
C O L L O Q U I U M M A T H E M A T I C U M
VOL. 99 2004 NO. 2

SPACES OF MULTIPLIERS AND THEIR PREDUALS
FOR THE ORDER MULTIPLICATION ON [0, 1]. II

BY

SAVITA BHATNAGAR (Chandigarh)

Abstract. Consider I = [0, 1] as a compact topological semigroup with max multi-
plication and usual topology, and let C(I), Lp(I), 1 ≤ p ≤ ∞, be the associated algebras.
The aim of this paper is to study the spaces HomC(I)(L

r(I), Lp(I)), r > p, and their
preduals.

1. Introduction. The multipliers from Lr(I) to Lp(I), 1 ≤ r, p ≤ ∞,
where I denotes the topological semigroup [0, 1] with max multiplication
and the usual topology, have been studied by Baker, Pym and Vasudeva [1].
The identification of multiplier spaces and their preduals from Lr(I) to
Lp(I), 1 ≤ r ≤ p ≤ ∞, has been carried out by Bhatnagar and Vasudeva [2].
The case when r > p has evaded the authors. The present study does not
close this gap completely; however, it provides a set of necessary conditions
and another set of sufficient conditions for a linear operator to be a multiplier
from Lr(I) to Lp(I), r > p. As a natural outcome of the methods employed,
we find that a multiplier from Lr(I) to Lp(I), r > p, need not be bounded as
was assumed in [1]. As there is substantial overlap between the arguments
presented in [2] and the present note, we have tried to be as brief as possible.
For details, the reader may refer to [2].

2. Preliminaries. The set I = [0, 1] equipped with max multiplica-
tion and usual topology is a compact topological semigroup. Let C(I) and
Lp(I), 1 ≤ p ≤ ∞, have their usual meanings. Lp(I) is a left Banach C(I)-
module under convolution ∗ defined by

ϕ ∗ g(t) = ϕ(t)
t�

0

g(s) ds+ g(t)
t�

0

ϕ(s) ds

for almost all t ∈ I, where ϕ ∈ C(I) and g ∈ Lp(I). We denote this left
Banach C(I)-module by Lp∗. The adjoint action ◦ of an element ϕ ∈ C(I)
on Lp

′
(I), 1/p + 1/p′ = 1, under which Lp

′
(I) becomes a right Banach
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C(I)-module is defined by

g ◦ ϕ(s) = g(s)
s�

0

ϕ(t) dt+
1�

s

ϕ(t)g(t) dt, g ∈ Lp′(I).

The right Banach C(I)-module Lp
′
(I) with the adjoint action defined above

is denoted by Lp
′
◦ . The above definitions can be extended to ϕ ∈ Lr(I),

r > p, by denseness of C(I) in Lr(I).
Let Mr,p

◦ denote HomC(I)(Lr∗, L
p
∗) and Mr,p

∗ denote HomC(I)(Lr∗, L
p
◦) for

1 ≤ r, p ≤ ∞. If

Ar,p∗ = Lr∗ ⊗̂C(I) L
p′
∗ , Ar,p◦ = Lr∗ ⊗̂C(I) L

p′
◦ ,

where the tensor product is the projective tensor product of Banach mod-
ules, then it follows, using a theorem of Rieffel [5], that (Ar,p∗ )∗ = Mr,p

∗ and
(Ar,p◦ )∗ = Mr,p

◦ .

3. Description of preduals. We define an operator

B : Lr(I) ⊗̂ Lp′(I)→ Lp
′
(I),

where 1 ≤ r, p′ <∞, by

B(f ⊗ g)(s) = g(s)
s�

0

f(t) dt.

