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Abstract. Let R[x] and R[[x]] respectively denote the ring of polynomials and the
ring of power series in one indeterminate x over a ring R. For an ideal I of R, denote by
[R; I][x] the following subring of R[[x]]:

[R; I][x] :=
{∑

i≥0

rix
i ∈ R[[x]] : ∃0 ≤ n ∈ Z such that ri ∈ I, ∀i ≥ n

}
.

The polynomial and power series rings over R are extreme cases where I = 0 or R, but
there are ideals I such that neither R[x] nor R[[x]] is isomorphic to [R; I][x]. The results
characterizing polynomial rings or power series rings with a certain ring property suggest
a similar study to be carried out for the ring [R; I][x]. In this paper, we characterize
when the ring [R; I][x] is semipotent, left Noetherian, left quasi-duo, principal left ideal,
quasi-Baer, or left p.q.-Baer. New examples of these rings can be given by specializing to
some particular ideals I, and some known results on polynomial rings and power series
rings are corollaries of our formulations upon letting I = 0 or R.

1. Definitions and notations. Throughout, R is a ring with an iden-
tity unless specified otherwise, M is a left unitary R-module and I / R is
an ideal. We write J(R) for the Jacobson radical of the ring R. Let R[x],
R[[x]], R[x, x−1] and R[[x, x−1]] respectively denote the ring of polynomials,
the ring of power series, the ring of Laurent polynomials and the ring of Lau-
rent series in one indeterminate x over R. We denote by [R; I][x] the subring
R[x] + I[[x]] of R[[x]] where I[[x]] is the set of power series all of whose coef-
ficients belong to I, and by [R; I][x, x−1] the subring R[x, x−1] + I[[x, x−1]]
of R[[x, x−1]] where I[[x, x−1]] is the set of Laurent series all of whose coef-
ficients belong to I (see [17]). That is,

[R; I][x] =
{∑

i≥0
rix

i ∈ R[[x]] : ∃0 ≤ n ∈ Z such that ri ∈ I, ∀i ≥ n
}
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and

[R; I][x, x−1] =
{ ∑

i≥−s
rix

i ∈ R[[x, x−1]] :

s ≥ 0, ∃−s ≤ n ∈ Z such that ri ∈ I, ∀i ≥ n
}
.

Let M [x], M [[x]], M [x, x−1] and M [[x, x−1]] respectively denote the module
of formal polynomials, of formal power series, of formal Laurent polynomials
and of formal Laurent series in x with coefficients from M . In a natural way,
M [x], M [[x]], M [x, x−1] and M [[x, x−1]] are left modules over R[x], R[[x]],
R[x, x−1] and R[[x, x−1]], respectively.

For a submodule N of M , define

[M ;N ][x] =
{∑

i≥0
vix

i ∈M [[x]] : ∃0 ≤ n ∈ Z such that vi ∈ N, ∀i ≥ n
}

and

[M ;N ][x, x−1] =
{ ∑

i≥−s
vix

i ∈M [[x, x−1]] :

s ≥ 0, ∃−s ≤ n ∈ Z such that vi ∈ N, ∀i ≥ n
}
.

It is easy to see that IM ⊆ N iff [M ;N ][x] is a left [R; I][x]-module un-
der usual addition and multiplication of power series, and that IM ⊆ N iff
[M ;N ][x, x−1] is a left [R; I][x, x−1]-module under usual addition and multi-
plication of Laurent series (see [17]). In particular, [M ; IM ][x] is a left mod-
ule over [R; I][x], and [M ; IM ][x, x−1] is a left module over [R; I][x, x−1].
Moreover, when I = 0 we have [R; I][x] = R[x], [M ; IM ][x] = M [x],
[R; I][x, x−1] = R[x, x−1] and [M ; IM ][x, x−1] = M [x, x−1]; when I = R
we have [R; I][x] = R[[x]], [M ; IM ][x] = M [[x]], [R; I][x, x−1] = R[[x, x−1]]
and [M ; IM ][x, x−1] = M [[x, x−1]].

2. Semipotent rings. A ring is called clean if every element is the sum
of a unit and an idempotent. It is known that a polynomial ring is never
clean (see [23, Proposition 13]) and that R[[x]] is clean iff R is clean (see [10,
Proposition 5]). It is then natural to ask: When is the ring [R; I][x] clean?
We answer this by considering a basic but weaker concept. A ring R is called
semipotent if every left (resp. right) ideal not contained in J(R) contains
a nonzero idempotent. Semipotent rings were named I0-rings by Nicholson
in [22]. It is easily seen that the quotient ring of a semipotent ring R modulo
an ideal contained in J(R) is again semipotent. The next lemma will be used
several times.

Lemma 1. Let S = [R; I][x]. The following hold:

(1) I[[x]] / S and S/I[[x]] ∼= (R/I)[x].
(2) J(S) ⊇ J(R) ∩ I + I[[x]]x.
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(3) If I ⊆ J(R), then J(S) = K[x] + I[[x]] where K/I / R/I is a nil
ideal. In particular, J([R; J(R)][x]) = J(R)[[x]].

Proof. (1) This is clear.
(2) We see that∆ := J(R)∩I+I[[x]]x is an ideal of S. Let

∑
i≥0 aix

i ∈ ∆.
Since ∆ ⊆ J(R[[x]]), there exists

∑
i≥0 bix

i ∈ R[[x]] such that(
1 +

∑
i≥0

aix
i
)∑

i≥0
bix

i = 1.

Thus, b0 = (1 + a0)
−1 and bn = −(1 + a0)

−1(a1bn−1 + · · ·+ anb0) ∈ I for all
n ≥ 1. So

∑
i≥0 bix

i ∈ [R; I][x]. This shows that ∆ ⊆ J(S).
(3) By a result of Amitsur [1], J((R/I)[x]) = (K/I)[x] where K/I is a

nil ideal of R/I. As (R/I)[x] ∼= R[x]/I[x] ∼= S/I[[x]], we have J
(
(R/I)[x]

) ∼=
J
(
R[x]/I[x]

) ∼= J
(
S/I[[x]]

)
. Hence J(S/I[[x]]) = (K[x]+I[[x]])/I[[x]]. Since

I ⊆ J(R), one sees that I[[x]] ⊆ J(S) by (2); so J(S/I[[x]]) = J(S)/I[[x]].
Hence J(S) = K[x] + I[[x]].

Theorem 2. The ring [R; I][x] is semipotent if and only if I = R and R
is semipotent.

