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WHEN DOES THE KATĚTOV ORDER IMPLY THAT ONE IDEAL
EXTENDS THE OTHER?

BY

PAWEŁ BARBARSKI, RAFAŁ FILIPÓW, NIKODEM MROŻEK
and PIOTR SZUCA (Gdańsk)

Abstract. We consider the Katětov order between ideals of subsets of natural num-
bers (“≤K”) and its stronger variant—containing an isomorphic ideal (“v”). In particular,
we are interested in ideals I for which

I ≤K J ⇒ I v J

for every ideal J . We find examples of ideals with this property and show how this
property can be used to reformulate some problems known from the literature in terms of
the Katětov order instead of the order “v” (and vice versa).

1. Introduction. Given two ideals I and J we write I ≤K J if there
exists a function f : ω → ω such that f−1[A] ∈ J whenever A ∈ I. This pre-
order is called the Katětov order and it was introduced by Katětov in [Kat68]
and [Kat72a] to investigate ideal convergence of sequences of continuous
functions. (For more on this order see e.g. [Hru11].)

Given two ideals I and J we write I v J if there exists a bijection
f : ω → ω such that f−1[A] ∈ J whenever A ∈ I. If I v J then we say that
J contains an ideal isomorphic to I. This preorder was used by Debs–Saint
Raymond [DSR09] and Laczkovich–Recław [LR09] to characterize the class
of all ideal limits of sequences of continuous functions.

Obviously, if I v J then I ≤K J . In this note we are interested in
the reverse implication. (The relationship between the Katětov order and
the order “v” was already considered by Solecki [Sol00, Section 2].) Let us
introduce the main definition of this paper. We say that an ideal I has
the property Kat (I ∈ Kat for short) if for every ideal J the following are
equivalent:

(1) I v J ,
(2) I ≤K J .
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It is easy to see that the ideal Fin of all finite subsets of ω has the
property Kat. It was observed in [FS12] that the ideal Fin× Fin = {A ⊆
ω × ω : (∃N ∈ω)(∀n > N) {k : (n, k) ∈ A} is finite} also has the property
Kat.

In Section 3 we prove some general facts about the property Kat. In
Section 4 we provide examples of ideals with and without the property Kat.
For instance, we show (Example 4.1) that the ideal Finα has the property
Kat for every α < ω1. In Section 5 we show that the ideal Finω, defined by
the inductive limit, has the property Kat.

In Section 6 we show how the property Kat can be used to reformulate
a conjecture of Debs–Saint Raymond [DSR09] and a question of Hrušák
[Hru11] in terms of the Katětov order instead of the order “v”.

2. Preliminaries. Our notation and terminology follows that used in
the most recent set-theoretic literature. The cardinality of the set X is de-
noted by |X|. By ω we denote the set of all natural numbers, and by ω1 the
smallest uncountable ordinal number.

An ideal on X is a nonempty family of subsets of a set X closed under
taking finite unions and subsets of its elements. By Fin(X) we denote the
ideal of all finite subsets of X (in case of X = ω we just write Fin). If not
explicitly stated, all ideals we consider in this paper contain all finite sets
(Fin(X) ⊆ I) and are defined on a countable infinite set X (hence, they can
be seen as ideals on ω by identifying X with ω via a fixed bijection). We use
the symbol 0 for the ideal {∅} (this ideal does not contain Fin).

An ideal I on ω is called dense if every infinite A ⊆ ω contains an infinite
subset that belongs to the ideal.

2.1. Sums of ideals. Let I be an ideal on I, J be an ideal on J and
Ji be ideals on Ji (i ∈ I).

For any family of sets {Ai : i ∈ I} let
∑

i∈I Ai be its disjoint union,
i.e.

∑
i∈I Ai =

⋃
i∈I{i} ×Ai.

The family {
∑

i∈I Ai : Ai ∈ Ji for every i ∈ I} is an ideal on
∑

i∈I Ji. It
is called the sum of the ideals Ji and denoted by

∑
{Ji : i ∈ I}.

