VOL. 130

2013

NO. 1

WEAKLY AMENABLE GROUPS AND THE RNP FOR SOME BANACH ALGEBRAS RELATED TO THE FOURIER ALGEBRA

BҮ

EDMOND E. GRANIRER (Vancouver)

Abstract. It is shown that if G is a weakly amenable unimodular group then the Banach algebra $A_p^r(G) = A_p \cap L^r(G)$, where $A_p(G)$ is the Figà-Talamanca–Herz Banach algebra of G, is a dual Banach space with the Radon–Nikodym property if $1 \leq r \leq \max(p, p')$. This does not hold if p = 2 and r > 2.

Let G be a locally compact group and let $A_p(G)$ denote the Figà-Talamanca-Herz Banach algebra of G as defined in [Hz1], thus generated by $L^{p'} * \check{L}^p(G)$. Hence $A_2(G)$ is the Fourier algebra of G as defined and studied in Eymard [Ey1]. If G is abelian then $A_2(G) = L^1(\hat{G})^{\hat{}}$.

Denote $A_p^r(G) = A_p \cap L^r(G)$ for $1 \le r \le \infty$, 1 , equipped $with the norm <math>\|u\|_{A_p^r} = \|u\|_{A_p} + \|u\|_{L^r}$. If G is abelian then $A_2^r(\hat{G}) = \{f \in L^1(G) : \hat{f} \in L^r(\hat{G})\}$, with the norm $\|u\| = \|f\|_{L^1(G)} + \|\hat{f}\|_{L^r(\hat{G})}$ if $u = \hat{f}$.

A Banach space has the **RNP** if its unit ball wants to be weakly compact but just cannot make it, as beautifully put by Jerry Uhl.

A Banach space X has the Krein-Milman Property (**KMP**) [Radon Nikodym Property (**RNP**)] if each closed convex bounded subset is the norm closed convex hull of its extreme points [strongly exposed points] (see [DU, p. 138]). If X is a dual Banach space, then the **RNP** and **KMP** are equivalent (see [DU, p. 190 and p. 218]).

Strongly exposed points are extreme points which are very "smooth" (they are certainly weak-to-norm continuity points), and the fact that we can take the above as the *definition* of the **RNP**, is owed to the valiant efforts of many mathematicians (see [DU]).

The Fourier algebra of the torus, $A_2(\mathbb{T})$, which is in fact $\ell_1(\mathbb{Z})$, has the **RNP**, a property possessed by any Banach space which is isomorphic to an ℓ_1 space (see [DU]), while $A_2(\mathbb{R})$ does not possess the **RNP**.

²⁰¹⁰ Mathematics Subject Classification: Primary 43A15, 46J10, 43A25, 46B22; Secondary 46J20, 43A30, 43A80, 22E30.

Key words and phrases: weakly amenable groups, Fourier algebra, Radon–Nikodym property, locally compact groups.

And yet, for any compact subset K of \mathbb{R} , $A_K^2(\mathbb{R}) = \{u \in A_2(\mathbb{R}) : \text{spt } u \subset K\}$ does have the **RNP** (and \mathbb{R} can be replaced by any abelian G; here spt denotes support).

We have proved in [Gr1] that for any G and any compact $K \subset G$ and any $1 , <math>A_K^p(G) = \{u \in A_p(G) : \operatorname{spt} u \subset K\}$ has the **RNP**. Tools in abelian harmonic analysis are not available to prove this latter result.

It has been proved by W. Braun in an unpublished preprint [Br] that if G is amenable then $A_p^1(G)$ is a dual Banach space with the **RNP**. The result in [Br] uses the method in [Gr1] and the involved machinery of [BrF], which is avoided below and in [Gr3]. We have proved in [Gr3] the following

Theorem 0.1.