Proof. (⇒) Let S := [R; I][x]. By Lemma 1, I[[x]]x is an ideal of S
contained in J(S). So S/I[[x]]x is a semipotent ring. Assume that I 6= R,
i.e., 1 /∈ I. Write α = α + I[[x]]x ∈ S/I[[x]]x for any α ∈ S. If 1̄ + x2

is a unit of S/I[[x]]x, then there exists f(x) =
∑

i≥0 fix
i ∈ S such that

(1 + x2)f(x) ∈ 1 + I[[x]]x. It follows that f0 = 1 and fn + fn+2 ∈ I for all
n ≥ 0. This shows that f2n /∈ I for all n ≥ 0, and this contradicts f(x) ∈ S.
So 1̄+x2 is not a unit of S/I[[x]]x, and hence x2 is not in the Jacobson radical
of S/I[[x]]x. Thus, f(x)x2 is a nonzero idempotent of S/I[[x]]x for some
f(x) ∈ S, but this is clearly impossible. Hence I = R, and so S = R[[x]].
To see that R is semipotent, let a ∈ R \ J(R). As J(S) = J(R) + xR[[x]],
a /∈ J(S). So g(x)a is a nonzero idempotent for some g(x) =

∑
i≥0 bix

i ∈ S.
It follows that b0a ∈ Ra is a nonzero idempotent. So R is semipotent.

(⇐) Let T = R[[x]], and let f(x) :=
∑

i≥0 aix
i ∈ T \ J(T ). We show

that Tf(x) contains a nonzero idempotent. Because J(T ) = J(R) + Tx,
a0 ∈ R\J(R). So, by hypothesis, there exists b ∈ R such that ba0 is a nonzero
idempotent. With f(x) replaced by bf(x), we can assume that a0 is a nonzero
idempotent of R. With f(x) replaced by a0f(x), we can further assume that
a0ai = ai for i = 0, 1, . . . . We next define a sequence {bi : i = 0, 1, . . .}
inductively

b0 = 1, b1 = −a1, bn = −(an + b1an−1 + · · ·+ bn−1a1) for n ≥ 2.

Thus, for each n ≥ 1, we see that bn ∈ a0R and

an + b1an−1 + · · ·+ bn−1a1 + bna0 = −bn(1− a0) = −a0bn(1− a0).



4 M. T. KOŞAN ET AL.

So, for g(x) :=
∑

i≥0 bix
i ∈ T , we have

g(x)f(x) =
∑
i≥0

(
ai + b1ai−1 + · · ·+ bia0

)
xi

= a0 +
∑
i≥1

(
ai + b1ai−1 + · · ·+ bia0

)
xi

= a0 −
∑
i≥1

a0bi(1− a0)xi = a0 − a0
(∑

i≥1
bi(1− a0)xi

)
,

which is a nonzero idempotent of T . So T is semipotent.

Corollary 3. R[x] is never semipotent, and R[[x]] is semipotent iff R
is semipotent.

A semipotent ring is called potent if idempotents lift modulo its Jacobson
radical. By [24], a semipotent ring need not be potent. One easily sees that
R/J(R) ∼= R[[x]]/J(R[[x]]) and that idempotents of R/J(R) lift to idempo-
tents of R iff idempotents of R[[x]]/J(R[[x]]) lift to idempotents of R[[x]].
Thus, it follows from [22, Proposition 1.4] that R is potent iff R[[x]] is potent
(this is observed in [19] and in [26]). The next corollary is clear.

Corollary 4. The ring [R; I][x] is a potent ring iff I = R and R is a
potent ring.

Corollary 5. The ring [R; I][x] is a clean ring iff I = R and R is a
clean ring.

Proof. This follows from Theorem 2 and [10, Proposition 5].

Example 6. Let R be a semipotent ring which is semiprimitive or count-
able, and I a nonzero proper ideal of R. Then [R; I][x] is not isomorphic to
either of R[x] and R[[x]].

Proof. By Theorem 2, [R; I][x] is not semipotent but R[[x]] is semipotent,
so [R; I][x] 6∼= R[[x]]. If R is semiprimitive, then R[x] is semiprimitive by
a well-known result of Amitsur [1]. So [R; I][x] 6∼= R[x] as [R; I][x] is not
semiprimitive by Lemma 1. If R is countable, then R[x] is countable but
[R; I][x] is uncountable. So [R; I][x] 6∼= R[x].

Example 7. Let R be a semipotent ring which is semiprimitive, and
R = I ⊕K a direct sum of nonzero ideals I and K. Then [R; I][x] is never
isomorphic to a polynomial ring or a power series ring.

Proof. Since R = I ⊕K, it can be verified that [R; I][x] ∼= I[[x]]⊕K[x].
If [R; I][x] ∼= T [x] for a ring T , then there exists a central idempotent e

of T [x] such that e(T [x]) ∼= I[[x]]. But it is easily seen that e ∈ T is central.
So e(T [x]) = (eT )[x], and hence (eT )[x] ∼= I[[x]]. Since I is semipotent,
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I[[x]] is semipotent and (eT )[x] is not semipotent by Corollary 3. This is a
contradiction.

If [R; I][x] ∼= T [[x]] for a ring T , then there exists a central idempotent e of
T [[x]] such that e(T [[x]]) ∼= K[x]. But it is easily seen that e ∈ T is central. So
e(T [[x]]) = (eT )[[x]], and hence (eT )[[x]] ∼= K[x]. Since K is semiprimitive,
K[x] is semiprimitive, but (eT )[[x]] is clearly not semiprimitive. This is a
contradiction.

3. Noetherian rings and modules. A ring R is left Noetherian iff R[x]
is left Noetherian (by Hilbert’s Basis Theorem) iff R[[x]] is left Noetherian
(see Caruth [6]). It is natural to ask if R being left Noetherian also implies
that [R; I][x] is left Noetherian. We first mention here a relevant result due
to Varadarajan [28]. Let W be a left module over a ring T not necessarily
possessing an identity. Following [28], the module TW is said to have property
(P ) if {w ∈ W : Tw ⊆ U} = U for any submodule U of W . One easily sees
that TW has property (P ) iff w ∈ Tw for all w ∈W , i.e., TW is an s-unital
module in the sense of Tominaga [25]. It is proved in [28] that TW is a
Noetherian module which is s-unital iff T [x]W [x] is a Noetherian module
iff T [x,x−1]W [x, x−1] is a Noetherian module iff T [[x]]W [[x]] is a Noetherian
module.

Theorem 8. Let M be a module over R and let I /R be such that I(IM)
is an s-unital module. The following are equivalent:

(1) RM is Noetherian.
(2) [M ; IM ][x] is a Noetherian module over [R; I][x].
(3) [M ; IM ][x, x−1] is a Noetherian module over [R; I][x, x−1].