The family {
∑

i∈I Ai : {i ∈ I : Ai /∈ Ji} ∈ I} is an ideal on
∑

i∈I Ji. It
is called the I-Fubini sum of the ideals Ji and denoted by I-

∑
{Ji : i ∈ I}.

Note that using this notation we may say that
∑
{Ji : i∈I}= 0-

∑
{Ji : i∈I}.

If Ji = J for every i ∈ I then we write I × J = I-
∑
{Ji : i ∈ I}.

If Ji = 0 for every i ∈ I then we write I × 0 = I-
∑
{Ji : i ∈ I}.

For more on sums and Fubini sums of ideals see e.g. [Kat68] and [DSR09]
(note that in both papers the authors use the dual notion of filters instead
of ideals).
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2.2. Finα. The ideals Finα on Xα (α < ω1) are defined in the following
way ([Kat72b, p. 240], where the author considers the dual filters and denotes
them by Nα):

(1) Fin0 = 0 = {∅}, X0 = {0},
(2) Finα+1 = Fin× Finα, Xα+1 =

∑
n∈ωXα,

(3) Finλ = Iλ-
∑
{Finα : α < λ}, where λ is a limit ordinal and Iλ is the

ideal on λ generated by the family {α : α < λ}, Xλ =
∑

α<λXα.

3. The characterization. We will need the following lemma, which
lists some immediate properties of preorders “v” and “≤K”.

Lemma 3.1. Let I and J be ideals on ω (we do not need to assume that
Fin ⊆ J ).

(1) I v Fin⇔ I = Fin.
(2) I ≤K Fin⇔ I is not dense.
(3) I ≤K I × J .

Lemma 3.2. Let I be an ideal with the property Kat. Then either I = Fin
or I is a dense ideal.

Proof. If I is not dense then, by Lemma 3.1(2), I ≤K Fin. Since I ∈ Kat,
we have I v Fin. Thus, by Lemma 3.1(1), I = Fin.

Lemma 3.3 (see also [BNF12]). Let I be a dense ideal. Then I v J ⇔
there is a 1-1 function f : ω → ω such that f−1[A] ∈ J for every A ∈ I.

Proof. “⇒”. Obvious.
“⇐”. Let A ∈ I be an infinite set with A ⊆ f [ω]. Let B = f−1[A] ∈ J .

Let g : B → A ∪ (ω \ f [ω]) be a bijection. Then h = (f�(ω \ B)) ∪ g shows
that I v J .

Theorem 3.4. Let I be a dense ideal. Then the following conditions are
equivalent:

(i) I ∈ Kat;
(ii) I v I × 0.

Proof. (i)⇒(ii). Let I be an ideal with the property Kat. By Lem-
ma 3.1(3), I ≤K I × 0, so I v I × 0.

(ii)⇒(i). Let I be a dense ideal such that I v I × 0. Let φ : ω × ω → ω
be a bijection such that φ−1[A] ∈ I × 0 for every A ∈ I, i.e.
(?) {n ∈ ω : ∃k∈ω φ(n, k) ∈ A} ∈ I whenever A ∈ I.

Let K be an ideal such that I ≤K K. Let f : ω → ω be such that

(??) f−1[A] ∈ K for every A ∈ I.
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We define g : ω → ω by

g(m) = φ(n, k) iff m is the kth element of the set f−1(n).

From the above definition it follows that for each A ⊆ ω,
g(m) ∈ A ⇒ (∃k∈ω φ(n, k) ∈ A and f(m) = n)

⇔ f(m) ∈ {n ∈ ω : ∃k∈ω φ(n, k) ∈ A}.
Fix any A ∈ I. Since φ−1[A] ∈ I × 0, from the above implication and
conditions (?), (??), it follows that

g−1[A] ⊆ f−1[{n ∈ ω : ∃k∈ω φ(n, k) ∈ A}] ∈ K.

Since g is 1-1 and I is dense, Lemma 3.3 yields I v K.