The image of B in Lp
′
(I) will be called Br,p if 1 < r, p <∞, and B∞ in L∞

if r = p′ = ∞. Let In = [0, 2−n] and Jn = [2−n, 2−n+1], n = 1, 2, . . . . For a
measurable function ϕ on I, let Pnϕ denote the function χJnϕ, n = 1, 2, . . . .
Define en = 2nχIn , n = 1, 2, . . . . Since � 1

0 en(s) ds = 1 for each n, we can
easily see that if f ≡ 0 on In then B(en ⊗ f) = f. As f =

∑∞
n=1 Pnf , we

obtain

f =
∞∑

n=1

B(en ⊗ Pnf) =
∞∑

n=1

en ◦ Pnf =
∞∑

n=1

en ∗ Pnf.

Let

Cr,p =
{
ϕ : ϕ is measurable and

∞∑

n=1

2n/r
′‖Pnϕ‖p′ <∞

}
,

Cr,pu = {ϕ : ϕ is measurable and
∞∑

n=1

(2n/r
′‖Pnϕ‖p′)u <∞

}
,

where 1/u = 1/r + 1/p′. It may be noted that for r = p, Cp,p = Cp,pu . We
first characterize B∞.

Proposition 1. B∞ = {ϕ : ϕ is measurable and ϕ(s)/s is essentially
bounded}.
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Proof. If ϕ is measurable and ϕ(s)/s is essentially bounded then ϕ can be
written as ϕ(s) = (ϕ(s)/s) � s0 1 dt. Consequently, ϕ = B(ψ), where ψ(s) =
1 ⊗ ϕ(s)/s. On the other hand, if ϕ = B(f ⊗ g), where f, g ∈ L∞, then
ϕ(s) = g(s) � s0 f(t) dt, s ∈ I, is measurable. Moreover,

∣∣∣∣
ϕ(s)
s

∣∣∣∣ =
∣∣∣∣
g(s)
s

s�

0

f(t) dt
∣∣∣∣ ≤ ‖g‖∞‖f‖∞.

Remark. It is not difficult to see that the requirement that ϕ(s)/s be
essentially bounded is equivalent to supn 2n‖Pnϕ‖∞ <∞.

Theorem 1. For r > p, Cr,p ⊆ Br,p ⊆ Cr,pu , where 1/u = 1/r + 1/p′.

Proof. If ϕ ∈ Cr,p, then
∑∞
n=1 2n/r

′‖Pnϕ‖p′ < ∞, so that ϕ =∑∞
n=1B(en ⊗ Pnϕ) and

∑∞
n=1 ‖en‖r‖Pnϕ‖p′ < ∞. Thus ψ =

∑∞
n=1 en ⊗

Pnϕ ∈ Lr ⊗ Lp
′

and B(ψ) = ϕ.

To prove the other inclusion, fix r and p and let q = 1 + r/p′, so that
q′ = 1 + p′/r. Let α = q/r. Then

α · 1
q

+ (1− α) · 1
∞ =

1
r
, α · 1

q′
+ (1− α) · 1

∞ =
1
p′
.

SinceB(Lq⊗Lq′) ⊂ Bq,q andB(L∞⊗L∞) ⊂ B∞, it follows by interpolation,
using Calderón [3], that B maps Lr⊗Lp′ into a suitable intermediate space
between Bq,q and B∞. (It may be observed that Bq,q = Cq,q). To see this,
note that Bq,q may be regarded as a mixed Lp space, viz., L1(N, ν, Lq′(I)),
where ν is the measure on N assigning mass 2−n to the element {n}, and
B∞ may be regarded as L∞(N, ν, L∞(I)). These identifications are obtained
by associating with ϕ ∈ Bq,q (or B∞) the function f : N× I → C given by

(1) f(n, t) = 2nϕ
(
t+ 1
2n

)
, n ∈ N, t ∈ I.

By Calderón [3], the intermediate space with index α between L1(N, ν,
Lq
′
(I)) and L∞(N, ν, L∞(I)) is contained in Lu(N, ν, Lv(I)), where

α · 1
1

+ (1− α) · 1
∞ =

1
u
, α · 1

q′
+ (1− α) · 1

∞ =
1
v
.

