VOL. 132

2013

NO. 1

VECTOR-VALUED INVARIANT MEANS ON SPACES OF BOUNDED LINEAR MAPS

ΒY

MAHSHID DASHTI (Isfahan and Malayer), RASOUL NASR-ISFAHANI (Isfahan and Tehran) and SIMA SOLTANI RENANI (Isfahan)

Abstract. Let \mathcal{A} be a Banach algebra and let \mathcal{M} be a W^* -algebra. For a homomorphism Φ from \mathcal{A} into \mathcal{M} , we introduce and study \mathcal{M} -valued invariant Φ -means on the space of bounded linear maps from \mathcal{A} into \mathcal{M} . We establish several characterizations of existence of an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$. We also study the relation between existence of an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$ and amenability of \mathcal{A} . Finally, for a character ϕ of \mathcal{A} , we give some descriptions for ϕ -amenability of \mathcal{A} in terms of \mathcal{M} -valued invariant Φ -means.

1. Introduction. Let \mathcal{A} be a Banach algebra, and let \mathcal{Y} be a Banach \mathcal{A} -bimodule. Then a linear map $D : \mathcal{A} \to \mathcal{Y}$ is a *derivation* if

$$D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in \mathcal{A}).$$

For example, let $\zeta \in \mathcal{Y}$, and set

$$D_{\zeta}(a) = a \cdot \zeta - \zeta \cdot a \quad (a \in \mathcal{A}).$$

Then D_{ζ} is a derivation; these are *inner derivations*. The Banach algebra \mathcal{A} is called *amenable* if every continuous derivation $D : \mathcal{A} \to \mathcal{Y}^*$ is an inner derivation, for all Banach \mathcal{A} -bimodules \mathcal{Y} ; this important concept was introduced by Johnson [J], where it is proved that the group algebra $L^1(G)$ is amenable precisely when the locally compact group G is amenable; i.e., there is an invariant mean $m : L^{\infty}(G) \to \mathbb{C}$. Several interesting results have been obtained with the help of invariant means; see for example [BF], [FNS] and [G].

Invariant means on spaces of vector-valued functions on a locally compact group G were first considered by Husain and Wong [HW2]; they studied invariant means on $L^{\infty}(G, E^*)$ which take values in E^* , the continuous dual

²⁰¹⁰ Mathematics Subject Classification: 46H05, 43A07, 46L10.

Key words and phrases: Banach algebra, vector-valued invariant mean, ϕ -amenability, W^* -algebra.

of a separated locally convex space E; see also [CL], [Di] and [HW1]. In fact, the definition of invariant mean on a space of vector-valued functions reduces to the usual one introduced by Greenleaf [Gr].

On the other hand, for a nonzero character ϕ on a Banach algebra \mathcal{A} , the interesting notion of ϕ -amenability of \mathcal{A} was recently introduced and studied by Kaniuth, Lau and Pym [KLP1] and simultaneously by Monfared [M]; see also [DNS], [GNN], [HMT], [KLP2] and [NS]. More precisely, \mathcal{A} is ϕ -amenable if there is an invariant ϕ -mean on \mathcal{A}^* , that is, a bounded linear functional $m : \mathcal{A}^* \to \mathbb{C}$ such that $\langle m, \phi \rangle = 1$ and $\langle m, f \cdot a \rangle = \langle m, f \rangle \langle \phi, a \rangle$ for all $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$, where $f \cdot a \in \mathcal{A}^*$ is defined by $\langle f \cdot a, b \rangle = \langle f, ab \rangle$ for all $b \in \mathcal{A}$. This is a considerable generalization of the concept of left amenability for a Lau algebra; the class of Lau algebras was introduced and studied by Lau [L1], who called them F-algebras; see also [DNN], [L2] and [LW]. Examples of Lau algebras include the group algebra and measure algebra of a locally compact group or hypergroup, as well as the Fourier algebra and the Fourier–Stieltjes algebra of a topological group; see also [L1] and [LL].

In this paper, for a W^* -algebra \mathcal{M} , we introduce and study \mathcal{M} -valued invariant Φ -means on spaces of bounded linear maps from \mathcal{A} into \mathcal{M} associated to a bounded nonzero homomorphism Φ from \mathcal{A} into \mathcal{M} .

2. Preliminaries. Let \mathcal{A} be a Banach algebra and let \mathcal{M} be a W^* algebra with identity element u. Let us denote by $\Delta(\mathcal{A}, \mathcal{M})$ the set of all bounded nonzero homomorphisms from \mathcal{A} into \mathcal{M} and by $\Delta_u(\mathcal{A}, \mathcal{M})$ the subset of all elements in $\Delta(\mathcal{A}, \mathcal{M})$ whose image contains u. It is clear that $\Delta(\mathcal{A})$, the spectrum of \mathcal{A} , is just $\Delta(\mathcal{A}, \mathbb{C})$ which is equal to $\Delta_1(\mathcal{A}, \mathbb{C})$.