Remark. The assumption that I is dense, in the above proposition, is
necessary. Indeed, let I = Fin × 0. (Recall that Fin × 0 6= Fin1.) Since I is
not dense and contains an infinite set, Lemma 3.2 implies that I /∈ Kat. On
the other hand, it is not difficult to check that I v I × 0.

Theorem 3.4 gives us a characterization of the property Kat; however, for
some ideals I it can be difficult to prove that I 6v I ×0. Below we give some
necessary and some sufficient conditions for ideals to have the Kat property.

3.1. Local Q-ideals. In [BTW82], the authors introduced the following
definition. An ideal I on ω is called a local Q-ideal if for every partition
F0, F1, . . . of ω into finite sets there exists S /∈ I with |An ∩S| ≤ 1 for every
n ∈ ω. The next lemma follows immediately from the definition of a local
Q-point.

Lemma 3.5.

(1) If I v J and J is a local Q-ideal, then I is a local Q-ideal.
(2) I × 0 is a local Q-ideal for every ideal I.

Proposition 3.6. Let I be an ideal with the property Kat. Then I is a
local Q-ideal.

Proof. By Theorem 3.4, I v I × 0. By Lemma 3.5(2), I × 0 is a local
Q-ideal, so, by Lemma 3.5(1), I is a local Q-ideal as well.

Remark. The condition from the above proposition is not sufficient. In-
deed, under the Continuum Hypothesis there is a maximal local Q-ideal I
(the dual ultrafilter I? is called a Q-point) and by Example 4.2 below,
I /∈ Kat.

3.2. Analytic P-ideals. An ideal I is a P-ideal if for every sequence
(An)n∈ω of sets from I there is an A ∈ I such that An \ A ∈ Fin for all n,
i.e. An is almost contained in A for each n.
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By identifying sets of naturals with their characteristic functions, we
equip P (ω) with the Cantor-space topology and therefore we can assign
topological complexity to ideals of sets of integers. In particular, an ideal I
is Fσ (resp. analytic) if it is an Fσ subset of the Cantor space (resp. a
continuous image of a Gδ subset of the Cantor space). For example the ideal
Id of asymptotic density 0 sets is an analytic P-ideal (for more examples see
e.g. [Far00]).

Proposition 3.7. Assume that I is an analytic P-ideal. Then I ∈ Kat
if and only if I = Fin.

Proof. Suppose that an analytic P-ideal I has the property Kat and
I 6= Fin. By Lemma 3.2 and Proposition 3.6, I is a dense local Q-ideal. On
the other hand, by [FMRS11, Lemma 3.7], an analytic P-ideal which is a
local Q-ideal is not dense, a contradiction.

3.3. Sums of ideals. In this subsection we assume that I is an ideal
on I, J is an ideal on J , and Ji are ideals on Ji (i ∈ I). The following facts
are easy to prove.

Fact 3.8. Suppose that I ≤K J and f : ω → ω witnesses this fact. If
J contains an infinite set then we can assume that f is onto. (Else take an
infinite set A ∈ J and put f ′ = (f�(ω \A)) ∪ g where g : A→ ω is onto.)

Fact 3.9.

(1) I-
∑
{Ji : i ∈ I} is a dense ideal for any ideal I.

(2) If Ji are dense for all i ∈ I then
∑
{Ji : i ∈ I} is a dense ideal.

Proposition 3.10. Assume that Ji ∈ Kat for all i ∈ I.

(1) I-
∑
{Ji : i ∈ I} ∈ Kat for any ideal I.

(2) If Ji are dense for all i ∈ I then
∑
{Ji : i ∈ I} ∈ Kat.

Proof. We will prove (1) and (2) simultaneously.
Let J = I-

∑
{Ji : i ∈ I} (J =

∑
{Ji : i ∈ I} in case (2)) and J =∑

i∈I Ji. LetK be an ideal on ω such that J ≤K K. Take a function f : ω → J
such that f−1[A] ∈ K for any A ∈ J . By Fact 3.9, J is a dense ideal, so,
by Lemma 3.1(2), K 6= Fin (hence there are infinite sets in K). Thus, by
Fact 3.8 we can assume that f is onto.

