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Abstract. Let A be a Banach algebra and let M be a W*-algebra. For a homo-
morphism & from A into M, we introduce and study M-valued invariant ¢#-means on
the space of bounded linear maps from A into M. We establish several characterizations
of existence of an M-valued invariant #-mean on B(A, M). We also study the relation
between existence of an M-valued invariant ¢-mean on B(A, M) and amenability of A.
Finally, for a character ¢ of A, we give some descriptions for ¢-amenability of A in terms
of M-valued invariant #-means.

1. Introduction. Let A be a Banach algebra, and let ) be a Banach
A-bimodule. Then a linear map D : A — )Y is a derivation if

D(ab) = D(a)-b+a-D(b) (a,be A).
For example, let ( € ), and set
D¢(a)=a-(—C-a (acA).

Then D¢ is a derivation; these are inner derivations. The Banach algebra
A is called amenable if every continuous derivation D : A — Y* is an
inner derivation, for all Banach 4-bimodules ); this important concept was
introduced by Johnson [J], where it is proved that the group algebra L*(G)
is amenable precisely when the locally compact group G is amenable; i.e.,
there is an invariant mean m : L°°(G) — C. Several interesting results have
been obtained with the help of invariant means; see for example [BE], [FNS]
and [G].

Invariant means on spaces of vector-valued functions on a locally com-
pact group G were first considered by Husain and Wong [HW2]; they studied
invariant means on L*°(G, E*) which take values in E*, the continuous dual
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of a separated locally convex space E; see also [CL], [Di] and [HW1]. In
fact, the definition of invariant mean on a space of vector-valued functions
reduces to the usual one introduced by Greenleaf |Gr].

On the other hand, for a nonzero character ¢ on a Banach algebra A,
the interesting notion of ¢-amenability of A was recently introduced and
studied by Kaniuth, Lau and Pym [KLP1] and simultaneously by Monfared
[M]; see also [DNS], [GNN], [HMT], [KLP2] and [NS]. More precisely, A is
¢-amenable if there is an invariant ¢-mean on A*, that is, a bounded linear
functional m : A* — C such that (m,¢) = 1 and (m, f-a) = (m, f){¢,a)
for all a € A and f € A*, where f-a € A* is defined by (f - a,b) = (f, ab)
for all b € A. This is a considerable generalization of the concept of left
amenability for a Lau algebra; the class of Lau algebras was introduced
and studied by Lau [LI], who called them F-algebras; see also [DNN], [L2]
and [LW]. Examples of Lau algebras include the group algebra and measure
algebra of a locally compact group or hypergroup, as well as the Fourier
algebra and the Fourier—Stieltjes algebra of a topological group; see also
[L1] and [LL].

In this paper, for a W*-algebra M, we introduce and study M-valued
invariant #-means on spaces of bounded linear maps from A into M asso-
ciated to a bounded nonzero homomorphism @ from A into M.

2. Preliminaries. Let A be a Banach algebra and let M be a W*-
algebra with identity element w. Let us denote by A(A, M) the set of all
bounded nonzero homomorphisms from 4 into M and by A, (A, M) the
subset of all elements in A(A, M) whose image contains u. It is clear that
A(A), the spectrum of A, is just A(A, C) which is equal to A;(A,C).

For each Banach right A-module X, let B(X, M) denote the Banach
space of all bounded linear maps from X" into M. For each & € A(A, M) U
{0}, we denote by B(X, Mg) the Banach A-bimodule B(X, M) with the
module actions

(5-a)(§) = S(§)@(a) and (a-S5)(§) = S(¢-a),
for all S € B(X,M),a€ Aand { € X.
Moreover, let us remark that B(.A, M) is a Banach A-bimodule with the
actions of A on B(A, M) given by (T -a)(b) = T(ab) and (a-T)(b) = T(ba)
for all a,b € A and T € B(A, M); see Dales [D] for more details.

PropPOSITION 2.1. Let A be a Banach algebra and let M be a W*-
algebra. Then the following statements are equivalent:

(i) A has a bounded right approzimate identity.
(ii) Any continuous deriation D : A — B(X, My) is inner for all
Banach right A-modules X .
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Proof. First, we note that B(X, M) is isometrically isomorphic to (X & £)*
where £ is the unique predual of M and X ® £ is the projective tensor
product of X and L; see for example [D].