For each Banach right \mathcal{A} -module \mathcal{X} , let $B(\mathcal{X}, \mathcal{M})$ denote the Banach space of all bounded linear maps from \mathcal{X} into \mathcal{M} . For each $\Phi \in \Delta(\mathcal{A}, \mathcal{M}) \cup$ $\{0\}$, we denote by $B(\mathcal{X}, \mathcal{M}_{\Phi})$ the Banach \mathcal{A} -bimodule $B(\mathcal{X}, \mathcal{M})$ with the module actions

$$(S \cdot a)(\xi) = S(\xi)\Phi(a)$$
 and $(a \cdot S)(\xi) = S(\xi \cdot a),$

for all $S \in B(\mathcal{X}, \mathcal{M})$, $a \in \mathcal{A}$ and $\xi \in \mathcal{X}$.

Moreover, let us remark that $B(\mathcal{A}, \mathcal{M})$ is a Banach \mathcal{A} -bimodule with the actions of \mathcal{A} on $B(\mathcal{A}, \mathcal{M})$ given by $(T \cdot a)(b) = T(ab)$ and $(a \cdot T)(b) = T(ba)$ for all $a, b \in \mathcal{A}$ and $T \in B(\mathcal{A}, \mathcal{M})$; see Dales [D] for more details.

PROPOSITION 2.1. Let \mathcal{A} be a Banach algebra and let \mathcal{M} be a W^* -algebra. Then the following statements are equivalent:

- (i) A has a bounded right approximate identity.
- (ii) Any continuous derivation $D : \mathcal{A} \to B(\mathcal{X}, \mathcal{M}_0)$ is inner for all Banach right \mathcal{A} -modules \mathcal{X} .

Proof. First, we note that $B(\mathcal{X}, \mathcal{M})$ is isometrically isomorphic to $(\mathcal{X} \otimes \mathcal{L})^*$, where \mathcal{L} is the unique predual of \mathcal{M} and $\mathcal{X} \otimes \mathcal{L}$ is the projective tensor product of \mathcal{X} and \mathcal{L} ; see for example [D].

(i) \Rightarrow (ii). Suppose that \mathcal{A} has a bounded right approximate identity (e_{α}) , and let \mathcal{X} be a Banach right \mathcal{A} -module. If $D : \mathcal{A} \to B(\mathcal{X}, \mathcal{M}_0)$ is a continuous derivation, then

$$D(ab) = a \cdot D(b)$$

for all $a, b \in \mathcal{A}$, and $(D(e_{\alpha}))$ can be considered as a net in $(\mathcal{X} \otimes \mathcal{L})^*$. So, there exists a subnet $(D(e_{\beta}))$ of $(D(e_{\alpha}))$ such that $D(e_{\beta}) \xrightarrow{w^*} S$ for some $S \in B(\mathcal{X}, \mathcal{M})$. On the one hand, for each $a \in \mathcal{A}, \xi \in \mathcal{X}$ and $\lambda \in \mathcal{L}$, we have

$$\langle a \cdot D(e_{\beta}), \xi \otimes \lambda \rangle = \langle D(e_{\beta}), \xi \cdot a \otimes \lambda \rangle = \langle S, \xi \cdot a \otimes \lambda \rangle = \langle a \cdot S, \xi \otimes \lambda \rangle.$$

It follows that $a \cdot D(e_{\beta}) \xrightarrow{w^*} a \cdot S$. On the other hand,

$$||D(ae_{\beta}) - D(a)|| \le ||D|| ||ae_{\beta} - a|| \to 0.$$

Therefore,

$$a \cdot D(e_{\beta}) = D(ae_{\beta}) \xrightarrow{w^*} D(a)$$

So, $D(a) = a \cdot S$. Consequently, $D = D_S$ is inner.

(ii) \Rightarrow (i). Define the map $D: \mathcal{A} \to B(B(\mathcal{A}, \mathcal{M}), \mathcal{M}_0)$ by

$$D(a)(T) = T(a)$$

for all $a \in \mathcal{A}$ and $T \in B(\mathcal{A}, \mathcal{M})$. It is easy to check that

$$D: \mathcal{A} \to B(B(\mathcal{A}, \mathcal{M}), \mathcal{M}_0)$$

is a continuous derivation. By assumption, there is \mathbf{m} in $B(B(\mathcal{A}, \mathcal{M}), \mathcal{M}_0)$ such that $D(a) = a \cdot \mathbf{m}$ for all $a \in \mathcal{A}$. Let u be the identity element of \mathcal{M} and let λ_0 be an element in \mathcal{L} such that $\langle u, \lambda_0 \rangle = 1$. Let E be a bounded linear functional on \mathcal{A}^* defined by

$$\langle E, f \rangle = \langle \mathbf{m}(f \otimes u), \lambda_0 \rangle$$

for all $f \in \mathcal{A}^*$, where $f \otimes u$ is the element in $B(\mathcal{A}, \mathcal{M})$ defined by

$$\langle (f \otimes u)(a), \lambda \rangle = \langle f, a \rangle \langle u, \lambda \rangle$$

for all $a \in \mathcal{A}$ and $\lambda \in \mathcal{L}$. For each $a, b \in \mathcal{A}$ and $\lambda \in \mathcal{L}$ we obtain

$$\begin{split} \langle ((f \otimes u) \cdot a)(b), \lambda \rangle &= \langle (f \otimes u)(ab), \lambda \rangle = \langle f, ab \rangle \langle u, \lambda \rangle \\ &= \langle f \cdot a, b \rangle \langle u, \lambda \rangle = \langle (f \cdot a \otimes u)(b), \lambda \rangle. \end{split}$$