Define Bi = f−1[{i}×Ji] (i ∈ I). Since f is onto, the sets Bi are infinite.
Let J −1i be an ideal on Bi generated by the family

{f−1[{i} ×A] : A ∈ Ji}.

Then the function fi : Bi → Ji given by

fi(k) = a ⇔ f(k) = (i, a)
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shows that Ji ≤K J −1i . Since Ji ∈ Kat, there exists a bijection gi : Bi → Ji
such that g−1i [A] ∈ J −1i for any A ∈ Ji.

Let g : ω → J be given by

g(k) = (i, gi(k)) ⇔ k ∈ Bi.
Then g is a bijection. Take any set A ∈ J . Then there exists a set C ∈ I
(C = ∅ in case (2)) such that A(i) = {a ∈ Ji : (i, a) ∈ A} ∈ Ji for every
i ∈ I \ C. Then g−1[{i} × A(i)] ∈ J −1i for every i ∈ I \ C. Hence for any
i ∈ I \C there exists a set Di ∈ Ji such that g−1[{i}×A(i)] ⊆ f−1[{i}×Di].
Let

D =
⋃

i∈I\C

{i} ×Di ∪
⋃
i∈C
{i} × Ji.

Then D ∈ J and g−1[A] ⊆ f−1[D]. Hence g−1[A] ∈ K. So J v K.

Remark. The assumption that the Ji are dense, in (2) of the above
proposition, is necessary. Indeed, let I1 = Fin and I2 be a dense ideal with
the property Kat (see Sections 4 and 5 for examples). Then the ideal J =∑

i∈{1,2} Ii is not dense and contains an infinite set. So, by Lemma 3.2,
J /∈ Kat.

Corollary 3.11. If J ∈ Kat then I × J ∈ Kat for any ideal I.

4. Simple examples

Example 4.1. Finα ∈ Kat for each α < ω1.

Proof. By transfinite induction based on Proposition 3.10.

Example 4.2. No maximal ideal has the property Kat.

Proof. Let I be a maximal ideal. If I ∈ Kat, then by Theorem 3.4,
I v I × 0, and thus I × 0 would be a maximal ideal, a contradiction.

By Proposition 3.7 no analytic P-ideal but Fin has the property Kat. The
assumption that I is a P-ideal is necessary in Proposition 3.7, as shown by

Example 4.3. The ideal

ED = {A ⊆ ω × ω : (∃n,m∈ω)(∀k>n) |{i ∈ ω : (k, i) ∈ A}| ≤ m}
is a dense Fσ ideal with the property Kat.

Proof. First of all it is not difficult to show that ED is a dense Fσ ideal
(see e.g. [MA09, p. 12]).

Now we show that ED ∈ Kat. Let I be an ideal such that ED ≤K I.
In [MA09, p. 57], the author noticed that

ED ≤K I ⇔ I is not locally selective
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(recall that an ideal I is locally selective if for every partition A0, A1, . . . ∈ I
of ω there is a selector S /∈ I).

Let A0, A1, . . . ∈ I be a partition of ω without a selector S /∈ I. Let
f : ω → ω × ω be a one-to-one function such that f [An] ⊆ {n} × ω. Then
f−1[A] ∈ I for every A ∈ ED. Thus, by Lemma 3.3, ED v I.

The proof of the above example gives

ED v I ⇔ I is not locally selective.

We give more applications of the Kat property in Section 6.
By conv we denote the ideal of all subsets of QI = Q ∩ [0, 1] which have

only finitely many cluster points, and by nwd the ideal of all nowhere dense
subsets of QI (with euclidean metric).

Example 4.4. {conv, nwd} ⊆ Kat.

Proof. Let I = conv (I = nwd, respectively). By Theorem 3.4 it is
enough to show that I v I × 0. Thus, by Lemma 3.3, it is enough to find a
1-1 function f : QI × ω → QI such that f−1[A] ∈ I × 0 for every A ∈ I.