- (A) Let G be unimodular and $1 . If G is amenable then <math>A_p^r(G)$ is a dual Banach space with the **RNP** for all $1 \le r \le \max(p, p')$.
- (B) Let G be unimodular and $A_2(G)$ have a multiplier bounded approximate identity. Then $A_2^r(G)$ is a dual Banach space with the **RNP** for all $1 \le r \le 2$.
- (C) If G is SL(2, ℝ) or SL(2, ℂ) then, for any 2 < r ≤ ∞, A^r₂(G) does not have the **RNP** (see [Gr3, p. 4382]), even though these groups are unimodular, weakly amenable (and nonamenable; see [DCH, Thm. 3.7 and Remark 3.8(b)]). Hence the above interval for r is the best possible.

A group G is weakly amenable if $A_2(G)$ has an approximate identity bounded in the (Herz–Schur multiplier) $B_2(G)$ norm (see below).

It is the main purpose of this paper to show that Theorem 0.1(A) is true if G is merely weakly amenable.

It has been proved by De Cannière and Haagerup [DCH, pp. 481–486] that any closed subgroup G of any finite extension of the general Lorenz group $SO_0(n, 1)$ for all $n \ge 2$ (hence in particular $G = F_N$, the free group on N > 1 generators) is weakly amenable. Thus there exists a multitude of nonamenable groups which are weakly amenable. And yet, Haagerup [Ha] has proved that $G = SL(2, \mathbb{R}) \rtimes \mathbb{R}^2$ is not weakly amenable (see also [Do]).

One will note that, in proving the main result, some difficulties need to be overcome to prove that $W_p^r(G)$ is a dual Banach space for all $r \ge 1$. This is done in Section 1.

The main result is proved in Section 2.

In Section 3 we prove that the Banach algebras $A_p^r(G)$ do not factorise for any noncompact G and $1 \leq r < \infty$, a result announced earlier.

1. Definitions and notations. Denote by $PM_p(G) = A_p(G)^*$ the Banach space dual of $A_p(G)$. We will omit G at times and write A_p , L^r , PM_p , etc., instead of $A_p(G)$, $L^r(G)$, $PM_p(G)$, etc.

Let PF_p denote the norm closure of L^1 in PM_p and set $W_p(G) =$ $PF_p(G)^*$. Then W_p is a Banach algebra of bounded continuous functions on G, studied by M. Cowling [Co1].

Define $W_p^r(G) = W_p \cap L^r(G)$, with the norm $||w||_{W_p^r} = ||w||_{W_p} + ||w||_{L^r}$. Denote by $M(A_p)$ the set of multipliers of A_p with the norm

$$||u||_{M(A_p)} = \sup\{||uv||_{A_p}; v \in A_p, ||v||_{A_p} \le 1\}, \quad u \in M(A_p).$$

If $v \in A_p$, let $||v||_{W_p}$ be the norm of v as an element of $PF_p(G)^* = W_p(G)$.

If $u \in M(A_2)$ let $m_u : A_2 \to A_2$ be given by $m_u v = uv$. Let $M_u =$ $m_u^*: PM_2 \to PM_2$ denote the adjoint of m_u . The multiplier $u \in M(A_2)$ is completely bounded (and $M_0(A_2)$ is the algebra of all such multipliers) if the operator $M_u: PM_2 \to PM_2$ is completely bounded on the W^* algebra PM_2 . The set $M_0(A_2)$ is equipped with the norm $||u||_{M_0(A_2)} = ||M_u||_{cb}$, the completely bounded norm of the operator M_u (see [DCH], [CH], [Jo], where all the above notions are defined).

It has been proved by Bożejko and Fendler [BF] that $M_0(A_2)$ coincides with the space $B_2 = B_2(G)$ of Herz-Schur multipliers and $||u||_{M_0(A_2)} =$ $||u||_{B_2}$.

A group G is weakly amenable if $A_2(G)$ has an approximate identity (A.I.) bounded in the $\| \|_{B_2(G)}$ norm.

In an important ground-breaking paper [DCH], De Cannière and Haagerup have studied weakly amenable groups G.