(i)=-(ii). Suppose that A has a bounded right approximate identity (eq),
and let X be a Banach right A-module. If D : A — B(X, M) is a continuous
derivation, then

D(ab) = a- D(b)

for all a,b € A, and (D(es)) can be considered as a net in (X ® £)*. So,

there exists a subnet (D(eg)) of (D(en)) such that D(eg) 3 S for some
S € B(X, M). On the one hand, for each a € A, £ € X and A\ € L, we have

(a-D(es),E@N) = (D(eg),&-a@N\) = (S,£-a®@\) = (a-S,£2 N).
It follows that a - D(eg) 3 a-S. On the other hand,
[D(aes) = D(a)|| < [|Dl| llaes — af = 0.
Therefore,
a-D(eg) = D(aeg) > D(a).

So, D(a) = a - S. Consequently, D = Dg is inner.
(ii)=-(i). Define the map D : A — B(B(A, M), M) by

D(a)(T) = T(a)
for all a € A and T € B(A, M). It is easy to check that
D: A— B(B(A, M), M)

is a continuous derivation. By assumption, there is m in B(B(A, M), M)
such that D(a) = a - m for all a € A. Let u be the identity element of M
and let Ao be an element in £ such that (u, \g) = 1. Let E be a bounded
linear functional on A* defined by

for all f € A*, where f ® u is the element in B(A, M) defined by
(f ®u)(a), A) = (f,a)(u, A)
for all a € A and X € L. For each a,b € A and \ € £ we obtain

(f@u)-a)b),A) = ((f ®u)(ab), ) = (f, ab){u, A)
= (f-a,b)(u, ) = {(f - a®@u)(b), A).
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Therefore, for each a € A and [ € A*,

(a-E,f)=(E,[-a)=m((f a)©u),o)
<m(( u) - a), o) = ((a-m)(f @ wu), \o)
= (D(a)((f ®u)), o) = ((f @ u)(a), ho)
= (f,a){u, Ao) = (f, ).
That is, F is a right identity for A**. Now, a standard argument shows that

A has a bounded right approximate identity; see for example [Rl, Proposition
22.1]. =

o~ o~

3. Vector-valued invariant #-means. We commence this section with
the main object of the paper.

DEFINITION 3.1. Let A be a Banach algebra, let M be a W*-algebra
with identity element u and let @ € A(A, M). We say that a bounded linear
map m : B(A, M) - M is an M-valued invariant &-mean on B(A, M) if
for each T'€ B(A, M) and a € A,

m(®)=u and m(7T-a)=m(T)P(a).

Our first key result gives a characterization of existence of vector-valued
invariant ¢-means.

PROPOSITION 3.2. Let A be a Banach algebra, let M be a W*-algebra
and let & € Ay (A, M). Suppose that any continuous derivation D : A —
B(X, Mg) is inner for all Banach right A-modules X. Then there exists an
M-valued invariant -mean on B(A, M).

Proof. Since C® is a closed A-submodule of B(A, M), we can consider
the quotient space X = B(A, M)/C®. Let m be the canonical mapping of
B(A, M) onto X, and define the A-module monomorphism

7' B(X,Mg) — B(B(A, M), Mg)
by
' (9)(T) = S(=(T))
for all S € B(X, Mg) and T € B(A, M). Since ® € A, (A, M), there exists
an element ag € A such that @(ag) = w. If myg € B(B(A, M), M) is given
by my(T) = T(ag) for all T € B(A, M), then my(®) = u. Consider the
inner derivation
D, : A = B(B(A, M), M),

and note that Dpm,(a)(®) = 0. Now, define the map D : A — B(X, Mg)
by D(a)(m(T')) = Dm,(a)(T) for all a € A and T € B(A, M); this means
that 7’ o D = Dyy,. The fact that ' is a monomorphism shows that D(a)
is a unique element of B(X, Mg) for all a € X, and that D is a continuous
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derivation. By assumption, D is inner and so there exists Sy € B(X, Mg)
with D = Dg,. Therefore

a7 (So) —7'(So)-a=n'(a-So—So-a)="(D(a))
= Dp,(a) = a-my —my - a.
Put m := mo — 7'(Sp). Then
m € B(B(A, M), M),
m(®) =u and - m =m - a, and thus
m(T - a) = (a-m)(T) = (m- a)(T) = m(T)%(a)
foralla € Aand T € B(A,M).

In the next result, we prove the converse of Proposition just for
certain @ € A(A, M).

THEOREM 3.3. Let A be a Banach algebra and let M be a W*-algebra.
For each epimorphism ® € A(A, M), the following statements are equiva-
lent:

(i) Any continuous derivation D : A — B(X,Mg) is inner for all
Banach right A-modules X .
(ii) There is an M-valued invariant ®-mean on B(A, M).