Let QI = {qn : n ∈ ω} =
⋃
k∈ω Qk, where Qk = {qkn : n ∈ ω} are pairwise

disjoint such that |qkn − qn| < 1/(n+ k + 1) for each n, k ∈ ω. We define an
injection f : QI × ω → QI by

f(q, k) = qkn ⇔ q = qn.

Let A ∈ I. We will show that f−1[A] ∈ I × 0, i.e.

A′ = {qn ∈ QI : q
k
n ∈ A for some k ∈ ω} ∈ I.

Case 1: I = conv. It is enough to prove that if x is a cluster point of
A′ then it is also a cluster point of A. Let x = limi→∞ qn(i) (qn(i) ∈ A′ for
each i). Without loss of generality we may assume that n(i) is increasing to
infinity. For each i there exists k(i) such that qk(i)n(i) ∈ A. Since

|qk(i)n(i) − qn(i)| <
1

n(i) + k(i) + 1
<

1

n(i) + 1

i→∞−−−→ 0,

we have limi→∞ q
k(i)
n(i) = limi→∞ qn(i) = x. Thus x is also a cluster point of A.

Case 2: I = nwd. It is enough to prove that for any nonempty open set
U ⊆ QI \ A there is a nonempty open set V ⊆ U \ A′. Let B(x, ε) ⊆ U be
an open ball with center x and radius ε.

If B(x, ε/3) ∩ A′ is finite, then there is a nonempty open set V ⊆
B(x, ε/3) \A′ ⊆ U \A′, and we are done.

Now, suppose that B(x, ε/3) ∩ A′ is infinite. Then there is n ∈ ω such
that qn ∈ B(x, ε/3) ∩ A′ and 1/n < ε/3. Let k ∈ ω be such that qkn ∈ A.
Then |qkn − qn| < 1/(n + k + 1) < ε/3. Since qn ∈ B(x, ε/3), it follows that
qkn ∈ B(x, 2ε/3) ⊆ U . Thus A ∩ U 6= ∅, a contradiction.
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5. Inductive limits. In [DSR09], in Section 6 the authors consider some
canonical filters (which are dual objects to ideals) Nα for α < ω1. We shall
denote their dual ideals by Finα. In the following we recall some crucial
definitions.

A filter is a nonempty family closed under taking finite intersections and
supersets. We denote the domain of a filter F by dom(F) =

⋃
F . Let I∗

denote the dual filter of the ideal I, i.e. I∗ = {(
⋃
I) \A : A ∈ I}. Following

[DSR09] we say that π : F → dom(G) is a quasi-homomorphism from the
filter F to the filter G if F ∈ F and π−1[A] ∈ F for all A ∈ G. It is clear
that I ≤K J iff there is a quasi-homomorphism from J ∗ to I∗.

Let (I,≤) be a directed set. Following [DSR09] we say that (πi,j)i,j∈I, i≤j
is a coherent system of quasi-homomorphisms for a family (Fi)i∈I of filters if
for all i ≤ j ≤ k, i, j, k ∈ I, πi,j is a quasi-homomorphism from Fj to Fi, and
πi,k(a) = πi,j(πj,k(a)) for all a ∈ dom(πi,k) ∩ π−1j,k [dom(πi,j)]. Then we say
that ((Fi)i∈I , (πi,j)i,j∈I, i≤j) is a quasi-inductive system of filters. The filter
on
∑

i∈I dom(Fi) generated by the family {
∑

j≥i π
−1
i,j [A] : A ∈ Fi, i ∈ I} (as

a subbase) is called the inductive limit of the system ((Fi)i∈I , (πi,j)i,j∈I, i≤j)
and is denoted by lim←−((Fi)i∈I , (πi,j)i,j∈I, i≤j).