2. $W_p(G) \cap L^r(G)$ is a dual Banach space for all $r \geq 1$. We have proved this result, for any group G, in [Gr3, Prop. 2.1] only for r > 1. The proof there fails in case r = 1. This case requires an entirely different proof, which is given below.

The result in the title of this section is needed to prove that for all, $1 \leq r \leq \max(p, p'), A_p^r$ is a dual Banach space if G is unimodular and weakly amenable.

REMARK (for r = 1). Let $Z = X \times Y$, $X = PF_p$, $Y = L^{\infty}$, with norm $||(x,y)|| = \max(||x||, ||y||)$. Hence $Z^* = X^* \times Y^* = W_p \times L^{\infty^*}$, with norm $||(x^*, y^*)|| = ||x^*|| + ||y^*||$. Let $D = \{(w, w); w \in W_p \cap L^1\} \subset W_p \cap L^{\infty *}$. Let $U = w^* - \operatorname{cl} D \subset Z^*$. If $U_0[(U_0)^0]$ is the annihilator of $U[U_0]$ in $Z[Z^*]$, respectively, then, since U is w^* -closed, $U = (U_0)^0 = (Z/U_0)^*$ (see [Da, p. 822]). Thus U is a dual Banach space.

Let now $P: X \to X \times Y$ be given by Px = (x, 0). Then $P^*: X^* \times Y^* \to Y^*$ $X^* = W_p$ is onto, in fact $P^*(x^*, y^*) = x^*$.

Lemma 2.1.

- $\begin{array}{ll} \mbox{(a)} & W_p \cap L^{\infty *} = W_p \cap L^1. \\ \mbox{(b)} & P^*U = W_p \cap L^1. \end{array}$

Proof. Let $w \in W_p \cap L^{\infty*}$. Clearly $W_p = PF_p^*$ and $L^1 \subset PF_p$. If $f \in L^1$ then $w(f) = \int wf \, dx$. If $f \in L^1 \cap L^\infty$ then $|w(f)| = |\int wf \, dx| \leq ||w||_{L^{\infty*}} ||f||_{L^{\infty}}$. Hence if $||f||_{L^{\infty}} \leq 1$ then $|\int wf \, dx| \leq ||w||_{L^{\infty*}}$. Let now $K \subset G$ be compact and $f = (\overline{w}/|w|)\mathbf{1}_K$; then $\int_K |w| \, dx \leq ||w||_{L^{\infty*}}$. Hence $w \in L^1$, which proves (a).

(b) Let $(w_{\alpha}, w_{\alpha}) \in D \subset W_p \times L^{\infty*}$ satisfy $w^* - \lim(w_{\alpha}, w_{\alpha}) = (w, z) \in W_p \times L^{\infty*}$. Then for $f \in L^1 \subset PF_p$ one has $\int w_{\alpha} f \, dx = w_{\alpha}(f) \to \int wf \, dx$. And for $f \in L^{\infty}$, $\int w_{\alpha} f \, dx = w_{\alpha}(f) \to z(f)$. Thus w(f) = z(f) for all $f \in L^1 \cap L^{\infty}$. Hence by (a), $w \in L^1$. Thus $U = w^* - \operatorname{cl} D \subset (W_p \cap L^1) \times L^{\infty*}$. It follows that $P^*(U) = W_p \cap L^1$, since $D = \{(w, w); w \in W_p \cap L^1\}$.

REMARK. Let $N = \{u \in U; P^*(u) = 0\} = U \cap (0, Y^*)$. Then U/N is isomorphic to $W_p \cap L^1$, where U is a dual space and N is a w^* -closed subspace.

THEOREM 2.2. $W_p(G) \cap L^r(G)$ with the norm $||w||_{W_p} + ||w||_{L^r}$ is a dual Banach space for all $1 \le r \le \infty$, and for all locally compact groups G.