Proof. (1)⇔(2). Write S = [R; I][x] and V = [M ; IM ][x].
Suppose (2) holds. If N1 ⊆ N2 ⊆ · · · is a chain of submodules of RM ,

then [N1; IN1][x] ⊆ [N2; IN2][x] ⊆ · · · is a chain of submodules of SV and so
it is stable. This implies that the first chain is stable. So RM is Noetherian.

Suppose (1) holds. Then M/IM is a Noetherian module over R and
hence over R/I. By [28, Theorem A],

(
M
IM

)
[x] is a Noetherian module over(

R
I

)
[x]. As the lattice of S-submodules of V

(IM)[[x]] coincides with the lattice
of S

I[[x]] -submodules of V
(IM)[[x]] , which is isomorphic to the lattice of

(
R
I

)
[x]-

submodules of
(

M
IM

)
[x], we see that V

(IM)[[x]] is a Noetherian S-module. So
to show that SV is a Noetherian module, it suffices to show that (IM)[[x]]
is a Noetherian S-module.

Let W ⊆ (IM)[[x]] be an S-submodule. Next we show that SW is
finitely generated. We introduce a notation: For v =

∑
i≥0 vix

i ∈ M [[x]],
the coefficient vi is denoted as ci(v). For each i ≥ 0, let Wi = {z ∈ M :
z = ci(f) for some f ∈ W ∩ xiV }. Then W0 ⊆ W1 ⊆ · · · is an ascend-
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ing chain of S-submodules of M , so there exists l ≥ 0 such that Wl =
Wl+1 = · · · . Moreover, for each 0 ≤ i ≤ l, Wi is generated as an R-module
by {zij : j = 1, . . . , n(i)}. Take fij ∈ W ∩ xiV such that ci(fij) = zij
for i = 0, . . . , l and j = 1, . . . , n(i). We claim that SW is generated by{
fij : i = 1, . . . , l; j = 1, . . . , n(i)

}
.

Let f ∈ W . Then c0(f) ∈ W0, so c0(f) =
∑n(0)

j=1 a0jz0j with all a0j
in R. Since the module I(IM) is s-unital, z0j ∈ Iz0j , so z0j = c0jz0j where
c0j∈I. Thus, a0jz0j = (a0jc0j)z0j with a0jc0j ∈ I. Hence we can assume that
c0(f) =

∑n(0)
j=1 a0jz0j where all a0j ∈ I. So f1 := f −

∑n(0)
j=1 a0jf0j ∈W ∩xV .

As c1(f1) ∈ W1, in the same manner, we have c1(f1) =
∑n(1)

j=1 a1jz1j where

all a1j ∈ I. So f2 := f1−
∑n(1)

j=1 a1jf1j ∈W ∩x2V . By induction, we can find
{aij ∈ I : 0 ≤ i < l; 1 ≤ j ≤ n(i)} and {bij ∈ I : i ≥ l; 1 ≤ j ≤ n(l)} such
that

g := f −
n(0)∑
j=1

a0jf0j − · · · −
n(l−1)∑
j=1

al−1,jfl−1,j ∈W ∩ xlV

and

g −
n(l)∑
j=1

bljflj −
n(l)∑
j=1

bl+1,jxflj − · · · −
n(l)∑
j=1

bl+k,jx
kflj ∈W ∩ xl+k+1V

for all k ≥ 0. Let gj = blj + bl+1,jx + · · · + bl+k,jx
k + · · · ∈ I[[x]] for j =

1, . . . , n(l). Then g =
∑n(l)

j=1 gjflj and hence

f =

n(0)∑
j=1

a0jf0j + · · ·+
n(l−1)∑
j=1

al−1,jfl−1,j + g

∈
n(0)∑
j=1

Sf0j + · · ·+
n(l−1)∑
j=1

Sfl−1,j +

n(l)∑
j=1

Sflj .

(1)⇔(3). Write S = [R; I][x, x−1] and V = [M ; IM ][x, x−1].
Suppose (3) holds. If N1 ⊆ N2 ⊆ · · · is a chain of submodules of RM ,

then [N1; IN1][x, x
−1] ⊆ [N2; IN2][x, x

−1] ⊆ · · · is a chain of submodules of
SV and so it is stable. This implies that the first chain is stable. So RM is
Noetherian.

Suppose (1) holds. ThenM/IM is a Noetherian module over R and hence
over R/I. By [28, Theorem A],

(
M
IM

)
[x, x−1] is a Noetherian module over(

R
I

)
[x, x−1]. As the lattice of S-submodules of V

(IM)[[x,x−1]]
coincides with

the lattice of S
I[[x,x−1]]

-submodules of V
(IM)[[x,x−1]]

, which is isomorphic to the
lattice of

(
R
I

)
[x, x−1]-submodules of

(
M
IM

)
[x, x−1], we see that V

(IM)[[x,x−1]]
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is a Noetherian S-module. So to show that SV is a Noetherian module, it
suffices to show that (IM)[[x, x−1]] is a Noetherian S-module.

Let W ⊆ (IM)[[x, x−1]] be an S-submodule. Next we show that SW is
finitely generated. For each k ≥ 0, let Wk =

{
z ∈ M : z = vk for some∑

i≥k vix
i ∈W

}
. Then each Wk is a submodule of RM , and W0 = W1 = · · ·

as x is invertible in S. By (1), we can assume that W0 is generated as an
R-module by {z1, . . . , zs}. For each 1 ≤ j ≤ s, take hj =

∑
i≥0 vjix

i ∈ W
such that vj0 = zj . We claim that SW is generated by

{
hj : j = 1, . . . , s

}
.

Let f ∈ W . There exists l ≥ 0 such that f0 := xlf =
∑

i≥0 vix
i. So

v0 ∈W0, and v0 =
∑s

j=1 a0jzj where all a0j ∈ R. Since the module I(IM) is
s-unital, as above we can assume all a0j are in I. So f1 := f0−

∑s
j=1 a0jhj =

v′1x + v′2x
2 + · · · ∈ W . As v′1 ∈ W1, in the same manner, we have v′1 =∑s

j=1 a1jzj where all a1j ∈ I. So f2 := f1−x
∑s

j=1 a1jhj = v′′2x
2+v′′3x

3+ · · ·
is in W . By induction, we can find {aij ∈ I : 0 ≤ i; 1 ≤ j ≤ s} such that

fn+1 := fn − xn
s∑

j=1

anjhj = v
(n)
n+1x

n+1 + v
(n)
n+2x

n+2 + · · · ∈W

for all n ≥ 0. Let gj = a0j + a1jx+ · · · ∈ I[[x]] for j = 1, . . . , s. Then

xlf = f0 = (a01h1 + a02h2 + · · ·+ a0shs)

+ x(a11h1 + a12h2 + · · ·+ a1shs)

+ x2(a21h1 + a22h2 + · · ·+ a2shs) + · · ·
= g1h1 + g2h2 + · · ·+ gshs.