It was noticed in [DSR09, p. 203] that since every Finα is the Fubini
sum of the ideals Finβ with β < α, we can fix a coherent system of quasi-
homomorphisms (πβ,α)β≤α<ω1 for the family {Finα : α < ω1} using induc-
tively [DSR09, Proposition 5.8] in the following way:

• πα,α = id, dom(πα,α) = dom(Finα);
• πβ,λ =

∑
γ≥β πβ,γ , dom(πβ,λ) =

∑
γ≥β dom(πβ,γ) for β < λ, λ a limit

ordinal;
• πα,α+1(i, a) = a for i ∈ ω, a ∈ dom(Finα), dom(πα,α+1) = ω ×
dom(Finα);
• πβ,α+1 = πβ,α ◦ πα,α+1, dom(πβ,α+1) = π−1α,α+1[dom(πβ,α)] for β < α.

Thus following [DSR09] we can define a family {Finα : α < ω1} as:
(1) Fin0 = Fin0,
(2) Finα+1 = Fin1+α,
(3) Finλ = lim←−((Fin

α)α<λ, (πβ,α)β≤α<λ) for limit ordinals λ.

It is clear that Finα = Finα for α < ω and Finα+1 = Finα for α ≥ ω.
In the following proposition we give another example of the ideal with

the property Kat.

Proposition 5.1. Finω ∈ Kat.

Proof. Finω = lim←−((Fin
n)n∈ω, (πi,j)i≤j<ω), where

πi,j(n1, n2, . . . , nj) = (nj−i+1, nj−i+2, . . . , nj)

and dom(πi,j) = dom(Finj) = ωj for i ≤ j < ω and dom(Finω) =
∑

i∈ω ω
i.
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We shall show that Finω v Finω × 0. Let h : ω2 → ω be a fixed bijection.
Define fi : ωi+1 → ωi as

fi(n1, . . . , ni−1, ni, ni+1) = (n1, . . . , ni−1, h(ni, ni+1))

for i ∈ ω. It is easy to see that fi is a bijection.
Define f :

∑
i∈ω ω

i+1 →
∑

i∈ω ω
i by f(i, n) = (i, fi(n)) for i ∈ ω, n ∈

ωi+1 and define g : (
∑

i∈ω ω
i) × ω →

∑
i∈ω ω

i+1 by g((i, k), n) = (i, (k, n))
for i, n ∈ ω, k ∈ ωi. Then f , g, and thus f ◦ g are bijections.

Take B =
∑

j≥i π
−1
i,j [A] =

∑
j≥i ω

j−i × A, an element of the subbase
of the filter (Finω)

∗, where A ∈ (Fini)∗ and i ∈ ω. We shall show that
(f ◦ g)−1[B] ∈ (Finω × 0)∗. Firstly we have

f−1[B] =
∑
j≥i

f−1j [ωj−i ×A] =
∑
j≥i

(ωj−i × f−1i [A]),

and f−1i [A] ∈ (Fini× 0)∗. Thus f−1i [A] ⊇ C ×ω for some C ∈ (Fini)∗. Hence

f−1[B] ⊇
∑
j≥i

(ωj−i × C × ω).

Thus

g−1[f−1[B]] ⊇
(∑
j≥i

ωj−i × C
)
× ω =

(∑
j≥i

π−1i,j [C]
)
× ω.

But
∑

j≥i π
−1
i,j [C] ∈ (Finω)

∗, and hence (
∑

j≥i π
−1
i,j [C]) × ω ∈ (Finω × 0)∗.

Finally g−1[f−1[B]] ∈ (Finω × 0)∗. As a result Finω v Finω × 0.
Now we shall show that Finω is dense. Take an infinite setX =

∑
i∈ωXi ⊆

dom(Finω). If X ⊆
∑

i<n ω
i for some n ∈ ω, then X ∈ Finω. In the opposite

case N = {n : Xn 6= ∅, n ≥ 2} is infinite. For each n ∈ N fix any xn ∈ Xn.
Let yn = π2,n(xn) for n ∈ N . Let M = {yn : n ∈ N}.