Thus 1/u = 1/r + 1/p′, and v = p′. It follows that B maps Lr ⊗̂ Lp′ into
Lu(N, ν, Lp′(I)) and by identification (1) this corresponds to measurable
functions ϕ on I such that

∑∞
n=1(2n/r

′‖Pnϕ‖p′)u <∞. Thus ϕ ∈ Cr,pu . This
completes the proof.

We next characterize the predual Ar,p◦ of the multiplier space M r,p
◦ . Let

AC◦u (u ≥ 1) be the space of absolutely continuous functions on [0, 1] whose
derivative belongs to Lu(I) and which vanish at 1.
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Theorem 2. For r ≥ p, Cr,p ⊆ Ar,p◦ ⊆ Br,p +AC◦u, where 1/r + 1/p′ =
1/u.

Proof. If ϕ ∈ Cr,p, we can write ϕ =
∑∞
n=1 en ◦ Pnϕ and by definition

of Cr,p,
∑∞
n=1 ‖en‖r ‖Pnϕ‖p′ <∞ so that ϕ ∈ Ar,p◦ .

Clearly, every element of Ar,p◦ is a sum of the form ϕ+ψ, where ϕ ∈ Br,p
and ψ ∈ AC◦u, so that we have the required result.

Theorem 3. (a) Ar,p∗ is a semisimple commutative Banach algebra un-
der convolution. It has an approximate identity. The maximal ideal space of
Ar,p∗ is the interval (0, 1] with the interval topology.

(b) Cr,p + Cp
′,r′ ⊆ Ar,p∗ ⊆ Br,p +Bp

′,r′ for 1 ≤ r, p ≤ ∞.
(c) Cp

′,r′ ⊆ Cr,p if r ≥ p′, and Cr,p ⊆ Cp′,r′ if r ≤ p′,
Cp
′,r′
u ⊆ Cr,pu if r ≥ p′, and Cr,pu ⊆ Cp′,r′u if r ≤ p′.

(d) Cr,p ⊆ Ar,p∗ ⊆ Cr,pu if r ≥ p′, and Cp
′,r′ ⊆ Ar,p∗ ⊆ Cp

′,r′
u if r ≤ p′.

Proof. (a) Ar,p∗ = Lr ⊗̂C(I) L
p′ , being the projective tensor product of

two Banach algebras, is a Banach algebra. For the detailed proof, consult
Theorem 7 of [2].

(b) If ϕ ∈ Cr,p, then
∑∞
n=1 2n/r

′‖Pnϕ‖p′ < ∞ and ϕ =
∑∞
n=1 en ∗ Pnϕ

∈ Ar,p∗ . Similarly for Cp
′,r′ . It is clear that every element of Ar,p∗ is a sum

ϕ+ ψ, where ϕ ∈ Br,p and ψ ∈ Bp′,r′ , so that Ar,p∗ ⊆ Br,p +Bp
′,r′ .

(c) We show that Cp
′,r′ ⊆ Cr,p if r ≥ p′, the other proofs are similar. If

ϕ ∈ Cp′,r′ , then
∑∞
n=1 2n/p‖Pnϕ‖r <∞ and

∞∑

n=1

2n/r
′‖Pnϕ‖p′ ≤

∞∑

n=1

2n/r
′‖Pnϕ‖r(2−n)1/p′−1/r =

∞∑

n=1

2n/p‖Pnϕ‖r <∞

so that ϕ ∈ Cr,p.
(d) is clear in view of (c).

4. Multipliers. In this section we study the multipliers, namely,M r,p
∗ =

HomC(I)(Lr∗, L
p
◦) and Mr,p

◦ = HomC(I)(Lr∗, L
p
∗). We have M r,p

∗ = (Ar,p∗ )∗,
and we deal with the case r ≥ p′; the other case can be obtained by identi-
fying Ar,p∗ and Ap

′,r′
∗ . The following theorem gives us a necessary condition

for a multiplier to be in M r,p
∗ .

Theorem 4. Let r ≥ p′. If t ∈Mr,p
∗ then t is measurable and

sup
n

2−n/r
′‖Pnt‖p <∞.