So f = (x−lg1)h1 + (x−lg2)h2 + · · ·+ (x−lgs)hs.

An ideal I of R is said to be left s-unital if a ∈ Ia for all a ∈ I (see [25]).

Corollary 9. Let I be a left s-unital ideal of R. Then R is left Noethe-
rian iff [R; I][x] is left Noetherian iff [R; I][x, x−1] is left Noetherian.

Corollary 10. Let R be a countable ring and I an ideal of R. Then:

(1) [R; I][x] is left Noetherian iff R is left Noetherian and I is left s-
unital.

(2) [R; I][x, x−1] is left Noetherian iff R is left Noetherian and I is left
s-unital.

Proof. (1) The sufficiency is by Corollary 9.
Suppose that S := [R; I][x] is left Noetherian. For a ∈ I, let A = (Ra)[[x]]

and B = (Ia)[[x]]. Then A,B are left ideals of S. Since S is left Noetherian,
S(A/B) is Noetherian. Since I[[x]] ·A ⊆ B, we see that A/B is a left Noethe-
rian module over S

I[[x]] . That is,
(
Ra
Ia

)
[[x]] is a left Noetherian module over
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(
R
I

)
[x]. Hence there exist f1, . . . , fn ∈

(
Ra
Ia

)
[[x]] such that(

Ra

Ia

)
[[x]] = f1 ·

(
R

I

)
[x] + · · ·+ fn ·

(
R

I

)
[x].

If a /∈ Ia, then Ra/Ia has a cardinality ≥ 2, so
(
Ra
Ia

)
[[x]] is not countable.

But since R is countable, R/I is countable and so is
(
R
I

)
[x]. Consequently,

f1 ·
(
R
I

)
[x] + · · ·+ fn ·

(
R
I

)
[x] is countable, a contradiction. So a ∈ Ia.

(2) The proof is similar to the proof of (1).

Question 11. Is it true that [R; I][x] (resp. [R; I][x, x−1]) is left Noethe-
rian iff R is left Noetherian and I is left s-unital?

Corollary 12. A module RM is Noetherian iff R[[x,x−1]]M [[x, x−1]] is
Noetherian.

Example 13. Let R = Zpn where p is a prime and n ≥ 1 and I an ideal
of R. Then [R; I][x] (resp. [R; I][x, x−1]) is left Noetherian iff I = 0 or R.

Example 14. Let I be an ideal of Z. Then [Z; I][x] (resp. [Z; I][x, x−1])
is left Noetherian iff I = 0 or Z.

Example 15. Let V be a left Noetherian ring with a left identity, and let
R = I(Z, V ) be the ideal extension of Z by V . That is, (R,+) = Z⊕ V with
multiplication defined by (m, v)(n,w) = (mn,mw+nv+ vw). Let I = 0⊕V
(an ideal of R). Then [R; I][x] and [R; I][x, x−1] are left Noetherian rings.

Proof. As R/I ∼= Z is Noetherian, (R/I)R is Noetherian. As the lattice
of submodules of IR is isomorphic to the lattice of left ideals of V , RI is
Noetherian by the assumption on V . Hence R is a left Noetherian ring.
Since V has a left identity, I is a left s-unital ideal of R. So [R; I][x] and
[R; I][x, x−1] are left Noetherian by Corollary 9.

4. Quasi-duo rings. Following Yu [32], a ring is called left quasi-duo if
every maximal left ideal is an ideal. Every factor ring of a left quasi-duo ring
is again left quasi-duo (see [32]). In [15, Theorem 3.2], a characterization of a
left quasi-duo ring is obtained: A ring R is left quasi-duo iff Ra+R(ab−1) =
R for all a, b ∈ R. It is easy to see that, for an ideal K of R with K ⊆ J(R),
R is left quasi-duo iff so is R/K. Hence R is left quasi-duo iff so is R[[x]].
In [18], the authors proved that R[x] is left quasi-duo iff J(R[x]) = N(R)[x]
and R/N(R) is commutative, where N(R) denotes the nil radical of R. This
result can be used to prove

Theorem 16. Let I / R and R = R/I. The following are equivalent:

(1) [R; I][x] is left quasi-duo.
(2) R and R[x] are left quasi-duo.
(3) R is left quasi-duo, J

(
R[x]

)
= N(R)[x] and R/N(R) is commutative.
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Proof. (1)⇒(2). Let S = [R; I][x]. Then R ∼= S/Sx and R[x] ∼= S/I[[x]].
So (1) clearly implies (2).

(2)⇒(1). By [18, Lemma 3.2], (2) implies that R[x]/I[x]x is left quasi-
duo. But S/I[[x]]x =

(
R[x] + I[[x]]x

)
/I[[x]]x ∼= R[x]/

(
R[x] ∩ I[[x]]x

)
=

R[x]/I[x]x, so S/I[[x]]x is left quasi-duo. Hence S is left quasi-duo, because
I[[x]]x ⊆ J(S) by Lemma 1.

(2)⇔(3). This is by [18, Corollary 4.3].

Corollary 17. The ring [R; J(R)][x] is left quasi-duo iff R/J(R) is
commutative.

In [9], the authors proved that the transpose of every invertible matrix
over R is invertible exactly when R/J(R) is commutative.

Let δl denote the intersection of all essential maximal left ideals of R.
Then δl is an ideal of R, and δl/Sl = J(R/Sl) where Sl denotes the left socle
of R (see [33]). Hence J(R/δl) = 0.

Corollary 18. [R; δl][x] is left quasi-duo iff R is left quasi-duo and
R/δl is commutative.

5. Principal left ideal rings. Following Goldie [8], a ring R is called
a principal left ideal ring (pli-ring) if every left ideal is principal. A principal
right ideal ring (pri-ring) is defined similarly. In [13], Jategaonkar proved
that a left skew polynomial ring R[x;ϕ] is a prime pli-ring if R is a prime
pli-ring and ϕ : Q→ R is a monomorphism where Q is the simple Artinian
left quotient ring of R. So a polynomial ring over a simple Artinian ring is
a pli-ring. Jategaonkar also commented that this result and its proof can
be adapted to left skew power series rings. In [27], Tuganbaev characterized
the right skew polynomial rings R[x, ϕ] which are pri-rings (where ϕ is an
automorphism), and the right skew power series rings R[[x, ϕ]] which are
pli-rings (where ϕ is injective) or pri-rings (where ϕ is an automorphism).
With ϕ = 1R, these results state that R[x] is a pli-ring iff R[[x]] is a pli-ring
iff R is semisimple Artinian.

Theorem 19. Let I / R. The following are equivalent:

(1) [R; I][x] is a pri-ring.
(2) [R; I][x] is a pli-ring.
(3) R is a semisimple Artinian ring.