Therefore, for each $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$,

$$\begin{aligned} \langle a \cdot E, f \rangle &= \langle E, f \cdot a \rangle = \langle \mathbf{m}((f \cdot a) \otimes u), \lambda_0 \rangle \\ &= \langle \mathbf{m}((f \otimes u) \cdot a), \lambda_0 \rangle = \langle (a \cdot \mathbf{m})(f \otimes u), \lambda_0 \rangle \\ &= \langle D(a)((f \otimes u)), \lambda_0 \rangle = \langle (f \otimes u)(a), \lambda_0 \rangle \\ &= \langle f, a \rangle \langle u, \lambda_0 \rangle = \langle f, a \rangle. \end{aligned}$$

That is, E is a right identity for \mathcal{A}^{**} . Now, a standard argument shows that \mathcal{A} has a bounded right approximate identity; see for example [R, Proposition 2.2.1].

3. Vector-valued invariant Φ -means. We commence this section with the main object of the paper.

DEFINITION 3.1. Let \mathcal{A} be a Banach algebra, let \mathcal{M} be a \mathcal{W}^* -algebra with identity element u and let $\Phi \in \Delta(\mathcal{A}, \mathcal{M})$. We say that a bounded linear map $\mathbf{m} : B(\mathcal{A}, \mathcal{M}) \to \mathcal{M}$ is an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$ if for each $T \in B(\mathcal{A}, \mathcal{M})$ and $a \in \mathcal{A}$,

$$\mathbf{m}(\Phi) = u$$
 and $\mathbf{m}(T \cdot a) = \mathbf{m}(T)\Phi(a).$

Our first key result gives a characterization of existence of vector-valued invariant Φ -means.

PROPOSITION 3.2. Let \mathcal{A} be a Banach algebra, let \mathcal{M} be a W^* -algebra and let $\Phi \in \Delta_u(\mathcal{A}, \mathcal{M})$. Suppose that any continuous derivation $D : \mathcal{A} \to B(\mathcal{X}, \mathcal{M}_{\Phi})$ is inner for all Banach right \mathcal{A} -modules \mathcal{X} . Then there exists an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$.

Proof. Since $\mathbb{C}\Phi$ is a closed \mathcal{A} -submodule of $B(\mathcal{A}, \mathcal{M})$, we can consider the quotient space $\mathcal{X} = B(\mathcal{A}, \mathcal{M})/\mathbb{C}\Phi$. Let π be the canonical mapping of $B(\mathcal{A}, \mathcal{M})$ onto \mathcal{X} , and define the \mathcal{A} -module monomorphism

$$\pi': B(\mathcal{X}, \mathcal{M}_{\Phi}) \to B(B(\mathcal{A}, \mathcal{M}), \mathcal{M}_{\Phi})$$

by

$$\pi'(S)(T) = S(\pi(T))$$

for all $S \in B(\mathcal{X}, \mathcal{M}_{\Phi})$ and $T \in B(\mathcal{A}, \mathcal{M})$. Since $\Phi \in \Delta_u(\mathcal{A}, \mathcal{M})$, there exists an element $a_0 \in \mathcal{A}$ such that $\Phi(a_0) = u$. If $\mathbf{m}_0 \in B(B(\mathcal{A}, \mathcal{M}), \mathcal{M})$ is given by $\mathbf{m}_0(T) = T(a_0)$ for all $T \in B(\mathcal{A}, \mathcal{M})$, then $\mathbf{m}_0(\Phi) = u$. Consider the inner derivation

$$D_{\mathbf{m}_0}: \mathcal{A} \to B(B(\mathcal{A}, \mathcal{M}), \mathcal{M}_{\Phi}),$$

and note that $D_{\mathbf{m}_0}(a)(\Phi) = 0$. Now, define the map $D : \mathcal{A} \to B(\mathcal{X}, \mathcal{M}_{\Phi})$ by $D(a)(\pi(T)) = D_{\mathbf{m}_0}(a)(T)$ for all $a \in \mathcal{A}$ and $T \in B(\mathcal{A}, \mathcal{M})$; this means that $\pi' \circ D = D_{\mathbf{m}_0}$. The fact that π' is a monomorphism shows that D(a)is a unique element of $B(\mathcal{X}, \mathcal{M}_{\Phi})$ for all $a \in \mathcal{X}$, and that D is a continuous derivation. By assumption, D is inner and so there exists $S_0 \in B(\mathcal{X}, \mathcal{M}_{\Phi})$ with $D = D_{S_0}$. Therefore

$$a \cdot \pi'(S_0) - \pi'(S_0) \cdot a = \pi'(a \cdot S_0 - S_0 \cdot a) = \pi'(D(a))$$
$$= D_{\mathbf{m}_0}(a) = a \cdot \mathbf{m}_0 - \mathbf{m}_0 \cdot a.$$

Put $\mathbf{m} := \mathbf{m}_0 - \pi'(S_0)$. Then

$$\mathbf{m} \in B(B(\mathcal{A}, \mathcal{M}), \mathcal{M}),$$

 $\mathbf{m}(\Phi) = u$ and $a \cdot \mathbf{m} = \mathbf{m} \cdot a$, and thus

$$\mathbf{m}(T \cdot a) = (a \cdot \mathbf{m})(T) = (\mathbf{m} \cdot a)(T) = \mathbf{m}(T)\Phi(a)$$

for all $a \in \mathcal{A}$ and $T \in B(\mathcal{A}, \mathcal{M})$.