If M is finite, then M ∈ Fin2, and thus
∑

j≥2 π
−1
2,j [M ] ∈ Finω, hence

{(n, xn) : n ∈ N} ∈ Finω. If M is infinite, then there exists an infinite set
L ⊆M such that L ∈ Fin2, since Fin2 is dense. Consequently,

∑
j≥2 π

−1
2,j [L] ∈

Finω, hence {(n, xn) : yn ∈ L} ∈ Finω. In both cases we arrived at an infinite
subset of X in Finω.

Finally, since Finω is dense and Finω v Finω×0, by Theorem 3.4 we have
Finω ∈ Kat.

Problem 5.2. Do all ideals Finα, where α < ω1, have the property Kat?

6. Applications

6.1. The Borel separation rank of an ideal. Let X be a topological
space. Let Σ0

1(X) be the family of all open subsets of X, Π0
α(X) be the

family of complements of sets from Σ0
α(X) (1 ≤ α < ω1) and Σ0

α(X) be the
family of countable unions of sets from

⋃
β<αΠ

0
β(X) (α > 1).



100 P. BARBARSKI ET AL.

The Borel separation rank (rank, for short) of an ideal I was defined by
Debs and Saint Raymond [DSR09] as the unique ordinal

rk (I) = min{α < ω1 : I ⊆ A and I? ∩A = ∅ for some set A ∈ Σ0
1+α}.

It is known that every analytic ideal has a countable rank ([DSR09,
p. 197]). Moreover, if I v J then rk (I) ≤ rk (J ) ([DSR09, Lemma 7.2]).
The same is true if we replace the order “v” with the Katětov order “≤K”
([DSR09, Lemma 5.2]).

In [DSR09], the authors posed the following conjecture.

Conjecture 6.1 ([DSR09, Conjecture 7.8]). Let I be an analytic ideal.
Then rk (I) ≥ α if and only if Finα v I.

Note that by [DSR09, Thms. 6.5, 3.2 and Lem. 5.2], the implication “⇐”
of the above conjecture is true. Using the fact that Finα ∈ Kat (Example 4.1)
and Finω ∈ Kat (Proposition 5.1) we can rewrite the above conjecture making
the implication “⇒” easier to prove (see also Problem 5.2).

Conjecture 6.2. Let I be an analytic ideal. Then rk (I) ≥ α if and
only if Finα ≤K I, for successor α < ω1 and for α = ω.

6.2. Ideal convergence. This section is motivated by the question of
Hrušák.

Problem 6.3 ([Hru11, Q. 5.16]). Let J be a Borel ideal. Are the follow-
ing conditions equivalent?

(i) conv 6≤K J ;
(ii) J can be extended to a proper Fσ ideal.

We do not know the answer, but we are able to formulate some equivalent
conditions and show that the answer is positive if J is a P-ideal.

We say that an ideal I has the finite Bolzano–Weierstrass property (I ∈
FinBW for short) if for any bounded sequence (xn)n∈ω of reals there is A /∈ I
such that (xn)n∈A is convergent. By the well-known Bolzano–Weierstrass
theorem the ideal Fin has the FinBW property (for a discussion and applica-
tions of this property see [FMRS07]).

Proposition 6.4 ([MA09]). For any ideal J the following conditions
are equivalent:

(i) conv 6≤K J ;
(ii) conv 6v J ;
(iii) J ∈ FinBW.

Proof. Since conv ∈ Kat (Example 4.4), (i) is equivalent to (ii). The
equivalence (i)⇔(iii) was proved in [MA09, Section 2.7].
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In [FMRS07, Thm. 4.2], the authors proved that an analytic P-ideal has
the property FinBW if and only if it can be extended to a proper Fσ ideal.
Thus, if J is an analytic P-ideal then the answer to the question of Hrušák
is positive.

Proposition 6.5. If J is an analytic P-ideal then the following condi-
tions are equivalent:

(i) conv 6≤K J ;
(ii) conv 6v J ;
(iii) J ∈ FinBW;
(iv) J can be extended to a proper Fσ ideal.
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