Proof. (1)⇒(3). Let S = [R; I][x]. Since a factor ring of a pri-ring is
again a pri-ring, S/x2S is a pri-ring by (1). So R[x]/x2R[x] ∼= S/x2S is a
pri-ring. Thus R is semisimple Artinian by [27, Proposition 2.3].

(3)⇒(1). If 1 = e1 + · · · + en where e1, . . . , en are orthogonal central
idempotents of R, then [R; I][x] ∼= [e1R; e1I][x] ⊕ · · · ⊕ [enR; enI][x]. So we
may assume that R is simple Artinian. If I = 0, then [R; I][x] = R[x] is a
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pri-ring by [13, Theorem 3.1, p. 54]. If I = R, then [R; I][x] = R[[x]] is a
pri-ring by [31, Theorem 4.5].

Example 20. Let I be a nonzero proper ideal of a semisimple Artinian
ring R. Then [R; I][x] is a pli-ring and a pri-ring by Theorem 19, but it is
not isomorphic to a polynomial ring or a power series ring by Example 7.

6. Hopfian modules. Following Hiremath [12], a module M over R is
called Hopfian if every surjective endomorphism of M is an automorphism.
One easily sees that the module RR is Hopfian iff R is a Dedekind finite
ring, i.e., ab = 1 in R always implies ba = 1. Motivated by Theorem 2.1 in
Varadarajan [29], we prove the following

Theorem 21. Let I / R. Then a module RM is Hopfian iff [M, IM ][x]
is a Hopfian module over [R, I][x].

Proof. Let S = [R; I][x] and V = [M ; IM ][x].
(⇒) Let p : V → M be given by p(

∑
i≥0 vix

i) = v0. Then p is an
R-homomorphism. Suppose that ϕ is a surjective endomorphism of SV . For
any w0 ∈M , there exists v =

∑
i≥0 vix

i ∈ V such that ϕ(v) = w0. Thus,

w0 = p(w0) = p(ϕ(v)) = p
(
ϕ(v0) + xϕ

(∑
i≥0

vi+1x
i
))

= p(ϕ(v0)).

This shows that pϕ|M : M → M is surjective, so it is injective as RM is
Hopfian.

Next we show that ϕ is injective. Assume that Ker(ϕ) 6= 0. Then there
exists v =

∑
i≥k vix

i ∈ V with vk 6= 0 such that ϕ(v) = 0. Thus, 0 = ϕ(v) =

ϕ(xk
∑

i≥0 vk+ix
i) = xkϕ(

∑
i≥0 vk+ix

i); this shows that ϕ(
∑

i≥0 vk+ix
i) = 0.

So 0 = p(0) = p(ϕ(
∑

i≥0 vk+ix
i)) = p(ϕ(vk) + xϕ(

∑
i≥1 vk+ix

i)) = pϕ(vk).
Hence vk = 0 as pϕ|M is injective. This contradiction shows that ϕ is injec-
tive.

(⇐) If f is a surjective endomorphism of RM , then f(IM) ⊆ IM and
hence f̄ : V → V ,

∑
i≥0 vix

i 7→
∑

i≥0 f(vi)x
i is a surjective S-homomor-

phism, so it is injective by hypothesis. It follows that f is injective.

Corollary 22 ([29]). A module RM is Hopfian iff R[x]M [x] is Hopfian
iff R[[x]]M [[x]] is Hopfian.

The question of Varadarajan [29] whether RM Hopfian implies that
R[x,x−1]M [x, x−1] is Hopfian remains open. By Varadarajan [30], Corollary 22
holds true if R is a ring not necessarily possessing an identity and M is a
left s-unital R-module.

7. Quasi-Baer rings and modules. Following Clark [7], a ring R is
called quasi-Baer if for any ideal K of R, lR(K) = Re where e2 = e ∈ R. The
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definition of quasi-Baer rings is left-right symmetric by [7]. Following [16],
a module M over R is called quasi-Baer if for any submodule N of M ,
lR(N) = Re for some e2 = e ∈ R. Thus R is a quasi-Baer ring iff RR is a
quasi-Baer module. The following theorem is motivated by [5, Theorem 1.8]
and [16, Corollary 2.14].

Theorem 23. Let I / R. The following are equivalent:

(1) M is a quasi-Baer module over R.
(2) [M ; IM ][x] is a quasi-Baer module over [R; I][x].
(3) [M ; IM ][x, x−1] is a quasi-Baer module over [R; I][x, x−1].

Proof. (1)⇒(2). Let S = [R; I][x] and V = [M ; IM ][x]. Suppose that
RM is a quasi-Baer module and let W be an S-submodule of V . We show
that lS(W ) is generated by an idempotent as a left ideal of S. This is clearly
true if W = 0. Assume that W 6= 0 and let

W0 = {0 6= w ∈M : w = the coefficient of the lowest degree term
of some v(x) ∈W} ∪ {0}.

Then W0 is a submodule of M , so lR(W0) = Re where e2 = e ∈ R. For any
v(x) = v0 + v1x+ · · ·+ vkx

k + · · · ∈W , we have v0 ∈W0, so ev0 = 0 holds.
If evi = 0 for 0 ≤ i ≤ k, then ev(x) = evk+1x

k+1 + evk+2x
k+2 + · · · ∈ W ,

and so evk+1 ∈ W0. Hence evk+1 = e(evk+1) = 0. By induction, we have
evi = 0 for all i ≥ 0. So ev(x) = 0 and hence Se ⊆ lS(W ). To show that
Se ⊇ lS(W ), let f(x) = a0 + a1x + · · · ∈ lS(W ). It suffices to show that
ai = aie for all i ≥ 0 (this gives f(x) = f(x)e). For any w0 ∈ W0, there
exists w(x) = w0x

k + w1x
k+1 + · · · ∈ W where k ≥ 0. Then f(x)w(x) = 0,

which implies that a0w0 = 0. Since w0 is an arbitrary element of W0, one
finds that a0 ∈ lR(W0) = Re; so a0 = a0e. Let us assume that ai = aie
for all 0 ≤ i ≤ k. Thus f(x) = (a0 + a1x + · · · + akx

k)e + f1(x)xk+1 where
f1(x) = ak+1+ak+2x+ · · · . So f1(x)xk+1, and hence f1(x) is in lS(W ). From
f1(x)w(x) = 0, it follows that ak+1w0 = 0. Hence ak+1 ∈ lR(W0) = Re, so
ak+1 = ak+1e. An induction shows that ai = aie for all i ≥ 0.