Proof. If r > 1 this is just our Proposition 2.1 in [Gr3]. If r = 1, then $U = X^*$ for some Banach space X and $N = (N_0)^0$. Hence by [Da, p. 822, Theorem A.3.47(i)], $U/N \approx X^*/(N_0)^0 = N_0^*$. Thus $W_p \cap L^1(G)$ is norm isomorphic to a dual Banach space, thus is a dual space, by the use of the main theorem of Kaijser [Ka].

REMARK. Note that a dual Banach space may have two non-norm isomorphic preduals (see [BL]).

3. Weakly amenable groups and the RNP. It is the purpose of this section to prove the main result of this paper, namely:

THEOREM 3.1. Let G be unimodular and weakly amenable, and let $1 . Then for all <math>1 \le r \le \max(p, p')$, $A_p^r(G)$ is a dual Banach space which has the **RNP**.

If G is $SL(2,\mathbb{R})$ or $SL(2,\mathbb{C})$ then $A_2^r(G)$, for any $2 < r \leq \infty$, does not have the **RNP**, a fortiori is not a dual Banach space, by [Gr3].

If G is amenable this is part of [Gr3, Theorem 2.2, p. 4380].

The proofs in [Gr3] will work for proving our main result once we show that if G is weakly amenable, the W_p norm restricted to A_p is equivalent to the A_p norm.

It has been proved by M. Cowling [Co1] that the group $SL(2, \mathbb{R})$ satisfies the assumption of the next result.

PROPOSITION 3.2. Assume that $A_p(G)$ has an approximate identity $\{u_\alpha\}$ such that $||u_\alpha||_{M(A_p)} \leq K$. Then

$$\forall u \in A_p, \quad \|u\|_{A_p} \le (1+K) \|u\|_{W_p} \le (1+K) \|u\|_{A_p}.$$

REMARK. It has been proved by Haagerup [Ha] (see [Do] for a different proof) that if $G = SL(2, \mathbb{R}) \rtimes \mathbb{R}^2$, then $A_2(G)$ has no multiplier bounded approximate identity. It is not clear to us if Theorem 3.1 holds for this group.

Proof of Proposition 3.2. Clearly $||u||_{W_p} \leq ||u||_{A_p}$ for all $u \in A_p$ by the definition of these norms, hence only the left hand inequality needs proof.

Let $e_{\alpha} \in A_p \cap C_c$ satisfy $||e_{\alpha} - u_{\alpha}||_{A_p} \to 0$. As is readily seen, $\{e_{\alpha}\}$ is an A.I. for A_p and for some α_0 , $||e_{\alpha}||_{M(A_p)} \leq 1 + K$ if $\alpha > \alpha_0$. Hence for any $T \in PM_p$, $||e_{\alpha}T||_{PM_p} \leq 1 + K$ if $||T||_{PM_p} \leq 1$. And if $v \in A_p$ then $|(e_{\alpha}T, v) - (T, v)| = |(T, e_{\alpha}v - v)| \to 0$, thus $e_{\alpha}T \to T$ in $\sigma(PM_p, A_p)$, i.e. in w^* . Also spt $e_{\alpha}T \subset \operatorname{spt} e_{\alpha}$, which is compact.

Hence if $u_0 \in A_p$ then

$$||u_0||_{A_p} \le \sup\{|(u_0, T)|; ||T|| \le 1 + K, \operatorname{spt} T \text{ is compact}\}.$$

However if spt T is compact there exists a net $f_{\alpha} \in C_c(G)$ such that $\|\lambda_p f_{\alpha}\| \leq \|T\|$ and $\lambda_p f_{\alpha} \to T$ ultrastrongly by [Hz1, Prop. 9, p. 117]. Hence

$$\|u_0\|_{A_p} \le \sup\{|(u_0, \lambda_p f)|; f \in C_c, \|\lambda_p f\| \le 1 + K\} = (1 + K)\|u_0\|_{W_p}.$$

The algebra $B_p(G)$ of Herz–Schur multipliers of G, for 1 , hasbeen investigated by Eymard [Ey1] and Herz [Hz1]–[Hz3]. As shown in thesepapers (see also [Fu, p. 581])

$$A_p(G) \subset W_p(G) \subset B_p(G) \subset MA_p(G)$$

and each imbedding is contractive.