In the next result, we prove the converse of Proposition 3.2, just for certain $\Phi \in \Delta(\mathcal{A}, \mathcal{M})$.

THEOREM 3.3. Let \mathcal{A} be a Banach algebra and let \mathcal{M} be a W^* -algebra. For each epimorphism $\Phi \in \Delta(\mathcal{A}, \mathcal{M})$, the following statements are equivalent:

- (i) Any continuous derivation $D : \mathcal{A} \to B(\mathcal{X}, \mathcal{M}_{\Phi})$ is inner for all Banach right \mathcal{A} -modules \mathcal{X} .
- (ii) There is an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$.

Proof. The implication (i) \Rightarrow (ii) follows from Proposition 3.2. To prove (ii) \Rightarrow (i), suppose that **m** is an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$. Let \mathcal{X} be a Banach right \mathcal{A} -module and let $D : \mathcal{A} \rightarrow B(\mathcal{X}, \mathcal{M}_{\Phi})$ be an arbitrary continuous derivation. Then D defines the bounded linear map $D': B(B(\mathcal{X}, \mathcal{M}_{\Phi}), \mathcal{M}) \rightarrow B(\mathcal{A}, \mathcal{M})$ by

$$D'(\Lambda)(a) = \Lambda(D(a))$$

for all $\Lambda \in B(B(\mathcal{X}, \mathcal{M}_{\Phi}), \mathcal{M})$ and $a \in \mathcal{A}$. Let also $\Upsilon : \mathcal{X} \to B(B(\mathcal{X}, \mathcal{M}_{\Phi}), \mathcal{M})$ denote the bounded linear map satisfying

$$\Upsilon(\xi)(S) = S(\xi)$$

for all $\xi \in \mathcal{X}$ and $S \in B(\mathcal{X}, \mathcal{M}_{\Phi})$. Now, define $(D' \circ \mathcal{T})' : B(B(\mathcal{A}, \mathcal{M}), \mathcal{M}) \to B(\mathcal{X}, \mathcal{M}_{\Phi})$ by

$$(D' \circ \Upsilon)'(\mathbf{n})(\xi) = \mathbf{n} \left((D' \circ \Upsilon)(\xi) \right)$$

for all $\mathbf{n} \in B(B(\mathcal{A}, \mathcal{M}), \mathcal{M})$ and $\xi \in \mathcal{X}$. Set $S_0 := -(D' \circ \Upsilon)'(\mathbf{m}) \in B(\mathcal{X}, \mathcal{M}_{\Phi})$. To end this part, we will show $D = D_{S_0}$. Since D is a derivation,

it follows that

$$\begin{aligned} D' \circ \Upsilon(\xi \cdot a)(b) &= \Upsilon(\xi \cdot a)(D(b)) \\ &= D(b)(\xi \cdot a) \\ &= (a \cdot D(b))(\xi) \\ &= D(ab)(\xi) - (D(a) \cdot b)(\xi) \\ &= \Upsilon(\xi)(D(ab)) - D(a)(\xi) \varPhi(b) \\ &= D' \circ \Upsilon(\xi)(ab) - D(a)(\xi) \varPhi(b) \\ &= (D' \circ \Upsilon(\xi) \cdot a)(b) - D(a)(\xi) \varPhi(b) \end{aligned}$$

for all $a \in \mathcal{A}$ and $\xi \in \mathcal{X}$. Thus

$$D' \circ \Upsilon(\xi \cdot a) = D' \circ \Upsilon(\xi) \cdot a - D(a)(\xi)\Phi_{\xi}$$

where $D(a)(\xi)\Phi \in B(\mathcal{A}, \mathcal{M})$ is defined by

$$(D(a)(\xi)\Phi)(b) = D(a)(\xi)\Phi(b)$$

for all $b \in \mathcal{A}$. Since $\Phi \in \Delta(\mathcal{A}, \mathcal{M})$ is an epimorphism, for each $a \in \mathcal{A}$ and $\xi \in \mathcal{X}$ there exists an element $x_{a,\xi} \in \mathcal{A}$ such that $\Phi(x_{a,\xi}) = D(a)(\xi)$. Therefore

$$(\Phi \cdot x_{a,\xi})(b) = \Phi(x_{a,\xi}b) = \Phi(x_{a,\xi})\Phi(b) = D(a)(\xi)\Phi(b)$$