(2)⇒(1). Suppose that V := [M ;MI][x] is a quasi-Baer module over
S := [R; I][x]. To show that RM is quasi-Baer, let N be a submodule of M .
Then U := [N ; IN ][x] is an S-submodule of V and therefore lS(U) = Se(x)
where e(x)2 = e(x) ∈ S. Let e0 be the constant term of e(x). Then e20 = e0
and e0N = 0 (as e(x)U = 0). So Re0 ⊆ lR(N). For any a ∈ lR(N), aU = 0.
Thus a ∈ lS(U) = Se(x), so a = ae(x). This gives a = ae0 ∈ Re0. So
lR(N) = Re0.

(1)⇒(3). Same as the proof of (1)⇒(2).
(3)⇒(1). Suppose that V := [M ;MI][x, x−1] is a quasi-Baer module over

S := [R; I][x, x−1]. To show that RM is quasi-Baer, let N be a submodule
of M . Then U := [N ; IN ][x, x−1] is an S-submodule of V and therefore
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lS(U) = Se(x) where e(x)2 = e(x) ∈ S. Write e(x) =
∑

i≥−l eix
i where

ei ∈ lR(N). For any a ∈ lR(N), a ∈ lS(U) = Se(x), so a = ae(x). This
shows that a = ae0. Consequently, e20 = e0 and lR(N) = Re0.

Corollary 24 ([16]). A module RM is quasi-Baer iff R[x]M [x] is quasi-
Baer iff R[[x]]M [[x]] is quasi-Baer iff R[x,x−1]M [x, x−1] is quasi-Baer iff
R[[x,x−1]]M [[x, x−1]] is quasi-Baer.

Corollary 25. Let I / R. Then R is quasi-Baer iff [R; I][x] is quasi-
Baer iff [R; I][x, x−1] is quasi-Baer.

Corollary 26 ([5]). A ring R is quasi-Baer iff R[x] is quasi-Baer iff
R[[x]] is quasi-Baer iff R[x, x−1] is quasi-Baer iff R[[x, x−1]] is quasi-Baer.

Example 27.

(1) Let R be any countable quasi-Baer ring which is semipotent, and I
a nonzero proper ideal of R. Then [R; I][x] is a quasi-Baer ring by
Corollary 25, but it is not isomorphic to either of R[x] and R[[x]] by
Example 6.

(2) Let R be a primitive potent ring, and I a nonzero proper ideal of R.
Then R is a quasi-Baer ring by [3, Lemma 4.2]. So [R; I][x] is quasi-
Baer by Corollary 25, but it is not isomorphic to either of R[x] and
R[[x]] by Example 6.

8. Principally quasi-Baer rings and modules. Following Birken-
meier, Kim and Park [4], a ring R is called left principally quasi-Baer (or
simply left p.q.-Baer) if the left annihilator of a principal left ideal is gener-
ated as a left ideal by an idempotent. Following Başer and Harmanci [2], a
module M over R is called p.q.-Baer if for any cyclic submodule N of M ,
lR(N) = Re for some e2 = e ∈ R. These rings and modules are extensions
of quasi-Baer rings and modules.

Lemma 28. Let f(x) =
∑

i≥−l aix
i ∈ R[[x, x−1]] and v(x) =

∑
i≥−k vix

i

∈ M [[x, x−1]], where l, k ≥ 0, be such that, for j = −k,−(k − 1), . . . , the
left annihilator of Rvj in R is generated as a left ideal by an idempotent. If
f(x)Rv(x) = 0 then aiRvj = 0 for all i and j.

Proof. From f(x)Rv(x) = 0 it follows that
(
xlf(x)

)
R
(
xkv(x)

)
= 0. Thus

we can assume that l = k = 0. Write lR(Rv0) = Re where e2 = e ∈ R. From
f(x)Rv(x) = 0, it follows that a0Rv0 = 0, so a0 ∈ lR(Rv0) and hence
a0 = a0e. Assume that aiRv0 = 0 for i = 0, 1, . . . , n. Thus, ai = aie for
i = 0, 1, . . . , n. Since f(x)Rv(x) = 0, we have

a0rvn+1 + a1rvn + · · ·+ anrv1 + an+1rv0 = 0

for all r ∈ R. Replacing r by er in this formula yields a0rvn+1 + a1rvn +
· · · + anrv1 = 0 (as eRv0 = 0), and hence an+1rv0 = 0 for all r ∈ R. So
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an+1Rv0 = 0. By the induction principle, aiRv0 = 0 for all i = 0, 1, . . . .
Hence f(x)Rv0 = 0. Assume that f(x)Rvj = 0 for j = 0, 1, . . . ,m − 1. It
follows from f(x)Rv(x) = 0 that f(x)R(

∑
i≥0 vm+ix

i) = 0. As above we
have f(x)Rvm = 0. So f(x)Rvj = 0 for all j by induction.

The next lemma is implicitly contained in the proof of [5, Lemma 1.7].

Lemma 29 ([5]). Let e(x)2 = e(x) =
∑∞

i=−l eix
i ∈ R[[x, x−1]] where

l ≥ 0. If e(x)ae(x) = e(x)a for all a ∈ R, then e20 = e0.

Theorem 30. Let I / R. The following are equivalent:

(1) [M ; IM ][x] is a p.q.-Baer module over [R; I][x].
(2) [M ; IM ][x, x−1] is a p.q.-Baer module over [R; I][x, x−1].
(3) For any sequence {v0, v1, . . .} of elements of M with almost all vi

in IM , lR(
∑

i≥0Rvi) = Re for some e2 = e ∈ R.
(4) RM is a p.q.-Baer module, and for any sequence {v0, v1, . . .} of ele-

ments of IM , lR(
∑

i≥0Rvi) = Re for some e2 = e ∈ R.

Proof. Let S = [R; I][x, x−1] and V = [M ; IM ][x, x−1].
(2)⇒(3). Let w ∈ M . By (2), lS(Sw) = Se(x) where e(x) =

∑
i≥−l eix

i

(l ≥ 0) is an idempotent of S. As Se(x) is an ideal of S, e(x)S ⊆ Se(x),
so e(x)a = e(x)ae(x) for all a ∈ R. Then e20 = e0 by Lemma 29, and it
follows that e0Rw = 0, so lR(Rw) ⊇ Re0. If a ∈ lR(Rw), then a ∈ lS(Sw),
so a = ae(x); hence a = ae0. So lR(Rw) = Re0. This shows that RM is a
p.q.-Baer module.

Let vi ∈ M for i = 0, 1, . . . with vi ∈ IM for almost all i. Then v(x) :=∑
i≥0 vix

i ∈ V , so lS(Sv(x)) = Sg(x) where g(x) =
∑

i≥−l gix
i (l ≥ 0) is an

idempotent of S. By Lemma 29, g20 = g0. By Lemma 28, giRvj = 0 for all i
and j. Thus lR(

∑
i≥0Rvi) ⊇ Rg0. If a ∈ lR(

∑
i≥0Rvi), then a ∈ lS(Sv(x)).