DEFINITION 3.3. *G* is *p*-weakly amenable if $A_p(G)$ has an A.I. bounded in the $\| \|_{B_p(G)}$ norm. Thus 2-weak amenability and weak amenability are identical.

We need the fact that 2-weak amenability implies p-weak amenability for all p. This is hinted in [Fu, p. 586], in different terminology, without proof. We give a proof based on Furuta's useful theorem [Fu, Theorem 2.4]:

THEOREM 3.4. For any $1 , <math>B_2(G) \subset B_p(G)$ and $||u||_{B_p} \leq ||u||_{B_2}$ for all $u \in B_2(G)$.

Furuta's proof of this theorem is based on an unpublished theorem of J. E. Gilbert:

THEOREM 3.5. Let w be a function on G. Then $w \in B_2(G)$ iff there exists a Hilbert space K and bounded continuous functions u, v from G to K such that $w(x^{-1}y) = \langle u(y), v(x) \rangle$ for all $x, y \in G$.

A proof of this theorem has been given in [Ha], and for a different proof see P. Jolissaint [Jo].

The proof of the next result is very different from the suggestion, with no proof, given in [Fu, p. 586].

PROPOSITION 3.6. If G is 2-weak amenable then it is p-weak amenable for all 1 .

Proof. Let $\{v_{\alpha}\}$ be an A.I. in $A_2(G)$ such that $||v_{\alpha}||_{B_2} \leq C$. Let $\{u_{\alpha}\} \subset A_2 \cap C_c \subset A_p \cap C_c$ satisfy $||u_{\alpha} - v_{\alpha}||_{A_2} \to 0$. If $v \in A_2$ then

$$||u_{\alpha}v - v||_{A_{2}} \le ||u_{\alpha} - v_{\alpha}||_{A_{2}} ||v||_{A_{2}} + ||v_{\alpha}v - v||_{A_{2}} \to 0.$$

Moreover

$$||u_{\alpha}||_{B_{p}} \le ||u_{\alpha}||_{B_{2}} \le ||u_{\alpha} - v_{\alpha}||_{A_{2}} + ||v_{\alpha}||_{B_{2}} \le 2C$$

if $\alpha > \alpha_0$, for some α_0 . It follows by Furuta's theorem that $\{u_\alpha\}$ is an A.I. for $A_p(G)$ equipped with the $\| \|_{B_p}$ norm, while we need that it be in the $\| \|_{A_p}$ norm.

In contrast to the hint in [Fu, p. 586] we proceed as follows:

Let K_{β} be compact subsets of G whose interiors satisfy int $K_{\beta} \uparrow G$. Let $V = V^{-1}$ be a neighborhood of the unit e of G with compact closure. Let

$$e_{\beta}(x) = \lambda(V)^{-1}(1_{K_{\beta}V} * 1_V(x)) = \lambda(V)^{-1}\lambda(xV \cap K_{\beta}V).$$

Then $e_{\beta}(x) = 1$ [0] if $x \in K_{\beta}$ [$x \notin K_{\beta}V^2$], respectively. Choose a subnet $\{u_{\beta}\}$ of $\{u_{\alpha}\}$ such that $||u_{\beta}e_{\beta} - e_{\beta}||_{A_2} \leq 1$ and let $s_{\beta}(x) = (u_{\beta} + e_{\beta} - u_{\beta}e_{\beta})(x)$. Then $s_{\beta}(x) = 1$ [0] if $x \in K_{\beta}$ [$x \notin K_{\beta}V^2 \cup \operatorname{spt} u_{\beta}$]. Also