for all $b \in \mathcal{A}$. Thus $\Phi \cdot x_{a,\xi} = D(a)(\xi)\Phi$. Furthermore, for each $a \in \mathcal{A}$ and $\xi \in \mathcal{X}$,

$$(a \cdot S_0)(\xi) = -(D' \circ \Upsilon)'(\mathbf{m})(\xi \cdot a)$$

= $-\mathbf{m}((D' \circ \Upsilon)(\xi \cdot a))$
= $\mathbf{m}(D(a)(\xi)\Phi) - \mathbf{m}((D' \circ \Upsilon)(\xi) \cdot a)$
= $\mathbf{m}(\Phi \cdot x_{a,\xi}) - \mathbf{m}((D' \circ \Upsilon)(\xi))\Phi(a)$
= $\mathbf{m}(\Phi)\Phi(x_{a,\xi}) - \mathbf{m}((D' \circ \Upsilon)(\xi))\Phi(a)$
= $D(a)(\xi) + S_0(\xi)\Phi(a),$

and hence $D(a) = a \cdot S_0 - S_0 \Phi(a)$. Combining this with the equation $S_0 \cdot a = S_0 \Phi(a)$, we obtain

$$D(a) = a \cdot S_0 - S_0 \cdot a = D_{S_0}(a)$$

for all $a \in \mathcal{A}$. Consequently, D is inner.

The following result describes interaction between existence of a vectorvalued invariant Φ -mean and amenability of Banach algebras.

PROPOSITION 3.4. Let \mathcal{A} be a Banach algebra, let \mathcal{M} be a commutative W^* -algebra and let $\Phi \in \Delta_u(\mathcal{A}, \mathcal{M})$. If \mathcal{A} is amenable, then there is an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$.

Proof. Suppose that \mathcal{A} is amenable. Then for each Banach \mathcal{A} -bimodule \mathcal{X} , any continuous derivation from \mathcal{A} into \mathcal{X}^* is inner. Let \mathcal{L} denote the predual of \mathcal{M} and note that $(\mathcal{X} \widehat{\otimes} \mathcal{L})^* = B(\mathcal{X}, \mathcal{M})$ as Banach spaces. Since \mathcal{M} is a commutative W^* -algebra, the projective tensor product $\mathcal{X} \widehat{\otimes} \mathcal{L}$ with the module operations restricted from the dual Banach \mathcal{A} -bimodule $B(\mathcal{X}, \mathcal{M}_{\Phi})^*$ is a Banach \mathcal{A} -bimodule. It follows that any continuous derivation from \mathcal{A} into $B(\mathcal{X}, \mathcal{M}_{\Phi})$ is inner. Now, by Proposition 3.2, we conclude that there exists an \mathcal{M} -valued invariant Φ -mean on $B(\mathcal{A}, \mathcal{M})$.

Let G be a locally compact group, and let $L^1(G)$ be the group algebra of G, so that $L^1(G)$ is a Banach algebra for the convolution product defined by

$$(f*g)(x) = \int_G f(y)g(y^{-1}x) \, dy \quad (x \in G)$$

for $f, g \in L^1(G)$. By the measure algebra M(G) of G, we mean the Banach algebra of bounded regular Borel measures on G; see [HR]. Let \mathcal{M} be a W^* -algebra. Each $\Phi \in \Delta_u(L^1(G), \mathcal{M})$ has the extension $\widetilde{\Phi} \in \Delta_u(M(G), \mathcal{M})$ defined by $\widetilde{\Phi}(\mu) := \Phi(\mu * f_0)$ for all $\mu \in M(G)$, where $f_0 \in L^1(G)$ with $\Phi(f_0) = u$, and $\mu * f$ is an element in $L^1(G)$ defined by

$$(\mu * f)(x) = \int_{G} f(y^{-1}x) d\mu(y) \quad (x \in G)$$

for all $f \in L^1(G)$. If $\Psi \in \Delta_u(M(G), \mathcal{M})$ is another extension of Φ , then for each $\mu \in M(G)$, we have

$$\Phi(\mu) = \Phi(\mu * f_0) = \Psi(\mu * f_0) = \Psi(\mu)\Psi(f_0) = \Psi(\mu).$$

As a consequence, we have the following result.

PROPOSITION 3.5. Let G be a locally compact group and let \mathcal{M} be a W^* -algebra. Let $\Phi \in \Delta_u(L^1(G), \mathcal{M})$ and $\widetilde{\Phi} \in \Delta_u(M(G), \mathcal{M})$ be the unique extension of Φ . If there is an \mathcal{M} -valued invariant Φ -mean on $B(L^1(G), \mathcal{M})$, then there exists an \mathcal{M} -valued invariant $\widetilde{\Phi}$ -mean on $B(M(G), \mathcal{M})$.