Thus a = ag(x), so a = ag0 ∈ Rg0.
(3)⇒(4). This is clear.
(4)⇒(2). Let v(x) =

∑
i≥−l vix

i ∈ V where l ≥ 0. Then there exists
n > −l such that vi ∈ IM for all i ≥ n. By (4), there exist idempotents
e−l, . . . , en−1, en of R such that lR(Rvi) = Rei for i = −l, . . . , n − 1 and
lR(
∑

i≥nRvi) = Ren. Since Rei is an ideal of R (for i = −l, . . . , n), we have
eiR ⊆ Rei, i.e., eia = eiaei for all a ∈ R. It follows that e := e−l · · · en is
an idempotent and

⋂n
i=−lRei ⊆ Re. Moreover, for any −l ≤ i ≤ n, we have

e = eei ∈ Rei. Hence
⋂n

i=−lRei = Re. Thus,

lR

(∑
i≥−l

Rvi

)
= lR(Rv−l)∩ · · · ∩ lR(Rvn−1)∩ lR

(∑
i≥n

Rvi

)
=

n⋂
i=−l

Rei = Re.

Hence lS(Sv(x)) ⊇ Se. If h(x) =
∑

i≥−s hix
i ∈ lS(Sv(x)) (s ≥ 0), then
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hi ∈ lR(
∑

i≥−lRvi) for all i ≥ 0 by Lemma 28. So hi = hie and hence
h(x) = h(x)e ∈ Se. So lS(Sv(x)) = Se.

(1)⇔(3)⇔(4). The proof is similar to the proof of the equivalences (2)⇔
(3)⇔(4), even without the use of Lemma 29.

Corollary 31 ([2]). The module R[x]M [x] is p.q.-Baer iff RM is p.q.-
Baer.

Corollary 32 ([11]). The module R[[x]]M [[x]] is p.q.-Baer iff the left
annihilator in R of any countably generated submodule of M is generated as
a left ideal by an idempotent.

Corollary 33. The module R[x,x−1]M [x, x−1] is p.q.-Baer iff RM is
p.q.-Baer.

Corollary 34. The module R[[x,x−1]]M [[x, x−1]] is p.q.-Baer iff the left
annihilator in R of any countably generated submodule of M is generated as
a left ideal by an idempotent.

Corollary 35. Let I / R. The following are equivalent:

(1) [R; I][x] is left p.q.-Baer.
(2) [R; I][x, x−1] is left p.q.-Baer.
(3) For any sequence {a0, a1, . . .} of elements of R with almost all ai in I,

lR(
∑

i≥0Rai) = Re for some e2 = e ∈ R.
(4) R is left p.q.-Baer, and for any sequence {a0, a1, . . .} of elements of I,

lR(
∑

i≥0Rai) = Re for some e2 = e ∈ R.

Corollary 36 ([4]). R[x] is left p.q.-Baer if and only if R is left p.q.-
Baer.

Corollary 37 ([20]). R[x, x−1] is left p.q.-Baer if and only if R is left
p.q.-Baer.

Corollary 38 ([21]). R[[x]] is left p.q.-Baer if and only if the left an-
nihilator of any countably generated left ideal of R is generated as a left ideal
by an idempotent.

In [20], Liu discussed the question of when the ring R[[x, x−1]] is left
p.q.-Baer. An idempotent e of R is called right semi-central if er = ere for
all r ∈ R. Following [20], a countable set {ei : i ≥ 0} of idempotents of R
is said to have a generalized join if there exists e2 = e ∈ R such that (1)
(1 − e)Rei = 0 for all i and (2) (1 − f)Re = 0 for any f2 = f ∈ R with
(1 − f)Rei = 0 for all i. Liu [20, Theorem 4] proved: If R[[x, x−1]] is left
p.q.-Baer, then any countable set of idempotents of R has a generalized join;
the converse holds if every right semicentral idempotent of R is central. It
was noticed in [20, Example 6] that for a ring R for which R[[x, x−1]] is left
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p.q.-Baer, right semicentral idempotents need not be central. Corollary 35
has an immediate consequence.

Corollary 39. R[[x, x−1]] is left p.q.-Baer if and only if the left anni-
hilator of any countably generated left ideal of R is generated as a left ideal
by an idempotent.

Example 40. Let F be a field and Q =
∏∞

i=1Ri a direct product of rings
where Ri = F for all i. Let R = 〈

⊕
iRi, 1Q〉 be the subring of Q generated

by
⊕

iRi and 1Q. Then soc(R) :=
⊕

iRi is the socle of R. Let I be an ideal
of R. Then:

(1) [R; I][x] is left p.q.-Baer iff I is a principal ideal of R contained in
soc(R).

(2) For any nonzero principal ideal I of R contained in soc(R), [R; I][x]
is not isomorphic to any polynomial ring or any power series ring.

Proof. (1)(⇒) Assume that I 6⊆ soc(R). Then there exist k ∈ Z and
y ∈ soc(R) such that k1Q 6= 0 and k1Q+y ∈ I. Thus, 1Q+z ∈ I for some z ∈
soc(R). We can assume that z ∈

⊕s
i=1Ri. Write ei = 1Ri . Then, for i > s,

ei = ei(1Q + z) ∈ I. But lR(
∑∞

i=1Res+2i) = (
⊕s+1

i=1 Rei)⊕ (
⊕∞

i=1Res+2i+1),
which is not generated by an idempotent. This is a contradiction by Corollary
35. So I is contained in soc(R). If I is not principal, then it is not finitely
generated (as R is von Neumann regular), and so ei ∈ I for infinitely many i.
But this gives a contradiction by arguing as above. Hence I is principal.

(1)(⇐) Since R is a commutative regular ring, it is left p.q.-Baer. The
hypothesis shows that I =

⊕
i∈LRi where L is a finite subset of N. Let

Z be any countable subset of I, and let S = {i ∈ L : ∃z ∈ Z such that
the projection of z onto Ri is nonzero}. Then lR(

∑
z∈Z Rz) = Re where

e = 1Q −
∑

i∈S ei is an idempotent of R. So [R; I][x] is left p.q.-Baer by
Corollary 35.

(2) Since R is von Neumann regular, [R; I][x] is not isomorphic to any
polynomial ring or power series ring by Example 7.

Acknowledgements. Part of the work was carried out when the third
author was visiting Gebze Institute of Technology. He gratefully acknowl-
edges the support from TÜBİTAK and hospitality from GIT. The research
of the second author was supported by NSC of Taiwan and by NCTS of
Taipei, and that of the third author by a Discovery Grant from NSERC of
Canada.