$$||s_{\beta}||_{B_p} \le ||s_{\beta}||_{B_2} \le ||u_{\beta}||_{B_2} + 1 \le 2C + 1,$$

by Furuta's theorem. If $v \in A_p \cap C_c$ and $K = \operatorname{spt} v$, then $K \subset K_\beta$ if $\beta > \beta_0$, for some β_0 . Let now $v \in A_p$ and $\epsilon > 0$. Let $u \in A_p \cap C_c$ satisfy $||v-u||_{A_p} < \epsilon$. If $\beta > \beta_0$ then

$$||s_{\beta}v - v||_{A_{p}} \leq ||s_{\beta}(v - u)||_{A_{p}} + ||s_{\beta}u - u||_{A_{p}} + ||v - u||_{A_{p}}$$
$$\leq ||s_{\beta}||_{M(A_{p})}\epsilon + 0 + \epsilon < (2C + 2)\epsilon.$$

Thus $\{s_{\beta}\} \subset A_p$ is an A.I. for A_p , bounded in B_p norm, i.e. G is p-weakly amenable.

COROLLARY 3.7. If G is 2-weakly amenable then the W_p norm restricted to A_p is equivalent to the A_p norm.

Proof. As noted, $||s_{\beta}||_{M(A_p)} \leq ||s_{\beta}||_{B_p}$, hence one can apply Propositions 3.2 and 3.6.

Proof of Theorem 3.1. We only need to use Corollary 3.7 to prove that the $W_p = PF_p^*$ norm restricted to A_p is equivalent to the A_p norm, a fact well known if G is amenable. Then the proof of Theorem 2.1 in [Gr3] carries over verbatim to prove that $A_p^r = W_p^r$ if $1 \le r \le \max(p, p')$, and is hence a dual Banach space, by Theorem 3.1 (note that G need not be weak amenable if p = 2).

The **RNP** part is based on the fact that, if G is separable metric, then $A_p^r(G)$ is norm separable, a fact implied by the existence in $A_p^r(G)$ of a multiplier bounded approximate identity (since Theorem 2.2 in [Gr3] is only based on Theorem 2.1, see [Gr3, p. 4380]).

4. Nonfactorisation. Improving a result of Burnham [Bu], Lai and Chen [LCh, Thm. 3.3] have proved that for any noncompact locally compact group G the algebra $A_p^1(G)$ does not factorise. We extend this result to the algebras $A_p^r(G)$ for all $1 \leq r < \infty$.

THEOREM 4.1. For any noncompact locally compact group G and any $1 \leq r < \infty$, the algebra $A_p^r(G)$ does not factorise.

Proof. Assume at first that $1 < r < \infty$. If $A_p^r \cdot A_p^r = A_p^r$, let $u \in A_p^r$. Then for any n, there exist u_1, \ldots, u_n in A_p^r such that $u = u_1 \ldots u_n$, where $u_i \in A_p \cap L^r$. By [Bu, Lemma A], $u \in L_1$. It follows that $A_p^r(G) = A_p^1(G)$. Since r > 1, it follows from our Strong Containment Theorem 3.3 in [Gr2] that this cannot be. The Lai-Chen result completes the proof.

REMARK. M. Leinert [Le] has given an example of a commutative semisimple Banach algebra which factorises but does not even have unbounded approximate units. Hence the fact that $A_p^r(G)$ has no bounded approximate identity [Gr2] does not imply that it does not factorise.

Acknowledgements. We acknowledge with gratitude very useful correspondence with Gero Fendler, which inspired greatly the main result.

