v(z) = > .~ via!
€ M|z, 27 1Y]], where I,k > 0, be such that, for j = —k,—(k —1),..., the
left annihilator of Rv; in R is generated as a left ideal by an idempotent. If
f(x)Rv(xz) =0 then a;Rv; =0 for all i and j.

Proof. From f(z)Rv(z) = 0 it follows that (z'f(z))R(z*v(z)) = 0. Thus
we can assume that [ = k = 0. Write 1g(Rvg) = Re where e? = e € R. From
f(z)Ru(xz) = 0, it follows that agRvg = 0, so ag € lgr(Rvp) and hence
agp = age. Assume that a;Rvg = 0 for ¢ = 0,1,...,n. Thus, a; = ase for
i=0,1,...,n. Since f(z)Rv(z) =0, we have

apTVp41 + @170, + - - - + ATV + app17v9 = 0
for all » € R. Replacing r by er in this formula yields agrv,y+1 + a1rv, +
<-4+ aprv; = 0 (as eRvyg = 0), and hence a,17v9 = 0 for all » € R. So
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an+1Rvg = 0. By the induction principle, a;Rvg = 0 for all ¢ = 0,1,....
Hence f(z)Rvyp = 0. Assume that f(z)Rv; =0 for j =0,1,...,m — 1. It
follows from f(z)Rv(z) = 0 that f(z)R(> ;5o vm+iz’) = 0. As above we
have f(x)Rvy, = 0. So f(z)Rv; =0 for all j by induction. =

The next lemma is implicitly contained in the proof of [5, Lemma 1.7].

LEMMA 29 ([5]). Let e(z)? = e(z) = Y2 e’ € R[[w,z7!]] where
1 >0. If e(z)ae(z) = e(x)a for all a € R, then et = e.

THEOREM 30. Let I < R. The following are equivalent:

(1) [M;IM][x] is a p.q.-Baer module over [R;I][z].

(2) [M;IM][x,27Y] is a p.q.-Baer module over [R; I][z,z~].

(3) For any sequence {vo,v1,...} of elements of M with almost all v;
in IM, 1(>",~o Rvi) = Re for some e* = e € R.

(4) grM 1is a p.q.-Baer module, and for any sequence {vg,v1,...} of ele-
ments of IM, 1g(>°;~q Rv;) = Re for some e = e € R.

Proof. Let S = [R;I|[x,v '] and V = [M; IM][z,z1].

(2)=(3). Let w € M. By (2), ls(Sw) = Se(z) where e(z) = Y ;5 _; e;a°
(I > 0) is an idempotent of S. As Se(x) is an ideal of S, e(z)S C Se(z),
so e(xr)a = e(x)ae(x) for all a € R. Then €3 = ey by Lemma , and it
follows that egRw = 0, so lgr(Rw) 2 Reg. If a € lg(Rw), then a € 1g(Sw),
so a = ae(x); hence a = aeg. So 1gr(Rw) = Reg. This shows that rpM is a
p.q.-Baer module.

Let v; € M for i =0,1,... with v; € IM for almost all i. Then v(z) :=
Yo vizt € V, so 1g(Sv(x)) = Sg(x) where g(z) = > ;5 giz* (I > 0) is an
idempotent of S. By Lemma , gg = go. By Lemma gilRv; = 0 for all 4
and j. Thus 1r(>°,~o Rvi) 2 Rgo. If a € 1g(3_;~o Rv;i), then a € 1g(Sv(x)).
Thus a = ag(x), so a = agg € Rgo.

(3)=>(4). This is clear.

(4)=(2). Let v(z) = Y ;o ;viz® € V where [ > 0. Then there exists
n > —I such that v; € IM for all i > n. By (4), there exist idempotents

€_ly---y€n_1,€y of R such that 1g(Rv;) = Re; for i = —I,...,n — 1 and
1r(> ">, Rvi) = Re,. Since Re; is an ideal of R (for i = —I,...,n), we have
e;iR C Re;, i.e., e;a = e;ae; for all a € R. It follows that e := e_;---e, is

an idempotent and (), _; Re; C Re. Moreover, for any — < i < n, we have
e = ee; € Re;. Hence ();__; Re; = Re. Thus,

lR( 3 Rv,-) _ IR(RM)Q...mR(Rvn_l)mR(ZRw) - (n] Re; = Re.

i>—1 i>n i=—1

Hence lg(Sv(z)) 2 Se. If h(z) = > ;s hixt € 1g(Sv(x)) (s > 0), then



14 M. T. KOSAN ET AL.

h; € IR(ZiZ—l Rv;) for all ¢ > 0 by Lemma So h; = hje and hence
h(z) = h(z)e € Se. So 1g(Sv(x)) = Se.