Proof. Mr,p
∗ = (Ar,p∗ )∗ ⊆ (Cr,p)∗ by Theorem 3. Therefore, if t ∈ M r,p

∗
then t is measurable and supn 2−n/r

′‖Pnt‖p <∞.
The following theorem gives us a sufficient condition for a multiplier to

be in Mr,p
∗ .
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Theorem 5. Let r ≥ p′. If t is measurable and satisfies
∞∑

n=1

(2−n/r
′‖Pnt‖p)u

′
<∞,

then t ∈Mr,p
∗ .

Proof. Mr,p
∗ = (Ar,p∗ )∗ ⊇ (Cr,pu )∗ by Theorem 3. Therefore if t is mea-

surable and satisfies
∑∞
n=1(2−n/r

′‖Pnt‖p)u
′
<∞ then t ∈M r,p

∗ .

Next, we look at HomC(I)(Lr∗, L
p
∗), i.e., (Lr ⊗̂C(I) L

p′)∗, where the ac-
tion of C(I) on Lr(I) is by ∗ and on Lp

′
(I) by ◦. The natural map w :

Lr∗ ⊗̂ Lp
′
◦ → Lr ◦ Lp′ factors through Lr ⊗̂C(I) L

p′ (note that C(I) can be
replaced by another dense subalgebra contained in Lr ∩Lp′). Theorem 1 of
[2] shows that the map Lr∗ ⊗̂C(I) L

p′
◦ → Lr ◦Lp′ induced by w is one-to-one.

Then Lr ◦ Lp′ can be identified with {∑∞i=1 fi ◦ gi : fi ∈ Lr, gi ∈ Lp
′

and∑∞
i=1 ‖fi‖r‖gi‖p′ < ∞}, which we can identify with Lr∗ ⊗̂C(I) L

p′
◦ , i.e., the

predual of HomC(I)(Lr∗, L
p
∗).

Theorem 6. Let r ≥ p. If β ∈M r,p
◦ then β is measurable and satisfies

supn 2−n/r
′‖Pnβ‖p <∞.

Proof. Mr,p
◦ = (Ar,p◦ )∗ ⊆ (Cr,p)∗ by Theorem 2. Thus if β ∈ M r,p

◦ then
β ∈ (Cr,p)∗ and so β is measurable and satisfies supn 2−n/r

′‖Pnβ‖p <∞.

Theorem 7. Let r ≥ p. If β ∈ Lu
′
(I) has an a.e. derivative h which

satisfies
∑∞
n=1(2−n/r

′‖Pnh‖p)u
′
<∞, then β ∈M r,p

◦ .

Proof. Mr,p
◦ = (Ar,p◦ )∗ ⊇ (Cr,pu + AC◦u)∗ by Theorems 1 and 2. Suppose

µ ∈ (Cr,pu + AC◦u)∗. Then µ|AC◦u ∈ (AC◦u)∗ and µ|Cr,pu ∈ (Cr,pu )∗. Note that
(AC◦u)∗ = Lu

′
(I), via the pairing

(2) 〈µ, ϕ〉 =
1�

0

β(s)f(s) ds,

where ϕ(s) = � 1
s
f(t) dt is in AC◦u and µ corresponds to β ∈ Lu′(I). Since

µ|Cr,pu ∈ (Cr,pu )∗ it follows that β ∈ (Cr,pu )∗. For any ε > 0, Lp
′
(Iε) ⊂

Cr,pu (Iε = [ε, 1]) and so µ|Lp′ (Iε) corresponds to an Lp(Iε) function hε such

that for ϕ ∈ Lp′(Iε),

〈µ, ϕ〉 =
1�

ε

hε(s)ϕ(s) ds =
1�

0

hε(s)ϕ(s) ds,

where ϕ is taken to be zero on [0, ε). It is clear that the hε’s are compatible,
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i.e. hε′ = hε on [ε, 1] if ε′ < ε. Moreover, for ϕ = � 1
s
f(t) dt ∈ Lp′(Iε) we have

〈µ, ϕ〉 =
1�

0

hε(s)
1�

s

f(t) dt ds =
1�

0

f(t)
t�

ε

hε(s) ds dt.