Proof. The implication (i)=-(ii) follows from Proposition To prove
(ii)=(i), suppose that m is an M-valued invariant ®-mean on B(A, M).
Let X be a Banach right A-module and let D : A — B(X, Mg) be an
arbitrary continuous derivation. Then D defines the bounded linear map

D": B(B(X, Mg), M) — B(A, M) by
D'(A)(a) = A(D(a))
forall A€ B(B(X,Mg),M)and a€ A. Let also T : X — B(B(X, Mg), M)
denote the bounded linear map satisfying
T(€)(S) = S(¢)
forall ¢ € X and S € B(X, Mg). Now, define (D'o7)" : B(B(A, M), M) —
B(X, Mg) by
(Do) (n)(§) =n (D' oT)(§))

for all n € B(B(A,M),M) and £ € X. Set Sy := —(D' oY) (m) €
B(X, Mg). To end this part, we will show D = Dg,. Since D is a derivation,



6 M. DASHTI ET AL.

it follows that

for all a € A and £ € X. Thus
D'oY(§ a) =D oT(£) -a—D(a)(§)?,
where D(a)(£)® € B(A, M) is defined by

(D(a)(§)®)(b) = D(a)(£)2(b)
for all b € A. Since & € A(A, M) is an epimorphism, for each a € A
and £ € X there exists an element z,¢ € A such that @(x,¢) = D(a)(§).
Therefore
(@ 2ae)(b) = P(r4,cb) = P(2a,e)P(b) = D(a)(§)P(D)
for all b € A. Thus & - z,¢ = D(a)(§)®. Furthermore, for each a € A and
fed,
(a-S0)(§) =—(D' oY) (m)(& a)

=-m((D'oT)(¢ " a)

=m(D(a)(§)P) —m((D o T)(€) - a)

=m(® - zq¢) — m((D' 0 T)(€))2(a)

=m(2)9(za¢) —m((D' 0 T)(£))P(a)

= D(a)(§) + So(§)P(a),
and hence D(a) = a-Sy— So®(a). Combining this with the equation Sy-a =
So®P(a), we obtain

D(a) =a-Sy—Sp-a= Dg,(a)

for all a € A. Consequently, D is inner. m

The following result describes interaction between existence of a vector-
valued invariant @-mean and amenability of Banach algebras.

PROPOSITION 3.4. Let A be a Banach algebra, let M be a commutative
W*-algebra and let & € Ay, (A, M). If A is amenable, then there is an M-
valued invariant @-mean on B(A, M).
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Proof. Suppose that A is amenable. Then for each Banach A-bimodule
X, any continuous derivation from A into X is inner. Let £ denote the
predual of M and note that (XY®L£)* = B(X, M) as Banach spaces. Since M
is a commutative W*-algebra, the projective tensor product X ® L with the
module operations restricted from the dual Banach A-bimodule B(X', Mg)*
is a Banach A-bimodule. It follows that any continuous derivation from A
into B(X, Mg) is inner. Now, by Proposition we conclude that there
exists an M-valued invariant ¢-mean on B(A, M). u

Let G be a locally compact group, and let L'(G) be the group alge-
bra of G, so that L'(G) is a Banach algebra for the convolution product
defined by

(f=9)@) =\ fgly'x)dy (z€G)

G

for f,g € L*(G). By the measure algebra M(G) of G, we mean the Banach
algebra of bounded regular Borel measures on G; see [HR]. Let M be a
W*-algebra. Each & € A,(L*(G), M) has the extension & € A,(M(G), M)
defined by ®(u) := D(u  fo) for all p € M(G), where fo € L*(G) with
®(fo) = u, and p * f is an element in L'(G) defined by

(nx @)=\ fy'2)duly) (z€G)

G

for all f € LY(GQ). If ¥ € A,(M(G), M) is another extension of @, then for
each u € M(G), we have

() = P(p* fo) =¥ (p* fo) =P (¥ (fo) =¥ ().
As a consequence, we have the following result.

PROPOSITION 3.5. Let G be a locally compact group and let M be a
W*-algebra. Let ® € A, (LY(G), M) and @ € A,(M(G), M) be the unique
extension of @. If there is an M-valued invariant @-mean on B(L*(G), M),
then there exists an M-valued invariant $-mean on B(M(G),M).

Proof. Let m be an M-valued invariant ®-mean on B(L'(G), M). Choose
fo € LYG) such that &(fo) = u. For each T € B(M(G), M), define

m(7T) = m(T|1(q)). We show that m is an M-valued invariant $-mean
on B(M(G), M). To this end, note that

() = m(@| ;1)) = m(®) =
Moreover, for each T' € B(M(G), M) and p € M(G) we have

(T - )l - fo=Tlp e - (1 * fo)-
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Since ?(fp) = u, we obtain
m(T - p) =m((T - p)|p1@)) = m(T - p)|pr () 2(fo)
=m((T p)l e - fo) = m(T|r1q) - (1 * fo))
=m(T|p1c))P (ke * fo) = m(T| 1 ) b (1)@ fo)
m(T)P(11),

I
B

as required. m

The following example shows that the converse of Proposition is not
true.