REFERENCES

[1] S. A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1956), 355–361.
[2] M. Başer and A. Harmanci, Reduced and p.q.-Baer modules, Taiwanese J. Math. 11

(2007), 267–275.

http://dx.doi.org/10.4153/CJM-1956-040-9


16 M. T. KOŞAN ET AL.

[3] G. F. Birkenmeier, H. E. Heatherly, J. Y. Kim and J. K. Park, Triangular matrix
representations, J. Algebra 230 (2000), 558–595.

[4] G. F. Birkenmeier, J. Y. Kim and J. K. Park,On polynomial extensions of principally
quasi-Baer rings, Kyungpook Math. J. 40 (2000), 247–253.

[5] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and
quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25–42.

[6] A. Caruth, On the maximal condition in formal power series rings, Colloq. Math.
63 (1992), 133–134.

[7] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967),
417–424.

[8] A. W. Goldie, Non-commutative principal ideal rings, Arch. Math. (Basel) 13 (1962),
213–221.

[9] R. N. Gupta, A. Khurana, D. Khurana and T. Y. Lam, Rings over which the trans-
pose of every invertible matrix is invertible, J. Algebra 322 (2009), 1627–1636.

[10] J. Han and W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29 (2001),
2589–2595.

[11] E. Hashemi, A note on p.q.-Baer modules, New York J. Math. 14 (2008), 403–410.
[12] V. A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math.

17 (1986), 895–900.
[13] A. V. Jategaonkar, Left Principal Ideal Rings, Lecture Notes in Math. 123, Springer,

Berlin, 1970.
[14] T. Y. Lam, A First Course in Noncommutative Rings, 2nd ed., Grad. Texts in Math.

131, Springer, New York, 2001.
[15] T. Y. Lam and A. S. Dugas, Quasi-duo rings and stable range descent, J. Pure Appl.

Algebra 195 (2005), 243–259.
[16] T. K. Lee and Y. Zhou, Reduced modules, in: Rings, Modules, Algebras, and Abelian

Groups, A. Facchini et al. (eds.), Lecture Notes in Pure Appl. Math. 236, Dekker,
New York, 2004, 365–377.

[17] T. K. Lee and Y. Zhou, A unified approach to the Armendariz property of polynomial
rings and power series rings, Colloq. Math. 113 (2008), 151–168.

[18] A. Leroy, J. Matczuk and E. R. Puczyłowski, Quasi-duo skew polynomial rings,
J. Pure Appl. Algebra 212 (2008), 1951–1959.

[19] B. J. Li, On potent rings, Comm. Korean Math. Soc. 23 (2008), 161–167.
[20] Z. K. Liu, Principal quasi-Baerness of Laurent series rings, Acta Math. Sinica (Chin.

Ser.) 45 (2002), 1107–1112.
[21] Z. K. Liu and W. H. Zhang, Principal quasi-Baerness of formal power series rings,

Acta Math. Sinica (Engl. Ser.) 26 (2010), 2231–2238.
[22] W. K. Nicholson, I-rings, Trans. Amer. Math. Soc. 207 (1975), 361–373.
[23] W. K. Nicholson and Y. Zhou, Rings in which elements are uniquely the sum of an

idempotent and a unit, Glasgow Math. J. 46 (2004), 227–236.
[24] W. K. Nicholson and Y. Zhou, Strong lifting, J. Algebra 285 (2005), 795–818.
[25] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117–134.
[26] A. A. Tuganbaev, Distributive Modules and Related Topics, Algebra Logic Appl. 12,

Gordon and Breach, Amsterdam, 1999.
[27] A. A. Tuganbaev, Polynomial and series rings and principal ideals, J. Math. Sci.

(N.Y.) 114 (2003), 1204–1226.
[28] K. Varadarajan, A generalization of Hilbert’s basis theorem, Comm. Algebra 10

(1982), 2191–2204.
[29] K. Varadarajan, Hopfian and co-Hopfian objects, Publ. Mat. 36 (1992), 293–317.

http://dx.doi.org/10.1006/jabr.2000.8328
http://dx.doi.org/10.1016/S0022-4049(00)00055-4
http://dx.doi.org/10.1215/S0012-7094-67-03446-1
http://dx.doi.org/10.1007/BF01650068
http://dx.doi.org/10.1016/j.jalgebra.2009.05.029
http://dx.doi.org/10.1081/AGB-100002409
http://dx.doi.org/10.1016/j.jpaa.2004.08.011
http://dx.doi.org/10.4064/cm113-1-9
http://dx.doi.org/10.1016/j.jpaa.2008.01.002
http://dx.doi.org/10.4134/CKMS.2008.23.2.161
http://dx.doi.org/10.1007/s10114-010-7429-8
http://dx.doi.org/10.1017/S0017089504001727
http://dx.doi.org/10.1016/j.jalgebra.2004.11.019
http://dx.doi.org/10.1023/A:1021929720585
http://dx.doi.org/10.1080/00927878208822829


INTERMEDIATE RINGS 17

[30] K. Varadarajan, A note on the Hopficity of M [X] or M [[X]], Nat. Acad. Sci. Lett.
15 (1992), 53–56.

[31] E. Wexler-Kreindler, Polynômes de Ore, séries formelles tordues et anneaux filtrés
complets héréditaires, Comm. Algebra 8 (1980), 339–371.

[32] H.-P. Yu, On quasi-duo rings, Glasgow Math. J. 37 (1995), 21–31.
[33] Y. Zhou, Generalizations of perfect, semiperfect, and semiregular rings, Algebra

Colloq. 7 (2000), 305–318.

M. Tamer Koşan
Department of Mathematics
Gebze Institute of Technology
Gebze, Kocaeli, Turkey
E-mail: mtkosan@gyte.edu.tr

Yiqiang Zhou
Department of Mathematics and Statistics
Memorial University of Newfoundland
St. John’s, NL A1C 5S7, Canada
E-mail: zhou@mun.ca

Tsiu-Kwen Lee
Department of Mathematics
National Taiwan University

Taipei 106, Taiwan
Member of Mathematics Division (Taipei Office)

National Center for Theoretical Sciences
E-mail: tklee@math.ntu.edu.tw

Received 16 June 2012 (5695)

http://dx.doi.org/10.1080/00927878008822463
http://dx.doi.org/10.1017/S0017089500030342
http://dx.doi.org/10.1007/s10011-000-0305-9



	1 Definitions and notations
	2 Semipotent rings
	3 Noetherian rings and modules
	4 Quasi-duo rings
	5 Principal left ideal rings
	6 Hopfian modules
	7 Quasi-Baer rings and modules
	8 Principally quasi-Baer rings and modules
	References