(1)<(3)<(4). The proof is similar to the proof of the equivalences (2)<
(3)<(4), even without the use of Lemma n

CORrROLLARY 31 ([2]). The module gri;)M(x] is p.q.-Baer iff pM is p.q.-
Baer.

CorOLLARY 32 ([I1). The module g, M[[z]] is p.q.-Baer iff the left
annthilator in R of any countably generated submodule of M is generated as
a left ideal by an idempotent.

COROLLARY 33. The module R[%mq]M[:c,x*l] is p.q.-Baer iff gM is
p.q.-Baer.

COROLLARY 34. The module R[[xw—l”M[[l',lL'_l]] is p.q.-Baer iff the left
annthilator in R of any countably generated submodule of M is generated as
a left ideal by an idempotent.

COROLLARY 35. Let I < R. The following are equivalent:

(1) [R;I][x] is left p.q.-Baer.

(2) [R; ][z, 271 is left p.q.-Baer.

(3) For any sequence {ag, a1, ...} of elements of R with almost all a; in I,
1r(Y";>0 Ra;) = Re for some e? = e € R.

(4) R is left p.q.-Baer, and for any sequence {ag, a1, ...} of elements of I,
1(>":50 Rai) = Re for some e? = e € R.

COROLLARY 36 ([]). R[z] is left p.q.-Baer if and only if R is left p.q.-
Baer.

COROLLARY 37 ([20). R[x,xz7!] is left p.q.-Baer if and only if R is left
p.q.-Baer.

COROLLARY 38 (|21]). Rl[[z]] is left p.q.-Baer if and only if the left an-
nihilator of any countably generated left ideal of R is generated as a left ideal
by an idempotent.

In [20], Liu discussed the question of when the ring R[[z,z~]] is left
p.-q.-Baer. An idempotent e of R is called right semi-central if er = ere for
all r € R. Following [20], a countable set {e; : i > 0} of idempotents of R
is said to have a generalized join if there exists e2 = e € R such that (1)
(1 —e)Re; = 0 for all i and (2) (1 — f)Re = 0 for any f? = f € R with
(1 — f)Re; = 0 for all i. Liu [20, Theorem 4] proved: If R[[z,z~]] is left
p-q.-Baer, then any countable set of idempotents of R has a generalized join;
the converse holds if every right semicentral idempotent of R is central. It
was noticed in [20, Example 6] that for a ring R for which R[[z,x~1]] is left
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p.q.-Baer, right semicentral idempotents need not be central. Corollary [35]
has an immediate consequence.

COROLLARY 39. R[[z,x7 Y]] is left p.q.-Baer if and only if the left anni-
hilator of any countably generated left ideal of R is generated as a left ideal
by an idempotent.

EXAMPLE 40. Let F be a field and Q = [[;2, Ri a direct product of rings
where R; = F for all i. Let R = (@, Ri,1q) be the subring of Q generated
by @, Ri and 1g. Then soc(R) := @, R; is the socle of R. Let I be an ideal
of R. Then:

(1) [R;I][z] is left p.q.-Baer iff I is a principal ideal of R contained in
soc(R).

(2) For any nonzero principal ideal I of R contained in soc(R), [R; I][z]
is not isomorphic to any polynomial ring or any power series ring.

Proof. (1)(=) Assume that I Z soc(R). Then there exist k € Z and
y € soc(R) such that k1g # 0 and k1g+y € I. Thus, 1g+2 € I for some z €
soc(R). We can assume that z € @;_; R;. Write ¢; = 1p,. Then, for i > s,
ei = ei(lg+2) € I. But 1r(33%, Resyai) = (Bi1] Rei) & (B, Restai),
which is not generated by an idempotent. This is a contradiction by Corollary
So I is contained in soc(R). If I is not principal, then it is not finitely
generated (as R is von Neumann regular), and so e; € I for infinitely many i.
But this gives a contradiction by arguing as above. Hence I is principal.

(1)(«) Since R is a commutative regular ring, it is left p.q.-Baer. The
hypothesis shows that I = €,.; R; where L is a finite subset of N. Let
Z be any countable subset of I, and let S = {i € L : 32 € Z such that
the projection of z onto R; is nonzero}. Then 1g(} .., Rz) = Re where
e = 1g — ) ;cgei is an idempotent of R. So [R;I][x] is left p.q.-Baer by
Corollary

(2) Since R is von Neumann regular, [R; [][x] is not isomorphic to any
polynomial ring or power series ring by Example[7] =
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