Proof. Let **m** be an \mathcal{M} -valued invariant Φ -mean on $B(L^1(G), \mathcal{M})$. Choose $f_0 \in L^1(G)$ such that $\Phi(f_0) = u$. For each $T \in B(M(G), \mathcal{M})$, define $\widetilde{\mathbf{m}}(T) = \mathbf{m}(T|_{L^1(G)})$. We show that **m** is an \mathcal{M} -valued invariant $\widetilde{\Phi}$ -mean on $B(M(G), \mathcal{M})$. To this end, note that

$$\widetilde{\mathbf{m}}(\widetilde{\varPhi}) = \mathbf{m}(\widetilde{\varPhi}|_{L^1(G)}) = \mathbf{m}(\varPhi) = u.$$

Moreover, for each $T \in B(M(G), \mathcal{M})$ and $\mu \in M(G)$ we have

$$(T \cdot \mu)|_{L^1(G)} \cdot f_0 = T|_{L^1(G)} \cdot (\mu * f_0)$$

Since $\Phi(f_0) = u$, we obtain

$$\widetilde{\mathbf{m}}(T \cdot \mu) = \mathbf{m}((T \cdot \mu)|_{L^1(G)}) = \mathbf{m}((T \cdot \mu)|_{L^1(G)}) \Phi(f_0)$$

= $\mathbf{m}((T \cdot \mu)|_{L^1(G)} \cdot f_0) = \mathbf{m}(T|_{L^1(G)} \cdot (\mu * f_0))$
= $\mathbf{m}(T|_{L^1(G)}) \Phi(\mu * f_0) = \mathbf{m}(T|_{L^1(G)}) \widetilde{\Phi}(\mu) \widetilde{\Phi}(f_0)$
= $\widetilde{\mathbf{m}}(T) \widetilde{\Phi}(\mu),$

as required. \blacksquare

The following example shows that the converse of Proposition 3.4 is not true.

EXAMPLE 3.6. Let G be a nondiscrete amenable locally compact group and let \mathcal{M} be a commutative W^* -algebra. Then $L^1(G)$ is amenable, and by Proposition 3.4, there is an \mathcal{M} -valued invariant Φ -mean on $B(L^1(G), \mathcal{M})$ for all $\Phi \in \Delta_u(L^1(G), \mathcal{M})$. Moreover, by Proposition 3.5, there exists an \mathcal{M} -valued invariant $\tilde{\Phi}$ -mean on $B(M(G), \mathcal{M})$, where $\tilde{\Phi}$ is a unique extension of Φ . However M(G) is not amenable; see [DGH].

4. Characterizations of ϕ -amenability. Let \mathcal{A} be a Banach algebra and let \mathcal{M} be a W^* -algebra with identity u. For $\phi \in \Delta(\mathcal{A})$, we define the map $\phi u \in \Delta_u(\mathcal{A}, \mathcal{M})$ by $(\phi u)(a) = \langle \phi, a \rangle u$ for all $a \in \mathcal{A}$. In this section, we give two descriptions of ϕ -amenability of \mathcal{A} in terms of vector-valued invariant ϕu -means.

PROPOSITION 4.1. Let \mathcal{A} be a Banach algebra, let $\phi \in \Delta(\mathcal{A})$ and let \mathcal{M} be a W^* -algebra. Then \mathcal{A} is ϕ -amenable if and only if there exists an \mathcal{M} -valued invariant ϕ u-mean on $B(\mathcal{A}, \mathcal{M})$.

Proof. First, suppose that \mathcal{A} is ϕ -amenable. Then there exists an element $m \in \mathcal{A}^{**}$ with

$$\langle m, \phi \rangle = 1$$
 and $\langle m, f \cdot a \rangle = \langle m, f \rangle \langle \phi, a \rangle$

for all $a \in \mathcal{A}$ and $f \in \mathcal{A}^*$. Let \mathcal{L} be the unique predual of the W^* -algebra \mathcal{M} . Fix $\lambda_0 \in \mathcal{L}$ with $\langle u, \lambda_0 \rangle = 1$, and let $\widehat{\lambda}_0 \in \mathcal{M}^*$ be defined by $\langle \widehat{\lambda}_0, \omega \rangle = \langle \omega, \lambda_0 \rangle$ for all $\omega \in \mathcal{M}$. Define $\mathbf{m} : B(\mathcal{A}, \mathcal{M}) \to \mathcal{M}$ by

$$\mathbf{m}(T) = \langle m, \widehat{\lambda}_0 \circ T \rangle u$$

for all $T \in B(\mathcal{A}, \mathcal{M})$. For each $a \in \mathcal{A}$, we have

$$\widehat{\lambda}_0 \circ (\phi u), a \rangle = \langle \widehat{\lambda}_0, \langle \phi, a \rangle u \rangle = \langle \phi, a \rangle \langle \widehat{\lambda}_0, u \rangle = \langle \phi, a \rangle.$$

So, $\mathbf{m}(\phi u) = \langle m, \phi \rangle u = u$. Furthermore,

$$\begin{split} \langle \lambda_0 \circ (T \cdot a), b \rangle &= \langle \lambda_0, (T \cdot a)(b) \rangle = \langle T(ab), \lambda_0 \rangle \\ &= \langle \widehat{\lambda}_0 \circ T, ab \rangle = \langle (\widehat{\lambda}_0 \circ T) \cdot a, b \rangle, \end{split}$$

and

$$\mathbf{m}(T \cdot a) = \langle m, \widehat{\lambda}_0 \circ (T \cdot a) \rangle u = \langle m, \widehat{\lambda}_0 \circ T \rangle \langle \phi, a \rangle u = \mathbf{m}(T)(\phi u)(a)$$

for all $a, b \in \mathcal{A}$ and $T \in B(\mathcal{A}, \mathcal{M})$. Thus **m** is an \mathcal{M} -valued invariant ϕu -mean.