Comparing this with (2) we get

β(t) =
t�

ε

hε(s) ds for t > ε.

Thus β′(t) = hε(t) a.e. on [ε, 1] so we have proved that there exists h mea-
surable on (0,1] such that h ∈ Lp(Iε) for every ε > 0 and β′(t) = h(t) a.e.
on (0, 1]. If we take ϕ ∈ Br,p ⊆ Cr,pu , then

〈µ, ϕ〉 =
1�

0

h(t)ϕ(t) dt

exists and is finite because
∑∞
n=1(2−n/r

′‖Pnh‖p)u
′
<∞. The multiplier Mβ

corresponding to β is given by

Mβ(f)(t) =
[
β(1)−

1�

t

h(s) ds
]
f(s) + h(t)

t�

0

f(s) ds for f ∈ Lr(I).

Indeed,

〈Mβ(f), g〉 = 〈β, f ◦ g〉

=
1�

0

{
h(t)g(t)

t�

0

f(s) ds+ g(t)f(t)β(t)
}
dt,

=
1�

0

g(t)
{(
β(1)−

1�

t

h(s) ds
)
f(t) + h(t)

t�

0

f(s) ds
}
dt.

Remarks. (i) For r = p (u = 1), β ∈ L∞(I), and consequently x 7→
� 1
x
h(t) dt is bounded.
(ii) The condition that h(s) � s0 f(t) dt is in Lp(I) for every f ∈ Lr(I) is

equivalent to
∑∞
n=1(2−n/r

′‖Pnh‖p)u
′
< ∞. To see this, let g ∈ Lp′ . If f̂(x)

denotes � x0 f(y) dy for f ∈ Lr, then

|〈hf̂, g〉| =
∣∣∣

1�

0

(hf̂ )(x)g(x) dx
∣∣∣ ≤

∑

n

‖Pnh‖p‖Pn(gf̂ )‖p′

≤
[ ∞∑

n=1

(2−n/r
′‖Pnh‖p)u

′
]1/u′[ ∞∑

n=1

(2n/r
′‖Pn(gf̂ )‖p′)u

]1/u
<∞,

since gf̂ ∈ Br,p ⊆ Cr,pu . Thus hf̂ ∈ Lp for all f ∈ Lr.
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Conversely, suppose hf̂ ∈ Lp for all f ∈ Lr. Since
[ ∞∑

n=1

(2−n/r
′‖Pnh‖p)u

′]1/u′
= sup
ϕ∈Cr,pu

‖hϕ‖1
‖ϕ‖ ,

and
‖ϕ‖p′ ≤ ‖ϕ‖ for ϕ ∈ Cr,pu ,

we get

‖hϕ‖1 ≤ ‖(x+ 1)1/r′h‖p‖(x+ 1)−1/r′ϕ‖p′ ≤ ‖(x+ 1)1/r′h‖p‖ϕ‖ <∞,
since f(x) = (x+1)−1/r ∈ Lr. Thus [

∑∞
n=1(2−n/r

′‖Pnh‖p)u
′
]1/u

′
<∞. Here

‖ϕ‖ stands for [
∑∞
n=1(2n/r

′‖Pnϕ‖p′)u]1/u.
(iii) In [1] the fact that a multiplier T from a Banach algebra A to itself

gives rise to a bounded continuous function was used heavily. It is natural
to expect that if T is a multiplier from a Banach algebra A to a Banach
algebra B, where A ⊂ B, A 6= B, then T need not give rise to a bounded
continuous function. See Larsen [4, Theorem 1.2.2]. This is corroborated by
the fact that β(x) = log x, x ∈ (0, 1], gives a multiplier from Lr(I) to Lp(I),
r > p (u > 1), whereas t 7→ � 1

t
(1/s) ds is not bounded.
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