REFERENCES

- [BL] Y. Benyamini and J. Lindenstrauss, A predual of ℓ^1 which is not isomorphic to a C(K) space, Israel J. Math. 13 (1972), 246–259.
- [BF] M. Bożejko and G. Fendler, Herz-Schur multipliers and completely bounded multipliers on the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), 297–302.
- [Br] W. Braun, Einige Bemerkungen zu $S_0(G)$ und $A^p(G) \cap L^1(G)$, preprint.
- [BrF] W. Braun and H. G. Feichtinger, Banach spaces of distributions having two module structures, J. Funct. Anal. 51 (1983), 174–212.
- [Bu] J. T. Burnham, Nonfactorization in subsets of the measure algebra, Proc. Amer. Math. Soc. 35 (1972), 104–106.
- [Co1] M. Cowling, An application of Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), 83–96.
- [Co2] M. Cowling, La synthèse des convoluteurs de L^p de certaines groupes pas moyennables, Boll. Un. Mat. Ital. A (5) 14 (1977), 551–555.
- [CH] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one, Invent. Math. 96 (1989), 507–549.

26	E. E. GRANIRER
[Da]	H. G. Dales, Banach Algebras and Automatic Continuity, Oxford Univ. Press, 2000.
[DCH]	J. De Cannière and U. Haagerup, Multipliers of the Fourier algebra of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), 455– 500
[DU]	J. Diestel and J. J. Uhl, <i>Vector Measures</i> , Math. Surveys 15, Amer. Math. Soc., 1977.
[Do]	B. Dorofaeff, The Fourier algebra of $SL(2, \mathbb{R}) \rtimes \mathbb{R}^n$, $n \geq 2$, has no multiplier bounded approximate unit, Math. Ann. 297 (1993), 707–724.
[Ey1]	P. Eymard, L'algèbre de Fourier d'un groupe localement compacte, Bull. Soc. Math. France 92 (1964), 181–236.
[Ey2]	P. Eymard, Algèbre A_p et convoluteurs de L_p , in: Lecture Notes in Math. 180, Springer, 1971, 364–381.
[Fe]	G. Fendler, An L^p -version of a theorem of D. A. Raikov, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 1, 125–135.
[Fu]	K. Furuta, Algebras A_p, B_p and amenability of locally compact groups, Hokkaido Math. J. 20 (1991), 579–591.
[Gi]	J. E. Gilbert, L^p -convolution operators and tensor products of Banach spaces I, II, III, preprints.
[Gr1]	E. E. Granirer, An application of the Radon-Nikodym property in harmonic anal- ysis, Bull. Un. Mat. Ital. B (5) 18 (1981), 663–671.
[Gr2]	E. E. Granirer, The Figà-Talamanca-Herz-Lebesgue Banach algebras $A_p^r(G) = A_p(G) \cap L^r(G)$, Math. Proc. Cambridge Philos. Soc. 140 (2006), 401–416.
[Gr3]	E. E. Granirer, The Radon-Nikodym property for some Banach algebras related to the Fourier algebra, Proc. Amer. Math. Soc. 139 (2011), 4377–4384.
[Ha]	U. Haagerup, Group C^* -algebras without the completely bounded approximation property, preprint, 1986.
[Hz1]	C. Herz, <i>Harmonic synthesis for subgroups</i> , Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123.
[Hz2]	C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69–82.
[Hz3]	C. Herz, Une généralisation de la notion de transformée de Fourier-Stieltjes, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 3, 145–157.
[Jo]	P. Jolissaint, A characterization of completely bounded multipliers of the Fourier algebras, Colloq. Math. 63 (1992), 311–313.
[Ka]	S. Kaijser, A note on dual Banach spaces, Math. Scand. 41 (1977), 325–330.
[LCh]	HC. Lai and IS. Chen, Harmonic analysis on the Fourier algebras $A_p^1(G)$, J. Austral. Math. Soc. (Ser. A) 30 (1981), 438–452.
[Le]	M. Leinert, A commutative Banach algebra which factorizes but has no approxi- mate units, Proc. Amer. Math. Soc. 55 (1976), 345–346.
[Ta]	K. F. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (1983), 183–190.
Edmono	ł E. Granirer
Departr	nent of Mathematics
Univers	ity of British Columbia
Vancou	ver, B.C., Canada

E-mail: granirer@math.ubc.ca

(5819)