For the converse, suppose that $\mathbf{m} \in B(B(\mathcal{A}, \mathcal{M}), \mathcal{M})$ is an \mathcal{M} -valued invariant ϕu -mean and define the map $\Lambda : \mathcal{A}^* \to B(\mathcal{A}, \mathcal{M})$ by

$$\Lambda(f)(a) = \langle f, a \rangle u$$

for all $f \in \mathcal{A}^*$ and $a \in \mathcal{A}$. We claim that $\widehat{\lambda}_0 \circ \mathbf{m} \circ \Lambda \in \mathcal{A}^{**}$ is an invariant ϕ -mean. To prove this, for each $a, b \in \mathcal{A}$ and $f \in \mathcal{A}^*$, we note that

$$\Lambda(f \cdot a)(b) = \langle f \cdot a, b \rangle u = \langle f, ab \rangle u = \Lambda(f)(ab) = (\Lambda(f) \cdot a)(b).$$

So, we have

$$\begin{split} \langle \widehat{\lambda}_0 \circ \mathbf{m} \circ \Lambda, f \cdot a \rangle &= \langle \widehat{\lambda}_0 \circ \mathbf{m}, \Lambda(f) \cdot a \rangle = \langle \widehat{\lambda}_0, \mathbf{m}(\Lambda(f) \cdot a) \rangle \\ &= \langle \widehat{\lambda}_0, \mathbf{m}(\Lambda(f)) \langle \phi, a \rangle u \rangle = \langle \phi, a \rangle \langle \widehat{\lambda}_0, \mathbf{m}(\Lambda(f)) \rangle \\ &= \langle \phi, a \rangle \langle \widehat{\lambda}_0 \circ \mathbf{m} \circ \Lambda, f \rangle. \end{split}$$

Moreover, $\langle \hat{\lambda}_0 \circ \mathbf{m} \circ \Lambda, \phi \rangle = 1$; indeed,

$$\langle \widehat{\lambda}_0 \circ \mathbf{m} \circ \Lambda, \phi \rangle = \langle \widehat{\lambda}_0 \circ \mathbf{m}, \phi u \rangle = \langle \widehat{\lambda}_0, u \rangle = 1.$$

Thus \mathcal{A} is ϕ -amenable.

PROPOSITION 4.2. Let \mathcal{A} be a Banach algebra and let \mathcal{M} be a W^* algebra. For $\phi \in \Delta(\mathcal{A})$, the following three conditions are equivalent:

- (i) \mathcal{A} is ϕ -amenable.
- (ii) Any continuous derivation $D : \mathcal{A} \to B(B(\ker(\phi), \mathcal{M}), \mathcal{M}_{\phi u})$ is inner.
- (iii) Any continuous derivation $D : \mathcal{A} \to B(\mathcal{X}, \mathcal{M}_{\phi u})$ is inner for all Banach right \mathcal{A} -modules \mathcal{X} .

Proof. (i) \Rightarrow (ii) is obvious. The implication (i) \Rightarrow (iii) follows from Proposition 4.1 and Theorem 3.3. Moreover (iii) \Rightarrow (ii) is trivial.

To prove (ii) \Rightarrow (i), define the map $D: \mathcal{A} \rightarrow B(B(\ker(\phi), \mathcal{M}), \mathcal{M}_{\phi u})$ by

$$D(a)(\Xi) = \Xi(ab - \langle \phi, a \rangle b)$$

for all $\Xi \in B(\ker(\phi), \mathcal{M})$. Then D is a continuous derivation. So, by (ii), there exists $\mathbf{n} \in B(B(\ker(\phi), \mathcal{M}), \mathcal{M}_{\phi u})$ such that $D = D_{\mathbf{n}}$. Choose $b \in \mathcal{A}$ with $\langle \phi, b \rangle = 1$. Define $\mathbf{m} \in B(B(\mathcal{A}, \mathcal{M}), \mathcal{M})$ by $\mathbf{m}(T) = T(b) - \mathbf{n}(T|_{\ker(\phi)})$ for all $T \in B(\mathcal{A}, \mathcal{M})$. Then

$$\mathbf{m}(\phi u) = (\phi u)(b) - \mathbf{n}((\phi u)|_{\ker(\phi)}) = u;$$

furthermore, for each $a \in \mathcal{A}$ and $T \in B(\mathcal{A}, \mathcal{M})$, we have

$$\mathbf{m}(T \cdot a) = (T \cdot a)(b) - \mathbf{n}(T_0 \cdot a)$$

= $(T \cdot a)(b) - T_0(ab - \langle \phi, a \rangle b) - (\mathbf{n} \cdot a)(T_0)$
= $\langle \phi, a \rangle T(b) - (\mathbf{n} \cdot a)(T_0)$
= $\langle \phi, a \rangle T(b) - \mathbf{n}(T_0) \langle \phi, a \rangle$
= $\langle \phi, a \rangle \mathbf{m}(T),$

where $T_0 = T|_{\ker(\phi)}$. So, $\mathbf{m} \in B(B(\mathcal{A}, \mathcal{M}), \mathcal{M})$ is an \mathcal{M} -valued invariant ϕu -mean. Consequently, \mathcal{A} is ϕ -amenable by Proposition 4.1.