ExaMPLE 3.6. Let G be a nondiscrete amenable locally compact group
and let M be a commutative W*-algebra. Then L!(G) is amenable, and by
Proposition there is an M-valued invariant é-mean on B(L'(G), M)
for all ® € A,(L'(G), M). Moreover, by Proposition there exists an

M-valued invariant ¢-mean on B(M(G), M), where @ is a unique extension
of . However M(G) is not amenable; see [DGH].

4. Characterizations of ¢g-amenability. Let A be a Banach algebra
and let M be a W*-algebra with identity u. For ¢ € A(A), we define the
map ¢u € Ay(A, M) by (¢u)(a) = (p,a)u for all a € A. In this section,
we give two descriptions of ¢-amenability of A in terms of vector-valued
invariant ¢u-means.

PROPOSITION 4.1. Let A be a Banach algebra, let ¢ € A(A) and let
M be a W*-algebra. Then A is ¢p-amenable if and only if there exists an
M-valued invariant pu-mean on B(A, M).

Proof. First, suppose that A is ¢g-amenable. Then there exists an element
m € A** with

<m’ ¢> =1 and <m’ f ! CL> = <m’ f> <¢7 CL>
for alla € Aand f € A*. Let £ be the unique predual of the W*-algebra M.
Fix Ao € £ with (u, A\g) = 1, and let \g € M* be defined by (\g,w) = (w, Ao)
for all w € M. Define m : B(A, M) — M by

m(T) = (m, A\ o T)u
for all T € B(A, M). For each a € A, we have
(oo (¢u),a) = (o, (6, a)u) = ($,a) (R, u) = (¢, a).
So, m(¢u) = (m, ¢)u = u. Furthermore,
(Ao (T -a),b) = (o, (T - a)(b)) = (T'(ab), \o)
= ooT,ab) = ((XgoT) - a,b),
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and
m(T - a) = (m, Ago (T -a))u= (m, Ao T)o,a)u=m(T)(¢u)(a)

for all a,b € A and T € B(A, M). Thus m is an M-valued invariant ¢u-
mean.

For the converse, suppose that m € B(B(A, M), M) is an M-valued
invariant ¢u-mean and define the map A : A* — B(A, M) by

A(f)(a) = ([, a)u

for all f € A* and a € A. We claim that :\\0 omoA € A" is an invariant
¢-mean. To prove this, for each a,b € A and f € A*, we note that

A(f - a)(b) = (f - a,b)u = (f,abyu = A(f)(ab) = (A(f) - a)(b).
So, we have
MoomoA, f-a) = (Ngom, A(f) - a) = (Ao, m(A(f) - a))
= (Ao, m(A(f)){(¢, a)u) = (¢, a)(No, m(A(f)))

~

= {(¢,a)(Mpomo A, f).
Moreover, (XO omo A, ¢) = 1; indeed,
Moomo A, ¢) = (Ngom,du) = (N, u) = 1.
Thus A is ¢p-amenable. m

PROPOSITION 4.2. Let A be a Banach algebra and let M be a W*-
algebra. For ¢ € A(A), the following three conditions are equivalent:

(i) A is ¢p-amenable.
(ii) Any continuous derivation D : A — B(B(ker(¢), M), Mgy,) is in-
ner.
(iii) Any continuous derivation D : A — B(X, Mgy,) is inner for all
Banach right A-modules X .

Proof. (1)=>(ii) is obvious. The implication (i)=-(iii) follows from Propo-
sition [4.1f and Theorem Moreover (iii)=-(ii) is trivial.
To prove (ii)=(i), define the map D : A — B(B(ker(¢), M), My,) by

D(a)(Z) = Z(ab — (¢, a)b)

for all =& € B(ker(¢), M). Then D is a continuous derivation. So, by (ii),
there exists n € B(B(ker(¢), M), My,) such that D = D,. Choose b € A
with (¢, b) = 1. Define m € B(B(A, M), M) by m(T) = T'(b) — 0(T|ker(4))
for all T' € B(A, M). Then

m(pu) = (pu)(b) — n((¢u)|ker(s)) = v;
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furthermore, for each a € A and T' € B(A, M), we have

m(T - a) = (T a)(b) —n(Ty - a)

(T a)(b) — To(ab — (¢, a)b) — (n - a)(Tp)
(¢,)T(b) — (n-a)(To)

(¢,a)T(b) = n(To) (¢, a)

(¢, a)m(T),

where Ty = T'|ier(p)- S0, m € B(B(A, M), M) is an M-valued invariant
¢u-mean. Consequently, A is ¢-amenable by Proposition "
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