Acknowledgements. The authors would like to thank the referee for invaluable comments. This research was supported in part by a grant from IPM (No. 91430417). It was partially carried out at the IPM-Isfahan Branch.

REFERENCES

- [BF] J. W. Baker and M. Filali, Minimal ideals in group algebras and their biduals, Math. Proc. Cambridge Philos. Soc. 120 (1996), 475–488.
- [CL] C. Chou and A. T. Lau, Vector-valued invariant means on spaces of bounded operators associated to a locally compact group, Illinois J. Math. 45 (2001), 581– 602.
- [D] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. 24, Oxford Sci.Publ., Clarendon Press, New York, 2000.
- [DGH] H. G. Dales, F. Ghahramani and A. Ya. Helemskii, The amenability of measure algebras, J. London Math. Soc. (2) 66 (2002), 213–226.
- [DNS] M. Dashti, R. Nasr-Isfahani and S. Soltani Renani, Character amenability of Lipschitz algebra, Canad. Math. Bull. (2012), to appear.
- [DNN] S. Desaulniers, R. Nasr-Isfahani and M. Nemati, Common fixed point properties and amenability of a class of Banach algebras, J. Math. Anal. Appl. 402 (2013), 536–544.
- [Di] J. Dixmier, Les moyennes invariantes dans les semi-groupes et leur applications, Acta Sci. Math. (Szeged) 12 (1950), 213–227.
- [FNS] M. Filali, M. Neufang and M. Sangani Monfared, On ideals in the bidual of the Fourier algebra and related algebras, J. Funct. Anal. 258 (2010), 3117–3133.
- [GNN] E. Ghaderi, R. Nasr-Isfahani and M. Nemati, Some notions of amenability for certain products of Banach algebras, Colloq. Math. 130 (2013), 147–157.
- [G] E. E. Granirer, Geometric and topological properties of certain w^{*} compact convex sets which arise from the study of invariant means, Canad. J. Math. 37 (1985), 107–121.
- [Gr] F. P. Greenleaf, Invariant Means on Topological Groups and their Applications, Van Nostrand Math. Stud. 16, Van Nostrand, New York, 1969.
- [HR] E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis I*, Springer, Berlin, 1963.
- [HMT] Z. Hu, M. S. Monfared and T. Traynor, On character amenable Banach algebras, Studia Math. 193 (2009), 53–78.
- [HW1] T. Husain and J. C. S. Wong, Invariant means on vector valued functions I, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 717–727.

- [HW2] T. Husain and J. C. S. Wong, Invariant means on vector valued functions II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 729–742.
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- [KLP1] E. Kaniuth, A. T.-M. Lau and J. Pym, On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96.
- [KLP2] E. Kaniuth, A. T.-M. Lau and J. Pym, On character amenability of Banach algebras, J. Math. Anal. Appl. 344 (2008), 942–955.
- [L1] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175.
- [L2] A. T.-M. Lau, Uniformly continuous functionals on Banach algebras, Colloq. Math. 51 (1987), 195–205.
- [LL] A. T.-M. Lau and J. Ludwig, Fourier-Stieltjes algebra of a topological group, Adv. Math. 229 (2012), 2000–2023.
- [LW] A. T.-M. Lau and J. C. S. Wong, Invariant subspaces for algebras of linear operators and amenable locally compact groups, Proc. Amer. Math. Soc. 102 (1988), 581–586.
- [M] M. S. Monfared, Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697–706.
- [NS] R. Nasr-Isfahani and S. Soltani Renani, Character contractibility of Banach algebras and homological properties of Banach modules, Studia Math. 202 (2011), 205–225.
- [R] V. Runde, Lectures on Amenability, Lecture Notes in Math. 1774, Springer, Berlin, 2002.

Mahshid Dashti

	reasoni reasi istanami
Department of Mathematical Sciences	Department of Mathematical Sciences
Isfahan University of Technology	Isfahan University of Technology
84156-83111 Isfahan, Iran	84156-83111 Isfahan, Iran
and	and
Department of Mathematics	School of Mathematics
Malayer University	Institute for Research
65719-95863 Malayer, Hamedan, Iran	in Fundamental Science (IPM)
E-mail: m.dashti@math.iut.ac.ir,	19395-5746 Tehran, Iran
m.dashti@malayeru.ac.ir	E-mail: isfahani@cc.iut.ac.ir

Sima Soltani Renani Department of Mathematical Sciences Isfahan University of Technology 84156-83111 Isfahan, Iran E-mail: simasoltani@cc.iut.ac.ir

> Received 22 August 2012; revised 7 February 2013

(5744)

Basoul Nasr-Isfahani